
_1_9 ¸L.

/ A/"' 0 _'*I

C;" " I /1:_

User Interface Technology Transfer to NASA's Virtual

Wind Tunnel System

Final Report

Grant #NCC 2-5213

April 1, 1997- March 31, 1998

Brown University Computer Graphics Group

Department of Computer Science

PO Box 1910, Brown University

Providence, RI 02912

Principal Investigator: Andries van Dam

The 3D Widget Library

1 Project Summary

Funded by NASA grants for four years, the Brown Computer Graphics Group has
developed novel 3D user interfaces for desktop and immersive scientific visualization

applications. This past grant period supported the design and development of a

software library, the 3D Widget Library, which supports the construction and run-time

management of 3D widgets. The 3D Widget Library is a mechanism for transferring

user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel

system at NASA Ames as well as the public domain.

2 Overview of the 3D Widget Library

The 3D Widget Library is a light-weight library built on top of OpenGL for

creating and interacting with 3D widgets. The core of the library is a set of building
blocks for constructing custom 3D widgets and functions that handle direct

manipulation of the widgets. In addition to the basic widget building blocks, the library

supports interactive shadows and gestural camera navigation controls (i.e., zooming,

virtual trackball rotation, and film-plane translation) using a single mouse button.

The library can be used in many situations. For example, in scientific visualization

applications, the 3D widgets can be linked to visualization techniques such as

streamlines, colorplanes, isosurfaces, etc. The 3D widgets provide mechanisms for

controlling parameters such as an object's 3D position and orientation, and non-spatial

parameters such as the number of streamlines shown. Mouse buttons, possibly in
combination with keyboard modifiers, and mouse motions drive "behaviors" on the 3D

widgets. In the example included with the library, the left mouse button invokes virtual

sphere rotation of objects, the middle button invokes film-plane translation of objects,

and the right button performs three fundamental camera operations (film-plane

translation, virtual sphere rotation, and zoom). The 3D Widget Library contains a file 1

that shows in a step-by-step manner how a rake widget 2 is created.

The enclosed programmer's manual provides further details on the components of
the library and working examples.

3 Current Status and Future Plans

We are currently working with researchers to integrate the 3D Widget Library into

the virtual wind-tunnel system at NASA Ames. Another group at NASA Ames (Tim

Sandstrom's) and groups at other institutions (the SCIRun group at the University of

Utah and the Pv3 group at MIT) are considering integrating the library with their
visualization systems.

1. See : widgetlib/rakewidget, design, example/rakewidget. C

2. A "rake" is a visualization tool used in scientific visualizations. It consists of a long, thin bar from which
streamlines are emitted. A rake widget is a 3D virtual object that performs the same function as its real-

world counterpart allowing a scientist to explore a 3D dataset. Controls for the rake's parameters (e.g.,

size, position, and number of streamlines emitted) are represented by geometric objects attached to the
rake widget which the user adjusts through direct manipulation.

Page 2

In the future, we plan to modify the library based on user feedback. In addition,

we will extend the functionality of the library, integrating aspects of our current

research on interaction in 3D immersive and semi-immersive environments, thus

extending the style of interaction techniques beyond conventional desktop interaction.

4 Publicity

The NSF Science and Technology Center for Computer Graphics and Scientific

Visualization 3 (the STC) ran a booth at the Visualization 97 conference in October 1997.

Handouts describing the 3D Widget Library were prepared (see enclosed copy) and

distributed at the conference. Several inquiries and downloads of the library resulted

from the conference. In addition, we have demonstrated the library and made its

availability known to many visitors of our graphics lab.

5 FTP Address for the 3D Widget Library

The latest version of the 3D Widget Library is available at:

ftP://ftp.cs.brown.edu/u/asf/widgetlib/widgetlib.tar.gz

or

ftp.cs.brown.edu

<< anonymous login >>

cd /u/asf/widgetlib

binary

get widgetlib.tar.gz

See attached programmer's manual for detailed information. The 3D Widget

Library contains a README file that explains how to run the demo program and

integrate the library with an existing system.

6 Brown Personnel

The Brown Graphics Group, directed by Professors Andries van Dam and John F.

3. An NSF funded five-site Science and Technology Center researching computer graphics topics such

including scientific visualization, user interfaces, virtual reality, rendering techniques, and graphics hard-

ware. Members include Brown University, the University of Utah, the California Institute of Technology,
Cornell University, and the University of North Carolina at Chapel Hill.

Page 3

The3DWidgetLibrary

Hughes, is a team of Ph.D., Masters, and undergraduate students and full-time staff.

Professor van Dam is also currently the Director of the NSF Science and Technology

Center for Computer Graphics and Scientific Visualization. He and John Hughes are co-

authors of the standard computer graphics textbook, Computer Graphics, Principles and
Practice, along with James Foley and Brown Ph.D. Steven Feiner. Van Dam is a co-

founder of ACM SIGGRAPH and co-founder and first chairman of Brown University's

Computer Science Department. The full-time staff of the Graphics Group includes the

Director of Research (Bob Zeleznik), a Research Scientist (Timothy Miller), a User

Interface Developer (Andrew Forsberg), an Educational Outreach Director (Anne

Morgan Spalter), and a Software Engineer/Researcher (Loring Holden). A number of

graduate and undergraduate students complement the group by assisting on various

research projects. The Media Coordinator (Mark Oribello) and three part-time students

support computers, video-teleconferencing, and the group's other AV equipment.

Andrew Forsberg was the principle researcher being funded by this grant.

7 Facilities and Equipment at Brown

The facilities at Brown include a variety of workstations from HP, DEC, Sun and

SGI. Our Virtual Reality Lab contains a Fakespace Labs BOOM, a Virtuality Visette Pro

Head-Mounted Display, a Virtual Technologies CyberGlove, and an Ascension

extended-range Bird tracker. We also use a StereoGraphics VR setup (LCD-shutter

glasses and two Logitech 3D mice). An Active Desk built by Input Technologies, Inc.

(ITI) was recently donated to our lab by Alias/Wavefront. We have two Phantom haptic

feedback devices made by Sensable Technologies. We also have a teleconference system
which uses a dedicated T1 line to connect us to the four other sites of the NSF STC

Center for Computer Graphics and Scientific Visualization. A full audio/video non-

linear editing system is used to record footage directly from workstation screens and to
edit videotapes.

We also maintain a World Wide Web site which contains general information
about our group and research projects:

http://www.cs.brown.edu/research/graphics/

8 Acknowledgments

During the grant period, the Brown Graphics Group was sponsored by the

following: NASA, the NSF Science and Technology Center for Computer Graphics and

Scientific Visualization, Advanced Network and Services, Autodesk, Microsoft, Sun,
SGI, and TACO.

