IMIDE OLIGOMERS ENDCAPPED WITH PHENYLETHYNYL PHTHALIC ANHYDRIDES AND POLYMERS THEREFROM

Inventors: Paul M. Hergenrother, Yorktown; Joseph G. Smith, Jr., Grafton, both of Va.

Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Washington, D.C.

Notice: The term of this patent shall not extend beyond the expiration date of Pat. No. 5,567,800.

Abstract

Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclo-dehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

6 Claims, 2 Drawing Sheets
\[
\begin{align*}
\text{Br-W-} & \quad \text{CO} \quad + \quad \text{C} = \text{C-H} \\
\downarrow & \quad \text{1. N(CH\text{$_2$CH$_3$})$_3}$/Benzene or Toluene} \\
& \quad \text{2. CuI/}(\phi_3\text{P})/(\phi_3\text{P})_2\text{PdCl}_2} \\
\text{C} & \quad \text{C-W-} \quad \text{CO} \\
\end{align*}
\]

\[W = \text{nil, } \quad \text{ etc.} \]

FIG. 1
n = 2.5 to 25.5 (M_n(calcd) = 1500 to 12,000 g/mol)

Ar' = \(\text{Rings} \), \(\text{Rings} \), \(\text{Rings} \), \(\text{Rings} \), etc.

X = nil, \(\text{CH}_2 \), \(\text{O} \), \(\text{CO} \), \(\text{CH(OH)} \), \(\text{C(CF)}_3 \), \(\text{-O-} \), \(\text{C}_6\text{H}_5 \), \(\text{-O-} \), etc.

Ar = \(\text{Rings} \), etc.

Y = nil, \(\text{O} \), \(\text{CO} \), \(\text{SO}_2 \), \(\text{C(CF)}_3 \), \(\text{-O-} \), etc.

W = nil, \(\text{-O-} \), etc.

FIG. 2
IMIDE OLIGOMERS ENDCAPPED WITH PHENYLETHYNYL PHTHALIC ANHYDRIDES AND POLYMERS THEREFROM

This is a continuation of application Ser. No. 081330,773 filed on Oct. 28, 1994, now U.S. Pat. No. 5,567,800.

ORIGIN OF INVENTION

The invention described herein was made jointly in the performance of work under NASA Grant NAG 1-1251 with Virginia Commonwealth University and an employee of the United States Government. In accordance with 35 USC 202, the grantee elected not to retain title.

BACKGROUND OF INVENTION

Polyimides (PI) are heterocyclic polymers commonly prepared by the condensation reaction of an aromatic diamine with an aromatic dianhydride or derivative thereof and having a repeat unit of the general structure

$$\begin{align*}
&\text{Ar}^+ \quad \text{N} \quad \text{Ar}^- \\
&\text{O} \quad \text{O} \quad \text{O} \quad \text{O}
\end{align*}$$

where Ar is a tetravalent aromatic radical such as 1,2,4,5-tetrasubstituted benzene. Ar may also be a bis(o-diphenylene) having the general structure

$$\begin{align*}
&\text{Ar}^+ \quad \text{N} \quad \text{Ar}^- \\
&\text{O} \quad \text{O} \quad \text{O} \quad \text{O}
\end{align*}$$

where Y=nil, O, S, SO₂, CO, (CH₂)₄, or any other appropriate divalent radical. Ar' is a divalent aromatic radical which may be 1,3-phenylene, 1,4-phenylene, 4,4'-biphenylene, 4,4'-oxydiphenylene, 4,4'-sulfonylephénylene, or any other appropriate divalent radical.

A variety of monomers, oligomers and polymers containing ethynyl (acetylenic) and substituted ethynyl (i.e. phenylethynyl) groups have been reported. The ethynyl groups in the polymer are either pendant to the chain, in the chain, or at the chain ends. Many of these materials have been used to prepare coatings, moldings, adhesives and composites [P. M. Hergerhofer, "Acetylene Terminated Prepolymers" in Encyclopedia of Polymer Science and Engineering, John Wiley and Sons, New York, Vol. 1, 61 (1985)]. Good processability by either solution casting and/or compression molding has been observed for the ethynyl and substituted ethynyl containing materials. In general, thermally cured ethynyl and substituted ethynyl containing materials exhibit a favorable combination of physical and mechanical properties. Some ethynyl endcapped materials such as the Thermid® resins are commercially available (National Starch and Chemical Co., Bridgewater, N.J. 08807). Phenylethynyl containing amines have been used to terminate imide oligomers [F. W. Harris, A.

It is a primary object of the present invention to provide novel phenylethynyl phthalic anhydrides and new imide oligomers endcapped with phenylethynyl groups, as well as polymers prepared therefrom which exhibit higher elongations, higher glass transition temperatures and higher fracture toughness, as compared to similar materials.

Another object of the present invention is to provide novel polymeric materials that are useful as adhesives, coatings, films, moldings and composite matrices.

Another object of the present invention is the composition of several new phenylethynyl phthalic anhydride (PEPA) endcapping reagents.

