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ABSTRACT

The limitations of traditional alloys and the desire for improved performance for components is driving

the increased utilization of refractory metals in the space industry. From advanced propulsion systems to

high temperature furnace components for microgravity processing, refractory metals are being used for

their high melting temperatures and inherent chemical stability. Techniques have been developed to

produce near net shape refractory metal components utilizing vacuum plasma spraying. Material

utilization is very high, and laborious machining can be avoided. As-spray formed components have
been tested and found to perform adequately. However, increased mechanical and thermal properties are

needed. To improve these properties, post processing thermal treatments such as hydrogen sintering and

vacuum annealing have been performed. Components formed from alloys of tungsten, rhenium,

tantalum, niobium and molybdenum are discussed and a metallurgical analyses detailing the results are

presented. A qualitative comparison of mechanical properties is also included.

INTRODUCTION

Traditional nickel based superalloys have been used extensively in the aerospace and space industries in

high temperature applications. Advancelnents in colnponent fabrication such as directional solidification

of single crystal turbine blades and ceramic based thermal barrier coatings have only slightly increased

the operating temperatures of these alloys. _-2 If significant advancements in high temperature operations

such as propulsion systems and high temperature furnace components are to be made, new and improved

materials and processing techniques are necessary. In general, the refractory metals and their alloys offer

the desired high melting temperatures and an inherent chemical stability, in nonoxidizing environments,

needed for these applications. However, the difficulty of forming these materials into complex shapes

has limited their application in the past)

Recently, vacuum plasma spray (VPS) forming has been demonstrated as a viable fabrication tool for

refractory metal components. 46 This technique involves spraying material onto a mandrel of the desired



shapeandsubsequentlyremovingthemandrel.Theplasmais formedbypassinggasessuchasargon
and/orhydrogenthroughanelectricarcstruckbetweentheananodeandacathodewithinagun.Thegas
passingthroughthearcis ionizedandresultsintemperaturesontheorderof 16,650°C(30,000°F).
Powder,whichis injectedintothehotplasmabyanargoncarriergas,ismeltedandacceleratedtoward
thesurfaceof apartatspeedsuptoMach2-3.Depositionratescanbeashighas9 kg/hr(20Ib/hr).
A schematicof thisprocessisshowninFigure1. Sprayingisperformedinalargevacuumchamber
whichhasbeenevacuatedandbackfilledwithapartialpressureof argonto preventoxidationof oxygen
sensitivematerials.A primaryadvantageof VPSformingoverotherpowdermetallurgytechniquesis
thatnear-net-shapesprayformingof componentssignificantlysimplifiesandpromisesto reduce the cost

of fabricating due to the high material utilization and reduction in laborious machining.

During this investigation, VPS forming was used to fabricate material for evaluation as high temperature

containment cartridges for materials science research in microgravity. Possible furnaces in which the

cartridge materials will be used include the Crystal Growth Furnace (CGF) and the High Gradient

Furnace with Quench (HGFQ) which operate at a maximum temperature of 1400 -1600°C (2552-

2912°F). These furnaces are directional solidification furnaces which are used in orbit to determine the

effects microgravity has on the solidification of different materials. The requirements of a cartridge

material are that it have a high melting temperature and resist attack from the material being processed]

High melting temperature and good chemical stability are general characteristics of the refractory metals.

Previous research in this area has shown that cartridges can be fabricated from several refractory metals.

