Fifth International Conference on Squeezed States and Uncertainty Relations

D. Han, J. Janszky, Y.S. Kim, and V.I. Man'ko, Editors

Proceedings of a conference held at Balatonfüred, Hungary
May 27–31, 1997

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

May 1998
The Fifth International Conference on Squeezed States and Uncertainty Relations was held at Balatonfured, Hungary, on 27–31 May 1997. This series was initiated in 1991 at the College Park Campus of the University of Maryland as the Workshop on Squeezed States and Uncertainty Relations. The scientific purpose of this series was to discuss squeezed states of light, but in recent years the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics including quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic transformation. As the meeting attracted more participants and started covering more diversified subjects, the fourth meeting was called an international conference. The Fourth International Conference on Squeezed States and Uncertainty Relations was held in 1995 was hosted by Shanxi University in Taiyuan, China. The fifth meeting of this series, which was held at Balatonfured, Hungary, was also supported by the IUPAP. In 1999, the Sixth International Conference will be hosted by the University of Naples in 1999. The meeting will take place in Ravello near Naples.
PRINCIPAL ORGANIZERS

J. Janszky (Crystal Physics Lab, Budapest)
Y. S. Kim (Univ. of Maryland at College Park)
V. I. Man'ko (Lebedev Physical Institute)

INTERNATIONAL ORGANIZING COMMITTEE

P. Adam (Crystal Physics Laboratory, Budapest)
V. Buzek (Slovak Academy of Sciences)
J. Bergou (City University of New York)
D. Han (NASA Goddard Space Flight Center)
V. A. Isakov (Lebedev Institute)
M. S. Kim (Sogang University, Seoul)
H. Paul (Humboldt Univ.)
K. C. Peng (Shanxi University)
M. Rubin (Univ. of Maryland Baltimore County)
W. Schleich (Univ. of Ulm)
A. Sergienko (Boston University)
Y. H. Shih (Univ. of Maryland Baltimore County)
S. Solimeno (Univ. di Napoli)
G. Szabo (Univ. of Szeged)
L. A. Wu (Chinese Academy of Sciences)
A. Zeilinger (Univ. of Innsbruck)
INTERNATIONAL ADVISORY COMMITTEE

G. S. Agarwal (Univ. of Hyderabad)
H.-A. Bachor (Australian National University)
B. A. Bambah (Univ. of Hyderabad)
J. F. Carinena (Univ. of Zaragoza)
A. S. Chirkin (Moscow State University)
G. D'Ariano (Univ. di Pavia)
J. S. De Hesa (Univ. of Granada)
F. DeMartini (Univ. di Roma)
V. Dodonov (Moscow Physical Technical University)
A. Ekert (Oxford University)
E. Giacobino (Univ. of Pierre et Marie Curie)
F. Haake (Univ. of Essen)
S. Haroche (Lab. de Spectroscopie Hertzienne)
O. Hirota (Tamagawa University, Tokyo)
P. Holland (Univ. of the West of England)
S. Kilin (Inst. of Physics, Minsk)
J. R. Klauder (Univ. of Florida)
D. N. Klyshko (Moscow State Univeristy)
P. L. Knight (Imperial College)
T. Kobayashi (Univ. of Tsukuba)
V. A. Kostelecky (Indiana University)
G. Kurizki (Weizmann Institute)
L. Lugiato (Univ. di Milano)
L. Mandel (Univ. of Rochester)
M. Man'ko (Lebedev Physical Institute)
G. Milburn (Univ. of Queensland)
M. Namiki (Waseda University)
D. Page (Univ. of Alberta)
J. Perina (Palacky University)
H. Rauch (Austrian University)
B. E. H. Saleh (Boston University)
M. O. Scully (Texas A&M Univeristy)
J. H. Shapiro (Massachusetts Inst. of Tech.)
A. Shimony (Boston University)
S. Stenholm (Helsinki University)
E. C. G. Sudarshan (Univ. of Texas)
R. Tanas (Adam Mickiewicz University)
M. Teich (Boston University)
P. Tombesi (Univ. di Camerino)
A. Vinogradov (Lebedev Physical Institute)
A. Vourdas (Univ. of Liverpool)
H. Walther (Max Planck Institute, Garching)
K. Wodkiewicz (Univ. of Warsaw)
K. B. Wolf (Univ. Nacional Auto. de Mexico)
C. Xie (Shanxi University)
H. Yuen (Northwestern University)
F. Zaccaria (Univ. di Napoli)
W. Zurek (Los Alamos National Laboratory)
This Conference is supported in part by

International Union of Pure and Applied Physics (IUPAP)
Goddard Space Flight Center of the U.S. National Aeronautics and Space Administration
University of Maryland at College Park
Lebedev Physical Institute of the Russian Academy of Sciences
Hungarian Academy of Sciences
Hungarian National Committee for Technological Development (New)
University of Szeged, Hungary
Budapest Technical University, Hungary
Crystal Physics Laboratory, Hungary
PREFACE

The fifth International Conference on Squeezed States and Uncertainty Relations was held at Balatonfured, Hungary, on 27–31 May 1997. In this edition of the proceedings, we allocated six pages for every participant. As a result, young participants had the same page allocation as their senior colleagues. We hope to keep this tradition in order to encourage more young physicists to come to future meetings of this conference.

