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Polyclonal antiserum against subunit A (67 kDa) of
the vacuolar ATPase from Neurospora crassa reacted

with subunit I (87 kDa) from a membrane ATPase of the
extremely halophilic archaebacterium Halobacterium
saccharovorum. The halobacterial ATPase was inhibited

by nitrate and N-ethylmaleimide; the extent of the latter
inhibition was diminished in the presence of adenosine
di- or triphosphates. 4-Chloro-7-nitrobenzofurazan in-
hibited the halobacterial ATPase also in a nucleotide-

protectable manner; the bulk of inhibitor was associated
with subunit II (60 kDa). The data suggested that this
halobacterial ATPase may have conserved structural
features from both the vacuolar and the F-type ATPases.
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F1F0 ATP synthases (F-type ATPases) are proton-
pumping ATPases that utilize transmembrane proton
gradients for the synthesis of ATP. They are found on
the inner membranes of mitochondria and chloroplasts

as well as the cytoplasmic membranes of eubacteria (1).
Although membrane-bound ATPase activity (i.e., ATP
hydrolysis) has been described in several archaebacteria
(2-6), none of these enzymes has been shown to be an F-

type ATPase. Vacuolar proton-pumping ATPases (V-type
ATPases) are associated with the endomembranes of a

variety of intracellular organelles found in eukaryotic
cells. They resemble F-type ATPases in that they are large
multimeric enzyme complexes consisting of a catalytic

portion and a dicyclohexylcarbodiimide-sensitive proton

This work was supported by funds from the NASA Exobiology pro-

gram on the Early Evolution of Life to L.I.H., which in turn supported

Cooperative Agreement NCC2-578 at the SETI Institute to H.S., and

by Research Grant GM-28703 from the National Institutes of Health
to B. J. Bowman and E.J.B.

To whom correspondence should be addressed at Institute for Mi-

crobiology and Genetics, University of Vienna, Althanstr. 14, A 1090

Vienna, Austria.

116

pore. However, V-type ATPases do not synthesize ATP

[for reviews see (7, 8)].
DNA sequence data for the two major subunits of

membrane ATPases from Sulfolobus acidocaldarius (9, 10)
and Methanosarcina barkeri (11) as well as for a partial

sequence from Methanococcus thermolithotrophicws (12)
indicate extensive similarities between the ATPases from

the sulfur-dependent thermoacidophiles and the meth-
anogenes and the vacuolar ATPases (50% or more iden-
tical amino acid residues). Less extensive similarities (9-

13) occur between archaebacterial ATPases and the F-

type ATPases (ca. 25% identical amino acid residues).
These observations imply that if these archaebacterial

enzymes synthesize ATP, they are not F-type ATPases.
Two apparently distinct membrane-bound ATPases

have been isolated from the extremely halophilic archae-
bacteria. Hochstein et al. described the purification and

properties of the ATPase from Halobacterium saccharo-
vorum (2, 14, 15); subsequently, a similar ATPase was
isolated from H. halobium (6). While the molecular masses

of the native enzymes and their major subunits appear to
be identical, these ATPases differ with respect to pH op-

timum, ion activation, and detergent requirement (6, 16).
Furthermore, there are differences with respect to their
immunological reactivities. The ATPase from H. halobium
reacts in immunoblots with the Beta vulgaris vacuolar

ATPase {17). On the other hand, subunit I| of the ATPase
from H. saccharovorum reacts strongly with an antiserum

against the/_ subunit of the ATPase from S. acidocaldar-
ius, which in turn cross-reacts with the fl subunit of F-

type ATPase from mitochondria, eubacteria, and chlo-
roplasts (18). This suggests a relationship of the ATPase
from H. saccharovorum to the F-type ATPases. However,

a comparison of the ATPase from H. saccharovorum with

the F1 ATPase from Escherichia coil leads to the conclu-
sion that these latter two enzymes differ from each other

on the basis of amino acid composition, trypsin sensitivity,

peptide maps and isoelectric points of the major sub-
units {16).
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Consequently, it was of interest to compare the ATPase
from H. saccharovorum to the V-type ATPases. We report

here on the immunological cross-reaction and sensitivity
to certain inhibitors of the ATPase from H. saccharovo-

rum that suggest the enzyme possesses features indicating
a relationship to V-type and F-type ATPases.

MATERIALS AND METHODS

Chemicals. The following materials were purchased from the com-

panies indicated: Bio-Rad Protein assay reagent, v-globulin, SDS 3 (Bio-

Rad Laboratories); bovine serum albumine (fraction V), ATP, ADP,

NEM, NBD-CI (Sigma Chemical Co.).