However, compression testing of the as-sprayed components resulted in relatively low strengths with

little ductility. The focus of the current investigation was to fabricate cartridges from several refractory

metals by VPS forming and then to perform post-spray thermal treatments on these materials to improve

ductility. The effect of the thermal treatments on the microstructures was also noted.
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Figure 1 - Schematic of VPS forming process.
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EXPERIMENTAL PROCEDURE

The five refractory metal alloys used during this investigation included, tungsten-3.5wt% nickel-1.0wt%

iron, molybdenum-40wt% rhenium, tantalum-10wt% tungsten, tuugsten-25wt% rhenium and niobium-

1.0wt% zirconium. Only the Nb-1Zr material was a truly alloyed powder, all of the other compositions

were comprised of elemental powders. Compatibility and compression specimens were made for each

material. The compatibility specimens were small open-ended tubes which measured 8 mm (0.313")

long by 10 mm (0.375") internal diameter by 0.9 to 1.27 mm (0.035 to 0.050") wall thickness. The

compression specimens were also small open-ended tubes which measured 2.54 cm (1") long by 2.54

(I") internal diameter by 0.8 to 1.27 mm (0.030 to 0.050") wall thickness. Table 1 lists the five materials

and the minimum number of compatibility and compression specimens fabricated for each alloy.

Table 1 - List of Compatibility and Colnpression Specimens Fabricated

Alloy No. of Compatibility Specimens No. of Compression Specimens

W-3.5Ni- 1Fe 32 3"

Mo-41 Re 40 3

Nb-lZr 32 3

Ta- l 0W 44 3

W-25Re 40 3b

a - three (3) compression specimens were required by the contract, however a total of nine (9) specimens were
delivered: six (6) heat treated and three (3) as-sprayed.
b - a total of six (6) specimens were delivered: three (3) heat treated and three (3) as-sprayed.

Vacuum Plasma Spray Formin_

The initial step in the fabrication process was the VPS forming of the materials onto preformed graphite

mandrels. The mandrels used during spraying were 30.5 cm (12") long with 2.54 cm and 10 mm

diameters for the compression and compatibility samples, respectively. Prior to spraying, the vacuum

chamber was evacuated and backfilled with a partial pressure of argon. During spraying, powder was

delivered to the gun by an argon carrier gas and an argon/hydrogen plasma was used to melt the powder

and project it toward the mandrel. The size range of the powders sprayed during this investigation

ranged between -45 to +10 p.m. The mandrel was rotated during spraying to allow the formation of the

tube. Approximately, 25.4 cm (10") of each mandrel was coated resulting in an open-ended 25.4 cm

(10") long tube by 0.7 - 1.2 nlm (0.03-0.05") wall thickness. These sample configurations were

sufficient for this investigation. (For reference, a typical CGF cartridge is 58.4 cm (23") long x 2.54 cm

(1") OD x 0.7 mm (0.03") wall thickness with one end closed.) After spraying, the as-sprayed cylinder

was removed from the graphite mandrel.
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Thermal Treatments

The thermal treatment for each material was selected based on current heat treatments for sintering and

annealing conventional powder metallurgy components. Each tube was packed with high purity alumina

sand to prevent slumping of the thin walled tubes during heating. Hydrogen was used during the heat

treating of three of the alloys (Mo-40Re, W-25Re and W-3.5Ni-1.0Fe) to aid in densification and the

reduction of oxides. Both a liquid phase sinter (LPS) and a solid state sinter (SSS) were used on the W-

Ni-Fe alloy. Hydrogen was not used when heat treating the Ta-10W and the Nb-1Zr alloys due to the

formation of brittle hydrides. These alloys were only given a vacuum anneal (VA). Table 2 lists the heat

treatment procedure for each alloy. After heat treating, the samples were cut to size using an abrasive

cut-off saw. The compatibility samples were then delivered for testing at the University of Alabama at

Birmingham. The results of the compatibility study will be discussed in a different report.

Table 2 - Heat Treatment Procedures

Alloy Heat Treatment Description

W-Ni-Fe SSS: Cold wall batch furnace with dry hydrogen; cycle 10°C/min to 1000°C, hold 30

Inin (deoxidation), 5°C/min to 1430°C, hold 200 rain.

VA: 10.6 tort at 900-1100°C for 240 rain, cool to room temp. in vacuum.

W-Ni-Fe LPS: Stoker furnace with dry H2 with stoke rate of 6.4 lnm/min at 1480°C.

