Compression Strength of Composite Primary Structural Components

Final Report

Eric R. Johnson
Principal Investigator

Performance Period: November 1, 1984 to December 31, 1997

NASA Grant NAG-1-537

Aerospace and Ocean Engineering Department
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0203

July, 1998

Technical Monitor: Dr. James H. Starnes, Jr., Head
Structural Mechanics Branch, M/S 190
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23681-0001
Introduction

Research conducted under NASA Grant NAG-1-537 focussed on the response and failure of advanced composite material structures for application to aircraft. Both experimental and analytical methods were utilized to study the fundamental mechanics of the response and failure of selected structural components subjected to quasi-static loads. Most of the structural components studied were thin-walled elements subject to compression, such that they exhibited buckling and postbuckling responses prior to catastrophic failure. Consequently, the analyses were geometrically nonlinear.

Structural components studied were dropped-ply laminated plates, stiffener crippling, pressure pillowing of orthogonally stiffened cylindrical shells, axisymmetric response of pressure domes, and the static crush of semi-circular frames. Failure of these components motivated analytical studies on an interlaminar stress postprocessor for plate and shell finite element computer codes, and global/local modeling strategies in finite element modeling. These activities are summarized in the following section. References to literature published under the grant are listed on pages 5 to 10 by a letter followed by a number under the categories of journal publications, conference publications, presentations, and reports. These references are indicated in the text by their letter and number as a superscript.

Research Activities

Dropped-ply laminated plates Dropping plies is a method of tailoring the stiffness of laminates, and dropping plies is common in airplane structures. For example, plies are dropped from root to tip in wing skins at discrete locations along the span. Dropped plies results in an abrupt thickness taper. The abrupt thickness taper can reduce the strength of a dropped-ply laminate below the strength of its thin section alone. The mode of failure initiation is usually delamination at the ply termination. Curry, et al.J2, C2, P2, R1 conducted experiments on dropped-ply laminated plates fabricated from graphite-epoxy tape in tension and compression, and found that the compression strength reduction due to the dropped plies is larger than the tensile strength reduction. Curry, et al.J2, C2, P2, R1 analyzed the dropped-ply specimens that exhibited a linear response to the first major failure event, and corroborated that delamination at the drop ply site is the critical mode. The increase in stiffness along the load path from the thin to thick section correlated very closely with the reduction in strength. Dropped-ply compression specimens tested by Curry, et al., that delaminated at the ply termination in postbuckling were analyzed by Dávila and JohnsonJ3, C7, P5, and Johnson and DávilaC5. A \([90_2]\) dropped-ply laminate tested in compression by Curry failed in postbuckling near a nodal line in the thin section and not at the ply termination. The \([90_2]\) dropped-ply laminate was termed the soft insert, since the stiffness along the load path did not change significantly from the thin to thick section. Barlas and JohnsonR7 analyzed the nonlinear response of this specimen with the soft insert and determined that the interlaminar shear stress component tangent to free edge is responsible for delamination in the 45/-45 interface.

Stiffener crippling Stiffened aircraft panels subject to compression collapse in postbuckling when the stiffener cross section exhibits a local distortion, which is called local crippling in the aircraft structures literature. Tests and analyses of the response and failure of graphite-epoxy stiff-
ener sections were conducted by Bonanni, et al. Some of these crippling specimens failed by delamination at the free edges of the flanges. Barlas and Johnson used a global/local finite element model combined with a variable complexity modeling strategy to analyze free edge delamination as a mode of crippling in graphite-epoxy stiffeners. It was determined that nodal line lines and inflection points in the out-of-plane displacement at the free edge of the flange are delamination critical sites. The interlaminar shear stress tangent to the free edge is an extremum at the nodal lines and inflection points.