SUMMARY OF THE INVENTION

According to the present invention the foregoing and additional objects are obtained by synthesizing controlled molecular weight imide oligomers endcapped with phenylethynyl groups by different methods. First, amino terminated amic acid (AA) oligomers are prepared by the reaction of dianhydride(s) with an excess of diamine(s) under a nitrogen atmosphere at ambient temperature in N-methyl-2-pyrrolidinone (NMP). The endcapping reagent, a phenylethynyl phthalic anhydride (PEPA), was added after the formation of the amino terminated AA oligomer. Phenylethynyl terminated amic acid (AA) oligomers also were prepared where the PEPA endcapping reagent is added at the beginning of the reaction. The phenylethynyl terminated imide oligomers (PETIs) were prepared by cyclo dehydration of the precursor AA oligomers endcapped with phenylethynyl groups in NMP by azeotropic distillation with toluene. PETIs are also prepared in N,N-dimethylacetamide containing glacial acetic acid at elevated temperature. The AA oligomer can also be converted to the corresponding PEPA by treatment with chemical cyclo dehydration agents such as acetic anhydride. The direct preparation of PETIs has been performed in m-cresol containing isoquinoline at elevated temperature.

Phenylethynyl terminated imide oligomers are prepared by the reaction of the half alkyl ester of aromatic tetracarboxylic acids and the half alkyl ester of phenylethynyl substituted phthalic acids with aromatic dianhydrides by heating in NMP. PETIs prepared by the alkyl ester route can also be prepared by heating neat or in solvents such as m-cresol. Phenylethynyl terminated imide oligomers are also prepared by the polymerization of monomeric reactants (PMR) approach by heating a mixture of a diamine and the ethyl ester derivatives of dianhydrides and phenylethynyl phthalic anhydrides.

In addition, the amino terminated AA oligomer can be cyclo dehydrated to the corresponding amino terminated imide and the PEPA endcapper subsequently reacted with the soluble amino terminated imide oligomer. The imide oligomer must be soluble in order to perform the third endcapping reaction. Upon reaction of the amino terminated imide
oligomer with the PEPA endcapper, the temperature is increased to effect cyclodehydration to complete imidization.

The inherent viscosities (ηinh) of the AA oligomers range from 0.16 to 0.53 dL/g. After cyclodehydration to PETIs, the ηinh range from 0.12 to 0.43 dL/g. The glass transition temperatures (Tg) of the uncured as-isolated PETIs range from 208°-262°C. In some cases a crystalline melt temperature is observed for the uncured PETIs. The temperature of onset and peak exotherm due to reaction of the phenylethynyl group range from 371°-414°C and 419°-452°C, respectively as evidenced by heating in a sealed DSC pan at a heating rate of 20°C/minute. After curing at 350°C for 1 h in a sealed DSC pan the Tg of the cured polymers ranges from 237°-276°C. Thermogravimetric analysis (TGA) at a heating rate of 2.5°C/min of the uncured as-isolated PETI powders showed no weight loss occurring below 300°C in air or nitrogen with a 5% weight loss occurring ~496°C in air and ~512°C in nitrogen. After a thermal cure (350°C/flowing air/1 h), TGA at a heating rate of 2.5°C/min of the cured polymers shows no weight loss occurring below 300°C in air or nitrogen with a 5% weight loss occurring ~522°C in air and ~525°C in nitrogen. The average tensile strength, tensile modulus, and break elongation for unoriented thin films ranged from 153-20.2 ksi, 407-463 ksi, and 5-69% at 23°C; and 8.6-12.2 ksi, 293-344 ksi, and 17-83% at 177°C, respectively. The critical stress intensity factor (Kic) of these materials at 23°C ranges from 2760-3529 lbf/in and the critical strain energy release rate (Gic) at 23°C ranges from 17.7-27.4 in lbf/in². The polymers prepared from these materials exhibit higher elongations, higher glass transition temperatures and higher fracture toughness as compared to similar materials.

BRIEF DESCRIPTION OF THE DRAWING

For a more complete understanding of the present invention, including its objects and attending benefits, reference should be made to the Description of the Preferred Embodiments, which is set forth in detail below. This Detailed Description should be read together with the accompanying drawing, wherein:

FIG. 1 is an equation showing the preparation of phenylethynyl substituted anhydrides according to the present invention; and

FIG. 2 is an equation showing the synthesis of controlled molecular weight phenylethynyl terminated imide oligomers (PETI) according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Phenylethynyl substituted phthalic anhydrides are prepared by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides as shown in the equation of FIG. 1. The catenation of the phenylethynyl group on the phenyl ring may be para or meta and multiple phenyl rings may have mixed connecting positions. The general reaction sequence for the synthesis of controlled molecular weight PETIs is represented in the equation of FIG. 2.
Wherein \(Y \) is a bond or \(Y \) is a radical selected from the group consisting of

\[
\begin{align*}
0, & \ CO, \ SO_2, \ C(CF_3), \\
& \text{and} \quad O, \text{ and } \quad O;
\end{align*}
\]

Wherein \(W \) is a bond or \(W \) is a radical selected from the group consisting of

\[
\begin{align*}
& \text{and} \quad O, \text{ and } \quad O;
\end{align*}
\]