This series was initiated in 1991 at the College Park Campus of the University of Maryland as the Workshop on Squeezed States and Uncertainty Relations. The Second Workshop was hosted in 1992 by the Lebedev Physical Institute of the Academy of Science of the U.S.S.R in Moscow. The third meeting of this series was held in 1993 at the Baltimore County Campus of the University of Maryland in Catonesville, Maryland, U.S.A.

As the meeting attracted more participants and started covering more diversified subjects, the fourth meeting was called an international conference. The Fourth International Conference on Squeezed States and Uncertainty Relations was held in 1995 was hosted by Shanxi University in Taiyuan, China. This Conference was sponsored by the International Union of Pure and Applied Physics. The fifth meeting of this series, which was held at Balatonfured, Hungary, was also supported by the IUPAP.

In 1999, the Sixth International Conference will be hosted by the University of Naples in 1999. The meeting will take place in Ravello near Naples. For the fifth meeting which was held in Hungary, we are happy to acknowledge financial and other forms of supports provided by the following agencies and institutions.

- International Union of Pure and Applied Physics
- Lebedev Physical Institute of the Russian Academy of Sciences
- Goddard Space Flight Center of the National Aeronautics and Space Administration, U.S.A.
- University of Maryland, U.S.A.
- Hungarian Academy of Sciences
- Hungarian National Committee for Technological Development
- Crystal Physics Laboratory, Hungary
- University of Szeged, Hungary
- Budapest Technical University, Hungary
REGISTERED PARTICIPANTS AND AUTHORS

Adam, Gerhard, gadam@tph.tuwien.ac.at, Institut fur Theoretische Physik, Technische Universitat, Wien

Adam, Peter, adam@thunderbird.crystal.core.hu, Research Laboratory for Crystal Physics, Budapest and Janus Pannonius University, Pecs

Agarwal, Girish Saran, gsa@prl.ernet.in, Physical Research Laboratory Ahmedabad

Ali, S. Twareque, stali@neumann.concordia.ca, Department of Mathematics and Statistics, Concordia University Montreal

Aliaga, Jorge Luis, jaliaga@df.uba.ar, Physics Department, University of Buenos Aires

Alodjants, Alex P., wlad-rtf@vpti.vladimir.su, Vladimir State Technical University

Alter, Orly, orly@loki.stanford.edu, Stanford University

Andreev, Vladimir A., bortism@sgi.lpi.msk.su, Lebedev Physical Institute, Moscow

Bachor, Hans A., hans.bachor@anu.edu.au, Physics Department, Faculty of Science, The Australian National University, Canberra

Bandilla, Arno, bandilla@photon.fia-berlin.de, Humboldt-Universitat Institut fur Physik, Berlin

Bardroff, Patrick J., patrick.bardroff@physik.uni-ulm.de, Abteilung fur Quantenphysik, Universitat Ulm

Ben-Aryeh, Yacob, phr65yb@physics.technion.ac.il, Department of Physics, Technion - Israel Institute of Technology, Haifa

Bencs, Laszlo, bencs@sparc.core.hu, Research Laboratory for Crystal Physics, Budapest

Bene, Gyula, bene@ludens.elte.hu, Institute for Solid State Physics, Roland Eotvos University, Budapest

Benedict, Mihaly, benedict@physx.u-szeged.hu, Department of Theoretical Physics, Jozsef Attila University, Szeged

Benko, Csaba, Janus Pannonius University, Pecs
Benko, Gabor, fery@btkstud.jpte.hu, Janus Pannonius University, Pecs

Bergou, Janos, jbergou@shiva.hunter.cuny.edu, Department of Physics
CUNY Hunter College, New York

Bertolotti, Mario, bertolotti@axrma.uniroma1.it, Dipartimento di Energetica
Università di Roma "La Sapienza"

Berzanskis, Audrius, audrius@stud.fh-jena.de
Technical University of Jena, Faculty of Physics and Medical Engineering

Breuer, Thomas, breuer@oeaw.ac.at, Austrian Academy of Sciences, Vienna

Brif, Constantin, phr65bc@phgrad.technion.ac.il, Department of Physics
Technion -- Israel Institute of Technology, Haifa

Buzek, Vladimir, v.buzek@ic.ac.uk, Institute of Physics
Slovak Academy of Sciences Bratislava and Optics Section, The Blackett Laboratory
Imperial College

Cabrillo, Carlos, ccabrilo@foton0.iem.csic.es, Instituto de Estructura de la Materia
CSIC, Madrid

Carinena, Jose F., jfc@posta.unizar.es, Departamento de Fisica Teorica
Universidad de Zaragoza

Casado, Alberto, acasado@cica.es, Departamento de Fisica
Aplicada Universidad de Sevilla

Cervero, Jose M., cervero@rs6000.usal.es
Departamento de Fisica Teorica Edificio Trilingue, Universidad de Salamanca

Chirkin, Anatolii S., chirkin@foton.ilc.msu.su, Department of Physics
Lomonosov Moscow State University

Chizhov, Alexei V., chizhov@thsun1.jinr.dubna.su, Bogolubov Laboratory of
Theoretical Physics, Joint Institute for Nuclear Research, Dubna

Cirac, Juan Ignacio, ignacio.cirac@uibk.ac.at, Theoretical Physics
University of Innsbruck

Csorgo, Tamas, csorgo@sunserv.kfki.hu
Research Institute for Particle and Nuclear Physics, Budapest

viii
Czirjak, Attila, czirjak@sol.cc.u-szeged.hu, Department of Theoretical Physics
Jozsef Attila University, Szeged

