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Abstract

We made more tests of the version 2.0 daily Level 2 and Level 3 Land-Surface Temperature (LST) code

(PGE16) jointly with the MODIS Science Data Support Team (SDST). After making minor changes a few

times, the PGE16 code has been successfully integrated and tested by MODIS SDST, and recently has

passed the inspection at the Goddard Distributed Active Archive Center (DAAC).

We conducted a field campaign in the area of Mono Lake, California on March 10, 1998, in order to

validate the MODIS LST algorithm in cold and dry conditions. Two MODIS Airborne Simulator (MAS)

flights were completed during the field campaign, one before noon, and another around 10pm PST. The

weather condition for the daytime flight was perfect: clear sky, the column water vapor measured by

radiosonde around 0.3 cm, and wind speed less than a half meter per second. The quality of MAS data is

good for both day and night flights. We analyzed the noise equivalent temperature difference (NEAT) and

the calibration accuracy of the seven MAS thermal infrared (TIR) bands, that are used in the MODIS

day/night LST algorithm, with daytime MAS data over four flat homogeneous study areas: two on Grant

Lake (covered with ice and snow, respectively), one on Mono Lake, and another on the snow field site

where we made field measurements. NEAT ranges from 0.2 to 0.6 °K for bands 42, 45, 46, and 48. It

ranges from 0.8 to 1.1 °K for bands 30-32. The day and night MAS data have been used to retrieve surface

temperature and emissivities in these bands. A simple method to correct the effect of night thin cirrus has

been incorporated into the day/night LST algorithm in dry atmospheric conditions. We compared the

retrieved surface temperatures with those measured with TIR spectrometer, radiometers and thermistors in

the snow test site, and the retrieved emissivity images with topographic map. The daytime LST values

match well within 1 °K. The night LST retrieved from MAS data is 3.3 °K colder than those from field

measurements most likely because of the effect of haze at night. The good agreement among the regional

averaged surface temperatures obtained from LST values retrieved at different resolutions increased our

confidence in the MODIS day/night LST algorithm.
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1. Status of the V2 LST Code Delivery

Wehavedeliveredtwo version2.0LST codesto theMODISSDSTin December1997,onefor PGE16

generatingthedailyLevel2 andLevel3 (lkm and5km)LST products,andanotherfor the8-daylkm

Level 3 LST product.New toolkits sdptk5.2vl.00,HDF4.1rl andmapi2.2.1wereusedin the code

developmentfor thisdelivery.MetadataandQA(qualityassurance)attributeswerealsoimplementedin

theV2 code.Sincethen,wehavemademoretestsfor thePGE16codejointly withSDST.Wetestedit

withgranulesof MODISsimulationdataindaymodeornightmodeonly,andinbothday-and-nightmode.

SDSTmadesomechangesin themetadataconfigurationfileaccordingto therequirementsof theEOSDIS

(EarthObservingSystemDataandInformationSystem)CoreSystem.Aftermakingminorchangesafew

times,thePGE16codehasbeensuccessfullyintegratedandtestedby MODISSDST,andrecentlyhas

passedtheinspectionat GoddardDAAC. Weareworkingontheestablishmentof acompletesetof look-

up tableswith theMODISPFMspectralresponsefunctions.Theselook-uptableswill bedeliveredin the

version2.1codeforat-launchLSTprocessing.

2. Field Campaign in March 1998for the LST Validation

2.1. TestSite and Field Campaign

Becausesnowis themajorwaterresourcefor the Stateof Californiaandit is difficult to makefield

measurementsof LST in cold regions,we havetried four field campaignsfor the validationof LST

algorithmsin theareaof MonoLakeandMammothLake,Californiain 1994-1996,andMASflightswere

requestedfor all exceptthefirstone.WehadnotobtainedacompletegooddatasetincludingMASdata,

TIR field measurementdata,andradiosondedatain a singledayfromthesefieldcampaignsbecauseof

weatherconditions(scatteredcloudsoverthetestsite)or lackof fieldmeasurementdatadueto changesin

theMASflightschedule.