Page 4

_<_i_ii__ii<!:i::_i:!:!:_i:_:_<ii_iiii_i_:<i_:,:i_:<:_<:<:ii_i_i:i:i:i:i:i:ii_i;<_:_i_i_!<_i_i:_i_i<i_i_i!_:<_i_<_ii<_ii:::<!:::iii_<_iiliii_ii!_i<i:iiiiiiii_iiiiiiiii<i<i!ii?!i!<i<_!k!iiii!_i:!k i_il?ii!!iii!ili_:i!i!:!:ii!i!!:i!i:il!!iiii!i:i!i!!!ii!!!!i!!ii!:iiii!!!ii:!ii!ii!ili!:!!iii:iiiiii!i!i!!iliiiiili_ifill!!ii!ii_iliiiiiii<!i!i!ili!iiiiii!iiiiii!iiiiiiiii!!!iiilliiiiiiiilliiiiiiii!iiiiiiiiiiiiiiiiilliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii]i]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

The 3D Widget Library

Version 1.2

June 30, 1998

Table of Contents

1 Overview

2 FTP Address for the 3D Widget Library

3 3D Widget Library Components

3.1 Widget Manager
3.2 XFobs

3.3 Widget3D

3.4 SimpleWidget
3.5 Behavior

3.6 Widget Component

3.7 Camera Interaction

3.8 Math Library
3.8.1 Classes

3.8.2 Functions

4 The "RakeWidget"-- An Example

3

3

3

4

4

5

5

5

6

9

10

10

16

17

The 3D Widget Library Programmer's Manual Page 2

1 Overview

The 3D Widget Library is a light-weight library for creating and interacting with

3D widgets. The core of the library is a set of building blocks for constructing custom

3D widgets and functions that handle direct manipulation of the widgets. In addition to

the basic widget building blocks, the library supports interactive shadows and gestural

camera navigation controls (i.e., zooming, virtual trackball rotation, and film-plane
translation) using a single mouse button.

The library can be used in many situations. For example, in scientific visualization

applications, the 3D widgets can be linked to visualization techniques such as

streamlines, colorplanes, isosurfaces, etc. The 3D widgets provide mechanisms for

controlling parameters such as an object's 3D position and orientation, and non-spatial

parameters such as the number of streamlines shown. Mouse buttons, possibly in

combination with keyboard modifiers, drive "behaviors" on the 3D widgets. In the

example included with the library, the left mouse button invokes a virtual sphere

rotation on objects, the middle button invokes film plane translation, and the right

button performs three fundamental camera operations (film-plane translation, virtual

sphere rotation, and zoom). The 3D Widget Library contains a file I that shows in a step-
by-step manner how a rake widget 2 is created.

The library is written in C++ and is built on top of Open GL.

2 FTP Address for the 3D Widget Library

The latest version of the 3D Widget Library is available at:

ftP://ftp.cs.brown.edu/u/asf/widgetlib/widgetlib.tar.gz

or, via anonymous FTP at:

ftp.cs.brown.edu

cd /u/asf/widgetlib

binary

get widgetlib.tar.gz

3 3D Widget Library Components

The 3D Widget Library consists of two main components: widget interaction and

i.See : widgetlib/rakewidget, design, example/rakewidget. C

2. A "rake" is a visualization tool used in scientific visualizations. It consists of a long, thin bar from which
streamlines are emitted. A rake widget is a 3D virtual object that performs the same function as its real-

world counterpart allowing a scientist to explore a 3D dataset. Controls for the rake's parameters (e.g.,

size, position, and number of streamlines emitted) are represented by geometric objects attached to the
rake widget which the user adjusts through direct manipulation.

The 3D Widget Library Programmer's Manual Page 3

....x:__,:_i:_:::::__:_<i:̧::z_i: i::_:i :<_::,:_:_:_!_::::<_,_:_i<_:_i_i_i::;_!:i_i_!_::::i:i::_!:_i_i_/_:_i;!!_!i_!_!:!ii_::_!_:z:_</::i,<_i:i!i_:!<i:;::,i̧i_:}:_!!:ii:< :!!:i?i17,!i! i<_i::ii_4̧!̧iiiii!i_i!i:!!iiii:'i!}iiiiii,lii,iii!i{iiil}!!i!!ii!?ii_!!!!!iii}!i!!_!}}i_!!i!iiii%!<:i:i3}i:i!ii!i:!i!iii!:i_iii:ii!iii!ii3<_!i}iiii_i!!il;iii!iii!/ill_ii_!i_:i_!______i_____ii_i_!iiii_iiii__i_ii____iiiiii_i__iiiii_i_iii]iiiiiiiiiii]iiiiiiiiiii]iiiiiiiiiiiiii_i_i_iI

management (e.g., drawing and picking) as well as camera interaction. The following

sections describe each in further detail. Examples of how to use the 3D Widget Library
can be found in Section 4 and in the library distribution (in the src/and

rakewidget, des ign. example / directories).

3.1 Widget Manager

CLASS:

METHODS:

WidgetManager

Purpose: To handle global operations on the widgets, such

as drawing all the widgets, and passing mouse events to

each widget for selecting and moving them.

static void add (SimpleWidget*w)

Adds (i.e., registers) a widget to the list of widgets the
WidgetManager knows about.

static void remove (SimpleWidget *w)

Removes (i.e., unregisters) a widget from the list of widgets
the WidgetManager knows about.

static void draw 0

Draw all the widgets registered with the WidgetManager.

static void find2d (double x, double y)

Select a widget or part of a widget for manipulation. The

programmer using the 3D Widget Library is responsible for

calling this method. This is normally called while the mouse

ismoving freelyaround. (See the filewidget iib /sre /

main. C for example usage.)

static void grab2d (double x, double y, int but, int mod=0)

Move the part of a widget that was previously selected in

the call to find2d, if any part was selected. The

programmer using the 3D Widget Library is responsible for
calling this method. (See the file widgetl ib/src/main. C

for example usage.)

3.2 XFobs

CLASS: XFobs

METHODS:

purpose: An observer of changes to an object's xform.

virtual void notify(wcomp *w, Cmat3 &t)

Subclasses of XFobs register themselves with an object that
maintains a list of XFobs's. no¢ify (..) is called when the

transformation matrix of a widget component (i.e., wcomD) is

modified. The paraemters passed in are a pointer to the

The 3D Widget Library Programmer's Manual Page 4

3.3

3.4

3.5

Widget3D

CLASS:

DERIVES FROM:

METHODS:

SimpleWidget

CLASS:

DERIVES FROM:

METHODS:

Behavior

CLASS:

TYPES:

widget component modified and the transformation matrix

by which is was modified.

