Simulations of terrestrial in-situ cosmogenic-nuclide production

R.C. Reedy *, K. Nishiizumi h,l, D. Lal c, J.R. Arnold b, P.A.J. Englert d, J. Klein e, R. Middleton e, A.J.T. Jull f and D.J. Donahue f

* Space Science and Technology Division, MS-D436, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
b Department of Chemistry, 0524, University of California, San Diego, La Jolla, CA 92093, USA
c Scripps Institution of Oceanography, 0220, University of California, San Diego, La Jolla, CA 92093, USA
d Nuclear Science Facility, San Jose State University, San Jose, CA 95192, USA
e Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA
f NSF Accelerator Facility for Radioisotope Analysis, University of Arizona, Tucson, AZ 85721, USA
Simulations of terrestrial in-situ cosmogenic-nuclide production

R.C. Reedy a,*, K. Nishiizumi b,1, D. Lal c, J.R. Arnold h, P.A.J. Englert d, J. Klein e, R. Middleton e, A.J.T. Jull f and D.J. Donahue f

a Space Science and Technology Division, MS-D436, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
b Department of Chemistry, 0524, University of California, San Diego, La Jolla, CA 92093, USA
c Scripps Institution of Oceanography, 0220, University of California, San Diego, La Jolla, CA 92093, USA
d Nuclear Science Facility, San Jose State University, San Jose, CA 95192, USA
e Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA
f NSF Accelerator Facility for Radioisotope Analysis, University of Arizona, Tucson, AZ 85721, USA

Targets of silicon and silicon dioxide were irradiated with spallation neutrons to simulate the production of long-lived radionuclides in the surface of the Earth. Gamma-ray spectroscopy was used to measure 7Be and 22Na, and accelerator mass spectrometry was used to measure 10Be, 14C, and 26Al. The measured ratios of these nuclides are compared with calculated ratios and with ratios from other simulations and agree well with ratios inferred from terrestrial samples.

1. Introduction

The interactions of galactic-cosmic-ray particles in the Earth's atmosphere produce a cascade of particles, some of which reach the Earth's surface and produce cosmogenic nuclides. Neutrons are the dominant producer of nuclides in the top meter of the Earth's surface, and muons become a major source of cosmogenic nuclides below a few meters. Long-lived cosmogenic radionuclides, such as 5730-year 14C, 0.3-Ma 36Cl, 0.7-Ma 26Al, and 1.5-Ma 10Be, and a few rare stable nuclides, such as 3He and 21Ne, made in-situ in certain materials can be used to study recent exposure histories [1]. The advances in the analyses of long-lived radionuclides using accelerator mass spectrometry (AMS) have revolutionized the use of these radionuclides, especially for in-situ terrestrial applications. At present, the use of these cosmogenic nuclides to study histories of targets or of cosmic radiation is often limited by inadequately known production rates.

Some production rates and ratios have been inferred from measurements of terrestrial samples with known irradiation conditions (e.g., refs. [2–6]). There are some uncertainties in the exposure ages and irradiation conditions of these samples, and only a few radionuclides (e.g., 10Be and 26Al) have been measured. A wide range of production rates have also been theoretically inferred (e.g., refs. [7,8]). These and other calculations (e.g., refs. [9,10]) for production of these nuclides by nucleons and muons could be improved with laboratory measurements of production cross sections and relative production ratios.

Laboratory simulations of these processes have many limitations, such as not reproducing the complex mix of particles and their energies, but do provide a controlled irradiation of well-characterized samples. A series of irradiations at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) have simulated the production of long-lived radionuclides in surface rocks. Here we report on synthetic quartz and silicon that were exposed to neutrons. Preliminary results with some details not presented here were reported earlier [11–13]. Irradiations with muons were also done [11,12] and will be reported separately.

