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Background
Historically command management systems (CMS) have been large, expensive, spacecraft-specific
software systems that were costly to build, operate, and maintain. Current and emerging hardware,
software, and user interface technologies may offer an opportunity to facilitate the initial formulation and
design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for
CMS systems.

Current MOC (mission operations center) hardware and software include Unix workstations, the
C/C++ and Java programming languages, and X and Java window interfaces representations. This
configuration provides the power and flexibility to support sophisticated systems and intelligent user
interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision
making, artificial intelligence, and software engineering. One of the goals of this research is to explore the
extent to which technologies developed in the research laboratory can be productively applied in a complex
system such as spacecraft command management. Initial examination of some of the issues in CMS design
and operation suggests that application of technologies such as intelligent planning, case-based reasoning,
design and analysis tools from a human-machine systems engineering point of view (e.g., operator and
designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may
provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well
as continuity for CMS design and development across spacecraft with varying needs. The savings in this
case is in software reuse at all stages of the software engineering process.

Assumptions Underpinning Early Work
The initial analysis conducted during the early portion of the first year of this study concluded that
extensive reuse can and should be facilitated. Reuse will be greatly facilitated by making previous design
experience available to developers via a case-based reasoning system. Development of a common look and
feel and the use of standard commercial software will enhance commonalties across systems, and
encourage reuse of components developed for one system in subsequent systems. A generic CMS
architecture, which each new mission instantiates and extends, will anchor future designs to a common
parent. Finally, a case-based designer’s associate can guide mission-unique extensions and automatically
archive new features into an integrated development environment so that the new features are easily

available to designers of future systems.

Understanding Command Management Systems: How they operate? How they are developed?

The following activities were conducted and presented to Goddard management in presentations and in
reports. They also the comprised background investigations that provided the basis for the papers cited in
Appendix A and Ms. Jennifer J. Ockerman’s M.S. thesis as well as Mr. John G. Morris’ Ph.D. thesis (in
progress).

e  Port CMS applications to Georgia Tech
SAMPEX CMS
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WIND/POLAR

FAST (as available)

SOHO (as available)
e Identify Commonalties and Differences Across CMSs

Attend CMS Design Reviews

Review CMS Design Documents (SAMPEX, WIND/POLAR, SOHO)

Interviews with CMS Developers

Interviews with FOT responsible for developing requirements
e  Conduct Task Analysis of CMS Operations

SAMPEX

WIND/POLAR

Articulation of CMS Commonalties and Causes of Low Reuse

e CMSs are more similar than different.

e Low reuse in part stems from failure to standardize on common components.

e  Low reuse in part stems from a lack of availability of experience/information about previous designs.

Assumptions

¢ Reuse would be facilitated by evolving a corporate memory of existing systems that is easily accessible
to developers of new systems.

e  Reuse would be facilitated by providing designers with an aid with which designers can instantiate
mission-specific features of a common core system. A data or case base would facilitate reuse of
existing design concepts and components. As necessary, new design features, i.c., features that are
added or extensions of existing features, are specified via the aid’s development environment and
automatically added to the associate's database of designs and design features.

Activities

The primary activities supported by this grant culminated in two pieces of research: The Design Browser,

which comprised the primary portion of Ms. Jennifer J. Ockerman’s M.S. thesis, and the Designer’s

Associate, which comprised the primary portion of Mr. John G. Morris’ Ph.D. thesis (writing almost

completed). Both of these concepts or theories were implemented as proof-of-concept computer systems

NASA command management and are compatible with current systems and languages in the NASA

Goddard Mission Operations environment. Finally, both systems were evaluated with actual NASA users,

e.g., FOT, command management system designers, and NASA technical monitors, both quantitatively and

qualitatively. In all cases, users believed and demonstrated that the systems had great potential to enhance

reuse and should be fielded as commercial software based on the university proof-of-concept prototypes.