Widget3D

XFobs

virtual void draw(int flag)

This method is called only by the WidgetManager class.

virtual double intersect(Cpt2 &, wcomp **, pt3 *)

This method is called only by the WidgetManager class.

SimpleWidget

Purpose: a base class for all widgets.

Widget3D

virtual int find2d(Cpt2 &, double *)

Called only by the WidgetManager class.

virtual void grab2d(Cpt2 &, int, int)

Called only by the WidgetHanager class.

virtual void highlight_picked_component(int b)

b is a boolean value. If non-zero, this widget's widget

components will be highlighted when the mouse cursor is on

top of them. If zero, no highlighting will occur.

virtual void notify(wcomp *w, Cmat3 &t)

notify is called when one of this widget's widget
components has been transformed. It allows the

programmer to update the transformations of the other

widget components. For an example of how to use this

method, see the RakeWidget example below.

Behavior

Holds the type of contraint placed on the motion of a

component of a widget. All constraints are enforced relative

to either the object's coordinate system (for the first 5), or to

the camera's orientation (for the remaining 3).

NO_TRANSFORM no motion allowed

The 3D Widget Library Programmer's Manual Page 5

TRANS_LINE motion along a line

TRANS_PLANE motion within a plane

AXIS_ROTATE rotation about an axis

VSPHERE_ROTATE rotation about a virtual sphere

TRANS_FILM_XY motion parallel to the viewing direction

TRANS_FILM_XZ motion in and out and side to side,
relative to the viewer

TRANS_FILM_Z motion in and out, relative to the viewer

METHODS: Behavior(behavior b, wcomp *r=0)

Constructs a behavior for widget component r, which needs

no additional information. The parameter b should be one

of: NOTRANSFORM, VSPHERE_ROTATE,

TRANS FILM_XY, TRANS FILM_XZ, and
TRANS_FILM_Z.

Behavior(behavior b, Cvec3 &v, wcomp *r=0)

Constructs a behavior for widget component r, which needs

to know only a vector. The parameter b should be one of:

TRANS_LINE and TRANS_PLANE.

Behavior(behavior b, Cpt3 &p, Cvec3 &v, wcomp *r=0)

Constructs a behavior for widget component r. The

parameter b should be: AXIS_ROTATE.

3.6 Widget Component

CLASS:

DATA:

wcomp

"wcomp" is short for Widget Component whose primary

function is to represent a simple geometric primitive.

Multiple wcomp's are grouped together (managed by a

SimpleWidget object) to create interesting widgets.

Behavior _mouse_mapping[4] [3]

An array of behaviors for each button and keyboard

modifier combination. The array is accessed through the

mouse_mapping (int, int) method (seebelow). E.g.,

wcomp *w;

Behavior b;// (should be initialized to some behavior)

w->mouse_mapping(2, wcomp: :MOD_SHIFT) = b;

will cause behavior b to be activated when the second

mouse button ispressed and the shiftbutton ispressed.

The 3D Widget Library Programmer's Manual Page 6

:_:__ :<:__<_z:_::_:,:::_:,::::__:::,,: :_:__:_:: _, :_::p _::, _-_:_::_:,_:<_< _<<<_ :::_!_i_iq::<i_i _i;i_:_!_i!::_:ii_:_i_!ii:i!_!iii_i::ii_!!!i::!i_!i_?ii:_!?ill<i!!<!<:!!!!!!!!ii:!_i!?:P!!!ii:iiii_i_!;!_!!!!i_ii_!i{!ill:i!!!!!_:ii!i_!!{i!iii!i_{iii{{_!i{!_i_i!i!i_iii_i_i!ii_i_i_iiiiiiiiii_iiiiiii_iiiii_iiiiii!i_iiiii_iiiiii_iiii!iiiiiiiiiii_iiiTi!_Tii

METHODS: wcomp(Widget3D *d, int t)

Constructor for wcomp, d is a pointer to a SimpleWidget

(which derives from Widget3D). t specifies the type of

geometric object this widget component is and is one of the

following values: CUBE, CONE, CYL, SPHERE.

void clear mouse_mappings0

Sets all mouse mappings to NO_TRANSFORM (i.e., no

action will occur if the user picks this widget component).

CBehavior &mouse_mapping(int but, int

mod=MOD NONE) const

Accessor to the list of mouse mappings held by a widget
component (a "constant', method). Returns a behavior for a

given mouse button and keyboard modifier. E.g.,
mouse_mapping (2, MOD_NONE) will return the Behavior

object used when the 2nd mouse button is pressed with no

modifier's depressed.

Behavior &mouse_mapping(int but, int

mod=MOD_NONE)

Accessor to the list of mouse mappings held by a widget

component (not a constant method). Used for assignment of

new Behaviors to (button, modifier) conditions. See example
above where the _mouse_mapping data member is
described.

Cmat3 &xform0 const

Accessor to this object's current transformation matrix.

virtual void set_xform(Cmat3 &x, int b = -1, int m = -1)

Set's this objects transformation matrix to x.

(The b and m parameters are used internally to propagate
mouse button and modifier information. A call to

set_xform should only pass the Croat3 parameter.)

virtual void mult_by (Croat3 &x, int b = -1, int m = -1)

Multiplys this object's transformation matrix by x.

(The b and m parameters are used internally to propagate
mouse button and modifier information. A call to

set_xforra should only pass the Craat3 parameter.)

void _change_xform(Cmat3 &x)

Set's this objects transformation matrix to x.

Although this method has similar functionality to

The 3D Widget Library Programmer's Manual Page 7

set_xform (..),the set_xform (..) method isused in

stead of _change_x form (..). There are situationswhere

thismethod isused instead of set_xform(..),however, to

force the transform to change. See the rakewidget example

(Section 4) for further information and a situationwhere

_change xform(..) isused.

This method willnot be needed in future releases.

void set_color(Cpt3 &c)

Set the color of this object to c.

void unset_colorO

"Unset" the color for this object. I.e., it will be drawn with

whatever the last GL color was set to.

void set_transp(double t)

Set the transparency of this object to t. The range of values

for t is [0, 1]. A value of 0 is completely transparent and a

value of i is no transparency.

void unset_transp()

"Unset" the transparency level for this object. I.e., it will be

drawn with whatever the last GL transparency level was set
to.

void highlight(int b)

b is a boolean value. If true, a bounding box is drawn

around this widget component. If false, no bounding box is
drawn.

void set_res (double r)

(not implemented)

void set_draw_style(int ds)

(not implemented)

void draw()

draws this object (handled by WidgetManager class)

RAYhit &intersect(RAYhit &r)

intersects this object (handled by WidgetManager class)

CGEOM *geom0 const ;

Only used internally.