2. Experimental

To simulate the production rates and ratios due to the nucleon component (primarily neutrons) of cosmic rays, an irradiation was conducted using spallation neutrons produced in the beam stop of the ~1-mA 800-MeV proton beam at LAMPF. The beam stop produces a large flux of secondary particles, especially neutrons. Most charged secondary particles are stopped by ionization energy losses near the beam stop. Neutrons travel until they undergo nuclear interactions. Samples were exposed to these particles in the Los Alamos Spallation Radiation Effects Facility
Table 1
Measured radionuclide concentrations (10^{10} atoms/g) in irradiations with spallation neutrons near the LAMPF beam stop (numbers in parentheses are the uncertainties of the last digits of the measurement)

<table>
<thead>
<tr>
<th>Target</th>
<th>^7Be</th>
<th>^10Be</th>
<th>^14C</th>
<th>^22Na</th>
<th>^26Al</th>
<th>^26Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>40.1 (0.4)</td>
<td>7.69 (0.46)</td>
<td>19.2 (4)</td>
<td>553 (5)</td>
<td>1320 (90)</td>
<td>1410 (110)</td>
</tr>
<tr>
<td>SiO₂</td>
<td>162 (1)</td>
<td>93.0 (4.7)</td>
<td>303 (3)</td>
<td>256 (5)</td>
<td>722 (50)</td>
<td>660 (52)</td>
</tr>
<tr>
<td>O</td>
<td>269 (2)</td>
<td>168 (9)</td>
<td>552 (6)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

a Measured in that sample only.
b From averages based on measurements of both Si-containing samples.
c Oxygen, as inferred from the sin² and Si measurements.

(LASREF) around the beam stop. The particle distributions at various locations in LASREF have been characterized [14,15] and are roughly similar to those in the Earth’s surface. Targets of silicon, SiO₂, and several monitor foils were irradiated for about a day with these spallation neutrons.

The activities in the monitor foils and of the short-lived radionuclides, such as 2.6-h ^22Na and 53-d ^7Be, produced in the silicon and SiO₂ were determined by non-destructive high-resolution gamma-ray spectrometers at Los Alamos. At LAMPF, pieces of the silicon and SiO₂ were dissolved along with Al and Be carriers. The Al and Be were separated and taken to San Diego, where they were further purified [16,17]. The ^26Al/^27Al and ^10Be/^9Be ratios were measured on the University of Pennsylvania’s tandem Van de Graaff accelerator [18,19]. The measured concentrations of these radionuclides are given in Table 1.

Measurements of ^14C were separately made for these beam-stop samples. Two different extractions were performed at Tucson on samples of a few mg of Si and SiO₂ and also on samples that had been physically diluted with quartz powder. Samples were pre-combusted to remove any organic contamination and then heated to melting [20]. Any CO was converted to CO₂. The CO₂ was measured volumetrically and reduced to graphite. The graphite was analyzed along with standards by AMS at the University of Arizona NSF Accelerator Facility for Radiosotope Analysis as described in ref. [21]. The results for the two different extractions agreed very well [13], and only the averages are given in Table 1.

3. Results

The concentrations of the radionuclides (Table 1) were high and easily measured. The production of ^7Be, ^10Be, and ^14C from pure oxygen in Table 1 was determined from the Si and SiO₂ measurements. The ^22Na in the SiO₂, which is made only from the silicon, is in good agreement (1%) with the ^22Na measurement in Si. However, the ^26Al measurements in Si (132 × 10^{11} atoms/g) and in the SiO₂ corrected to pure Si (154 × 10^{11} atoms/g) disagree by 17%, which is slightly greater than the sum of the ≈ 7% errors for each measurement. Below, we use the average of these values, 141 × 10^{11} atoms/g for pure Si and 66 × 10^{11} atoms/g for SiO₂.

The ^7Be/^10Be ratio in the Si is 5.2, which is less than the ratio of ≈ 7.7 (5.39 mb/ = 0.7 mb) measured in SiO₂ irradiated with 600-MeV protons [22,23]. The ^7Be/^10Be production ratio in oxygen is 1.6, which is much less than the proton-induced ratios in oxygen of 8.9 and 5.4 at 135 and 550 MeV, respectively (from ref. [24], using revised half-lives), and of 171 and 15.7 at 49 and 91 MeV, respectively [25]. As evident from the above ^7Be/^10Be ratios and as previously noted for ^10Be [26], neutrons and protons produce these two nuclides in relatively different yields and cross sections.