Czitrovszky, Aladar, czitrov@sunserv.kfki.hu
Research Institute for Solid State Physics, Budapest

Daboul, Jamil, daboul@bguvms.bgu.ac.il
Ben Gurion University, Beer Sheva

D'Ariano, Giacomo Mauro, dariano@pv.infn.it
Dipartimento di Fisica "A. Volta", Pavia

Davidovic, Dragomir M., radojevic@castor.phy.bg.ac.yu
Laboratory for Theoretical Physics, Institute of Nuclear Sciences "Vinca", Beograd

De Martini, Francesco, demartini@axcasp.caspur.it, Dipartimento di Fisica
Universita "La Sapienza", Instituto Nazionale di Fisica Nucleare and
Instituto Nazionale di Fizika della Materia, Roma

Domokos, Peter, domokos@phisique.ens.fr, Laboratoire Kastler-Brossel
Departement de Physique de l'Ecole Normale, Superieure, Paris and
Research Laboratory for Crystal Physics, Budapest

Dremin, Igor M., dremin@td.lpi.ac.ru, Lebedev Physical Institut, Moscow

Drobný, Gabriel, drobný@savba.sk, Institute of Physics
Slovak Academy of Sciences, Bratislava

Dubin, Daniel A., d.a.dubin@open.ac.uk, Open University, Milton Keynes

Dusek, Miloslav, dusek@optnw.upol.cz, Department of Optics
Palacky University, Olomouc

Dutra, Sergio M., dutra@ifi.unicamp.br, Instituto de Fisica 'Gleb Wataghin'
Universidade Estadual de Campinas, UNICAMP, Sao Paulo

Englert, Berthold-Georg, englert@mfl.sue.physik.uni-muenchen.de,
Sektion Physik, Universitat Muenchen

Fabre, Claude, fabre@spectro.jussieu.fr, Laboratoire-Kastler Brossel
Universite Pierre et Marie Curie Paris

Fernandez, David J., david@fis.cinvestav.mx, Departamento de Fisica
CINVESTAV-IPN, Mexico
Fontenelle, Marcia T., fontenelle@physik.uni-ulm.de
Abteilung fur Quantenphysik, Universitat Ulm

Fuzessy, Zoltan, Department of Physics, Technical University, Budapest

Garcia-Fernandez, Priscilla, empris@roca.csic.es
Instituto de Estructura de la Materia, CSIC, Madrid

Garrett, Gregory A., ggarrett@umich.edu, University of Michigan

Georgiades, Nikos Ph., niko@cco.caltech.edu, Norman Bridge Laboratory of Physics, 12-33, California Institute of Technology

Geszti, Tamas, geszti@hercules.elte.hu, Department of Atomic Physics
Roland Eotvos University, Budapest

Giacobino, Elisabeth, elg@spectro.jussieu.fr, Laboratoire Kastler-Brossel
Universite Pierre et Marie Curie, Paris

Han, Daesoo, han@trmm.gsfc.nasa.gov, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt

Hardy, Lucien, hardy@axcasp.caspur.it
Dipartimento di Fisica, Universitat "La Sapienza", Roma

Hasselbach, Franz, franz.hasselbach@uni-tuebingen.de
Institut fur Angewandte Physik, Universitat Tubingen

Hayashi, Masahito, masahito@kusm.kyoto-u.ac.jp
Department of Mathematics, Kyoto University

Henry, Richard W., rhenry@bucknell.edu, Bucknell University, Lewisburg

Hillery, Mark, mhillery@shiva.hunter.cuny.edu, Bucknell University, Lewisburg

Hirota, Osamu, hirota@lab.tamagawa.ac.jp, Research Center for Quantum Communications, Tamagawa University, Machida-city, Tokyo

Horzela, Andrzej, horzela@solaris.ifj.edu.pl, Department of Theoretical Physics
H. Niewodniczanski Institute of Nuclear Physics, Krakow

Hradil, Zdenek, hradil@risc.upol.cz, Department of Optics
Palaczy University and Atominstutit der Osterreichischen Universitaten, Wien

Isakov, Vladimir A., isakov@sci.lpi.ac.ru, Lebedev Physical Institute, Moscow
Jex, Igor, jex@br.fjfi.cvut.cz, Department of Physics, Faculty for Nuclear Science and Physical Engineering CTU, Praha and Institute of Physics SAS Bratislava and Institut fur Experimentalphysik, Universitat Innsbruck

Janszky, Jozsef, janszky@sparc.core.hu
Research Laboratory for Crystal Physics, Budapest

Johansen, Lars, lars.m.johansen@hibu.no, Institute of Physics, University of Oslo

Kapuscik, Edward, sfkapusc@kinga.cyk-kr.edu.pl, Department of Theoretical Physics, H. Niewodniczanski Institute of Nuclear Physics, Krakow

Kilin, Sergei Ya., kilin@bas08.basnet.minsk.by, Institute of Physics Belarus Academy of Sciences, Minsk

Kim, Myung Shik, mshkim@ccs.sogang.ac.kr, Department of Physics Sogang University, Seoul

Kim, Young Suh, yskim@physics.umd.edu, Department of Physics University of Maryland at College Park

Kis, Zsolt, zsolt@thunderbird.crystal.core.hu
Research Laboratory for Crystal Physics, Budapest