The 3D Widget Library Programmer's Manual Page 8

3.7 Camera Interaction

CLASS: CameraInteractor

Purpose: To provide camera interaction functionality. Our

code allows camera manipulation to be controlled using

only one mouse button (saving screen real-estate and mouse

buttons for other uses). Three types of camera motion are

supported: film-plan translation, camera zoom, and trackball
rotation.

Pre-conditions:

METHODS:

1) GL Modelview and GL Projection matrices hold only the

camera transformation and projection matrix that were used

for drawing the currently displayed framebuffer.

2) Z-buffering is enabled.

static void mouse_down(double x, double y)

Should be called when the mouse button is first pressed and

(x, y) should specify the location of the mouse inside the

graphics window. The x and y parameter units are

normalized-display coordinates (i.e., they range between -1

and 1 and coordinate pairs map to the corners of the display
window).

This method is used by the library to initialize camera
interaction.

static void mouse_move(double x, double y, double *m)

Should be called each time the mouse is moved after the

mousedown(x, y) is called (and before the camera mouse

button is released). A row-major matrix describing how the
GL MODELVIEW_MATRIX should be modified is

calculated and returned through the third parameter m. (see

sample code below for how to use the matrix m).

Again, the x and y parameter units are normalized-display
coordinates.

static void mouse_up0

Must be called when the mouse is released. It is used by the

library to complete camera interaction.

The CameraInteractor works by requiring that the programmer feed in mouse

information whenever the mouse button assigned to camera interaction is pressed, held

and dragged, or released. Each time the mouse is dragged, a new matrix is determined

by which the GL_MODELVTEW FLATRIX should be multiplied.

The following pseudocode demonstrates the use of the CameraInterac tor
class:

The 3D Widget Library Programmer's Manual Page 9

// assume the variables 'x' and 'y' are in

// normalized-display coordinates

if (event == ButtonPress) {

CameraInteractor::mouse down(x, y);

} else if (event == MouseDrag) {

double cam_delta[16];

CameraInteractor::mouse_move(x, y, cam_delta);

glMatrixMode(GL_MODELVIEW);

glMultMatrixd((GLdouble *)cam_delta);

} else if (event == ButtonRelease) {

CameraInteractor::mouse_up();
}

3.8 Math Library

3.8.1 Classes

CLASS:

METHODS:

pt3

Represents a 3D point.

pt30

constucts a point at the origin.

pt3(double x, double y, double z)

constructs a point at the given x, y, z coordinates.

pt3(Cpt3 &p)

copy constructor.

pt3 &operator=(Cpt3 &p)

copy operator.

double operator[](int i)

accessor for elements of the point.

double &operator[](int i)

accessor for elements of the point.

int operator==(Cpt3 &pl,Cpt3 &p2)

test to see if two points are equal.

int operator!=(Cpt3 &pl, Cpt3 &p2)

test to see if two points are not equal.

pt3 operator+(Cpt3 &p, Cvec3 &v)

returns a point containing the sum of p and v.

The 3D Widget Library Programmer's Manual Page 10

pt3 operator+(Cvec3 &v, Cpt3 &p)

returns a point containing the sum of p and v.

pt3 operator+=(pt3 &a, Cvec3 &b)

adds b to a and returns a.

pt3 operator-(Cpt3 &p, Cvec3 &v)

returns a point containing the difference between p and v.

vec3 operator-(Cpt3 &a, Cpt3 &b)

returns a vector from b to a.

pt3 operator*(Cpt3 &p, double s)

returns the value of the point p scaled by s.

pt3 operator*(double s, Cpt3 &p)

returns the value of the point p scaled by s.

pt3 operator/(Cpt3 &p, double s)

returns the value of the point p scaled by 1/s.

pt3 operator%(Cpt3 &a, Cpt3 &b)

returns a point containing the sum of a and b.

ostream &operator<<(ostream &s, Cpt3 &d)

prints out the x, y, z values of the point.

CLASS:

METHODS:

vec3

Represents a 3D vector.

vec30

Constructs the zero vector

vec3(double x, double y, double z)

Creates a vector with components x, y, and z.

vec3(Cvec3 &p)

Copy constructor.

vec3 &operator=(Cvec3 &v)

Copy operator.

double operator[](int i) const

"Constant" accessor for x, y, and z components of the vector.

double &operator[](int i)

The 3D Widget Library Programmer's Manual Page 11

Accessor for x, y, and z components of the vector.

double length() const

Returns the length of this vector.

int isNull0 const

Returns non-zero value if the length of this vector is greater

than 10 -6 (i.e., numerically close to the zero vector).

vec3 normalize 0 const

Returns a copy of this vector that has been normalized.

NOTE: this vector's components are not changed.

vec3 perpend0

Returns a vector perpendicular to this vector.

double *toDoublev0

Returns a pointer to the 3-dimensional array of doubles that

holds the components of this vector.

CLASS:

METHODS:

mat3

Represents a 4x4 column major matrix.

mat30

Constructs a 4x4 zero-matrix.

mat3(Cmat3 &m)

Copy constructor

mat3(double mOO, double m01, ..., double m33)

Constructs a 4x4 matrix from 16 doubles.

mat3(Cpt3 &p, Cvec3 &vl, Cvec3 &v2)

Constructs a 4x4 column-major transformation matrix with

the first column equal to vl, the second column equal to v2,

and the fourth column equal to p. The third column is set

equal to the cross product of vl and v2.

mat3(Cpt3 &p, Cvec3 &vl, Cvec3 &v2, Cvec3 &v3)

Constructs a 4x4 column-major transformation matrix with

the first column equal to vl, the second column equal to v2,

the third column equal to v3, and the fourth column equal to

p.

mat3(Cpt3 &p)

Constructs a 4x4 transformation with the fourth column

The 3D Widget Library Programmer's Manual Page 12

equal to p.

mat3 &operator=(Cmat3 &m)

Copy operator.

double operator0(int i, int j) const

"Constant" matrix data accessor method, i and j are integers
in the range [0,3].

double &operator0(int i, int j)

Matrix data accessor method, i and j are integers in the
range [0,3].

mat3 transpose() const

returns a new matrix that is the transpose of this matrix. This
matrix is unaltered.

mat3 invert(int rigid) const

returns the inverse of this matrix. By default, rigid is false

and a general matrix inversion algorithm is used. If the

matrix is known to be rigid, setting rigid to true will use a

faster matrix inversion algorithm. This matrix is unaltered.

pt3 position() const

returns a pt3 equal to the translational component (i.e.,
fourth column) of this matrix.

void setRMMatrix(const double *d)

sets this matrix equal to the transpose of the 4x4 row-major

matrix d. d must be an array of 16 doubles.

void getRMMatrix(double *d) const

sets the row-major matrix pointed to by d equal to this

column-major matrix.