These results yield ^26Al/^10Be ratios of 183 in Si and 7.1 in SiO₂. The ^10Be and ^26Al contents of quartz from glacially-polished rock exposed to cosmic rays for ≈ 11 ka gave an ^26Al/^10Be ratio of 6.0 ± 0.4 [4]. Other measurements for natural samples gave similar production ratios, see Table 2. These ^26Al/^10Be production ratios agree well with our ratio of 7.1 ± 0.7 from spallation neutrons reacting with SiO₂.

The ^10Be/^7Be and ^26Al/^10Be ratios that we obtained from our irradiations can also be compared with preliminary results [11,12] from the irradiation of SiO₂.

Table 2
^26Al/^10Be ratios measured from these simulations or some terrestrial samples and several calculated ratios

<table>
<thead>
<tr>
<th>Sample(s)</th>
<th>Measured ratio(s)</th>
<th>Calculated production ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early predictions</td>
<td>4.2 [8]–20.7 [7]</td>
<td></td>
</tr>
<tr>
<td>Libyan desert glass</td>
<td>≤ 7</td>
<td>[2]</td>
</tr>
<tr>
<td>In-situ quartz</td>
<td>2.5–6.7</td>
<td>[3]</td>
</tr>
<tr>
<td>Sierra quartz</td>
<td>6.0 ± 0.4</td>
<td>[4]</td>
</tr>
<tr>
<td>Antarctic rocks</td>
<td>~ 6.2</td>
<td>[5]</td>
</tr>
<tr>
<td>Antarctic rocks</td>
<td>6.5 ± 1.3</td>
<td>[6]</td>
</tr>
<tr>
<td>LAMPF, neutrons</td>
<td>7.1 ± 0.7 a</td>
<td>= 8 a</td>
</tr>
</tbody>
</table>

a This work.
with stopping negative muons (μ\(^-\)). The 10Be/7Be ratios vary widely (e.g., ~23 for the stopped μ\(^-\)), even greater than the variations noted above for cross-section ratios at various proton energies. The 26Al/10Be ratios for stopped muons (≈ 7.0) and neutrons are similar.

Our ratios for 14C/10Be in Si, SiO\(_2\), and oxygen are 2.50, 3.26, and 3.29, respectively. Using the proton cross sections of refs. [22,23,25] for 10Be and ref. [27] for 14C, we can compare our ratios for neutrons with proton-induced ratios. These ratios for protons reacting with Si and O increase with decreasing proton energy, with ratios near unity for ~500 MeV and ~10 for ~50-70 MeV protons, but scatter about our measured ratios.

Using the cross sections for 10Be and 26Al from ref. [26] and ref. [10], respectively, 26Al/10Be ratios were calculated for both the LAMPF irradiations and for natural irradiations. Although the exact spectral shapes for the energetic particles in these irradiations are not well known, we can get some ideas of relative trends and whether the cross sections are reasonably consistent with the measurements. Our calculated 26Al/10Be ratios in Table 2 are in good agreement with the ratios from our simulation and for natural quartz. Using the cross sections for 22Na from Si in ref. [9], we calculated a 26Al/22Na ratio similar to the measured ratio. Our results and the cross sections for 10Be production in ref. [26] suggest that the neutron-induced cross sections for 7Be from oxygen are ~0.7 of those measured for protons. For 14C, we found that we needed to increase the assumed cross sections of ref. [9] for production of 14C from oxygen by 10% and more at the lowest energies to get better agreement with the measured ratio.

Our cross sections for 10Be, 14C, and 26Al gave good agreement between calculated production rates and activities measured in the Knyahinya meteorite [28]. To get production rates for terrestrial samples, we plan to use the Monte Carlo particle transport/production codes used by ref. [28] and our cross sections.

4. Conclusions

Spallation neutrons near the LAMPF beam stop were used to study the production of 7Be, 10Be, 14C, 22Na, and 26Al in silicon and SiO\(_2\). These irradiations gave 26Al/10Be ratios similar to those measured with documented natural samples, indicating that other ratios from our irradiations could be applied to natural samples. Production ratios varied with the target and with the energy and the nature of the incident particles, illustrating the complex nature of predicting such nuclear interactions and their ratios.

Several excitation functions for the production of these radionuclides were tested. Some sets of cross sections (10Be, 22Na, and 26Al) were found to be good. Other cross-section sets for production by neutrons had to be modified (14C) or were shown to be poor (7Be). These good or modified cross sections are being used for calculations of cosmogenic-nuclide production rates in extraterrestrial materials and could be used for terrestrial applications.