In the general structural formula above, it is especially preferred if: \(Ar' \) is a radical represented by

\[
\begin{align*}
& \text{and} \quad Ar \text{ is a radical represented by}
\end{align*}
\]

and \(Ar \) is a radical represented by
and \(W \) is a bond; \(\text{Ar}' \) is a radical represented by

\[
\begin{array}{c}
\text{Ar} \\
\text{Ar}
\end{array}
\]

and \(\text{Ar} \) is a radical represented by

\[
\begin{array}{c}
\text{Ar} \\
\text{Ar}
\end{array}
\]

and \(W \) is a bond; \(\text{Ar}' \) is a radical represented by

\[
\begin{array}{c}
\text{Ar} \\
\text{Ar}
\end{array}
\]

and \(\text{Ar} \) is a radical represented by

\[
\begin{array}{c}
\text{Ar} \\
\text{Ar}
\end{array}
\]

and \(W \) is a bond; \(\text{Ar}' \) is a radical represented by

\[
\begin{array}{c}
\text{Ar} \\
\text{Ar}
\end{array}
\]

and \(\text{Ar} \) is a radical represented by

\[
\begin{array}{c}
\text{Ar} \\
\text{Ar}
\end{array}
\]

and \(W \) is a bond; \(\text{Ar}' \) is a radical represented by

\[
\begin{array}{c}
\text{Ar} \\
\text{Ar}
\end{array}
\]

and \(\text{Ar} \) is a radical represented by

\[
\begin{array}{c}
\text{Ar} \\
\text{Ar}
\end{array}
\]

In another aspect, the present invention is a phenylethynyl phthalic anhydride having the general structural formula:

\[
\begin{array}{c}
\text{Ph}-\text{C} = \text{C} - W - \text{Ph} - \text{C} = \text{O} \\
\end{array}
\]

Wherein \(W \) is a radical selected from the group consisting of

\[
\begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array}
\]

A particularly preferred phenylethynyl phthalic anhydride according to the present invention has the following structural formula:

\[
\begin{array}{c}
\text{Ph}-\text{C} = \text{C} - W - \text{Ph} - \text{C} = \text{O} \\
\end{array}
\]

In another aspect, the present invention is a phenylethynyl terminated amic acid oligomer having the general structural formula:
wherein Ar' is a radical selected from the group of

\[
\text{Ar'} = \text{aromatic radical}
\]

and

\[
\text{X} = \text{bond or radical selected from the group}
\]

wherein the catenation is selected from the group consisting of 2,2', 2,3', 2,4', 3,3', 3,4' and 4,4' and X is bond or X is a radical selected from the group consisting of

\[
\text{CH}_3, \text{O}, \text{CO}, \text{CH(OH)}_2, \text{C} \left(\text{CF}_3 \right)_2
\]

Wherein Y is a bond or Y is a radical selected from the group consisting of

\[
\text{O}, \text{CO}, \text{SO}_2, \text{C} \left(\text{CF}_3 \right)_2
\]

Wherein W is a bond or W is a radical selected from the group consisting of

Wherein Ar is a radical selected from the group consisting of

Especially preferred are the following specific controlled molecular weight amic acid oligomers terminated with phenylethynyl phthalimide, reference being made to the general structural formula above.

(A) wherein Ar' is a radical represented by
and Ar is a radical represented by

![Radical 1](image1)

and W is a bond;

(B) wherein Ar' is a radical represented by

![Radical 2](image2)

and Ar is a radical represented by

![Radical 3](image3)

and W is a radical represented by

![Radical 4](image4)

(C) wherein Ar' is a radical represented by

![Radical 5](image5)

and Ar is a radical represented by

![Radical 6](image6)

and W is a radical represented by

![Radical 7](image7)

and W is a bond;

(D) Ar' is a radical represented by

![Radical 8](image8)

Ar is a radical represented by

![Radical 9](image9)

0.75

and 0.25

Ar is a radical represented by

![Radical 10](image10)

and W is a bond;

(E) Ar' is a radical represented by

![Radical 11](image11)

Ar is a radical represented by

![Radical 12](image12)

0.25

and

0.75

and W is a bond.

In another aspect, the present invention is a process for synthesizing controlled molecular weight imide oligomers endcapped with phenylethynyl phthalimide and having the general structural formula

![Structural Formula](image13)

by cyclodehydration of precursor amic acid oligomers terminated with phenylethynyl phthalamic acid and having the general structural formula
wherein the cyclodehydration reaction is carried out in a polar aprotic solvent such as N,N-dimethylacetamide, N-methyl-2-pyrrolidinone, N-cyclohexyl-2-pyrrolidinone, m-cresol, and dimethylsulfoxide; wherein the reaction is carried out with the application of heat; wherein the reaction is carried out in the presence of a member selected from the group consisting of glacial acetic acid, isoquinoline, toluene, xylenes, and herein the reaction is carried out using acetic anhydride.

In this process, advantageous results are achieved if the phenylethynyl terminated amic acid oligomers having the general structural formula

are prepared by reacting an excess of a diamine with a diacid and phenylethynyl phthalic anhydride.

In another aspect, the present invention is a process for synthesizing controlled molecular weight imide oligomers endcapped with phenylethynyl phthalimide by reacting an amine terminated imide oligomer with phenylethynyl phthalimide and phenylethynyl phthalic anhydride to form the phenylethynyl amic acid. Best results are obtained when the molding is prepared under heat and pressure.

In yet another aspect, the present invention is a cured neat resin molding prepared from controlled molecular weight imide oligomer endcapped by phenylethynyl phthalic anhydride. Especially good results are obtained if the film is cast from a solution of a phenylethynyl terminated amic acid oligomer as specified above wherein the solution comprises polar aprotic solvent selected from the group consisting of N,N-dimethylacetamide, N-methyl-2-pyrrolidinone, N-cyclohexyl-2-pyrrolidinone, m-cresol, and dimethylsulfoxide, and the film is thermally cured in air or an inert atmosphere such as nitrogen, argon, or helium. Very good results are obtained if the film is prepared by compression molding of powders under heat and pressure.

In yet another aspect, the present invention is a cured adhesive prepared from controlled molecular weight imide oligomer endcapped by phenylethynyl phthalic anhydride. Best results are achieved if the cured adhesive is prepared under heat and pressure.