void getCoordSystem(pt3 &pos, vec3 &x, vec3 &y, vec3
&z) const

Sets pos, x, y, and z to the position, x-axis, y-axis, and z-axis

components, respectively, of this matrix, pos is set equal to

the fourth column of this matrix, x is set equal to the first

column of this matrix.y is set equal to the second column of

this matrix, z is set equal to the third column of this matrix.

mat3 norrnalize_basis0 const

Normalizes the upper 3x3 sub-matrix of this matrix.

static mat3 alignAndScale(Cpt3& origin, Cvec3& xx,

Cvec3& yy, Cvec3& zz)

The 3D Widget Library Programmer's Manual Page 13

:_z__:,_,_ %i_i_._:!_?i___!_<i_i_i+_!?_z_:i_!%i!i!i_!iiiii_:_i_+_i_iiiii!+_+:i_iiii_i_iiii+iiiill_i_ii_i!ii!_!ii!i_i_!_!ii!ii_i_i_i_!??i__:!z___ii!i_#?i_::!!_ill!i_!!_:_:'__iii:!i_?iiii!:<!i:i!iii_iii!iili!i_i!_iliC!_iiii!i!>__:_i:iii!!_!_!i!:ii!!_!i_iii!!iiii!!_!ii:/!ililiiiiiiiiiiiiiiiil!i_ii!iiiiiili!ii!iliiiiiliiiiii!i!!!_iiiliiiiiii!iililliiiiliiliiiliiiliiiliiiiliiiiiiiiiiiiiliii

OPERATORS:

returns a matrix with first through fourth column vectors

equal, respectively, to origin, xx, yy, and zz. This matrix is
unaltered.

static mat3 align(Cpt3 &pl, Cvec3 &v11, Cvec3 &v21,

Cpt3 &p2, Cvec3 &v12, Cvec3 &v22)

returns a matrix that maps pl to p2, vll to v12, and v21 to
v22. This matrix is unaltered.

static mat3 align(Cpt3 &pl, Cvec3 &vl, Cpt3 &p2, Cvec3
&v2)

returns a matrix that maps pl to p2 and vl to v2. This matrix
is unaltered.

int operator==(Cmat3 &m, Croat3 &n)

returns a non-zero value if m is equal to n; otherwise, zero is
returned.

int operator!=(Cmat3 &m, Cmat3 &n)

returns a non-zero value if m is not equal to n; otherwise,
zero is returned.

pt3 operator*(Croat3 &m, Cpt3 &p)

returns the result of multiplying the matrix m on the right by
p.

vec3 operator*(Cmat3 &m, Cvec3 &v)

returns the result of multiplying the matrix m by the vector
V.

mat3 operator*(Croat3 &a, Croat3 &b)

returns the result of multiplying the matrix a by b.

mat3 operator*(double s, Croat3 &m)

returns the result of multiplying the matrix m by s.

mat3 operator*(Cmat3 &m, double s)

returns the result of multiplying the matrix m by s.

mat3 operator+(Croat3 &a, Croat3 &b)

returns the result of adding the matrix b to a.

mat3 operator-(Croat3 &a, Cmat3 &b)

returns the result of subtracting the matrix b to a.

mat3 operator-(Croat3 &m)

returns the result of negating the matrix m.

The 3D Widget Library Programmer's Manual Page 14
xxx

FUNCTIONS:

CLASS:

METHODS:

mat3 scale_mat(Cvec3 &s)

returns a matrix that scales points and vectors by the
components of s.

mat3 scale_mat(Cpt3 &p, Cvec3 &s)

returns a matrix that scales points and vectors by the

components of s. The center of scale is at the point p.

mat3 trans mat(Cvec3 &v)

returns a matrix that translates points by the vector v.

mat3 rot_mat (Cvec3 &axis, double rad)

returns a matrix that rotates points and vectors about the

axis axis by rad radians.

mat3 shear_mat(Cvec3 &nv, Cvec3 &sv)

returns a matrix that shears points and vectors along the
vector nv by the components of sv.

mat3 stretch_mat(Cpt3 &p, Cvec3 &v)

returns a matrix that "stretches" points and vectors in the

direction v with a center of "stretch" equal to p.

mat3 rotation (Cpt3 &p, Cvec3 &a, double angle)

returns a matrix that rotates points and vectors around the

axis a by angle radians. The center of rotation is p.

m_at3 trans_comp(Cmat3 &m)

returns a matrix that contains only the translational

component of the composite transformation matrix m.

mat3 scale_comp(Cmat3 &m)

returns a matrix that contains only the scaling component of
the composite transformation matrix m.

mat3 rot_comp(Cmat3 &m)

returns a matrix that contains only the rotational component
of the composite transformation matrix m.

ostream &operator<<(ostream &s, Croat3 &m)

"prints" the matrix m to the stream s.

pt2

Represents a 2D point.

Identical to those in the pt3 class above, except for a two-
dimensional point.

The 3D Widget Library Programmer's Manual Page 15

CLASS:

METHODS:

3.8.2 Functions

vec2

Represents a 2D vector.

Identical to those in the vec3 class above, except for a two-
dimensional vector.

pt3 plane_intersect(Cpt3 &p, Cvec3 &n, Cpt3 &a)

projects the point a onto the plane defined by the point and
vector p and n.

return value: the projected point.

pt3 line_intersect(Cpt3 &p, Cvec3 &v, Cpt3 &a)

projects the point a onto the 3D line defined by the point and
vector p and v.

return value: the projected point.

pt2 line_intersect(Cpt2 &p,Cvec2 &v, Cpt2 &a)

projects the point a onto the 2D line defined by the point and
vector p and v.

return value: the projected point.

double dist_pt_to_plane(Cpt3 &p, Cvec3 &n, Cpt3 &a)

returns the distance between a point a and the plane defined

by the point and vector p and v.

double dist_pt_to_line(Cpt3 &p, Cvec3 &v, Cpt3 &a)

returns the distance between a point a and the 3D line

defined by the point and vector p and v.

double dist_pt_to_line(Cpt2 &p, Cvec2 &v, Cpt2 &a)

returns the distance between the point a and the2D line

defined by the point and vector p and v.

double axis_ang(Cpt3 &pl, Cpt3 &p2, Cpt3 &axispt, Cvec3
&axis)

returns the angle (in radians) between the vector from axispt

to pl and the vector from axispt to v2. Vector axis

determines whether the return value is positive or negative.

pt3 line_intersect (Cpt3 &linelp, Cvec3 &linelvec, Cpt3
&line2p, Cvec3 &line2vec)

returns the point on one 3D line which lies closest to a

second 3D line. The first line is defined by linelp and

The 3D Widget Library Programmer's Manual Page 16

linelvec, and the second by line2p and line2vec.

pt3 plane_intersect(Cpt3 &linep, Cvec3 &linev, Cpt3
&planep, Cvec3 &planev)

returns the point of intersection between a line and a plane.