Finally,wehadasuccessfulfieldcampaignin thisareainMarch1998.Forthisfieldcampaign,twoweeks

of MAS flight opportunitywererequested.The MAS flight lines were selectedin the north-south

direction,coveringMonoLake,snowin themaintainsandvalleys,andforestareas.Detailsof theMAS

flight linescanbe foundin flight numbers98-032and98-033on the webpageat the NASAAmes

ResearchCenter(http://asapdata.arc.nasa.gov/ames_index.html).Fivegroupswereinterestedin thisfield

campaigns,two from the MODISTeam,one from the AirMISR team,andtwo groupsof validation

scientists.But twogroupscouldnotparticipatebecausewegottheannouncementof theconfirmedflight



scheduleonlytendaysbeforethefirstpossibleflightonMarch9,1998.

On March9, 1998,theER-2OperationOfficeat NASADrydenFlightResearchCenterandtheEarth

ScienceDivisionat NASAAmesconducteda testflight for theMAS instrumentafterits maintenance

service.March10,1998wasaverynicedaywithclear-skies.Themeasuredwindspeedwaslessthana

half meterpersecondandthe columnwatervapormeasuredby radiosondewasaround0.3cm. The

daytimeMASflightpassedthetestsitearound11:30PST.Theskyremainedclearuntil earlyeveningso

wedecidedtoconductthenightMASflightmissiononthesameday.ThenightMASflightpassedthetest

areaaround10pmPST.Weobservedsomelight hazemovingslowlyin thesky. It wasmoreobviousin

thefar distantmountains.Tworadiosondeballoonswerelaunched,onefor thedaytimeMASflight,and

anotherfor the night MAS flight. We conductedgroundmeasurementsat a site in the snowfield

approximately1kmfromthecrossingof Highways395and120in theeast,and70m fromHighway120

in thenorthside.A reducedcopyof thetopographicmapcoveringourtestsiteandotherinterestingsites

is shownin Fig. 1. WeusedoneMIDAC TIR spectrometerto measuretemporalTIR radiancefromthe

snowsurface.Thespectrometerscannedfromeastto westatviewingangles30to -30degreein stepsof

15degree.Six broadbandradiometers(in wavelengthrange10-13_m) wereplacedat 2 m abovethe

surfacetomeasurethesnowsurfacetemperature.Six thermistorswereplacedafewmmbeneaththesnow

surfaceto try the contactmeasurementof thenear-surfacesnowtemperature.Thedistancebetween

individualradiometersandthermistorswasapproximately50 m. Werecordedmeasurementdatafrom

thesefieldinstrumentsduringdayandnightonportablecomputersanddataloggers.Wewill analyzeand

comparethemeasurementdatafromMASandfieldinstrumentsin thefollowingsections.

2.2. Quality Evaluation of the MAS Data

Wereceivedthetapesof MASdatain 1BformatfromNASAAmesoneweekaftertheMAS flights.We

visualizedtheMASimages,andconfirmedthatthequalityof theMASdataisgoodin general.Detailed

informationonthecharacteristicsoftheMASinstrumentis givenin apublishedpaper[Kinget al.,1996].

The daytimeand nighttimeMAS imagesin bands30, 42 and45 areshownin Fig. 2 and Fig. 3,

respectively.Thereare1000lines,716pixelseachline in theseimages.Eachpixel representsa spotof

approximately50m by 50m (morecloseto 45 m becausethesurfaceelevationis around2 km in the

region)on theground.ThedaytimeMAS imagesareasegmentof thedayflight track41Bfile, starting

fromthe1601thline in the1Bfile. ThenighttimeMASimagesareasegmentof thenightflighttrack41B



4

file,startingfromthe1351thline in the1Bfile. Thebandbrightnesstemperaturegivenin theseTIRband

imagesis calculatedfromthepixel radiancevaluecalibratedbythenewmethod[Kingetal.,1996],which

usesthe MAS relativespectralresponsefunctionsandcorrectsthe effectof the non-unitblackbody

emissivity.Theradianceto temperatureconversionis givenbytheadjustedPlanckfunction

Ib = B()_b, O_1Tb + 0_0 ). (1)

where Ib is the band radiance, Tb is the band brightness temperature. The values of the central wavelength