In yet another aspect, the present invention is a cured composite prepared from controlled molecular weight imide oligomer endcapped with phenylethynyl phthalimide and carbon/graphite fibers. Best results are achieved if the cured composite is prepared under heat and pressure.

Having generally described the invention, a more complete understanding thereof can be obtained by reference to the following examples, which are provided herein for purposes of illustration only and do not limit the invention.

Endcapper Synthesis

The following example illustrates the reaction sequence in FIG. 1 for the preparation of the endcappers.

4-Phenylethynylphthalic Anhydride (4-PEPA)

A mixture of triethylamine (1000 ml) and benzene (120 ml) was heated to reflux for 3 h under a nitrogen atmosphere to remove any residual water. The mixture was cooled to room temperature and 4-bromophthalic anhydride (60.7462 g, 0.2676 mol), phenylacetylene (27.3314 g, 0.2676 mol), cuprous iodide (0.1174 g, 0.6164 mmol), triphenylphosphine (0.5070 g, 1.9329 mmol), and bis(triethylphosphine) palladium dichloride (0.1013 g, 0.1443 mmol) were added and the mixture was heated at reflux under a nitrogen atmosphere for 20 h. The cooled reaction mixture was filtered and the precipitate added to water. The crude solid was washed several times in distilled water and dried under...
vacuum at 85°C for 1 h to afford 48.50 g (73% crude yield) of a brown powder mp (DSC, 10°C/min) 152°C (sharp). The product was recrystallized from 1:1 toluene/hexanes to afford 41.30 g (62% yield) of an orange-brown crystalline solid, mp (DSC, 10°C/min) 151°C (sharp). An exo-therm with a peak of 389°C had a ΔH of 390 J/g. IR (KBr): 2206 cm⁻¹ (C=O stretch); 1843 cm⁻¹ and 1771 cm⁻¹ (asymmetric and symmetric C=O stretch). Anal. calcd. for C₁₀H₈O₄: C, 77.42%; H, 3.14%; Found: C, 77.12%; H, 3.14%. Mass spectroscopy: m/e 248 (calc. molecular weight: 248.2414 g/mol).

4-(4-Bromophenoxy)phthalic Anhydride

A mixture of 4-bromophenol (21.7029 g, 0.1254 mol), 4-fluorophthalic anhydride (22.9027 g, 0.1379 mol), and potassium fluoride (11.1003 g, 0.1911 mol) in sulfolane (142.34 g, 21.95% w/w) was heated to reflux for 3 h under a nitrogen atmosphere to afford 142.34 g (21.95% yield) of 4-bromophenoxyphthalic anhydride (9.9389 g, 0.0320 mol) and 50 ml (12.5% w/w of N,N'-dimethylacetamide (DMAc). After dissolution, 4.4'-oxydiphthalic anhydride (9.9389 g, 0.0320 mol) and 45 ml of DMAc (15.7% w/w) were added. The solution was allowed to stir for ~8 h at room temperature under a nitrogen atmosphere. 4-Phenylenolphthalic anhydride (0.8372 g, 0.0034 mol) and 3 ml of DMAc (16.0% w/w) were added and the reaction stirred at room temperature for an additional 16 h. The inherent viscosity of the amide acid oligomeric solution (0.5% in DMAc at 25°C) was 0.36 dL/g. Glacial acetic acid (9 ml) was added to the solution and the temperature increased and maintained at ~120°C for 16 h under a nitrogen atmosphere. As cyclodehydration to the imide occurred, a precipitate formed. The mixture was cooled, the isolated precipitate was washed with hot water and warm methanol, and dried under vacuum at 160°C for 5 h to provide a tan powder (15.2 g, 93% yield). The inherent viscosity of a 0.5% solution in m-cresol at 25°C was 0.12 dL/g. The Tg of the uncured as-isolated oligomer was not apparent on the initial DSC scan, but Tg, s were observed (DSC, 20°C/min) at 254°C, 285°C, and 315°C with an exothermic onset and peak at 394°C and 434°C, respectively. The Tg of the cured polymer (cure conditions: 350°C/1 h/flowing air) was 248°C. Unoriented thin films cast from a DMAc solution of the amide acid oligomer and cured at 100°C, 225°C, and 350°C for 1 h each in flowing air gave tensile strength, tensile modulus, and elongation at break at 23°C of 17.3 ksl, 413 ksl, and 38% and at 177°C of 9.4 ksl, 318 ksl, and 60%, respectively. The Tg of the cured film was 251°C.

Example 2: 3.4'-Oxydianilide and 4.4'-Oxydiphthalic Anhydride, Using 5.14 mole % Stoichiometric Offset and 10.28 mole % 4-Phenylenolphthalic Anhydride

The following example illustrates the reaction sequence in FIG. 2 for the preparation of the controlled molecular weight PETI where Ar' is equal to a diphenylene where X is an oxygen atom located in the 3,4'-position, and where W is equal to a nil group. The stoichiometric imbalance is 5 mole % and the ending reagent is 10 mole % of 4-phenylenolphthalic anhydride.