VA: 10.6 tort at 900-1100°C for 240 rain, cool to room temp. in vacuum.

Mo-40Re H 2 Sinter: Industrial H 2 fllrnace to 1730°C and hold for 5-10 hrs.

Ta-10W VA: 10.6 tort, ramp up 10°C/rain to 1000°C and hold for 30 rain, 5°C/min to 1500°C

hold for 24 hrs, cool to room temperature in vacuum.

Nb-1Zr VA: 10.6 torr, ramp up 10°C/rain to 1000°C and hold for 30 rain, 5°C/rain to 1500°C

hold for 24 hrs, cool to room temperature in vacuum.

W-25Re H2 Sinter: Industrial H2 filrnace to 1730°C and hold for 24 hrs.

Testinlg
Standard metallurgical polishing techniques were used to prepare samples in the as-sprayed and heat

treated conditions for each material. These samples were then examined in the as-polished and etched

conditions using an optical microscope. Quantitative microscopy was used to determine the density of

the samples. Helium leak tests were performed on the as-sprayed and heat treated samples to determine
if any interconnected porosity was open to the surface. The helium leak rate specification for materials

containment cartridges is no greater than Ix 10 .6 cm 3 of He/sec. Also, a lira ited number of compression

tests were performed on the heat treated materials to determine any improvements in mechanical

properties. Samples were cut from the heat treated tubes [three 2.5 cm (1 ") long segments x 2.5 cm (1")
ID x 0.7-1.2 mm (0.030-0.050") wall thickness] to get a qualitative comparison of each materials

robustness or toughness. The segments were laid on their side and compressed until failure at a

crosshead speed of 0.025 cm/min (0.010"/rain). Testing was conducted at room temperature.



RESULTS AND DISCUSSION

Table 3 shows the results of compression testing. For comparison, the values of W-Ni and Mo-40Re in

the as-sprayed condition are shown from a previous investigation. 5 The maximum loads for the LPS and

SSS W-Ni-Fe samples were 284 kg (627 Ib) and 71 kg (155.7 Ib), respectively. These values were
1593% and 320% of an increase over the maximum load for the as-sprayed W-Ni, 17 kg (37.04 Ib). The

compression tests of the LPS specimens resulted in the largest average amount of displacement of all the

samples tested, 17.8 111111(0.7"). In contrast, the H2 sintered Mo-40Re maximum load was 54 kg (118.4

lb) which was approximately a 2% increase over the as-sprayed maximum load of 53 kg (115.9 Ib).

Also, the amount of displacement was greatly reduced for the heat treated Mo-40Re material, 1.7 mm

(0.068"), as compared to 8.9 mm (0.349") for the as-sprayed material. The maximum load for the

vacuum annealed samples were 100 kg (221.4 Ib) for Nb- 1Zr and 58 kg (127.7 lb) for Ta- 10W with

displacements of 7.8 mm (0.306") and 0.7 mm (0.027"), respectively. W-25Re samples have been

delivered to NASA for compression testing.

Table 3 - Results of Compression Tests

Description Maximum Load, kgf (lbf) Maximum Displacement, mm (in)

As-sprayedW-Ni I 17 (37.04) 1.4 (0.056)

As-sprayed Mo-40Re * 53 (115.9) 8.9 (0.349)

LPSW-Ni-Fe 284 (627.0) 17.8 (0.700)

SSS W-Ni-Fe 71 (I55.7) 2.5 (0.097)

H2 Sintered Mo-40Re 54 (118.4) 1.7 (0.068)

VANb-IZr 100 (221.4) 7.8 (0.306)

VATa-10W 58 (127.7) 0.7 (0.027)

values from previous study

Leak testing results are shown in Table 4. Note that the Ta-10W and the Nb-IZr both had acceptable

helium leak rates before post spray heat treating. However, the W alloys and the Mo-40Re alloy tubes

needed the post spray heat treatment to meet the required l xl0 6 cm 3 of He/sec specification.