The line is defined by the point and vector linep and linev,

and the plane is defined by the point and vector planep and
planer.

NOTE: Does not currently check if there is an intersection--

there may not be one. If there is no intersection, the return
value is invalid.

pt2 intersect (Cpt2 &a, Cvec2 &b, Cpt2 &c, Cvec2 &d, int
&i)

returns the intersection point between two 2D lines. The

first line is defined by the point and vector a and b, and the

second by c and d. It returns the value 0 in i if there is no
intersection.

double angle_between(Cvec3 &vl, Cvec3 v2)

returns the angle between the vectors vl and v2 in radians.

4 The "RakeWidget"-- An Example

The following example code can be found in the 3D Widget Library distribution in
the file :

widget i ib/rakewidget, des ign. exampl e/rakewidge t. C

This code is an eight step example for building a sample 3D widget. For each step,
new or altered code is displayed in bold-faced, italicized text.

Example 3D Widget: a Rake Widget

DESCRIPTION:

A rake is a tool used in scientific visualization. It typically consists of a

long, thin bar from which streamlines are emitted. The bar can be moved in 3D

thereby allowing a scientist to explore a 3D dataset.

The Rake Widget example presented here has three components: a frame (the long

thin bar), a scaler component, and a slider component. The frame is a thin,

white cylinder that can be translated and rotated within a 3D volume. The

scaler component is a yellow ball at the end of the frame that changes the

length of the frame when it is translated. The slider is a red disc that

slides between the middle and one end of the frame component and can be used,

for example, to set the distance between streamlines along the frame.

The remainder of this file demonstrates how a Rake Widget can be constructed

The 3D Widget Library Programmer's Manual Page 17

using the Widget Library. At each stage a piece of geometry or functionality

is added until the described rake widget is realized.

IIIi

Cylinder coordinate system

A

Iz

(flat top)

-> x & y

//// //]/// //

Use these include files:

#include <widgetlib/mlib. H>

#include <widgetlib/simplewidget.H>

//

// i. Create a subclass of SimpleWidget and create three widget components

// (2 cylinders and 1 sphere). Their colors are white, red, and yellow,

// respectively. Finally, they are added to the '_widget_comps' list

// which is used by the draw() and intersect() methods.

class ExampleRakeWidget : public SimpleWidget

{

protected:

wcomp *frame;

wcomp *-slider;

wcomp *_scaler;

public:

ExampleRakeWidget(double length)

{

_frame = new wcomp(this, wcomp: -CYL) ;

slider = new wcomp(this, wcomp: #CYL);

scaler = new wcomp(this, wcomp: :SPHERE);

frame ->set_color (pt3 (1, I, 1)) ;

_slider->set color(pt3(l,O, 0)) ;

scaler->set color(pt3 (l, l, O)) ;

_widgetcomps += _frame;

The 3D Widget Library Programmer's Manual Page 18

I

_widget_comps += slider;

_widget_comps += scaler;

/// /////////////////////////

/ 2. The slider and scaler mouse mappings are cleared. Both widget's

/ mouse mappings are set to translate along the z-axis in the '_frame's

// reference frame when mouse button #2 is pressed.

class ExampleRakeWidget : public SimpleWidget

{

protected:

wcomp * frame;

wcomp *_slider;

wcomp *_scaler;

public:

ExampleRakeWidget(double 1)

{

_frame = new wcomp(this, wcomp::CYL);

_slider = new wcomp(this, wcomp::CYL);

_scaler : new wcomp(this, wcomp::SPHERE);

_frame ->set_color(pt3(l,l,l));

_slider->set_color(pt3(l,0,0));

_scaler->set color(pt3(l,l,0));

slider->clear mousemappings () ;

_slider->mouse_mapping(2) = Behavior(Behavior: :TRANS LINE,

Zaxi s.

_frame) ;

_scaler->clearmouse mappings();

_scaler->mousemapping(2) = Behavior(Behavior::TRANSLINE,

Zaxis,

_frame);

_widget comps += _frame;

_widget_comps += _slider;

_widget_comps +: _scaler;

};

/!1/11/1111111111111111/11111111111//111//11/11//i/i/11//i/I/i/1111111

// 3. The initial transforms for the _frame, _slider, and _scaler widget

// are set. In addition, the 'notify(..)' method has been added (with

// an empty body for now), and will next be used to respond to movements

// of widget components.

{

protected:

wcomp *_frame;

The 3D Widget Library Programmer's Manual Page 19

wcomp *_slider;

wcomp *_scaler;

public:

ExampleRakeWidget(double 1)

{

frame = new wcomp(this, wcomp::CYL);

_slider = new wcomp(this, wcomp::CYL);

_scaler = new wcomp(this, wcomp::SPHERE);

_frame ->set_color(pt3(l,l,l));

_slider->set_color(pt3(l,0,0));

_scaler->set_color(pt3(l,l,0));

_frame ->set_xform (scalemat (vec3 (. 2, .2, 5))) ;

_slider->set_xform (scalemat (vec3 (I, i, . 2))) ;

_scaler->set_xform(trans_mat(vec3(O.0, 0.0, I)) *

scale mat(vec3(1.0, 1.0, 1.0)));

_slider->clear_mouse_mappings();

_slider->mouse_mapping(2) : Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

_scaler->clear_mouse_mappings();

_scaler->mouse_mapping(2) : Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

_widget_comps +: _frame;

_widget_comps +: _slider;

_widget_comps +: _scaler;

};

void notify(wcomp *obj, const mat3 &m)

{

)

//

// 4. The body of the 'notify(..)' method now checks if the _frame

// widget component has been moved. If it has, then both the _slider and

// _scaler are moved by the same transform.

class ExampleRakeWidget : public SimpleWidget

{

protected:

wcomp *_frame;

wcomp *_slider;

wcomp *_scaler;

public:

ExampleRakeWidget(double 1)

{

The 3D Widget Library Programmer's Manual Page 20

_frame = new wcomp(this, wcomp::CYL);

_slider = new wcomp(this, wcomp::CYL);

_scaler : new wcomp(this, wcomp::SPHERE);

_frame ->set_color(pt3(l,l,l));

_slider->set_color(pt3(l,0,0));

_scaler->set_color(pt3(l,l,0));

_frame ->set_xform(scale_mat(vec3(0.2, 0.2, i))) ;

_slider->set_xform(scale_mat(vec3 (i.0, 1.0, 0.2))) ;

_scaler->set_xform(trans_mat(vec3 (0.0, 0.0, i)) *

scale_mat(vec3(l.0, 1.0, 1.0))) ;

_slider->clear_mouse_mappings();

_slider->mouse_mapping(2) = Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

_scaler->clear_mouse_mappings();

_scaler->mouse_mapping(2) = Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

_widget_comps += _frame;

_widget_comps += _slider;

_widget_comps +: _scaler;

};

void notify(wcomp *obj, const mat3 &m)

{

if (obj == _frame) {

_slider->mult_by(m);

_scaler->mult_by(m);

)

///

// 5. More code has been added to the 'notify' method. If the _slider

// has been moved, then it's position is constrained such that it

// remains between the end and middle of the _frame widget component.