The Design Browser

With the proliferation of large, complex software systems, reuse of previous software designs and software

artifacts, such as operations concepts, requirements, specifications, and source code, is an important issue

for both industry and government. Reuse has long been expected to result in substantial productivity and

quality gains. To date, this expectation has been largely unmet. One reason may be the lack of tools to

support software reuse.
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The Design Browser is a software architecture intended to support designers of large software
systems in the early stages of software design, specifically conceptual design. The Design Browser is based
on principles derived from cognitive engineering; naturalistic decision making, particularly Klein’s
Recognition-Primed Decision-Making Model; and Kolodner ’s approach to case-based reasoning.

Essentially, the Design Browser is a database, or more specifically a case base, of conceptual design
artifacts from previous design efforts. It provides an example of a formal institutional memory—a case-
based retrieval system. It also proposes a model that specifies a category structure, with which to group
concepts and a vocabulary to help designers recognize when a previous design or a portion of a design is
relevant. The model of design concepts and vocabulary forms a conceptual framework, which is
instantiated as a user interface for the case base retrieval system. Designers and other users of the Design
Browser use this interface to search, recognize, and retrieve useful portions of previous designs.

For the Design Browser, cases are insights that generalize, or situations that highlight both desirable
and undesirable aspects of a design. The Design Browser’s case base contains stories derived from
previous design experiences. Stories are defined by decomposing an entire artifact into smaller and
‘interesting parts’—each part defining a case.

The Design Browser represents stories about design features in two ways: hierarchical text-based
explanations and graphical illustrations. Hierarchical explanations make the large amount of information
documenting a design somewhat more manageable and potentially more recognizable. Graphical
representations complement and enhance text-based descriptions.

Each story has three parts: a generic description, examples, and illustrations. The generic
description is hierarchical and consists of a fopic and associated details. The topic is a high-level
description of the components, functions, or ‘lessons learned” from several designs. Details summarize
features common to several designs, and they also provide lower-level information about specific designs.
Details have a direct link to the second part of the story—examples. Examples are application-specific
descriptions of system features. They may include outcome information, such expert opinions about the
effectiveness of a particular feature. The last part of a story, illustrations, is one or more graphical
representations that complement the text of a topic, detail, or example.

The cases/stories are organized, indexed, and accessed through the conceptual model. The model is
likely to be, at least at the lowest levels, domain or organization dependent. At higher levels, it is built on
the assumption that all artifacts, design or otherwise, can be usefully organized by decompositions along
physical components and functional behavior lines. The model for the Design Browser consists of three
dimensions. First there are building blocks, that is, the physical decomposition of the artifacts that comprise
the cases. Second there are functions, that is, the functional decomposition comprised of sets of domain-
general objects, grouped by a recognizable purpose. And third, system issues, that is, important system
information that does not fall neatly into either the physical or functional decompositions. In software
engineering, a system issue may include the rationale and outcome for choosing with a particular type of

software, e.g., object oriented. Functions manipulate building blocks; issues provide a higher level view of
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an entire design. Figure ldepicts the generic features of the Design Browser, the user interface and its
organization of topic detail, example, etc. as well as pull-down menus to access the elements the comprise
the physical and functional decompositions as well as system issues.

As a proof-of-concept demonstration, the Design Browser was implemented for a NASA satellite
command and control system—the command management system (CMS). The CMS Design Browser
(Figure 1) proof-of-concept served as a test bed in which the Design Browser’s effectiveness could be
evaluated. Three groups of users were involved in the evaluation: the eventual users of the systems (FOT),
once designed and implemented; system designers; and NASA technical monitors responsible for ensuring
the timeliness, quality, and integrity of the resulting software. The evaluation included four Goddard
representatives from each group. Empirical results showed that the various teams involved in the
specification, implementation, and management of command management software system design all

found the CMS Design Browser quite useful.

System Building Blocks Functions Issues

Introduction Data inputs Scheduling Role of CMS

Navigation Outline a Current Design Commands Preprocessing Mission unique features

Save Design and Quit Activities Load generation Cost

Quit Planning rules Error checking Lines of code
Events Report generation User interface
Activity plans Memory maps Software language
Loads Design philosophy
Constraints and conflicts Hardware system
Constants ~
CMS data and databases

TOPIC FRAME DETAIL FRAME
@elatcd Building Blocks x Related Funclioﬂ Display ) ( Next ) CPN:ViOuS)CDisplay X All Examples XSclcctcd Exampla

Display Example
Example

DISPLAY FRAME EXAMPLE FRAME

( Close X Display XOulcomc )( Store in Design ) — |

Figure 1. The Command Management Design Browser
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Citations related to Ockerman’s Design Browser, M.S. thesis research

This research resulted in a number of papers presented at international conferences, an M.S. thesis, an
invited chapter in a text documenting innovative research in recognition-primed decision making, and a
submitted journal paper.