Into a flame dried 250 ml three necked round bottom flask equipped with nitrogen inlet, thermometer, mechanical stirrer, and drying tube were placed 3.4'-oxydianilide (8.4413 g, 0.0422 mol) and 50 ml (14.0% w/w) N-methyl-2-pyrrolidinone (NMP). After dissolution, 4.4'-oxydiphthalic anhydride (12.4053 g, 0.0400 mol) and 50 ml of NMP (16.8% w/w) were added. The solution was allowed to stir for ~8 h at room temperature under a nitrogen atmosphere. 4-Phenylenolphthalic anhydride (1.0758 g, 0.0043 mol) and 10 ml NMP (16.2% w/w) were added and the reaction stirred at room temperature for an additional 16 h. The inherent viscosity of the amide acid oligomeric solution (0.5% in NMP at 25°C) was 0.38 dL/g. Toluene (70 ml) was added to the amide acid oligomeric solution and the temperature increased and maintained at ~150°C for ~16 h under a nitrogen atmosphere. As cyclodehydration to the
imide occurred, a precipitate formed. The mixture was cooled, the oligomer was washed in hot water, warm methanol, and dried under vacuum at 160°C for 5 h to provide an off-white powder (19.46 g, 97% yield). The inherent viscosity of a 0.5% solution of the imide oligomer in m-cresol at 25°C was 0.22 dL/g. The Tg of the uncured as-isolated oligomer (DSC, 20°C/min) was 255°C. Tg was 323°C and the exothermic onset and peak occurred at 397°C and 442°C, respectively. The Tg of the cured polymer (cure conditions: 350°C/1 h/static air) was 243°C.

Example 3: 3,4'-Oxydianiline and 4,4'-Oxydiphthalic Anhydride

Stoichiometric Offset and 10.28 mol % 4-Phenylethynylphthalic Anhydride

The following example illustrates the reaction sequence in FIG. 2 for the preparation of the controlled molecular weight PCT where Ar is equal to a diphenylene where X is an oxygen atom located in the 3,4'-position, Ar is equal to a bis(o-diphenylene) where Y is an oxygen atom located in the 4,4'-position, and where W is equal to a nil group. The stoichiometric imbalance is 5.14 mol % and the endcapping reagent is 10.28 mol % of 4-phenylethynylphthalic anhydride.

Into a flame dried 250 ml three necked round bottom flask equipped with nitrogen inlet, thermometer, mechanical stirrer, and drying tube were placed 3,4'-oxydianiline (5.4143 g, 0.0422 mol) and 50 ml (14.0% w/w) of m-cresol. After dissolution, 4,4'-oxydiphthalic anhydride (12.0420 g, 0.0400 mol), 4-phenylethynylphthalic anhydride (1.0758 g, 0.0043 mol) and 50 ml of m-cresol (15.0% w/w) were added and the reaction stirred at room temperature for 16 h. Isoquinoline (5 drops) was added to the mixture. The temperature was increased and maintained at -200°C for 6.5 h under a nitrogen atmosphere. The mixture was cooled, the oligomer precipitated in methanol, washed in warm methanol, and dried at 150°C under vacuum for 5 h to provide an off-white powder (20.0 g, 100% yield). The inherent viscosity of a 0.5% solution of the imide oligomer in m-cresol at 25°C was 0.29 dL/g and in NMP at 25°C was 0.33 dL/g. The Tg of the uncured as-isolated oligomer (DSC, 20°C/min) was 219°C with an exothermic onset and peak at 371°C and 425°C, respectively. The Tg of the cured polymer (cure conditions: 350°C/1 h/static air) was 246°C. A sample compression molded at 350°C/200 psi/1 h had a GIC (critical strain energy release rate) of 19.72 in lb/in² and a Tg of 234°C.

Example 4: 3,4'-Oxydianiline and 4,4'-Oxydiphthalic Anhydride

Stoichiometric Offset and 10.28 mol % 4-Phenylethynylphthalic Anhydride

The following example illustrates the reaction sequence in FIG. 2 for the preparation of the controlled molecular weight PETI where Ar is equal to a diphenylene where X is an oxygen atom located in the 3,4'-position, Ar is equal to a bis(o-diphenylene) where Y is an oxygen atom located in the 4,4'-position, and where W is equal to a 4-phenoxy group. The stoichiometric imbalance is 5.14 mol % and the endcapping reagent is 10.28 mol % of 4-(4-phenylethynylphenoxy)phthalic anhydride.

Into a flame dried 300 ml three necked round bottom flask equipped with nitrogen inlet, thermometer, mechanical stirrer, and drying tube were placed 3,4'-oxydianiline (7.2371 g, 0.0361 mol) and 50 ml (12.3% w/w) N-methyl-2-pyrrolidinone (NMP). After dissolution, 4,4'-oxydiphthalic anhydride (10.6358 g, 0.0343 mol), 4-(4-phenylethynylphenoxy)phthalic anhydride (1.2645 g, 0.0037 mol) and 45 ml NMP (14.9% w/w) were added and the reaction stirred at room temperature for 24 h. The inherent viscosity of the amic acid oligomeric solution (0.5% in NMP at 25°C) was 0.53 dL/g. Approximately 30 g of amic acid oligomeric solution was used to cast an unoriented thin film. Toluene (70 ml) was added to the remaining amic acid oligomeric solution and the temperature increased and maintained at -150°C for 16 h under a nitrogen atmosphere. As cyclodehydration to the imide occurred, a precipitate formed. The mixture was cooled, the oligomer was washed in hot water, warm methanol, and dried under vacuum at 240°C for 4 h to provide a brown powder (11.90 g). The Tg of the uncured as-isolated oligomer (DSC, 20°C/min) was 226°C and Tg was at 274°C, 303°C, and 325°C. The Tg of the cured polymer (cure conditions: 350°C/1 h/DSC pan) was 241°C. The ethanol solution of monomers was evaporated to afford 21.93 g of a brown powder. The uncured as-isolated monomers (DSC, 20°C/min) exhibited endothermic melts at 124°C, 132°C, 144°C, and 155°C. The Tg of the cured polymer (cure conditions: 350°C/1 h/DSC pan) was 235°C.