Kiss, Tamas, ktamas@thunderbird.crystal.core.hu
Research Laboratory for Crystal Physics, Budapest

Klauder, John, klauder@phys.ufl.edu, University of Florida

Knight, Peter L., p.knight@ic.ac.uk, Blackett Laboratory Optics Section Imperial College, London

Kobayashi, Takayoshi, takakoba@phys.s.u-tokyo.ac.jp, Department of Physics The University of Tokyo

Kochanski, Piotr, piokoch@thet1.ifpan.edu.pl
Center for Theoretical Physics, Warsaw

Korolkova, Natalia, korolkova@prfoptnw.upol.cz, Department of Optics Palacky University in Olomouc

Kozierowski, M., mackoz@phys.amu.edu.pl, Nonlinear Optics Division Institute of Physics, Adam Mickiewicz University, Poznan

Kroo, Norbert, kroo@power.szki.kfki.hu
Research Institute for Solid State Physics, Budapest
Kulagin, Victor V., kul@sai.msu.su, Sternberg Astronomical Institute
Moscow State University

Kurizki, Gershon, cfkurizk@weizmann.weizmann.ac.il
The Weizmann Institute, Rehovot

Lam, Ping Koy, ping.lam@anu.edu.au, Department of Physics
Faculty of Science, The Australian National University, Canberra

Lejarreta, Juan D., leja@gugu.usal.es, Universidad de Salamanca, E.U.I.T.I. (Bojar)

Leonhardt, Ulf, ulf@photon.fra-berlin.de, Department of Quantum Physics
University of Ulm

Lo, Chi-Fai, cflo@phy.cuhk.edu.hk, Department of Physics
The Chinese University of Hong Kong

Lugiato, Luigi, lugiato@mi.infn.it, Dipartimento di Fisica, Università di Milano

Lutkenhaus, Norbert, norbert@teazer.uibk.ac.at
Institut für Theoretische Physik, Universität Innsbruck

Mancini, Stefano, mancini@perugia.infn.it, Dipartimento di Matematica e Fisica
Università di Camerino

Man'ko, Margarita, manko@na.infn.it, Lebedev Physics Institute, Moscow

Man'ko, Olga, omanko@sci.lpi.msk.su, Lebedev Physics Institute, Moscow

Man'ko, Vladimir I., manko@na.infn.it, Lebedev Physics Institute, Moscow

Martinez-Linares, Jesus, jem@mpq.mpg.de
Max-Planck-Institut für Quantenoptik, Garching

Messina, Antonio, messina@ist.fisica.unipa.it
Institute of Physics, University of Palermo

Moya-Cessa, Hectro M., hmmc@inaoep.mx
Instituto Nacional de Astrofísica, Optica y Electronica, Puebla

Mustecaplioglu, Ozgur Esat, mustecap@fen.bilkent.edu.tr
Department of Physics, Bilkent University, Ankara

Nagel, Bengt, nagel@theophys.kth.se, Division of Theoretical Physics
Royal Institute of Technology, Stockholm
Napoli, Anna, messina@ist.fisica.unipa.it, Institute of Physics
University of Palermo

Ng, Kin-Man, kmng@phy.cuhk.edu.hk, Department of Physics
The Chinese University of Hong Kong

Nieto, Luis Miguel, lmnieto@cpd.uva.es, Department of Theoretical Physics
University of Valladolid

Nieto, Michael Martin, mmn@pion.lanl.gov, Theoretical Division (T-8, MS-B285)
Los Alamos National Laboratory

Opatrny, Tomas, opatrny@tpi.uni-jena.de, Friedrich-Schiller-Universitat
Jena and Palacky University, Olomouc

Orlowski, Arkadiusz Janusz, orlow@ifpan.edu.pl
Institute of Physics, Polish Academy of Science, Warsaw

Osaki, Masao, osaki@lab.tamagawa.ac.jp, Tamagawa University

Ozawa, Masanao, e43252a@nucc.cc.nagoya-u.ac.jp
School of Informatics and Sciences, Nagoya University

Perina, Jan, perina@engc.bu.edu, Quantum Optics Laboratory
Department of Electrical and Computer Engineering, Boston University

Perinova, Vlasta, perinova@risc.upol.cz, Laboratory of Quantum Optics
Faculty of Natural Sciences, Palacky University, Olomouc

Polzik, Eugene S., polzik@dfi.aau.dk, Institute of Physics and Astronomy
Aarhus University

Raimond, Jean Michel, jean-michel.raimond@physique.ens.fr, Laboratoire Kastler-Brossel, Ecole Normale Superieure, Universite P. et M. Curie, Paris

Ralph, Tim, timothy.ralph@anu.edu.au, Department of Physics
Faculty of Science, The Australian National University

Rauch, Helmut, rauch@ati.ac.at
Atominstitut der Oesterreichischen Universitaten, Wien

Reisner, Stefan, reisner@zpr.uni-koeln.de, University of Cologne
Department of Physical Chemistry
Rojo, Alberto Gustavo, rojoa@umich.edu
University of Michigan, Randall Laboratory, Ann Arbor

Royer, Antoine, Departement Genie Physique, Ecole Polytechnique, Montreal

Rubin, Morton H., rubin@umbc.edu, UMBC Quantum Optics Group
Physics Department, University of Maryland Baltimore County

Sacchi, Massimiliano Federico, msacchi@pv.infn.it
Dipartimento di Fisica "A. Volta", Universita di Pavia