_,b, coefficients al and s0 for band b are all given in the MAS 1B file. The color composite images based

on images enhanced by the histogram equalization method in these three bands are shown in Fig. 4 and

Fig. 5. Mono Lake, Highways 395 and 120, Mono Craters, forest areas are shown better in the enhanced

color images. The color composite of daytime MAS images in bands 1 (peak wavelength at 470 nm), 3

(650 nm), and 7 (870 nm) is shown in Fig. 6. The black area on the top is Mono Lake, white areas are

snow and white with light pink represents thin snow-cover areas. The black area (5 mm wide by 8 mm

height) in the middle left is a part of Grant Lake which was covered by thin ice. The northern part of Grant

Lake was covered with snow. The near infrared color film taken with 6" RC-10 (CIR) camera on the same

ER-2 aircraft carrying the MAS instrument indicates that the thin ice cover on Grant Lake was in the state

of melting because we can see some strips in the ice area and some small blocks of water surface in black

by the edge. A portion of the image scanned from the near infrared color film, that contains the Grant

Lake, is shown in Fig. 7. The two lines on the upper right corner are Highway 395.

Because day and night MAS images are needed to register together in the latitude and longitude locations

of each pixels before the day/night LST algorithm is used to retrieve the land-surface temperature and

emissivity. We selected six ground control points that are obvious on both day and night MAS images.

We observed that somw segments of Highway 395 are not shown well on the night MAS image maybe

because of thin cirrus clouds. These control points are crossings and turning points on Highway 395. We

used the latitude and longitude values of these group control points given in the day and night MAS 1B

files to check the geolocation accuracy of the MAS 1B data. It is found that the error in the flight direction

(line number) may be as large as several hundred meters. This means that if we use the geolocation data in

the MAS 1B file in registration, the uncertainty in line numbers of the ground control points may be ten

lines. Instead of using the latitude/longitude location given in the 1B file, we found the line and sample

numbers of the ground control points in the day and night MAS images and then calculate their



correlations.Thestandarddeviationof residualerrorsare0.91linesand0.35samples.Finally,weused

thecorrelationsto calculatethecorrespondinglineandsamplelocationof eachdaytimeMASpixel in the

nightMAS imageandto interpolatethenightbrightnesstemperaturevaluein theregisteredimagesin the

sevenTIRbands(bands30-32,42,45,46,and48),thatareusedin theMODISday/nightLSTalgorithm.

In orderto checktheradiometricaccuracyof theMASTIR datain thesesevenbands,wecalculatedthe

averagedbandbrightnesstemperaturesand standarddeviationsof the dayMAS dataover four flat

homogeneousstudyareas:two onGrantLake(coveredwith iceandsnow,respectively),oneonMono

Lake,andanotheronthesnowfieldsitewherewemadefieldmeasurements.TheyarelabeledasareasA,

B,M, andS,respectively,in Table1. Thefirstcolumnis thebandnumber,thesecondcolumnis theband

center)_b used in Eq. l, columns 3-6 are the mean and standard deviation (in the parentheses) of band

brightness temperature Tb. The estimated minimum and maximum NEAT values are shown in the last two

columns. The spatial variations of Tb in each study areas may be caused by the variations in surface

temperature, surface reflectivity and emissivity, and in atmospheric temperature and water vapor profiles.

The variations caused by the surface are minimized by the flatness and homogeneity of the selected study

areas. Correlation analysis for study area A also rejects the assumption that the variations in Tb are caused

mainly by the variations in surface temperature and emissivity. We use the Tb values of each pixels in

bands 42 and 30 as independent variables and use the Tb values in other bands as dependent variables. Let

us assume the atmosphere was uniform over the study area in this analysis. Because the spatial variation

in surface temperature is represented in Tb of band 42, the spatial variation in surface reflectivity and

emissivity is represented in Tb of band 30, we would find nearly perfect correlation of the dependent

variable with the independent variables, i.e., the residual difference between the measured Tb value and the

value calculated from the correlation would be very small. Our analysis indicates that it is not true for the

Tb data set of study area A.

The atmospheric temperature and water vapor profiles measured by our radiosonde system in the snow

field are shown in Fig. 8. The column water vapor calculated from the measured water vapor profile is 0.32

cm during the day MAS flight, 0.39 cm during the MAS night flight.