Table 4 - Helium Leak Testing Results

Alloy Leak Rate (He cm3/sec) Leak Rate (He cm3/sec)

As-sprayed Heat Treated

W-3.5Ni- 1Fe 10'_ 10_ (LPS & SSS)

Mo-40Re* 104 - 10s < 10 .6 - 10 .7

Ta- 10W 10_ 10"s

Nb- IZr <10 7 10s

- the wall thickness of these tubes were the thinnest of the samples tested which may account for the higher rate.



Themicrostructuresof thematerialsareshowninFigures2- 7. Figure2ashowsthemicrostructureof
theW-3.5Ni-1.0Fealloy in theas-sprayedconditionafteretching.Quantitativemicroscopy
measurementsof thesamplerevealedthedensityto beapproximately91%.SincetheW-Ni-Fealloy
wasbeingdevelopedfor depositiononapreviouslyplasmasprayedceramiclayerorapreformed
ceramicalnpoule,a lower set of plasma spray parameters was used during spraying so as not to damage

the underlying ceramic. This resulted in the unusually high porosity value for the as-sprayed material

(VPS deposits are typically 96 to near 100% dense). Note the as-sprayed microstructure was comprised

of a two phase structure. The light gray areas were the Ni-Fe rich binder phase and the larger dark gray

area was the W rich phase. Also, there were some large unmelted particles contained in the deposit due

to overspray entrapment. The Ni-Fe rich phase was grouped in relatively large islands, but these islands

were uniformly dispersed throughout the deposit. With the binder phase mostly contained in these

islands, the number of tungsten to tungsten contacts was increased. These tungsten to tungsten contacts

greatly reduce the mechanical properties of these alloys in this condition.

Figure 2b shows the sample after the SSS heat treatment. There was a significant increase in the density

of the SSS sample as compared to the as-sprayed condition. Analysis of the SSS W-Ni-Fe showed the

density to be >99%. Note that the sample had partially recrystallized, but there were stilI a significant

number of tungsten to tungsten contacts. Also, the tungsten grains were very sharp and angular.

A B

Figure 2 - W-Ni-Fe alloy in the as-sprayed (A) and the solid state sintered (b) conditions; 100x.

Figure 3b shows the microstructure of the LPS W-Ni-Fe sample. For comparison, the as-sprayed

condition is shown in Figure 3a and is essentially the same as Figure 2a. Note the LPS structure consists

primarily of large, circular W-rich grains with the Ni-Fe rich phase located between these grains. The

density of the sample was increased from 91% to >97% dense. The porosity was contained in the Ni-Fe

rich binder phase and is most likely due to void coalescence and binder starvation. The easiest way to

alleviate this problem is to add more binder, i.e, increase nickel and iron content. However, the He leak

tests showed that the tubes were leak tight, thus the pores must be isolated and not interconnected. As a

result of the compression tests data and analysis of the m icrostructures, it can be concluded that the

ductility of the W-Ni-Fe aIIoy is more dependent on the elimination of tungsten to tungsten contacts than

the presence of isolated porosity.



Anexampleof themicrostructureof theMo-40Resampleisshownin Figure4. Figures4aand4bshow
theMo-40Reintheas-sprayedandetchconditions.Notethemicrostructurewascomprisedof atwo
phasestructureconsistingof aMo-richmatrixanduniformlydispersedRe-richsplats.The density as

determined by image analysis was >99%. The microstructure after H2 sintering at 1730°C (3146°F) is

shown in Figure 4c. The as-sprayed microstructure was completely replaced with a recrystallized,

homogeneously alloyed microstructure. This microstructure should have resulted in increased

displacement measurements during the compression tests when compared to the as-sprayed

microstructure. However, this was not the case as stated previously. One explanation for these results

are that the Mo-40Re became embrittled during the H2 sintering process due to the formation of the

intermetallic o phase (68 to 82 wt%Re).