Sakaguchi, Fuminori, saka@dignet.fuee.fukui-u.ac.jp, Department of Electrical and Electronics Engineering, Faculty of Engineering, Fukui University

Saleh, Bahaa E. A., besaleh@enga.bu.edu, Quantum Optics Laboratory
Department of Electrical and Computer Engineering, Boston University

Santa, Imre, santa@ttk.jpte.hu, Department of General Physics and Laser Spectroscopy, Janus Pannonius University, Pecs

Schiller, Stephan, schiller@spock.physik.uni-konstanz.de,
Fakultat fur Physik, Universitat Konstanz

Scully, Marlan O., Texas A&M University

Semenov, Andriy A., lev@elphys.carrier.kiev.ua,
Department of Theoretical Physics, Institute of Physics, Kiev

Sergienko, Alexander, alexserg@bu.edu,
Department of Electrical and Computer Engineering, Boston University

Shih, Yanhua, shih@umbc2.umbc.edu,
Department of Physics, University of Maryland Baltimore County

Shumovsky, Alexander S., shumo@fen.bilkent.edu.tr, Physics Department
Bilkent University, Ankara and Bogoliubov Laboratory of Theoretical Physics
Joined Institute for Nuclear Research, Dubna

Solimeno, Salvatore, salvatore.solimeno@na.infn.it, Dipartimento di Fisica, Napoli

Solomon, Allan I., a.i.solomon@open.ac.uk
Faculty of Mathematics and Computing, Open University, Milton Keynes

Suda, Martin, suda@arcs.ac.at, Oesterreichisches Forschungszentrum Seibersdorf
Swain, Stuart, s.swain@qub.ac.uk, School of Mathematics and Physics
The Queen's University of Belfast

Szabo, Gabor, gszabo@physx.u-szeged.hu, Department of Quantum Electronics
Jozsef Attila University, Szeged

Szabo, Szilard, szil@thunderbird.crystal.core.hu
Research Laboratory for Crystal Physics

Szalay, Viktor, viktor@sparc.core.hu, Research Laboratory for Crystal Physics

Tanas, Ryszard, tanas@phys.amu.edu.pl, Nonlinear Optics Division
Institute of Physics, Adam Mickiewicz University, Poznan

Teich, Malvin C., teich@enga.bu.edu, Department of Electrical and Computer
Engineering, Biomedical Engineering, Cognitive and Neural Systems
Boston University

Terazawa, Hidezumi, hosokawa@ins.u-tokyo.ac.jp, Institute of Particle and Nuclear
Studies, High Energy Accelerator Research Organization, Tokyo

Tombesi, Paolo, tombesi@roma1.infn.it, Dipartimento di Matematica e Fisica
Università di Camerino

Tsue, Yasuhiko, tsue@cc.kochi-u.ac.jp, Department of Physics
Kochi University, Kochi

Twamley, Jason, j.twamley@ic.ac.uk, Laser Optics and Theory Groups
Blackett Laboratory, Imperial College, London

Van Huele, Jean-Francois, vanhuele@dirac.byu.edu
Brigham Young University, B.Y.U Provo

Varga, Peter, vargap@rl.atki.kfki.hu
Research Institute for Material Sciences, Budapest

Varro, Sandor, vs@glory.szfki.kfki.hu
Research Institute for Solid State Physics, Budapest

Vey, Jean-Luc, jean-luc.vey@physik.th-darmstadt.de
Institut fur Angewandte Physik, Technische Hochschule, Darmstadt

Vidiella-Barranco, Antonio, vidiella@ift.unicamp.br
Instituto de Fisica "Gleb Wataghin", Universidade Estadual de Campinas, Campinas
Vogel, Werner, vogel@physik3.uni-rostock.de
Fachbereich Physik, Universitat Rostock

Vourdas, Apostolos, ee21@liverpool.ac.uk
Department of Electrical Engineering and Electronics, University of Liverpool

Vyatchanin, Sergey Petrovich, vyat@mol.phys.msu.su, Department of Molecular Physics and Physical Measurements, Physics Faculty, Moscow State University

Weigert, Stefan, weigert@ubaclu.unibas.ch
Institut fur Physik der Universitat, Basel

Welsch, Dirk-Gunnar, welsch@tpi.uni-jena.de,, Friedrich-Schiller-Universitat Jena
Theoretisch-Physikalisches Institut, Jena

Wiseman, Howard Mark, wiseman@physics.uq.edu.au, Department of Physics
University of Auckland and Department of Physics, University of Queensland

Wolf, Kurt Bernardo, bwolf@ce.ifisicam.unam.mx, Instituto de Investioganes en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico

Wu, Ling-An, wula@aphy01.iphy.ac.cn, Institute of Physics, Academia Sinica, Beijing

Wuensche, Alfred, wuensche@photon.fla-berlin.de, Arbeitsgruppe "Nichtklassische Strahlung", Institut fur Physik, Humboldt-Universitat, Berlin

Yu, Si-Xia, yu@ati.ac.at
Atominstitut der Oesterreichische Universitat, Vienna

Zeilinger, Anton, anton.zeilinger@uibk.ac.at
Institut fur Experimentalphysik, Universitat Innsbruck
TABLE OF CONTENTS

I. Squeezed States

Optical Engineering With Squeezed Light: Laser Noise Spectra and Noiseless Amplifiers
T.C.Ralph, P.K.Lam, C.C.Harb, E.H.Huntington, A.G.White,
M.S.Taubman, D.E.McClelland and H-A.Bachor ... 3