Example 5: 3,4'-Oxydianiline and 4,4'-Oxydiphthalic Anhydride

Stoichiometric Offset and 10.28 mol % 4-(4-Phenylethynylphenoxy)phthalic Anhydride

The following example illustrates the reaction sequence in FIG. 2 for the preparation of the controlled molecular weight PCT where Ar is equal to a diphenylene where X is an oxygen atom located in the 3,4'-position, Ar is equal to a bis(o-diphenylene) where Y is an oxygen atom located in the 4,4'-position, and where W is equal to a 4-phenoxy group. The stoichiometric imbalance is 5.14 mol % and the endcapping reagent is 10.28 mol % of 4-(4-phenylethynylphenoxy)phthalic anhydride.

Into a flame dried 300 ml three necked round bottom flask equipped with nitrogen inlet, thermometer, mechanical stirrer, and drying tube were placed 3,4'-oxydianiline (5.4143 g, 0.0422 mol) and 50 ml (14.0% w/w) of m-cresol and 50 nil of m-cresol (15.0% w/w) were added and the reaction stirred at room temperature for 16 h. Isoquinoline (5 drops) was added to the mixture. The temperature was increased and maintained at -200°C for 6.5 h under a nitrogen atmosphere. The mixture was cooled, the oligomer precipitated in methanol, washed in warm methanol, and dried at 150°C under vacuum for 5 h to provide an off-white powder (20.0 g, 100% yield). The inherent viscosity of a 0.5% solution of the imide oligomer in m-cresol at 25°C was 0.29 dL/g and in NMP at 25°C was 0.33 dL/g. The Tg of the uncured as-isolated oligomer (DSC, 20°C/min) was 219°C with an exothermic onset and peak at 371°C and 425°C, respectively. The Tg of the cured polymer (cure conditions: 350°C/1 h/static air) was 246°C. A sample compression molded at 350°C/200 psi/1 h had a GIC (critical strain energy release rate) of 19.72 in lb/in² and a Tg of 234°C.

Example 4: 3,4'-Oxydianiline and 4,4'-Oxydiphthalic Anhydride

Stoichiometric Offset and 10.28 mol % 4-Phenylethynylphthalic Anhydride

The following example illustrates the reaction sequence in FIG. 2 for the preparation of the controlled molecular weight PETI where Ar is equal to a diphenylene where X is an oxygen atom located in the 3,4'-position, Ar is equal to a bis(o-diphenylene) where Y is an oxygen atom located in the 4,4'-position, and where W is equal to a nil group. The stoichiometric imbalance is 5.14 mol % and the endcapping reagent is 10.28 mol % of 4-phenylethynylphthalic anhydride.
Mixtures of dianhydrides have been used to alter properties as illustrated in Examples 6 and 7.

Example 6: 3,4'-Oxydianiline and 1,1,4,4'-Oxydiphthalic Anhydride, and 3,3',4,4'-Biphenyl Tetracarboxylic Dianhydride. Using 7.635 mole % Stoichiometric Offset and 10.28 mole % 4-Phenylenylnaphthalic Anhydride

The following example illustrates the reaction sequence in Fig. 2 for the preparation of the controlled molecular weight PETI where Ar' is equal to a diphenylene where X is an oxygen atom located in the 3.4'-position; Ar (1) is equal to a bis(o-diphenylene) where Y is an oxygen atom located in the 4.4'-position and Ar (2) is equal to a bis(o-diphenylene) where W is equal to a nil group located in the 4.4'-position, and where X is a nil group located in the 4.4'-position, and where W is equal to a nil group.

PETI where Ar' is equal to a diphenylene where X is an oxygen atom located in the 3.4'-position; Ar (1) is equal to a bis(o-diphenylene) where Y is an oxygen atom located in the 4.4'-position and Ar (2) is equal to a bis(o-diphenylene) where W is equal to a nil group located in the 4.4'-position, and where X is a nil group located in the 4.4'-position, and where W is equal to a nil group.

PETI where Ar' is equal to a diphenylene where X is an oxygen atom located in the 3.4'-position; Ar (1) is equal to a bis(o-diphenylene) where Y is an oxygen atom located in the 4.4'-position and Ar (2) is equal to a bis(o-diphenylene) where W is equal to a nil group located in the 4.4'-position, and where X is a nil group located in the 4.4'-position, and where W is equal to a nil group.
(2.7857 g, 0.0095 mol) and 90 ml of NMP (12.8% w/w). After dissolution, 3,3',4,4'-biphenyl tetracarboxylic dianhydride (17.0049 g, 0.0526 mol), 4-phenylethynylphthalic anhydride (2.8449 g, 0.0115 mol) and 90 ml of NMP (15.3% w/w) were added and the reaction stirred at room temperature for 20 h. The inherent viscosity of the amic acid oligomeric solution (0.5% in NMP at 25°C) was 0.27 dL/g. Approximately 25 g of amic acid oligomeric solution was used to cast an unoriented thin film. Toluene (70 ml) was added to the remaining amic acid oligomeric solution and the temperature increased and maintained at ~180°C for ~24 h under a nitrogen atmosphere. As the amic acid oligomer was cyclodehydrated to the imide, a precipitate formed. The mixture was cooled, the oligomer washed in hot water, warm methanol, and dried under vacuum at 240°C for 4 h to provide a yellow powder (24.2 g, 78% yield). The inherent viscosity of a 0.5% solution of the imide oligomer in m-cresol at 25°C was 0.28 dL/g. The T_g of the uncured as-isolated oligomer (DSC, 20°C/min) was 208°C and the T_m was 288°C. The T_g of the cured polymer (cure conditions: 350°C/1 h/static air) was 249°C. Unoriented thin films cast from a NMP solution of the amic acid oligomer cured at 100°C, 225°C, and 350°C for 1 h each in flowing air gave tensile strength, tensile modulus, and elongation at break at 23°C of 18.8 ksi, 455 ksi, and 32% and at 177°C of 12.2 ksi, 332 ksi, and 83%, respectively. The T_g of the cured film was 270°C. A sample compression molded at 350°C/150 psi/1 h had a G_1c (critical strain energy release rate) of 27.4 in lb/in².