Preparation and chemical modiftcation of the A TPase from H. sac-
charovorum. The membrane fraction from H. saccharovorum (ATCC

29252) was prepared as described earlier (2, 15, 16). Prior to modification,

the enzyme (0.66-1.2 mg protein/ml) was equilibrated in 50 mM trieth-

anolamine-HC1, pH 7.15, 4 M NaCl, 2 mM EDTA, by centrifuging it

through Sephadex G 50 columns according to the procedure described

by Penefsky (19). NEM was dissolved in pentane and added to a final
concentration of 1 mM. NBD-C1 was dissolved in methanol and added

to the enzyme to a final concentration of 1.25 mM. Incubation was at

ambient temperature. Excess NBD-CI was removed by centrifuging the

reaction mixture through Sephadex G 50 columns, which were equili-

brated in 50 mM Tris-HCl, pH 8.0, 4 M NaCI, 10 mM MgCl2. Nucleotide

protection experiments were carried out by incubating the enzyme at

ambient temperature with either ATP or ADP for 15 min prior to the

addition of the inhibitor.

Immunological assay (Western blot). The preparation of antiserum

against subunit A from the vacuolar ATPase from Neurospora crassa

was carried out as described previously for the corn ATPase (20). The

immunoblot procedure of Rott and Nelson (21) was used and the im-

munoconjugates were visualized with alkaline phosphatase {22}.

Other methods. ATPase activity was measured as published previ-

ously using MnATP as the substrate (2) except that Triton X-165 instead

of Triton X-100 was used as suggested by Schobert and Lanyi (23). Gel

electrophoresis was performed according to Laemmli (24). Gels were

stained with Coomassie blue according to Fairbanks et al. {25). Fluo-

rescence was observed under ultraviolet light prior to staining of the

gels, and was recorded using Polaroid film 67. Protein was determined

by the method of Bradford (26) or Lowry et al. (27) with v-globulin or

bovine serum albumin, respectively, as standards.

RESULTS AND DISCUSSION

Figure 1 shows that the polyclonal antiserum raised

against the 67-kDa subunit (subunit A) from the vacuolar

ATPase of N. crassa (Fig. 1, lane 1) reacted with the 87-

kDa subunit (subunit I) from the purified membrane

ATPase of H. saccharovorum (Fig. 1, lane 3) and with a

polypeptide of similar size in the membrane fraction of

this organism (Fig. 1, lane 2). Thus, in addition to the

cross-reaction with the fl subunits from the ATPase from

S. acidocaldarius and F-type ATPases (18), the ATPase

from H. saccharovorum showed an immunological rela-

tionship to the V-type ATPases. We conclude that halo-

bacterial ATPases can cross-react immunologically with

both F-type and V-type ATPases.

3 Abbreviations used: NBD-C1, 4-chloro-7-nitrobenzofurazan (or 7-

chloro-4-nitrobenzo-2-oxa-l,3,diazole); NEM, N-ethylmaleimide;

DCCD, N, hr-dicyclohexylcarbodiimide; SDS, sodium dodecyl sulfate.
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FIG. 1. Immunoreactivity of halobacterial ATPase and membranes

with an antiserum to subunit A from the vacuolar ATPase of Neurospora

crassa. Immunoblotting was performed with polyclonal rabbit antiserum

and alkaline phosphatase linked to protein A. Lane 1, vacuolar ATPase,

6 #g; lane 2, membranes (P2 fraction) of H. "saccharovorum, 80 #g; lane

3, purified ATPase of H. saccharovorum, 2.5 #g. Molecular mass stan-

dards are indicated on the left; the position of halobacterial subunit I

(87 kDa) is marked by the arrow.

Nitrate is a useful compound for distinguishing between

V-type and F-type ATPases, since the latter are unaf-
fected by nitrate whereas the former are inhibited by mil-
limolar concentrations of this anion {28}. Inhibition by

nitrate has also been found for the archaebacterial AT-
Pases from S. acidocaldarius and H. halobium (4, 17). The
ATPase from H. saccharovorum was inhibited by nitrate

at an I5o%of 5 mM, a concentration similar to that reported
for other archaebacterial ATPases.

V-type ATPases are inhibited by micromolar concen-
trations of NEM. Subunit A of the vacuolar ATPase from

N. crassa is labeled by NEM in a nucleotide protectable
manner (20). The ATPase from H. saccharovorum was

also inhibited by NEM. The inhibition by NEM was
characterized by its time dependence, the relatively high
concentration of NEM, and the protective action of nu-

cleotides. As shown in Fig. 2, hydrolytic activity was re-
duced to about 30% of that of the untreated enzyme fol-

lowing 3 h of incubation with 1 mM NEM. When the

enzyme was preincubated with 5 mM ATP prior to the
addition of NEM, the inhibition developed at a slower
rate and the remaining activity was significantly higher
{about 70% of that of the control enzyme). Similar results

were obtained, when ADP replaced ATP (not shown).
The results suggested that the sulfhydryl reagent NEM
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FIG. 2. Inhibition of the activity of the halobacterial ATPase by NEM.

Purified ATPase from H. saccharovorum (0.66 mg protein/ml) was in-

cubated without (O) or with 5 mM ATP (@) for 15 min. Subsequently,

incubation with 1 mM NEM was carried out for the times indicated.