We made atmospheric radiative transfer simulations with the version 3.5 of the MODTRAN code [Berk et

al., 1987] for the ice-covered Grant Lake surface (at elevation 2 km) based on the atmospheric temperature

and water vapor profiles measured during the day flight because we are sure that it was a very clear-sky
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day. Weassumethatthethin-icesurfacetemperaturewas-0.5°C andthatit reflectedsolarradiationand

downwellingatmosphericthermalradiativefluxasa specularsurface.Thereflectivityof a specularice

surfacecanbecalculatedfromthecomplexindexof refractionforice [Warren,1984].Thesimulatedband

brightnesstemperatures(Tb)in the sevenMAS TIR bandsaregivenin Table2. TheMAS Tb values

obtained from the 1B data file are listed in column for comparison. The simulated Tb values based on the

measured atmospheric profile are given in the fourth column. The simulated Tb values based on adjusted

profiles (one for doubling the water vapor, another for shifting the temperature profile by 2 °C) are given in

the next two columns. Because we started the first radiosonde measurement at 10:58 PST, MAS flight

passed the Grant Lake at 11:30 PST, it is reasonable to increase the atmospheric temperature by 2 °C in the

lower portion of the temperature profile. The changes due to the adjustments on column water vapor and

temperature profile are shown in parentheses. Because the dry atmospheric condition, the effect of

doubling the column water vapor on the band radiance at the top of the atmosphere is very small in all

these seven bands. Even the maximum effect in band 42 is -0.13 °C, not exceeding the possible instrument

noise level in this band. Because of the dry atmosphere and the relative high surface elevation, the effect

of changes in atmospheric temperature profile on Tb is moderate, less than 0.6 °C in band 48 at the worst.

The last column in Table 2 shows the difference between measured MAS Tb and those from the

MODTRAN simulation for the temperature lifted atmospheric condition. The ice surface temperature may

be not exactly at -0.5 °C. But it should not be far from this value. If we accept this value, we can see that

the uncertainty in the MAS TIR radiometric calibration is minimal in band 45, reasonable small in bands

30, 31, 42 and 46, but larger than 1 °C in bands 33 and 48. We will show later that the ice surface

temperature retrieved from the new day/night LST method is -0.78 °C.

2.3. Surface Temperature and Emissivity Retrieval from MAS Data

The physics and mathematical method of the day/night LST algorithm to retrieve land-surface temperature

and emissivity can be found in our published paper [Wan and Li, 1997], so we do not repeat here. We will

focus on how making best retrieval from the MAS data collected for this field campaign, i.e., to find the

best solution of surface emissivities in the seven bands, day and night surface temperatures, and related

atmospheric terms so that we can minimized the sum of square of the radiance difference in the seven

bands
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)(2=

j=l

{Wj [Lj -L(j)] 2} . (2)

where wj is the weight, Lj is the scaled band radiance observation value, j = 1, 7 for daytime, j = 8, 14 for

nighttime. L(j) is the scaled band radiance value that is calculated from the best solution of surface

emissivities and temperatures, and related atmospheric terms.

We established look-up tables (LUT) from atmospheric radiative transfer simulations with the atmospheric

temperature and water vapor profiles measured by our radiosonde system in the field. In the processing, we

used the MAS relative spectral response functions measured by the Sensor Engineering Laboratory, Earth

Science Division at NASA Ames in February 1998.

Because the MAS TIR bands have different NEAT values as shown in Table 1, we will put more weights

on the TIR bands with smaller NEAT values and less weights on other TIR bands.