While simulations at accelerators, such as those reported here, have limitations, they are useful in determining and checking relative production rates in terrestrial samples. The controlled nature of such irradiations is an advantage for many problems, such as determining production from elements that are hard to study directly in natural samples, such as sodium. They also can give production ratios for radioactive nuclides relative to stable nuclides, e.g. 26Al/21Ne.

Acknowledgements

We thank D. Davidson for her assistance in the irradiations at the beam stop and G. Butler and the staff of the INC counting room for providing the facilities and spectral-unfolding codes for the gamma-ray spectroscopy. This work was mainly supported by NASA, NSF, the German Science Foundation (DFG), and by the Institute of Geophysics and Planetary Physics at Los Alamos. The work at Los Alamos was done under the auspices of the U.S. Department of Energy.

References

V. GEOPHYSICS, ENVIRONMENT
INSTRUCTIONS TO AUTHORS

Contributions to Section B of Nuclear Instruments and Methods in Physics Research must be in English and should have an abstract. The manuscript and copies of figures should be submitted in duplicate, together with one set of good quality figure material (for production of the printed figures), to one of the Editors, Prof. H.H. Andersen or Dr. L.E. Rehn. Together with the manuscript an exactly identical electronic version on diskette can be submitted. Upon acceptance of the article for publication, both the manuscript and the diskette will be sent by the Editor to the Publisher. It is suggested that manuscripts originating from Europe, India, The Middle East and Africa be sent to Copenhagen and manuscripts from The Americas, The Far East and Australasia, to Argonne.

Prof. H.H. Andersen
The Niels Bohr Institute, Ørsted Laboratory
Universitetsparken 5, DK-2100 Copenhagen Ø
Denmark
Tel. +45 35320482 FAX: +45 35320460
e-mail: nimb@meyer.fys.ku.dk

Dr. L.E. Rehn
Materials Science Division, Bldg. 223, RM S231
Argonne National Laboratory, 9700 South Cass Ave
Argonne IL 60439, USA
Tel. +1 708 2529297 FAX: +1 708 2523308
e-mail: lynn.rehn@qjmgate.anl.gov

Short contributions of less than 1500 words and not subdivided into sections may be published as Letters to the Editor in a shorter time than regular articles as the proofs will normally be corrected by the Publisher.

Preparation of manuscripts

Manuscripts should be typed throughout with double line spacing and wide margins on numbered pages. The title page(s) should contain, in addition to the article title, author(s) names and affiliations, the text of related footnotes and the text of the abstract.

Tables should be typed on separate sheets at the end of the manuscript. In addition to its serial number, each table should have a sufficiently detailed heading or caption to explain the data displayed in it.

Figures should be numbered and their captions listed together at the end of the manuscript. References in the text to other publications should be numbered consecutively within square brackets, for example: “Using a similar technique [1],...” or “As outlined in ref. [2],...” and listed together at the end of the text, for example:

In the case of multiple authorship all authors should be listed in the references provided they number less than ten. Only in case of more than ten authors is the first author et al. acceptable.

Formulas in the manuscript should be clearly written with particular consideration given to characters that may be misinterpreted.

e.g. (lower case) O (cap.) 0 (zero) * (deg) I (cap) 1 (el) 1 (one) ' (prime) c, C, p, P, s, S; etc.
 x (times) x (lower case) X (cap.) Σ (sigma) ∑ (sum) k, K, κ (kappa)

If necessary, unusual symbols should be explained in pencil in the margin.

Preparation of figures

The Publisher requires a set of good quality drawings and photographs to produce the printed line figures and half-tone plates in the journal. Photographic copies (“glossy prints”) of drawings are also acceptable for the line figures if they have been sharply focused and evenly exposed.

Line figures: The drawings or glossy prints supplied for the line figures should be 1.5–3 times larger than the printed size of the figures and should contain all the required lettering.