Example 9: 0.75:0.25 3,4'-Oxydianiline and 1,3-bis(3-aminophenoxy)benzene, and 3,3',4,4'-Benzophenone Tetracarboxylic Dianhydride. Using 29.03 mole % Stoichiometric Offset and 58.06 mole % 4-Phenylethynylphthalic Anhydride

The following example illustrates the reaction sequence in FIG. 2 for the preparation of the controlled molecular weight PETI where Ar(1) is equal to a diphenylene where X is an oxygen atom located in the 3.4'-position and Ar(2) is equal to a diphenylene where X is a 1,3-dioxybenzene and Ar is equal to a bis(o-diphenylene) where Y is a carbonyl group located in the 4.4'-position, and where W is equal to a nil group. The ratio of diamines [Ar'(1):Ar'(2)] is 0.75:0.25. The stoichiometric imbalance is 29.03 mole % and the endcapping reagent is 58.06 mole % of 4-Phenylethynylphthalic Anhydride.

Into a flame dried 250 ml three necked round bottom flask equipped with nitrogen inlet, thermometer, mechanical stirrer, and drying tube were placed 3.4'-oxydianiline (10.5323 g, 0.0526 mol), 1,3-bis(3-aminophenoxy)benzene (5.1256 g, 0.01157 mol) and 25 ml of NMP (37.8% w/w). After dissolution, a slurry of 3,3',4,4'-benzophenone tetracarboxylic dianhydride (16.0382 g, 0.0498 mol) and 4-Phenylethynylphthalic Anhydride (10.1079 g, 0.0407 mol) in 50 ml of NMP (35.6% w/w) were added to the stirred solution. An additional 45 ml of NMP was used to rinse in the anhydrides. The solids content was 25.2% (120 ml total NMP). The mixture was stirred overnight at room temperature under nitrogen. The inherent viscosity of the amic acid oligomeric solution (0.5% in NMP at 25°C) was 0.16 dL/g. Toluene (70 ml) was added to the amic acid oligomeric solution and the temperature increased and maintained at ~180°C for ~24 h under a nitrogen atmosphere. As the amic acid oligomer was cyclodehydrated to the imide, a precipitate formed. The mixture was cooled, the oligomer washed in hot water, warm methanol, and dried under vacuum at 240°C for 4 h to provide a yellow powder (38.4 g, 98% yield). The T_g of the uncured as-isolated oligomer (DSC, 20°C/min) was 262°C and the T_m was 341°C. The T_g of the cured polymer (cure conditions: 360°C/1 h/static air) was 276°C.

In the tables which follow, oligomer and polymer characterization is presented in Table 1; unoriented thin film properties are presented in Table 2; adhesive properties are presented in Table 3; and composite properties are presented in Table 4.

TABLE 1

<table>
<thead>
<tr>
<th>Temp. of 5%</th>
<th>(M_a)</th>
<th>Amic</th>
<th>T_g (T_m) °C</th>
<th>Wt. Loss. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acide</td>
<td>Imide</td>
<td>Imide</td>
<td>C-Imide</td>
</tr>
<tr>
<td>1</td>
<td>9000</td>
<td>0.38</td>
<td>0.29^1</td>
<td>236 (323)</td>
</tr>
<tr>
<td>1</td>
<td>5000</td>
<td>0.31</td>
<td>0.19^1</td>
<td>211 (268, 329)</td>
</tr>
<tr>
<td>1</td>
<td>9000</td>
<td>0.47</td>
<td>0.43</td>
<td>252 (277)</td>
</tr>
<tr>
<td>1</td>
<td>9000</td>
<td>0.43</td>
<td>0.38</td>
<td>239</td>
</tr>
<tr>
<td>1</td>
<td>6000</td>
<td>0.32</td>
<td>0.33</td>
<td>220</td>
</tr>
<tr>
<td>1</td>
<td>5000</td>
<td>0.29</td>
<td>0.26</td>
<td>221</td>
</tr>
<tr>
<td>1</td>
<td>5000</td>
<td>0.49</td>
<td>0.30^1</td>
<td>225 (323)</td>
</tr>
<tr>
<td>1</td>
<td>9000</td>
<td>0.53</td>
<td>216 (273, 323)</td>
<td>265</td>
</tr>
<tr>
<td>1</td>
<td>5000</td>
<td>0.27</td>
<td>0.28^2</td>
<td>208 (288)</td>
</tr>
<tr>
<td>1</td>
<td>1500</td>
<td>0.16</td>
<td>262 (341)</td>
<td>276</td>
</tr>
</tbody>
</table>

^1 Imide-1: ODPA/3,4'-ODA/PEPA
Imide-2: 3,4'-ODPA-BPDA/3,4'-ODA/PEPA
Imide-3: 1,3-BPDA/3,4'-ODA/PEPA
Imide-4: 1,3-BPDA/3,4'-ODA/PEPA
Imide-5: ODPA/3,4'-ODA/PEPOA
Imide-6: BPDA/3,4'-ODA/PEPA/PEPA
Imide-7: BPDA/3,4'-ODA/PEPA/PEPA

^2 Inherent viscosity determined on 0.5% (w/v) NMP solution at 25°C.