We observed in the field that during the night MAS flight the atmosphere was not as clear as in the daytime

and that there were some thin cirrus and thin haze in the night sky. We can verify this by comparing the

day and night Tb values averaged over the four study areas in Table 3. As Ackerman et al. (1990) found in

the First ISCCP Region Experiment (FIRE), the brightness temperature difference between the 8 and

11 gm bands, ABT(8-11), is negative for clear regions, while for cirrus clouds it is positive. Gao and

Wiscombe (1994) point out that the brightness temperature variations caused by the changes in surface

emissivity should be considered in detection of thin cirrus clouds with this method. It is relative easy for

us to detect thin cirrus clouds from MAS data because we have both day and night MAS data and we know

that the atmosphere was very clear during the daytime MAS flight. After we compared the eXBT(8-11)

values (it is Tb(42-45) from MAS bands 42 and 45 in our case), we found that Tb(42-45) are increased

more than 1.1 °C from the day flight time to the night flight time over these four study areas and that the

Tb(45-46) (difference in 11 and 12gm bands) are increased less than half of this rate. This analysis

confirmed our observation in the field that there were some thin cirrus clouds during the night MAS flight.

Because the effect of thin cirrus may be significant for the night MAS data, it is necessary to develop a

special version of the day/night LST method taking into account the effect of thin cirrus in dry atmospheric

conditions. As the first order of approximation, the effect of thin cirrus on the band radiance at the top of

the atmospheric can be expressed as
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L(j) = tcir(J) L'(j) + [1 - tcir(J) ] B (Tcir) (3)

where tcir(J) is the transmission of thin cirrus, L'(j) is the band radiance before passing thin cirrus, and Tci r

is the thin cirrus temperature. The transmission of thin cirrus can be expressed as

tcir(J) = exp(-Aj Ucir) (4)

where Aj is the absorption coefficient in band j, Uci r is the absorber amount of thin cirrus.

We realize that the absorption coefficient of cirrus clouds depends on the ice particle shape, the particle

size distribution and the particle index of refraction, and that the determination of the absorption

coefficient is a research topic for a long time. In our simple method for the first order of cirrus correction,

we just used the absorption coefficient of invisible cirrus clouds given in the MODTRAN code to calculate

the band absorption coefficients in MAS bands 30-32, 42, 45, 46 and 48 (the values are 0.1360, 0.1767,

0.2175, 0.2467, 0.4794, 0.6041, and 0.6001) and set Tci r at 230 °K.

Because the effect of water vapor changes on the MAS brightness temperature in the seven bands is

smaller than 0.13°K as shown in Table 2 and we have the water vapor profile measured in the field

campaign, we can use the measured value of daytime column water vapor instead of solving it in the

day/night LST algorithm in general situations. Then we can replace the daytime column water vapor with

the absorber amount of thin cirrus as one of the variables to be solved in the day/night LST algorithm. We

implemented this simple procedure of thin cirrus correction and incorporated it into the day/night LST

algorithm.

Because of the residual error in day/night registration, we usually make average of the MAS observations

on 2 by 2 pixels before applying the day/night LST algorithm. We also tried averages on 4 by 4, 8 by 8, 16

by 16, 32 by 32 pixels. Our experience indicates that a smaller least-squares Z2 does not necessarily give a

better result for each individual solution of the day/night LST algorithm because there is noise in

observations and this algorithm involves with the solution of multiple non-linear equations. But the

averaged Z2 for a large sets of solutions is a meaningful measure of the performance of the algorithm and

the quality of the input data. We made a series of comparison by the use of the day/night LST algorithms

with or without the thin cirrus correction for 992 lines of day and night MAS data. Only 704 pixels each

line are processed in order to make the averaging on different sizes. We will say that the average on 2 by 2

pixels gives surface temperatures and emissivities at 100m resolution, similarly, average of 16 by 16 pixels
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givesresultsat800mresolution.Theaveraged_2 values from these two algorithms at different resolutions

are shown in Table 4. From this table, we can get insights into two important features. First, the averaged

_2 from the algorithm with thin cirrus correction is less than one half or one third of the values given by

the algorithm without the thin cirrus correction at all resolutions. Second, the averaged Z 2 value reduces

as the resolution gets coarser because the random noise in the MAS observations is reduced by averaging

on more pixels.

The optical depth of night thin cirrus clouds in band 45 (at wavelength 11 _tm) retrieved from MAS data at

200m resolution, as shown in Fig. 9, explains the reason why some segments of Highway 395 are not

shown well on the night MAS image (Fig. 5). The regional mean of the retrieved cirrus optical depth is

0.045. Its maximum value is 0.308, confirming that the cirrus clouds are thin. Its minimum value is a

small negative number (-0.08), suggesting that the simple cirrus correction method is not perfect and that it

may be also related to the MAS instrument noise.