Figures are preferably reduced to a single column width (7.6 cm) unless their complexity, large width-to-height ratio, or need to display special detail makes a larger format necessary (max. printed width = 20 cm). Inappropriately sized lettering on a figure may prevent its reduction to the size optimum for its information content. The lettering used on a drawing should be chosen so that after reduction, the height of numbers and (capital) letters falls within the range 1.2–2.4 mm. Care should be exercised in choosing the pen width of machine-plotted graphs. Frequently lines in these figures are too fine compared to the area of the figure.

Shaded areas in line figures should be shown by means of cross-hatching (or a matrix of dots) rather than a continuous grey “wash”. Cross-hatching, after reduction, of density less than ~25 lines/cm is satisfactory.

Half-tone plates: The photographs supplied for reproduction should be unmounted unless they form part of a composite figure and they should have a somewhat greater contrast than is desired in the printed figure. It is important that the photographs supplied are not already screened (overprinted with the point-matrix used by printers) or moiré patterns will form when they are screened for a second time. When necessary, the top side of a photograph should be marked. A reduction factor should be recommended for a photo when it is not obvious what detail in the photo is of interest.

Colour plates: Illustrations can be printed in colour when they are judged by the Editor to be essential to the presentation. The Publisher and the Author will each bear part of the extra costs involved. Further information concerning colour illustrations and the cost to the Author is available from the Publisher, or can be found in the first issue of volume 84, p. 125.
FOR SCIENTISTS WORKING IN THE FIELD OF SURFACES, INTERFACES AND THIN FILMS

FOR SCIENTISTS WORKING IN THE FIELD OF MATHEMATICAL & THEORETICAL METHODS IN PHYSICS

As the number of scientific publications grows daily it becomes increasingly important to trace the most interesting publications in a way that costs as little time as possible.

Elsevier Science Publishers now provides CONTENTS-Alert, a free electronic service that can assist you in carrying out time-saving searches on a regular, two-weekly basis.

CONTENTS-Alert is a current awareness service which delivers, through e-mail, the tables of contents of a selected group of journals. Not only will you receive these tables of contents before or upon publication of the journals but you can also browse through these tables of contents at your own terminal, at your own time. A survey carried out among researchers using CONTENTS-Alert has shown that this free service is very convenient and time-effective.

We offer two versions of CONTENTS-Alert each covering a specific field. One version of CONTENTS-Alert includes journals on Surfaces, Interfaces and Thin Films, and one includes journals on Mathematical and Theoretical Methods in Physics.

Journals covering the field of Surfaces, Interfaces and Thin Films

- Applied Surface Science
- Chemical Physics Letters
- Materials Science and Engineering: R: Reports
- Nuclear Instruments and Methods in Physics Research: Section B
- Surface Science (including Surface Science Letters)
- Surface Science Reports
- Thin Solid Films
- Vacuum

Our e-mail for this version is:
RFC-822: C-ALERT@ELSEVIER.NL
X.400: C = NL; A = 400NET; P = SURF; O = ELSEVIER; S = C-ALERT

Journals covering the field of Mathematical and Theoretical Methods in Physics

- Computer Physics Communications
- Journal of Geometry and Physics
- Nuclear Physics B
- Physica A
- Physica D
- Physics Letters A
- Physics Letters B
- Physics Reports
- Wave Motion

Our e-mail for this version is:
RFC-822: C-ALERT.MATHPHYS@ELSEVIER.NL
X.400: C = NL; A = 400NET; P = SURF; O = ELSEVIER; S = MATHPHYS; G = C-ALERT

Subscribe now to this free pre-publication service and find out how useful CONTENTS-Alert really is. Just send your full address to the e-mail number quoted above that corresponds with the CONTENTS-Alert version you wish to receive, or send it by post and we will make sure you will receive CONTENTS-Alert every two weeks.

Please allow three weeks processing time for your free subscription.

Yes, please add my name to the circulation list of CONTENTS-Alert.

Version:
- [] Surfaces, Interfaces and Thin Films
- [] Mathematical and Theoretical Methods in Physics

Return to:
ELSEVIER SCIENCE PUBLISHERS B.V.,
Att: Mr. M. Stavenga,
P.O. BOX 103, 1000 AC Amsterdam, The Netherlands
Fax 31 20 5862580

Name

Initials

Title

Male [] **Female** []

Institute

Department

Street/ PO Box

City

Country

Tel:

Fax:

E-mail