//

// This constraint is accomplished with the 'constrain to seg' function

// by specifying that the _slider widget is to be constrained to the

// positions for u between 0 and 1 given

// 'position = _frame->xform() * (Origin + u * Zaxis)'

class ExampleRakeWidget : public SimpleWidget

{

protected:

wcomp *_frame;

wcomp *_slider;

wcomp *_scaler;

The 3D Widget Library Programmer's Manual Page 21

public:

ExampleRakeWidget(double 1)

{

_frame = new wcomp(this, wcomp::CYL);

_slider = new wcomp(this, wcomp::CYL);

_scaler = new wcomp(this, wcomp::SPHERE);

frame ->set_color(pt3(l,l,l));

_slider->set_color(pt3(l,0,0));

_scaler->set_color(pt3(l,l,0));

frame ->set_xform(scale_mat(vec3(0.2, 0.2, i)));

_slider->set_xform(scale_mat(vec3(l.0, 1.0, 0.2)));

_scaler->set_xform(trans_mat(vec3(0.0, 0.0, i)) *

scale_mat(vec3(l.0, 1.0, 1.0)));

_slider->clear_mouse_mappings();

_slider->mouse_mapping(2) : Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

_scaler->clear_mouse_mappings() ;

_scaler->mouse_mapping(2) : Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

_widget_comps += _frame;

_widget_comps += _slider;

_widget_comps +: _scaler;

};

void notify(wcomp *obj,const mat3 &m)

{

if (obj =: _frame) {

_slider->mult_by(m);

_scaler->mult_by(m);

}

else if (obj == _slider) {

constrain_to_seg(_slider,

Origin.

Zaxi s.

0, l,_frame->xform ()) ;

}

//

// 6. Now if slider has been moved, first we constrain the slider to

// lie between 0.i and i000.0 along the Zaxis of frame's coordinate

// system. In addition, the _frame's coordinate system is scaled

// such that it's new length passes through the center of the _scaler

// again.

class ExampleRakeWidget : public SimpleWidget

The 3D Widget Library Programmer's Manual Page 22

{

protected:

wcomp * frame;

wcomp *_slider;

wcomp *_scaler;

public:

ExampleRakeWidget(double i)

{

_frame = new wcomp(this, wcomp::CYL);

slider = new wcomp(this, wcomp::CYL);

_scaler = new wcomp(this, wcomp::SPHERE);

_frame ->set_color (pt3 (l, l, l)) ;

_slider->set_color(pt3 (i,0,0)) ;

_scaler->set_color (pt3 (i, i, 0)) ;

frame ->set_xform(scale_mat(vec3(0.2, 0.2, i)));

_slider->set_xform(scale_mat(vec3(l.0, 1.0, 0.2)));

_scaler->set_xform(trans_mat(vec3(0.0, 0.0, i)) *

scale_mat(vec3(l.0, 1.0, 1.0)));

_slider->clear_mouse_mappings();

_slider->mouse_mapping(2) : Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

_scaler->clear_mouse_mappings();

_scaler->mouse_mapping(2) : Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

_widget_comps += _frame;

_widget_comps += _slider;

_widget_comps +: _scaler;

void notify(wcomp *obj, const mat3 &m)

{

if (obj :: _frame) {

_slider->mult_by(m);

_scaler->mult_by(m);

}

else if (obj == slider) {

constrain_to_seg(_slider,

Origin,

Zaxis,

0,1,_frame->xform());

}

else if (obj == _scaler) {

constrain_to_seg(_scaler,

Origin,

Zaxi s,

0.1,

The 3D Widget Library Programmer's Manual Page 23

........__ _....._ • < <_< < _> _<_'_<_'<_' _<_<_ <_<_<_<_<<<'< _ i_ _i_i<<!_!_!_!_<_<_!_!i_!_ii_i_iii_i_iii!_!i!_!_i_iiiii_i_!ii_i_!_ii_iiiii_i_iii_iii_iii!_ii_!i_i_ii_iii!iii_ii_ii_iiiiiii_iii_i_ii_iiiiiiiiiiiiiii_i_i_i_i__

1000.0,

_frame->xform ()) ;

};

}

_frame->set_xform (trans_comp (_frame->xform ()) *

rot_comp (_frame->xform()) *

scale mat (vec3(.2, .2, (_scaler->xform().position()

- _frame->xform () .posi tion ()). length ()))) ;

/////;///////////////////////////////////////'/////////////////////////

/ 7. Lastly, because the scaling of the _frame propagates to the _slider,

/ it is necessary to reset the scaler component of the _slider. A side

/ affect of changing the _frame's scale is that the _slider's scale

/ is also changed. To remedy this, we can simply reset the _slider's

/ scale to it's original value. However, because the _slider's

/ 'mult_by(..) ' command has already been called, it is necessary to

// call the _change_xform(..) method in order to counter the scaling

// effects. (Try it out to see why this is necessary.)

class ExampleRakeWidget : public SimpleWidget

{

protected:

wcomp *_frame;

wcomp * slider;

wcomp *_scaler;

public:

ExampleRakeWidget(double 1)

{

_frame : new wcomp(this, wcomp::CYL);

_slider : new wcomp(this, wcomp::CYL);

_scaler : new wcomp(this, wcomp::SPHERE);

_frame ->set_color(pt3(l,l,l));

_slider->set_color(pt3(l,0,0));

_scaler->set_color(pt3(l,l,0));

_frame ->set_xform(scale_mat(vec3(0.2, 0.2, i)));

_slider->set_xform(scale_mat(vec3(l.0, 1.0, 0.2)));

_scaler->set_xform(trans_mat(vec3(0.0, 0.0, I)) *

scale_mat(vec3(l.0, 1.0, 1.0)));

_slider->clear_mouse_mappings();

_slider->mouse_mapping(2) = Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

_scaler->clear_mouse_mappings();

_scaler->mouse_mapping(2) = Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

The 3D Widget Library Programmer's Manual Page 24

_widget_comps +: _frame;

_widget_comps +: _slider;

_widget_comps +: _scaler;

void notify(wcomp *obj,const mat3 &m)

{

if (obj =: _frame) {

_slider->mult_by(m);

_scaler->mult_by(m);

}

else if (obj =: _slider) {

constrain_to_seg(_slider,

Origin,

Zaxis,

0,1,_frame->xform());