The day and night LST images retrieved from MAS data by the new day/night LST algorithm with thin

cirrus correction at 100m resolution are shown in Fig. 10. The retrieved emissivities in bands 30, 42 and

45 at 100m resolution are shown in Fig. 11. If we place these two figures together with the reduced

topographic map (Fig. 1), we can see the following features. Mono Lake had low temperature in daytime

and high temperature at night, and high emissivities in all these three bands, similarly for the Inyo National

Forest area. The day and night temperatures of Highway 395 are higher than its neighboring areas while

its emissivities in these three bands are lower than its neighborhood. The Crater Mountain had higher

temperature in daytime and lower emissivities, similarly for the island in the middle of Mono Lake and

bare lands in mountains. There is no significant difference between emissivities of snow-cover areas and

the neighboring forest areas, similarly for the daytime temperatures, but some snow-cover areas have much

colder temperatures at night. We believe that the snow depth was larger in these snow-cover areas. We

can show the above features better in contrast-enhanced color composite images. We calculate the day-

night temperature from the retrieved day and night temperatures, and enhance the day-night temperature

difference image with the histogram equalization method. Then we make the color composite image with

the enhanced day-night temperature difference image in red, the enhanced day temperature image in green,

and the enhanced night temperature image in blue. Fig. 12 shows enhanced color composite images with

the day and night surface temperatures retrieved at four resolutions: 100 m on the upper left, 200 m on the
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upperright,400m onthelowerleft,and800m onthelowerright. Wecanseethatthereisnosignificant

differencein spatialinformationin imagesat 100m and200m resolutions.Thespatialcontrastin the

imageat400mresolutionis still goodsothatwecaneasilyrecognizeHighway395.Theimageat800m

resolutionisgoodonlyfor showinglargesurfacetargets.Forclimaticandhydrologicalstudiesatregional

andglobalscales,LSTis neededat muchlowerresolution.Soit is interestingtochecktheaccuraciesof

LSTresultsretrievedat differentresolutionsandaveragedovera sameregion.TheMonoLakeregion

coveredbytheimagesin Fig. 12isapproximately50kmby 35km. Table5 showsthemeanLSTvalues

averagedfrom LST valuesretrievedat 5 differentresolutionsfrom 100m to 1600m. Themaximum

differencein theregionalaveragedsurfacetemperaturesis0.13°K and0.04°K for daytimeandnighttime,

respectively.It is within thenoiselevelof theMASTIRbands.TheLSTretrievalsat 800mand1600m

resolutionsessentiallygivethesameresult.Consideringthenoisein MASdata,largereffectscausedby

mis-registrationof dayandnightimagesathigherresolutions,thisisanexcellentresult.

2.4. Comparison with Field MeasurementData

We comparedthe retrievedsurfacetemperaturevaluesat the snowfield site with thosefrom ground

measurements.Table6givesthesummaryof LSTvaluesretrievedfromMASdataat 100mresolutionand

field measurementdata. TheMAS viewingzenithangleat the snowsite is 18degreefrom the east

direction.TheLSTvaluefromMIDACspectrometeriscalculatedfrommeasuredsurfaceleavingradiance

at view angleof 15degreeandthedownwellingatmosphericradiativeflux measuredwith sand-blasted

aluminumdiffusereflectiveplate.Thesnowemissivitymeasuredpreviouslyfroma snowsampleis used

in theLSTcalculation.Theuncertaintiesin snowemissivityandin themeasuredradiativeflux arethe

majorsourcesof errorsin theLSTcalculationfromthespectrometerdata.Althoughtheoperatingspectral

rangeof theMIDACspectrometeris from3.5to 13.5_m,weonlyusethespectraldatain thewavelength

rangeof MAS band45(around11_tm)withintheatmosphericwindowin orderto reducetheerrordueto

theseuncertainties.Thespectralrangeof thebroadbandradiometer(HeimannTIR thermometer)is 10-