Ockerman, J. J., Mitchell, C. M., & Potter, W. J. (1994). Case-based design browser to aid human
developers in reuse of previous design concepts. Proceedings of 1994 IEEE International Conference on
Systems, Man, and Cybernetics, 1757-1762.

Ockerman, J. J. & Mitchell, C. M. (1995). A case-based design browser to facilitate reuse of software
artifacts. 6th IFAC/IFIP/IFORS/IEA Symposium on Analysis Design, and Evaluation of Man-Machine
Systems, Cambridge, Massachusetts.

Ockerman, J. J. (1995). A case-based design browser to aid human developers reuse previous design
concepts. M.S. Thesis, Center for Human-Machine Systems, School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, Georgia, Atlanta, GA.

Mitchell, C. M., Morris, J. G., Ockerman, J. J., & Potter, W. J. (1996). Recognition primed decision making
as a technique to support reuse in software design. In C. E. Zsambok & G. A. Klein (Eds.), Naturalistic
decision making (pp. 305-318). New York, NY: Erlbaum.

Ockerman, J. J., & Mitchell, C. M. (1997). Case-based design browser to support software reuse. submitted
for publication.

Mitchell, C. M. (1998). Software reuse: Using recognition-primed decision making as a theory to design
aids for software reuse. Fourth Conference on Naturalistic Decision Making, Warrenton, VA, 114-123.

The Designer’s Associate

The Designer’s Associate is the second and major portion of this research. Building extensively on the
preliminary analysis, and the knowledge acquired and lessons learned during the design, implementation,
and evaluation of the CMS Design Browser, the Designer’s Associate attempts to provide an institutional
memory for all phases of the typical commercial design process (Figure 2). The Designer’s Associate is an
aid both to facilitate reuse and concurrently to incorporate a current, evolving design into a reuse library.

The Designer’s Associate promotes software reuse by making most of the design artifacts from
previous efforts both readily accessible and reusable. It provides tools to retrieve, reuse, adapt, and create a
new artifact and to archive it as part of the normal software design process. The approach underlying the
Designer’s Associate (DA) has two aspects. The first represents a commitment to a specific type of
software reuse practice, compositional reuse. The second represents a response to one of the key factors
that complicates software reuse, the lack of an effective institutional memory.

Prieto-Diaz identifies two software-engineering techniques: compositional and generative. In the
compositional case, a set of reusable artifacts captures design knowledge. Designers locate suitable
artifacts within the set and adapt them to current needs. Compositional techniques are amenable to a
recognition-based strategy, that is, a model such as Klein’s recognition-primed decision making and
Kolodner’s computational implementation of case-based reasoning and recognition. When employing a

recognition-based strategy, designers respond to the current situation in a manner that proved effective in
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similar, past situations For example, reusable artifacts can be linked to the types of situations (i.e., design

problems) for which they may be of use.

Artifact

Artifact

7

Means-end //
links \ Components

Artifact

equirements

Artifact

Means-end '.' //
links ’

/‘/ Artifact
Components
Source Code

Figure 2. The Structure of the Designer’s Associate and Components of a Typical Software
Engineering Process

Like the Design Browser, the Designer’s Associate includes the creation of a common conceptual
framework for designers within a large, loosely integrated design organization and stores previous design
experience in a hierarchic-heterarchic data base. The Designer’s Associate uses case-based retrieval
techniques to facilitate compositional reuse. Cases are classified within the case base in a manner that
attempts to anticipate the types of situations in which a given case might be of interest. In addition, the
Designer’s Associate, building on users’ needs for a design tool as well as a design library, incorporates
editors, notebooks, and description templates that enable designers to create a new design from extending
previous design artifacts or modifying them suitably to the needs at hand (Figure 3). The Designer’s
Associate lays the groundwork for an institutional memory in the form of a computer-based library of

design artifacts (e.g., operations concept, requirements specification, design specification, source code).