A B

Figure 4 - Mo-40Re in the as-sprayed (A) and the H2 sintered (B) conditions; 200x.



Figure5ashowsthemicrostructureof theNb-lZr alloy intheas-sprayed,etchedcondition.Ill contrast
tothepreviouslydiscussedsamples,theNb-1Zrsamplehasarecrystallizedmicrostructureintheas-
sprayedcondition.In additionto tile lower melting temperature of the material, the prealloyed powder

aided in the formation of this microstructure because all the heat input during spraying could go to

removing the as-sprayed grain boundaries as opposed to diffusion of elemental powders. Figures 5b and

5c show the microstructure of tile alloy after vacuum annealing at 1316°C (2400°F) and 1500°C

(2732°F), respectively, for 24 hours. Note there was little change in the microstructure from the as

sprayed sample to the sample heat treated for 24 hours at 1316°C. In contrast, grain growth has began

for the sample vacuum annealed at 1500°C, which should aid in ductility. The ductility of this alloy is

evident by tile large amount of displacement during the compression tests shown in Table 2.

A B

C

Figure 5 - Nb- 1Zr in the as-sprayed (A), 1316°C vacuum anneal (B) and 1500°C vacuum annealed (C)

conditions; 200x.
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Figure6ashowsthemicrostructureof theTa-10Wsamplein theas-sprayed,etchedcondition.This
figureshowsatwophasestructurecomprisedprimarilyof aTamatrixwith uniformlydispersedW
splats.Figure6bshowsthemicrostrucmreaftervacuumannealingat 1500°C(2732°F).Again,thetwo
phasestructurecomprisedof aTamatrixwiththeW splatswasstill present.Thus,theheattreatment
holdtimeandtemperaturewereinsufficientto resultinanynoticeablediffusionbetweenthetwo
elementalpowders.

A B
Figure6- Ta-I0Win theas-sprayed(A) andvacuumannealed(B) conditions;200x.

Figure7ashowstheW-25Realloy in the as-sprayed, etched condition. The photomicrograph shows the

as-sprayed material was comprised of a partially recrystallized tungsten matrix with islands of rhenium
splats. Similar to the other elementally blended powders used in this study, no alloying occurred in

A B

Figure 7 - W-25Re in the as-sprayed (A) and the H2 sintered (B) conditions; 400x.
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theas-sprayeddeposit.Figure7bshowsthe material after heat treating ill hydrogen at 1730°C for 24

hours. Note the previously as-sprayed microstructure was completely replaced with a recrystallized,

homogeneously alloyed m icrostructure. Compression tests will be performed on this material to

determine the effect of the heat treated microstructure on the materials mechanical properties.

CONCLUSIONS

During this investigation, the parameters and techniques for fabricating spray formed tubes from several

refractory metal alloys were developed. Post spray therlnal treatments were then performed to determine

the effect on the microstructure and mechanical properties of the materials investigated. Changes in the

microstructure and the mechanical properties were related. The following list is a summary of these
results:

,

2.

.

4.

5.

The SSS and LPS heat treatments significantly improved the toughness and ductility of the W-

Ni-Fe alloys and resulted in acceptable leak rates (1 xl 0g He cc/sec).

Heat treating the Mo-40Re alloy reduced the amount of interconnected porosity to acceptable

levels as evident by the leak test results, but decreased the ductility. Efforts to alleviate this loss

of ductility are currently being investigated.

The Nb-lZr alloy in the as-sprayed condition had an acceptable leak rate and recrystallized
microstructure.

The 1500°C (2732°F) heat treatment was insufficient for alloying of the two constituents in the

Ta- I0W samples.

The 1730°C hydrogen sinter of the as-sprayed W-25Re deposits resulted in a recrystallized,

homogeneously alloy microstructure.

This work has shown that vacuum plasma spray forming, in conjunction with post spray heat treating, is

a viable method for fabricating new and improved materials for high temperature furnace cartridges.
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