13_m. We madea correctionof the emissivityeffect on the LST value measuredby the TIR

thermometers.It isapproximately1.4°C. TheHeimannthermometersdid notworkwellwithoutheating

whentheambient(instrument)temperaturewasbelow0°C,soweonlyuseditsmeasurementdataduring

daytime.Undersunshinethermistorsactuallygavethe air temperatureratherthanthe snowsurface

temperaturebecausetheylostcontactwithsnowparticlesdueto snowmelting.ThedaytimeLSTvalues
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retrieved from MAS data and from field measurements match well within 1 °C. But we recognized that the

LST retrieved from MAS data is for an area while the field of view of the spectrometer is only 30 cm in

diameter and the field of view of the thermometers is approximately 1 m in diameter. The temporal and

spatial variations in the snow surface temperature make the direct temperature comparison difficult. The

night snow surface temperature retrieved from MAS data is 3.3 °C colder than the field measurements.

One possible reason is the effect of thin haze during the night MAS flight.

2.5. Significance of the Results from the Field Campaign

March 10, 1998 was a golden day of the MAS data because of its clear dry sky and calm atmospheric

conditions, especially for the daytime MAS flight. The ice-covered Grant Lake provided a good

opportunity to evaluate the noise level and calibration accuracy of the seven MAS TIR bands. Although

the size of Grant Lake (about 1 km wide and 4 km long) is not large enough for MODIS observations, it is

large enough for MAS observations. In the future, once we evaluate the accuracy of MAS TIR bands with

Grant Lake we can use the Mono Lake or other large targets on the ground to evaluate the accuracy of

MODIS TIR bands by intercomparison of MAS and MODIS data. The day and night MAS data set from

this field campaign also provides a chance to develop a simple method to correct the effect of thin cirrus

clouds and to incorporate this method into the day/night LST algorithm. The good agreement among the

regional averaged surface temperatures obtained from LST values retrieved at different resolutions

increased our confidence in the MODIS day/night LST algorithm.

3. Anticipated Future Actions

In the second half of 1998, we will deliver V2.1 codes for the at-launch LST processing, and will establish

a home page for the LST-validation field campaigns. We will process the MAS data collected over Death

Valley, California in the March 1998 field campaign and compare the retrieved emissivity images with

those obtained from MAS data of March 1997 in the same area.
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TABLE 1. Mean and standard deviation of band brightness temperature (Tb) in seven MAS bands

over four flat homogeneous study areas in the Mono Lake field campaign on March 10,

1998.

MAS band

band center

no. (,urn)

30 3.745

31 3.905

32 4.064

42 8.467

45 10.975

46 11.969

48 13.274

Tb (STb) Tb(STb) Tb (STb) Tb(STb)

(°C) (°C) (°C) (°C)

area A area B area M area S

-1.0 (1.75) 1.5 (1.29) 2.8 (1.27) 2.6 (1.41)

-2.6 (1.19) -1.4 (1.08) 1.8 (0.96) -0.7 (1.16)

-5.0 (1.41) -4.3 (1.45) -0.4 (1.27) -4.1 (1.54)

-3.0 (0.21) -2.9 (0.22) 1.9 (0.34) -2.9 (0.25)

-1.6 (0.25) -1.4 (0.25) 4.0 (0.38) -1.4 (0.30)

-2.8 (0.44) -2.0 (0.51) 3.8 (0.49) -2.3 (0.53)

-10.5 (0.71) -9.8 (0.63) -6.2 (0.71) -10.0 (0.74)

estimated

NEdTmin NEdTmax

(oc)

1.1

0.8

1.1

0.2

0.2

0.4

0.6

Note: Noise estimates in the nearest bands by Univ. of Wisconsin from MAS data of Feb 08, 1997 over

Lake Huron are 1.3, 0.9, 1.0, 0.13, 0. l 1, 0.25, and 0.58 °C (personal communication with Chris Moeller).

TABLE 2. Comparison between the MAS-measured Tb values over the ice-covered Grant Lake

and those from MODTRAN3.5 simulations at Ts = -0.5 °C.