Electron Interference in the Presence of Squeezed Electromagnetic Fields
A. Vourdas .. 13

On Polarization-Squeezed Light at High Efficiency of Second Harmonic Generation by Mixing
A. S. Chirkin and V. N. Beskrovnyi.. 19

Evolution of Polarization-Squeezed Light Fluctuations in Third-Order Dissipative Nonlinear Media
A. S. Chirkin and V. V. Volokhovsky... 25

Nonclassical Features in Atom/Squeezed Light Interactions
Stuart Swain .. 31

Polarisation Properties and Amplitude Squeezing Performances of VCSELs; Theoretical and Experimental Studies
Jean-Luc Vey, Karsten Auen, Wolfgang Elsasser, and Karl-Heinz Gulden... 37

Higher Power Squeezed States, Jacobi Matrices, and the Hamburger Moment Problem
Bengt Nagel ... 43

Squeezing Properties of the Two-Photon Jaynes-Cummings Model With the Counter-Rotating Terms
K. M. Ng, C. F. Lo, and K. L. Liu ... 49
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squeezing Properties of the Intensity-Dependent Jaynes-Cummings Model With the Counter-Rotating Terms</td>
<td>63</td>
</tr>
<tr>
<td>K. M. Ng, C. F. Lo, and K. L. Liu</td>
<td></td>
</tr>
<tr>
<td>The Localization-Delocalization Transition in a Dissipative Two-State System: Correlated Squeezed-State Approach</td>
<td>77</td>
</tr>
<tr>
<td>C. F. Lo</td>
<td></td>
</tr>
<tr>
<td>Mimicking a Squeezed Bath Interaction: Quantum Reservoir Engineering With Atom</td>
<td>85</td>
</tr>
<tr>
<td>N. Lutkenhaus, J. I. Cirac, and P. Zoller</td>
<td></td>
</tr>
<tr>
<td>Finite-Dimensional Squeezed Vacuum and Its Generation</td>
<td>91</td>
</tr>
<tr>
<td>A. Miranowicz, W. Leonski, and R. Tanas</td>
<td></td>
</tr>
<tr>
<td>Detection of Squeezed Thermal Phonons Participating in an Indirect Radiative Transition</td>
<td>97</td>
</tr>
<tr>
<td>O. E. Mustecalihoglu</td>
<td></td>
</tr>
<tr>
<td>Simultaneous Higher-Order Squeezing of Both Quadrature Components in Orthogonal-Even Coherent States</td>
<td>103</td>
</tr>
<tr>
<td>Xi-Zeng Li and Jun Wang</td>
<td></td>
</tr>
<tr>
<td>Squeezed Quantum Trigonometry</td>
<td>109</td>
</tr>
<tr>
<td>Piotr Kochanski and Krzysztof Wodkierwicz</td>
<td></td>
</tr>
<tr>
<td>Radiative Properties of Atoms in the Presence of Squeezed Vacuum</td>
<td>115</td>
</tr>
<tr>
<td>Azeddine Messikh and Ryszard Tanas</td>
<td></td>
</tr>
<tr>
<td>Prospects of Generation of Electromagnetic Field in Squeezed State by Free Electrons in External Magnetic Field</td>
<td>121</td>
</tr>
<tr>
<td>V. V. Kulagin and V. A. Cherepenin</td>
<td></td>
</tr>
<tr>
<td>Generation of Squeezed Light With Semiconductor Lasers</td>
<td>127</td>
</tr>
<tr>
<td>E. Giacobino, V. Jost, and A. Bramati</td>
<td></td>
</tr>
<tr>
<td>A Search for Squeezed Light from Self-Pumped Phase Conjugation in Barium Titanate</td>
<td>133</td>
</tr>
<tr>
<td>R. W. Henry and S. Sherrod</td>
<td></td>
</tr>
<tr>
<td>Multiple Beam Model of a GW Antenna Using Squeezed Light</td>
<td>139</td>
</tr>
<tr>
<td>M. Fiorentino, A. Porzio, and S. Solimeno</td>
<td></td>
</tr>
<tr>
<td>Cleaning SHG Squeezing Generation With a Third Order Non-Linearity</td>
<td>145</td>
</tr>
<tr>
<td>C. Cabrillo, J. L. Roldan, and P. Garcia-Fernandez</td>
<td></td>
</tr>
</tbody>
</table>
New Large Number Hypotheses and Geometric Relations in Squeezed States of the Universe
Hidezumi Terazawa ... 151

Are Coherent States Squeezed States?
Allan I. Solomon ... 157

On the Gea-Banacloche Effect in Jaynes-Cummings Model With Squeezed State Input
O. Hirota and M. Osaki ... 163

Squeezing and EPR Paradox in Nonlinear Optical Patterns
A. Gatti and I. Marzoli .. 169

The Discovery of Squeezed States-in 1927
Michael Martin Nieto ... 175

II. Harmonic Oscillators, Wigner functions, and Group Representations 181

SU(2) and SU(1,1) Nonunitary Displaced Two-Mode Number States
Vlasta Perinova and Antonin Luks 183

Planning the Evolution of Time-Dependent Oscillators
P. Adam, T. Kiss, and J. Janszky 189

The Phase Insensitive Amplification as a Ground for Solution of the Quantum Phase Problem
D. M. Davidovic and D. Lalovic 195