}

else if (obj :: _scaler) {

constrain_to_seg(_scaler,

Origin,

Zaxis,

1.0,

100.0,

_frame->xform().normalize_basis());

];

_frame ->set_xform(trans_comp(_frame->xform()) *

rot_comp (_frame->xform()) *

scale mat (vec3(.2, .2, (_scaler->xform).position()

- _frame->xform().position()) .length(

_slider->_change_xform (trans_comp (_slider->xform ()) *

rot_comp (_slider->xform()) *

scale_mat (vec3 (1, 1, .2)));

///////////////// ///////////////////////////////////;////////////////

//

// 8. One more thing-- adding shadows for the three widget components.
//

class BrownRakeWidget : public SimpleWidget

{

protected:

wcomp *_frame;

wcomp *_slider;

wcomp *_scaler;

public:

BrownRakeWidget(double 1)

{

_frame = new wcomp(this, wcomp::CYL);

_slider : new wcomp(this, wcomp::CYL);

)));

The 3D Widget Library Programmer's Manual Page 25

_scaler : new wcomp(this, wcomp::SPHERE);

_frame ->set_color(pt3(l,l,l));

_slider->set_color(pt3(l,0,0));

_scaler->set_color(pt3(l,l,0));

frame ->set_xform(scale mat(vec3

_slider->set_xform(scale mat(vec3

_scaler->set_xform(trans_mat(vec3

scale met(vec3(l.0

0.2, 0.2, I)));

1.0, 1.0, 0.2)));

0.0, 0.0, 1)) *

1.0, 1.0)));

_slider->clear_mouse mappings();

_slider->mouse_mapping(2) = Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

_scaler->clear_mouse_mappings();

_scaler->mouse_mapping(2) = Behavior(Behavior::TRANS_LINE,

Zaxis,

_frame);

_widget_comps += _frame;

_widget_comps += _slider;

_widget_comps +: _scaler;

pt3 p(0,0.01,0);

vec3 v(Yaxis);

widget_comps += create shadowwidget(_frame, p, v);

_widget_comps += create_shadowwidget(_slider, p, v);

_widget comps += create_shadow widget(_scaler, p, v);

void notify(wcomp *obj,const mat3 &m)

{

if (obj :: _frame) {

_slider->mult_by (m) ;

_scaler->mult by(m) ;

}

else if (obj :: _slider) {

cons train_to_s eg (_slider,

Origin,

Zaxis,

0, l,_frame->xform()) ;

}

else if (obj =: _scaler) {

cons train_to_s eg (_scaler,

Origin,

Zaxis,

1.0,

i00.0,

_frame->xform () .normalize_basis));

_frame ->set_xform(trans_comp(frame->xform()) *

rot_comp (_frame->xform()) *

The 3D Widget Library Programmer's Manual Page 26

};

}

}

scale_mat (vec3(.2, .2, (_scaler->xform() .position()

- _frame->xform() .position()) .length()))) ;

-slider->_change_xform(trans comp(_slider->xform())

rot_comp (_slider->xform()) *

scale_mat (vec3(l,l,.2)));

///////////////////////////.///

The 3D Widget Library Programmer's Manual Page 27

....._:::_::__:_::_,:_:__:_:_:_< __:_: _:_,_?_:_<:'__ :_:_:ii_:_:;__::_:>_:_:?:_:::_:::_:i_̧ !<:i!ii̧ __!_: ii_i:+i_: ¸¸::i:;_ii:i_ili_:i:_k ii_i:!_< ! _i¸!!7!¸¸:i__i_¸i!;!_iii!_ii!iiii_ili!;_i_!_ii!!:!i)i,_!:iili:_iiiiili_!!!i!!__!_ii_!i!_i!_iii___ii!_ii__!iiii___i!i_iii!____i_i{ii!i!_i_ii__i_iiiii_iii_iiiiiiiiiiiiiiiiiiiiiiiiiiiii_i_iii_iiiiiii_iiiii

Brown University Computer Graphics Research Group a -.a
A site of the NSF Graphics and Visuatization Center

I ii

Funded by NASA grants for the past four years, the

Brown site of the NSF Graphics and Visualization

Center has developed 3D user interfaces for desktop

and immersive scientific visualization applications.

Our most recent user-interface project with NASA is

the development of a stand-alone library for

creating and interacting with 3D widgets [2][4].

The core of the library is a set of building blocks for

constructing custom 3D widgets and functions that

handle direct manipulation of the widgets. The

library will be integrated with NASA's Virtual

Windtunnel system [1] but is also available for

public use.
a

,:.:.'..:._,:-..&.':?_>.

_!:i:!:i:i:!:

,:.::_:i::i:i:::i.::

4:: ::: ;::::;:::.::::: :."•

J:i_iiiiis_N

/
/

/(

In addition to the basic widget building blocks, the library supports

interactive shadows [3] and gestural navigation controls (i.e.,

translation forward and backward, virtual trackball rotation, and film-

plane translation) using a single mouse button. These camera controls

are derived from the camera controls used in the Sketch system [5].

The library is written in C++ and is built on top of Open GL.

::: _:,_..._..._..*.. :_ ...a.-._

:i:_,:::::"":: ::::: :a.... ':i ::: ::::::::::' "::':':+' ':: F ::." :::: :" ::_i:_:_:_:_: :':':: .. :::. " _::" "_?.','...'_

[1] Bryson,S.andLevit,C.,TheVirtualWindtunnel:AnE_wironmentforthe Explorationof
Three-DimensionalUnsteadyFlows,NASAAmes ResearchCenter,RNRTechnicalReport
RNR-92-013,October1991.

[2] Conner,D.B.,Snibbe,S.S.,Herndon, K.P,Robbins,D.C.,Zeleznik,R.C.and vanDam,A.,
Three-dimensionalWidgets.ComputerGraphics(Proceedingsof the 1992Symposiumon
Interactive3DGraphics),25(2),ACMSIGGRAPH,March,1992,pp.183-188.

[3] Herndon,K.P.,Zeleznik,R.C.,Robbins,D.C.,Connm;D.B.,Snibbe,S.S.and van Dam,A.,
InteractiveShadows.ProceedingsofUIST '92,ACMSIGGRAPH,November,1992,pp. 1-6.

[4] Herndon, K.P.and Meyer,T., 3D Widgets for Exploratory ScientificVisualization,
PlvceedingsofUIST '94,ACMSIGGRAPH,Novembm;1994,pp.69-70.

[5] Zeleznik,R.C.,Herndon,K.P.,and Hughes,J.E,SKETCH:An Interfacefor Sketching3D
Scenes.ComputerGraphics(Proceedingsof SIGGRAPH'96),August,1996,pp.163-170.