MAS band

band center

no. (gm)

30 3.745

31 3.905

32 4.064

42 8.467

45 10.975

46 11.969

48 13.274

measured

Tb (61b)

(oc)

-0.95 (1.75)

-2.62 (1.19)

-4.97 (1.41)

-3.05 (0.21)

-1.61 (0.25)

-2.77 (0.44)

-10.50 (0.71)

calculated Tb (sensitivity to 6(cwv) and 6Ta)

measured profiles cwv=O.64cm Ta + 2 °C

cwv=O.32cm no change in Ta no change in cwv

-1.30 -1.33 (-0.03) -1.21 (0.09)

-2.03 -2.03 (0.00) -1.91 (0.12)

-3.45 -3.45 (0.00) -3.17 (0.28)

-2.36 -2.49 (-0.13) -2.16 (0.20)

-1.65 -1.64 (0.01) -1.60 (0.05)

-3.44 -3.36 (0.08) -3.38 (0.06)

-12.55 -12.49 (0.06) -11.98 (0.57)

Tb-measured

minus

Tb-calculatea

0.26

-0.71

-1.80

-0.89

-0.01

+0.61

+1.48
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TABLE 3. Day and night MAS band brightness temperatures (Tb-d and Tb-n) averaged over four

flat homogeneous study areas in the Mono Lake field campaign on March 10, 1998.

MAS band

band center

no. (gm)

30 3.745

31 3.905

32 4.064

42 8.467

45 10.975

46 11.969

48 13.274

Tb-d (_)Tb-n) Tb-d (_)Tb-n) Tb-d (_ Tb-n) Tb-d (STbY-n)

(oc) (oc) (oc) (oc)
area A area B area M area S

-1.0 (-6.0) 1.5 (-7.9) 2.8 (-0.1) 2.6 (-11.2)

-2.6 (-7.2) -1.4 (-9.0) 1.8 (-1.1) -0.7 (-12.5)

-5.0 (-8.4) -4.3 (-10.1) -0.4 (-2.8) -4.1 (-13.8)

-3.0 (-8.5) -2.9 (-10.4) 1.9 (-2.8) -2.9 (-14.1)

-1.6 (-8.4) -1.4 (-10.6) 4.0 (-1.9) -1.4 (-15.7)

-2.8 (-9.6) -2.0 (-11.7) 3.8 (-2.4) -2.3 (-16.8)

-10.5 (-15.4) -9.8 (-16.9) -6.2 (-10.7) -10.0 (-21.0)

TABLE 4. The averaged least-squares values of the day/night LST algorithm in the Mono Lake

region (size of approximately 50km by 35km) based on MAS data of March 10, 1998.

with

cirrus correction

averaged X 2 value at resolution

100m 200m 400m 800m 1600m

No 0.0114 0.0082 0.0070 0.0064 0.0059

Yes 0.0052 0.0025 0.0021 0.0015 0.0017
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TABLE 5. Mean LST values averaged from LST values retrieved at different resolutions in the

Mono Lake region (size of approximately 50km by 35km) based on MAS data of March

10, 1998.

day/night

time

mean LST (°c) averaged from values retrieved at resolution

100m 200m 400m 800m 1600m

day around 11:30 PST 2.47

night around 22:00 PST -8.72

2.51 2.53 2.59 2.60

-8.72 -8.73 -8.69 -8.69

TABLE 6. The summary of LST values retrieved from MAS data and field measurement data over

the snow field (study area S) near Mono Lake, March 10, 1998.

time Ts (MAS) Ts (MIDAC spectrometer) Ts (thermometers) Ts (thermistors)

11:28 PST -0.8 -1.1 -0.6 3.0*

21:58 PST -10.7 -7.4 ** -7.0

Note:

* Under sunshine thermistors gave the air temperature rather than the snow surface temperature because

they lost contact with snow particles due to snow melting.

** The Heimann thermometer did not work well without heating when the ambient (instrument)

temperature was below 0 °C.
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Fig. 8, Atmospheric temperature (a) and water vapor (b) profiles near Mono Lake, March 10, 1998.
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Fig. 9, Optical depth of night thin drru8 relrieved from MASdata,
Mono_ _ Ma_l_10, 19_,
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Fig. 10, Day (A) and Night (B) LS'T (in unit K) images retrieved from MAS data at lO0m resolution,
Mane _ af_s, March 1 D, 1ggB.
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