Interlaminar stress postprocessor In the stiffener crippling research, many test specimens failed during their geometrically nonlinear response by delamination. The analyses conducted at the time of this research used the shell finite element code STAGS. By its inherent assumptions, shell theory neglects stress components in the thickness direction with respect to stress components in the in-plane directions. Hence, since delamination is caused by the stress components in the thickness direction, it was not possible to use STAGS results to predict delamination. A series of studies conducted by Bonanni, et al., Johnson and Bonanni, Foster and Johnson, and Foster were undertaken to predict interlaminar stresses based on finite element solutions to plate and shell models. Formulas were derived for the thickness direction stresses in Ref. R2 by integrating the three-dimensional elasticity equilibrium equations in the thickness coordinate, and assuming that the in-plane stresses are distributed linearly in the thickness coordinate in each ply as predicted by plate theory. These formulas require displacement derivatives of the order $2p$, where p is the highest order derivative of the displacement in the strain energy functional. Derivatives of order $2p$ are not represented in a finite element formulation. Interpolation of finite element data over a subdomain of elements using Fourier Series and Chebyshev polynomials was attempted to estimate derivatives of order $2p$. Also, we implemented a spectral method that used a collocation solution to the governing Euler equations of plate theory over subdomain subject to essential boundary condition data obtained from the finite element solution. It was found that finite element displacements must have an accuracy of six significant figures to get less than a 10% error in the forth derivative of the out-of-plane displacement (the $2p$ derivative in this case) using Chebyshev interpolation. So interpolation over a subdomain is not likely to be reliable method to estimate interlaminar stresses. Also, it was found that the spectral method and the interpolation formulas exhibited the same degree of sensitivity to the sampled finite element data in regard to computation of order $2p$ derivatives. Hence, the extra effort to compute the spectral solution was not warranted.

Initial postbuckling of unsymmetrically laminated plates Haftka and Johnson presented an analysis of the initial postbuckling response of unsymmetrically laminated, cross-ply, rectangular plates. Unsymmetrically laminated plates exhibit asymmetric bifurcation buckling behavior from their flat, pre-buckled equilibrium configuration. Special in-plane load distributions and a special reference plane are necessary to achieve a pre-buckling response for which the unsymmetrically laminate plate remains flat. Johnson and Haftka extended the analysis to include off-axis plies and to enforce straight edges in postbuckling. There is only a mild decrease in load after buckling for the plates examined in these studies.

Pressure pillowing of an orthogonally stiffened cylindrical shell Johnson and Rastogi used a Fourier analysis determine the response of a repeating unit of a frame-and-stringer stiffened cylindrical shell subject to internal pressure. The stringer is modeled as a
beam-column, and the frame is modeled as a ring. The stiffeners prevent the shell, or skin, from radial expansion in the vicinity of the stiffeners, and this deformation pattern of the skin is called “pillowing”. Skin pillowing is reduced in a geometrically nonlinear analysis with respect to linear analysis. The Fourier Series for interacting normal load intensities between the stiffeners and the shell at stiffener junction does not converge in either the linear or geometrically nonlinear analysis. However, the radial resultant of the interacting normal load distributions does converge with a small number of terms retained in the series. This radial resultant at stiffener junction increases in magnitude in geometrically nonlinear analysis relative to the linear analysis. Hence, the stiffeners resist an increased portion of internal pressure compared to the shell in the nonlinear analysis with respect to the linear analysis.

Rastogi and Johnson15, 12 extended the linear analysis to include an asymmetrical section ring, as the asymmetric open section frame is common in a fuselage structure. The analysis included the warping of the ring's cross section due to torsion. Four different models are compared: classical theory with and without warping, and a transverse shear deformation theory with and without warping. Inclusion of transverse shear deformations increases joint flexibility by decoupling the ring's torsional rotation from stringer's bending rotation. Warping deformation of the ring accounts for essentially all of the torque carried by the ring with the St. Venant portion of the torque being negligible. Shell normal displacement and in-plane normal strains are not effected very much by the different theories.

Axisymmetric response of composite pressure domes On a large transport aircraft the fuselage is closed at the aft end by a dome-shaped pressure bulkhead. There is an abrupt change in curvature at the joint between the fuselage and the dome, which induces a stress raiser. The objective of this research is to use dome geometry and laminated composite wall stiffnesses to minimized the stress raiser at the joint between the cabin shell and aft pressure bulkhead. Steinbrink and Johnson13 derived the governing equations for the linear response of axisymmetric, composite, doubly curved shells subject to internal pressure in first-order state vector form. The state vector form has the advantage of computing all of the shell resultants and their derivatives as part of the solution procedure. Hence, the higher order derivatives required in the interlaminar stress formulas are obtained directly, enabling evaluation of the delamination mode of failure. The linear state vector equations are solved by direct numerical integration using a multiple shooting technique. The geometrically nonlinear governing equations for the axisymmetric response of the composite dome under hydrostatic pressure were derived as well, and their numerical solution is in progress.