Generalized Q Operators
Jamil Daboul .. 199

A Hermitian Operator Conjugate to the Number Operator
M. Arroyo-Carrasco and H. Moya-Cessa 205

Quantum Phases and the Degenerate Optical Parameteric Oscillator
Jose M. Cervero and Juan D. Lejarreta 209

Generation and User of Nonclassical States of Light Produced by CW Optical Parametric Oscillators
C. Fabre, K. Kasai, Gao JiangRui, C. Schwob, A. Maitre, and P. H. Souto-Riberiro ... 215
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi-Spin Squeezed State for SU(2)-Algebraic Model of Nucleus</td>
<td>Yasuhiko Tsue, Nobuyuki Azuma, Atsushi Kuriyama, and Masatoshi Yamamura</td>
<td>221-34</td>
</tr>
<tr>
<td>"SUSUSY" Isospectral Oscillator Potentials</td>
<td>David J. Fernandez C., M. Lawrence Glasser, and Luis M. Nieto</td>
<td>227-35</td>
</tr>
<tr>
<td>Modification of Squeezing in the Kicked Anharmonic Oscillator</td>
<td>W. Leonsky, R. Tanas, and A. Miranowicz</td>
<td>233-36</td>
</tr>
<tr>
<td>On the 'Orthogonalization' of the Minimum Uncertainty States Between the Position and the Rational Function of the Momentum</td>
<td>Fuminori Sakaguchi</td>
<td>239-37</td>
</tr>
<tr>
<td>The Evolution of Harmonic Oscillator Wigner Functions Described by the Use of Group Representations</td>
<td>Y. Ben-Aryeh</td>
<td>245-38</td>
</tr>
<tr>
<td>Wigner Time Dependent Quantization for External Harmonic Forces</td>
<td>A. Horzela</td>
<td>251-39</td>
</tr>
<tr>
<td>Wigner Representation for Parametric Down-Conversion Experiments</td>
<td>Alberto Casado, Trevor W. Marshall, and Emilio Santos</td>
<td>257-40</td>
</tr>
<tr>
<td>Wigner Function for a Relativistic Oscillator with Finite-Difference Hamiltonian</td>
<td>Natig M. Atakishiyev, Shakir M. Nagiyev, and Kurt Bernardo Wolf...</td>
<td>263-41</td>
</tr>
<tr>
<td>Wigner Functions and Squeezing Properties of "Atomic Schroedinger Cats"</td>
<td>M. G. Benedict and A. Czirjak</td>
<td>269-42</td>
</tr>
<tr>
<td>Wigner Time Dependent Commutation relations for Particlas in External Force Fields</td>
<td>E. Kapuscik</td>
<td>275-43</td>
</tr>
<tr>
<td>Wigner Function and Neutron Spin-Echo</td>
<td>Martin Suda and Helmut Rauch</td>
<td>281-44</td>
</tr>
<tr>
<td>Atom-Field Interaction: Joint Wigner Function Approach</td>
<td>A. Czirjak and M. G. Benedict</td>
<td>287-45</td>
</tr>
<tr>
<td>Phase Operators & Coherent Light</td>
<td>D. A. Dubin, M. A. Hennings, and T. B. Smith</td>
<td>293-46</td>
</tr>
</tbody>
</table>
Wigner Function on Groups for Various Optical Models
N. M. Atakishiyev, S. M. Chumakov, L. M. Nieto, and
Kurt Bernardo Wolf ... 301

Symplectic Tomography of Nonlinear and Schroedinger Cat States of a
Trapped Ion
Olga Man'ko ... 309

Symplectic and Lie Algebraic Techniques in Geometrc Optics
J. F. Carinena, C. Lopez, and J. Nasarre 315

Squeezed States as Representations of Symplectic Groups
D. Han and Y. S. Kim... 321

III. Photons and their Interactions with Environments 327

Spontaneous Emission and Interference
Wladyslaw Zakowwicz and Arkadiusz Orlowski 329

Correlated Noise in Laser Diodes
T. C. Ralph .. 335

A Hamiltonian for the Generation of Pure States of the Light Field
Antonio Vidiella-Barranco and Jose Antonio Riversi 339

Entangled Non-Local Quantum Interferometry
D. Boschi, F. De Martini, and G. Di Giuseppe 343

Time-Resolved Traces of Nonclassical Field States With Optical Gating
Stefan Reisner ... 355

A Triphoton State
Timothy E. Keller, Morton H. Rubin, Yanhua Shih, and Ling-an Wu... 361

Universal Algorithm for Optimal Estimation of Quantum States from Finite
Ensembles
R. Derka, V. Buzek, and A. K. Ekert 369

Supersymmetry in Quantum Optics and Cluster Approach for Multiphoton
Interactions
V. A. Andreev .. 375

Duality With Macroscopic Which-Way Detector
Jesus Martinez-Linares... 379
Quantum Coherence Phenomena in a Penning Trap: Generation and Detection
Stefano Mancini and Paolo Tombesi

Quantum Coupling and Correlation in Forward Three-Wave Mixing
Yajun Lu, Ling-An Wu, Meijuan, Shiqun Li, and Peilin Zhang

Classical Signal Detection in Quantum Systems Under Insufficient A Priori Information
V. V. Kulagin and A. V. Gusev

Quantum Statistics and Dynamics of Kerr Nonlinear Couplers
Natalia Korolkova and Jasn Perina