^3 Inherent viscosity determined on 0.5% (w/v) m-cresol solution at 25°C.

^1 T_g and T_m of as-isolated oligomers (Imide) by DSC at a heating rate of 20°C/min.

^2 Powdered samples after hold at 350°C C/1 h/static air, C-Imide: cured imide powder.
TABLE 2
UNORIENTED THIN FILM TENSILE PROPERTIES

<table>
<thead>
<tr>
<th>Sample</th>
<th>Calc'd (M")</th>
<th>Tg°C</th>
<th>Test Temp., °C</th>
<th>Strength, ksi</th>
<th>Modulus, ksi</th>
<th>Elongation at Break, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9000</td>
<td>251</td>
<td>23</td>
<td>17.3</td>
<td>413</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>5000</td>
<td>258</td>
<td>23</td>
<td>9.4</td>
<td>318</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>9000</td>
<td>259</td>
<td>23</td>
<td>15.5</td>
<td>463</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>268</td>
<td>23</td>
<td>20.2</td>
<td>431</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>9000</td>
<td>262</td>
<td>23</td>
<td>17.1</td>
<td>421</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>5000</td>
<td>268</td>
<td>23</td>
<td>10.7</td>
<td>341</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>1500</td>
<td>270</td>
<td>23</td>
<td>10.8</td>
<td>344</td>
<td>63</td>
</tr>
</tbody>
</table>

Table 2 continued:

1) Sample 1: ODPA/3,4'-ODA/PePA
2) Sample 2: ODPA/3,4'-ODA/PePA
3) Sample 3: ODPA/3,4'-ODA/PePA
4) Sample 4: ODPA/3,4'-ODA/PePA
5) Sample 5: ODPA/3,4'-ODA/PePA
6) Sample 6: ODPA/3,4'-ODA/PePA
7) Sample 7: BTDA/3,4'-ODA/PePA

TABLE 3
PRELIMINARY Ti-WTi TENSILE SHEAR PROPERTIES OF ODPA/3,4'-ODA/4-PEPA (CALC'D M") = 9000 g/mol

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Test Temp., °C</th>
<th>Strength, psi</th>
<th>Cohesive Failure, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>23</td>
<td>7100</td>
<td>100</td>
</tr>
<tr>
<td>Jet Fuel</td>
<td>23</td>
<td>4300</td>
<td>100</td>
</tr>
<tr>
<td>Hydraulic Fluid</td>
<td>23</td>
<td>7400</td>
<td>95</td>
</tr>
<tr>
<td>Water Boil</td>
<td>23</td>
<td>4500</td>
<td>90</td>
</tr>
<tr>
<td>1000 b/177°C/air</td>
<td>23</td>
<td>4400</td>
<td>95</td>
</tr>
<tr>
<td>5000 b/177°C/air</td>
<td>23</td>
<td>4600</td>
<td>90</td>
</tr>
</tbody>
</table>

Table 3 continued:

1) 1 h at 350°C/100 psi, tape ~1% volatiles
2) Unstressed samples soaked in solvent for 72 h at ambient temperature
3) Unstressed samples boiled in water for 72 h
4) Unstressed samples aged in flowing air

TABLE 4
PRELIMINARY COMPOSITE PROPERTIES OF ODPA/3,4'-ODA/4-PEPA (CALC'D M") = 9000 g/mol

<table>
<thead>
<tr>
<th>Property</th>
<th>Layup</th>
<th>Test Temp., °C</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Strength</td>
<td>Unidirectional</td>
<td>23</td>
<td>310</td>
</tr>
<tr>
<td>Flexural Modulus</td>
<td>Unidirectional</td>
<td>23</td>
<td>20.4</td>
</tr>
<tr>
<td>Short Beam Shear</td>
<td>Unidirectional</td>
<td>23</td>
<td>16.4</td>
</tr>
</tbody>
</table>

We claim:
1. A phenylethynyl terminated amic acid oligomer having the formula

![Chemical Structure]

and being selected from the group consisting of:
wherein Ar' in the formula is

![Ar' structure](image1)

Ar in the formula is

![Ar structure](image2)

and

W in the formula is a bond;

wherein Ar' in the formula is

![Ar' structure](image3)

Ar in the formula is

![Ar structure](image4)

and

W in the formula is

![W structure](image5)

wherein Ar' in the formula is

![Ar' structure](image6)

Ar in the formula is

![Ar structure](image7)

and

W in the formula is a bond;

A cured polymer prepared from the phenylethynyl terminated amic acid oligomer of claim 1.

A cured film prepared from the phenylethynyl terminated amic acid oligomer of claim 1.

A cured neat resin molding prepared from the phenylethynyl terminated amic acid oligomer of claim 1.

A cured adhesive prepared from the phenylethynyl terminated amic acid oligomer of claim 1.

A composite prepared from the phenylethynyl terminated amic acid oligomer of claim 1.

* * * * *