Control experiments with 9% pentane without (A) and with 5 mM ATP

(3x) were performed simultaneously. Remaining ATPase activity was

assayed following dilution of 1:100 into assay buffer and is shown as

percentage of the pentane-containing control.

binds at or near the active site of the halobacterial enzyme
and were consistent with the presence of cysteinyl residues
in subunit I and subunit II (16).

The nucleotide analogue NBD-C1 inhibits the hydro-
lytic activity of F-type ATPases, when one molecule of
NBD-CI is bound to one j3 subunit (29). NBD-CI inhibits

also the vacuolar ATPases of fungi and plants; the inhib-
itor is incorporated predominantly into subunit A (20,
30-32). The ATPase from H. halobium is also inhibited

by NBD-C1, with partial protection by ATP (6). The

ATPase from H. saccharovorum is inhibited by NBD-CI
in a time-dependent manner by a reaction that is stopped,
but not reversed, by dithiothreitol (2). To demonstrate

where NBD-CI was bound, the halobacterial enzyme was
preincubated in the presence of 1.25 mM NBD-C1 at pH

7.15 for 3 h, which reduced the activity to about 12% of
that of the untreated enzyme. When NBD-CI incubation
was carried out in the presence of 12 mM ADP or 12 mM

ATP, the remaining activity was 65 and 49%, respectively,
of that of the untreated enzyme. Figure 3 shows SDS gels

of these three halobacterial ATPase samples. The two
major subunits I and II were both labeled by NBD-C1; the
bulk of label was in subunit II, as judged by its fluorescence

(B, lane 3). The presence of nucleotides prevented almost
completely the incorporation of NBD-CI into the enzyme,
leaving traces of fluorescence associated with the subunits

(B, lanes 1 and 2).

The ATPase from H. saccharovorum resembled V-type
ATPases in its sensitivity to NEM and nitrate. In addi-

tion, subunit I showed immunological cross-reactivity
with antiserum to subunit A of the N. crassa vacuolar

ATPase. However, the inhibition by NBD-C1 and the im-
munoreaction of subunit II indicated distinct differences.

NBD-C1 labels the larger subunit (A) of vacuolar ATPases
and this subunit has been proposed to contain the cata-
lytic site (20, 31). In the case of the ATPase from H.

saccharovorum, NBD-CI bound predominantly to the

smaller of the two major subunits (subunit II) of the en-

zyme. Interestingly, another ATPase inhibitor, DCCD,
also binds to subunit II of the H. saccharovorum ATPase

(14), with the concomitant loss of hydrolytic activity. The
conditions required to affect inhibition are similar to those

that result in binding of DCCD to the _3subunit of F-type
ATPases {33). These results suggested that in the ATPase
from H. saccharovorum subunit II rather than subunit I

may behave as the functional equivalent of the fl subunits

of F-type ATPases. The immunological cross-reaction
between subunit II and several j3 subunits of archaebac-
terial and F-type ATPases (18, 34) are consistent with
this possibility.

Amino acid sequence data suggest that proton-pumping
ATPases may have originated from a common ancestral

enzyme (10, 13, 35), a vacuolar type enzyme which pos-
sessed the ability to synthesize ATP, and that the ar-

chaebacterial ATPases evolved from this enzyme (35).
The extensive amount of amino acid identities between

the two large subunits of the Sulfolobus ATPase and V-
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FIG. 3. Incorporation of NBD-CI into the subunits of the halobacterial

ATPase. Purified ATPase from H. saccharovorum was incubated with

12 mM ATP (lane 1), 12 mM ADP (lane 2), or without nucleotides (lane

3) prior to treatment with NBD-C1. Following removal of unbound re-

agent, the enzyme subunits were separated on SDS-PAGE gels. Acryl-

amide concentration was 11%. A, gel stained with Coomassie blue; B,

gel photographed under ultraviolet light prior to staining. Subunits I

{upper band} and II (lower band} of the ATPase are shown. Residual

fluorescence in the subunits in B, lanes 1 and 2, was visible in the original

gel. Protein content per lane was 31, 24, and 34 #g, respectively. Re-

maining ATPase activity of NBD-Cl-treated samples was determined

prior to electrophoresis (see methods} and was 65, 49, and 12%, respec-

tively, of that of an untreated control, corresponding to enzyme samples

shown in lanes 1, 2, and 3, respectively.
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type ATPases is consistent with this proposal. However,

Denda et al. (36) found that the proteolipid subunit of the

Sulfolobus ATPase is more related to the proteolipid from

the F-type ATPases rather than V-type ATPases, which

suggests a chimeric nature of this archaebacterial ATPase.

The results we report in this communication as well as

earlier observations (14) imply that the ATPase from H.

saccharovorum possesses structural features characteristic

of F-type and V-type ATPases at the level of their major

subunits.
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