Stark and Kerr Effects: A Dynamical Algebraic Connection
J. L. Gruver and J. Aligari

QED in Material Media
S. M. Dutra and K. Furuya

Use of Intelligent States of Light for Quantum Noise Reduction in High-Accuracy Interferometers
C. Brif and A. Mann

Various Approaches to Photon Antibunching in Second-Harmonic Generation
A. Miranowicz, J. Bajer, W. Leonski, and R. Tanas

Quantum Phase in the Jaynes-Cummings Model Describing an Electric Dipole Transition
Ozgur E. Mustecaplioglu and Alexander S. Shumovsky

Special Unitary Manipulation of Confined Quantized Electromagnetic Field
A. Napoli and A. Messina

Quantum Binary Decision and the Ultimate Bound on Interferometric Precision
Matteo G. A. Paris

Statistics of Light in Raman and Brillouin Nonlinear Couplers
J. Perina, Jr. and J. Perina

Multiphoton Absorption Cross Section for the Entangled n-Photon States
Jan Perina Jr., Bahaa E. A. Saleh, and Malvin C. Teich

Communication With Nonclassical States in the Presence of Loss
G. M. D'Ariano and M. F. Sacchi
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Two-Level Atom in the Field of A Laser: An Exact Solution</td>
<td>Juan D. Lejarreta and E. S. I. I. Bejar</td>
</tr>
<tr>
<td>Dynamics of the Field in a Cavity With Movable Boundaries</td>
<td>A. V. Chizhov, G. Schrade, and M. S. Zubairy</td>
</tr>
<tr>
<td>Atoms and Cavities: An Experimental Study of Decoherence</td>
<td>J. M. Raimond, M. Brune, and S. Haroche</td>
</tr>
<tr>
<td>Nonclassical Effects in the Motion of a Trapped Atom</td>
<td>W. Vogel, R. L. de Matos Filho, and S. Wallentowitz</td>
</tr>
<tr>
<td>Radiative Interference in a Vee Atomic System</td>
<td>Peng Zhou and Stuart Swain</td>
</tr>
<tr>
<td>Wigner's Photons</td>
<td>Y. S. Kim</td>
</tr>
<tr>
<td>IV. Quantum Systems and Foundations of Quantum Mechanics</td>
<td></td>
</tr>
<tr>
<td>The Problem of Measurement and the Theory of Quantum State Reduction</td>
<td>Masanao Ozawa</td>
</tr>
<tr>
<td>Classical Description of Quantum States and Tomography</td>
<td>V. I. Man'ko</td>
</tr>
<tr>
<td>Quantum Tomography of Optical Devices</td>
<td>G. M. D'Ariano and L. Maccone</td>
</tr>
<tr>
<td>Tomographic Reconstruction of the Density Operator</td>
<td>Alfred Wuensche</td>
</tr>
<tr>
<td>Probing Quantum States by Photon Statistics</td>
<td>Myung Shik Kim</td>
</tr>
<tr>
<td>New Approach Determining Quantum Phase via Angular Momentum</td>
<td>Alexander S. Shumovsky</td>
</tr>
</tbody>
</table>
Behaviour of p^+ Mesons in a Strong Magnetic Field
B. I. Lev, A. A. Semenov, and C. V. Usenko .. 567-88

Brooding Over Pion Lasers
T. Csorgo and J. Zimanyi ... 573-89

Squeezed Pure Isospin States in Particle Physics
I. M. Dremin .. 579-90

Dynamical Manipulation for Spin -1/2 Systems
David J. Fernandez C. and Oscar Rosas-Ortiz 583-91

Nontomographic State reconstruction in Quantum Mechanics
Ulf Leonhardt .. 589-92

Quantum State Engineering in Terms of a Few Coherent States
L. K. Stergioulas and A. Vourdas .. 595-93

Wave-Particle Duality Quantified
Berthold-Georg Englert ... 603-94

Photon Adding and Subtracting and Schroedinger-Cat Generation in
Conditional Output Measurement on a Beam Splitter
D.-G. Welsh, M. Dakna, L. Knoell, and T. Opatrny............................. 609-95

Heisenberg Microscope and Quantum Variation Measurement
S. P. Vyatchanin .. 615-96

Exponential Moments of Canonical Phase: Homodyne Measurements
T. Opatrny, M. Dakna, and D.-G. Welsh ... 621-97

Model for Quantum Interference of Multiplet Photons From Parametric Down
Conversion
Ling-An Wu, Ming Yin, Yidong Zhou, and Meijuan Wu................. 627-98

Nonclassical Spatial Properties of Second-Order Parametric Processes
M. Bertolotti, C. Sibilia, R. Cerioni, and R. Horak 633-99

Quantum Measurement of Optical Phases by Detection of Polarization States
of Light
Alexander Alodjants and Sergei M. Arakelian 647-100

Nonclassical Evolution of a Free Particle
Lars M. Johansen ... 653-101
Realistic Success Probability of Micromaser-Based Nonclassical Field Generation in the Conditional Measurement Approach
A. Napoli and A. Messina ... 659 - 102

Complementarity Versus Uncertainty
Jean-Francois S. Van Huele and Brent D. Morring 665 - 103

Uncertainty of Quantum State Estimation
Zdenek Hradil .. 671 - 104

Macroscopic Limit of the Uncertainty Relations
Thomas Breuer ... 677 - 105

Is There an Uncertainty Relation for Welcher Weg Measurements?
I. Squeezed States