final.report.8.98 7



The

Designer’s Assembling and
Situation Associate Evaluating a
Assessment . Course of Action

DN

* Design Editor
* Design Notebook
* Description Editor

Conceptual Case-Based
Framework Memory

Figure 3. The Designer’s Associate as a Recognition-Primed Decision Making Model

The library spans multiple development efforts and contains each artifact in its entirety. It organizes
artifacts both hierarchically (e.g., by project, system, and subsystem) and as cases (i.e., as problem-solution
pairs). The Designer’s Associate implements this approach by providing a suite of tools for maintaining
such a library as a side effect of the normal design process. These tools provide the necessary capabilities
to recognize, reuse, adapt, or create artifacts central to the software design process and automatically
archive the result. Thus, the artifact library grows incrementally as a side effect of tool usage.

The architecture has three facets: case structure, case indexing and retrieval, and authoring and reuse
tools. The case structure describes how cases and design artifacts are organized within the library. The
case indexing and retrieval describes a vocabulary and strategy for case indexing as well as the mechanics
of case retrieval. The authoring and reuse tools describe key strategies for supporting the creation,
retrieval, reuse, adaptation, and archiving of design artifacts.

Like the Design Browser, the Designer’s Associate was implemented in proof-of-concept form for
NASA satellite ground control command management systems. An empirical evaluation was constructed in
order to answer two questions. First, do representative users find the Designer’s Associate a usable tool?
Second, does the Designer’s Associate have the potential to improve user ability to retrieve and reuse
existing design artifacts? Specifically, can it help designers with domain-specific experience, designers
without domain-specific experience, and managers with domain-specific experience but limited software
development skills? The evaluation included three groups of users: software designers familiar with the
domain and task, NASA technical monitors responsible for the software development in the domain,
though not necessarily familiar with the task, and professional software designers who were unfamiliar with
the domain and task but are representative of ‘experienced, new hires’ that software organizations often

include in teams for large software development projects.
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Overall, the results of this evaluation are quite interesting. For high-level performance measures,
e.g., efficiency by group collapsed across tasks, one might assume that, in general, that lack of experience
in the domain might hinder designers’ performance. If this were the case for groups of users for the
Designer’s Associate, then one would expect the efficiency of inexperienced designers to be significantly
less than that of designers with more experience. The data did not support this hypothesis. The overall
efficiency for Group 1(experienced designers) was 81%; Group 2 (inexperienced designers) was 75%; and
Group 3 (NASA technical monitors) was 78%. Although some differences between the mean efficiency of
each group was suggested by inspection, no significant difference was found at o0 = .05.

One interpretation of this result is that the Designer’s Associate lessens that handicap with regard to
software reuse tasks that might normally accompany inexperience in a given task domain. This result has
been replicated previously and may prove quite useful as the purpose of training, always an expensive
proposition for highly trained practitioners, seeks to lessen differences between experienced and
inexperienced experts. Moreover, current workforce turnover results in many ‘trained novices’—that is,
practitioners with domain-independent skills whose need is assistance to bridge rapidly the ‘experience
gap.” Systems that provide institutional memory and domain guidance, such as the Designer’s Associate,
can provide just this type of assistance.

Citations related to the Morris’ Designer’s Associate Ph.D. thesis research
As with the Design Browser, the Designer’s Associate project resulted in numerous papers presented at
international conferences, a book section, and, though still in progress, Mr. John G. Morris’ Ph.D. thesis,

with several related journal papers experts. Publications to date are listed below.

Morris, J. G., & Mitchell, C. M. (1995). A designer's associate for command and control software
development. Proceedings of the 1995 IEEE International Conference on Systems, Man, and Cybernetics,
Vancouver, BC, 3844-3849,

Morris, J. G., Mitchell, C. M., & Potter, W. J. (1995). A designer’s associate: Support for the design of
software for complex dynamic control systems. Proceedings of the 6th IFAC/IFIP/IFOR/SEA Symposium
on Analysis, Design, and Evaluation of Man-Machine Systems, Cambridge, MA, 827-832.