Solid-to-shell transition finite element The research on failure initiation by delamination of dropped-ply laminates and composite stiffener crippling requires the computation of interlaminar stresses from a finite element solution to a plate or shell model. As discussed above, efforts to develop a postprocessor to compute interlaminar stresses from a finite element solution were not particularly encouraging. An alternative method is to use a finite element model that contains both two-dimensional plate and shell elements and three-dimensional solid elements. The solid elements are located in the regions in which interlaminar stress raisers occur; for example, at ply terminations and at free edges, while plate/shell elements are used everywhere else. A model containing all solid elements would result in a prohibitively large number of equations to solve, and is not warranted based on the mechanics of the response. Geometrically nonlinear analyses required in postbuckling add to the computational burden. Consequently a finite element model containing both shell and solid elements is attractive. However, shell and solid elements are not
compatible, so that transition elements need to be developed to connect the shell and solid
elements, or multipoint constraints can be used to implement shell and solid elements in one model.
Transitions elements are easier to implement by the user of the code, particularly for large com-
plex structures. Dávila and JohnsonR4, R5, R6 developed a solid-to-shell transition element that
connects shell and solid elements for laminated wall construction by degenerating a twenty-noded
solid element using the kinematic constraints of shell theory. The shell nodes of the transition ele-
ment do not have to be situated on the element itself, which permits stacking of the transition ele-
ments through the thickness of the laminate, and connecting all of them to one shell element.
Dávila and JohnsonJ3, C7 used this transition element to investigate delamination at the ply termi-
nation site in postbuckled, dropped-ply laminates. Barlas and JohnsonR7 used this transition ele-
ment in the postbuckled dropped-ply laminate containing the soft [90\textsubscript{2}] insert which failed by
transverse shear near a nodal line in the thin section of the plate. Also, Barlas and JohnsonC9, P11
used this transition element to investigate free edge delamination of the flange of a postbuckled
stiffener section. SchultzP18 improved the transition element by relaxing the inextensional normal
assumption of shell theory while retaining kinematic continuity of the average out-of-plane dis-
placement between the shell and transition element.

Static crush tests of optimized semi-circular composite frames Vertical drop testing of trans-
port aircraft fuselage sections indicate that the frames play a major role in the process of absorb-
ing the impact energy in the crushing of the substructure below the main passenger deck.
Subsequent static crush tests of scaled frames fabricated from graphite-epoxy tape show that they
tend to absorb less energy that their aluminum counterparts due to the brittle-type failure modes of
the composite compared to failure by ductile yielding of the aluminum. A mathematical model
developed to optimize open section curved composite frames under static crush loading for
improved energy absorption is used to design previously fabricated graphite-epoxy frames not
optimized for energy absorption. Flanges were resized on three of these previously fabricated
semicircular, I-section, frames. Static test results of the redesigned frames are compared to tests
results of the nominally equivalent original frames. The tests results from the redesigned frames
show an improved energy absorption relative to their original counterparts, and that the mathemat-
ical model predicts the correct sequence and location of failure events. However, the mathematical
model did not predict the magnitudes of the force and displacement at the first major failure event
that occurred in the test. See the paper by Perez, Johnson, and BoitnottC14, P16.
Publications

Journal Papers

Conference Papers

Presentations

(Speaker indicated by boldface font.)

Reports

Students Supported by the Grant

 Thesis Title: Effect of Ply Drop-Offs on the Strength of Graphite-Epoxy Laminates
 Initial Employer: Rohr Industries, Inc., Chula Vista CA

 Thesis Title: Local Crippling of Composite Stiffener Sections
 Initial Employer: David Taylor Research Center, Bethesda MD
 (Supported in part by NASA Grant NAG-1-343.)

 Thesis Title: Computation of Interlaminar Stresses from Finite Element Solutions to Plate Theory
 Initial Employer: McDonnell Douglas Space Systems Co., Huntington Beach CA.

 Dissertation Title: Delamination Initiation in Postbuckled Dropped-Ply Laminates
 Initial Position: National Research Council Resident Research Associate, NASA Langley Research Center, Hampton VA

5. F. Aylin Barlas, Master of Science in Aerospace Engineering, June 1993
 Thesis Title: Variable Complexity Modeling of Postbuckled Stiffeners for Delamination Initiation
 Initial Employer: Defence Technologies, Inc., Turkey

 Dissertation Title: Load Transfer in the Stiffener-to-Skin Joints of a Pressurized Fuselage
 Initial Employer: Ad Tech Systems Research, Inc., Beavercreek, OH
 Dissertation Title: Axisymmetric Response of Composite Pressure Domes by the Multiple
 Shooting Method
 Initial Employer: Gannon University, Mechanical Engineering Department,
 Erie, Pennsylvania

 Dissertation Title: Design and Test of Semicircular Composite Frames Optimized for
 Crashworthiness

 Thesis Title: A Shell-to-Solid Transition Finite Element for Improved Interlaminar Stress
 Response in Composite Laminates