Mitchell, C. M., Morris, J. G., Ockerman, J. I., & Potter, W. J. (1996). Recognition primed decision making
as a technique to support reuse in software design. In C. E. Zsambok & G. A. Klein (Eds.), Naturalistic
decision making (pp. 305-318). New York, NY: Erlbaum.

Maorris, J. G., & Mitchell, C. M. (1997). A case-based support system to facilitate software reuse.
Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL,
232-237.

Mitchell, C. M. (1998). Software reuse: Using recognition-primed decision making as a theory to design
aids for software reuse. Fourth Conference on Naturalistic Decision Making, Warrenton, VA, 114-123.

Morris, I. G. (1998). Designer’s associate: Support for the design of software for complex dynamic control
systems. Ph.D. Thesis, Center for Human-Machine Systems Research, School of Industrial and Systems,
Engineering, Georgia Institute of Technology, in progress.
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Conclusions

This grant funded two interesting and provocative research projects both with respect to software
engineering and human-machine systems engineering. As software becomes increasingly integrated into
artifacts in both every-day life, such as coffee pots, VCRs, radios, cars, as well as the increasingly slippery
slope to safety-critical systems such as aircraft software, air traffic control, power plants, etc., the interface
between the designers and the resulting software has become a problem within the research domain of
human-machines systems engineering—not simply software engineering.

Both projects are running at NASA Goddard in their proof-of-concept form. Subsequent to the
evaluation, the Designer’s Associate has been converted to Java using Oracle to implement its case base.
The latter system will also be installed at Goddard for the benefit of both the research and development
communities.

These two projects showed that engineering approaches to solving human-machine systems
problems are very productive when applied in the domain of software engineering. The latter discipline
typically is domain-neutral; that is, software engineers know that they will be involved in a variety of
application domains, but typical software engineering training and tools rarely take domain understanding
and transition explicitly into account. Various research communities were very impressed with the obvious
success of Klein’s recognition-primed decision making model as a theory and the application of case-based
reasoning as a computational structure to help ‘trained novices’ bride the learning gap more quickly and to
facilitate software reuse. Both do so by building and supporting a common conceptual framework that is
consistent with an organization’s internal design process.

At least three research communities provided positive feedback on these efforts. First are the
naturalistic decision making researchers, who typically focus on real-time command-and-control
decisions; our work highlighted the importance of the design of software as well as its users. Second are
software-engineering researchers, who, as mentioned above, rarely address the problem of helping
designers with generic software engineering skills transition into new and complex application domains;
this is an essential component to ensure the integrity of safety-critical software. Third, and finally, the
human-machines systems engineering community has two cases in point of Rasmussen’s initially
bewildering statement that effective design and operation of safety-critical systems is a triad among the

designer, the computer-based controller, and the human operator/supervisory controiler.”

" My personal thanks to Ms. Dolly Perkins of NASA Goddard Space Flight Center. I suspected she
‘fooled’ Bill Potter, the NASA Goddard technical monitor for this research, and me. I thought the
proposed research entailed my ‘typical’ control room research concerning models of operators and teams,
and the use of such models for the design of ‘intelligent’ workstations, aids, and tutors. Bill always knew
he was interested in software and how to make develop strategies to make software better, cheaper, and
feaster. I was surprised to find myself in the bowels of software engineering and software reuse. I think,
like many other naive persons, that I began by thinking software reuse, meant ‘code reuse.” This research
has taught me many things, among the most important is that source code is the last place to start if the
intention is to really accomplish reuse on the part of software designers and to engender a culture of reuse
within an organization. Reuse must permeate the whole design process both conceptually and practically.
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Ockerman, J. J. & Mitchell, C. M. (1995). A case-based design browser to facilitate reuse of software
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Systems, Cambridge, Massachusetts.

Ockerman, J. J. (1995). A case-based design browser to aid human developers reuse previous design
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for publication.
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Systems Research, School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta,
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