DEPARTMENT OF MATHEMATICS AND STATISTICS
COLLEGE OF SCIENCES
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529-0247

A MULTIGROUP METHOD FOR THE CALCULATION OF NEUTRON
FLUENCE WITH A SOURCE TERM

By
Dr. J. H. Heinbockel, Principal Investigator
And
M. S. Clowdsley, Graduate Student
Department of Mathematics and Statistics

FINAL REPORT
For the period ending September 30, 1998

Prepared for
NASA Langley Research Center
Attn.: Judy L. Shinn
Technical Officer
Mail Stop 188B
Hampton, VA 23681-0001

Under
NASA Grant No. NCC1-42
ODURF Project No. 171941

August 1998
A MULTIGROUP METHOD FOR THE CALCULATION OF NEUTRON FLUENCE WITH A SOURCE TERM

By
Dr. J. H. Heinbockel, Principal Investigator
And
M. S. Clowdsley, Graduate Student
Department of Mathematics and Statistics

FINAL REPORT
For the period ending September 30, 1998

Prepared for
NASA Langley Research Center
Attn.: Judy L. Shinn
Technical Officer
Mail Stop 188B
Hampton, VA 23681-0001

Under
NASA Grant No. NCC1-42
ODURF Project No. 171941

Submitted by
Old Dominion University Research Foundation
800 West 46th Street
Norfolk, VA 23508

August 1998
A Multigroup Method for the Calculation of Neutron Fluence with a Source Term

by J.H. Heinbockel*, M.S. Clowdsley**

*Professor, Old Dominion University, Norfolk, VA 23529-0077, U.S.A.
**Graduate Student, Old Dominion University, Norfolk, VA 23529-0077, U.S.A.

Introduction

Previous accomplishments resulting from the research Grant NCC 1-42 have been numerous. These accomplishments are summarized in the appendices A, B and C of this report. The Appendix A lists publications that have resulted from the varied research efforts associated with this grant. The Appendix B lists graduate students who have been associated with this grant, their research efforts and their degree accomplishments. The Appendix C is a summary of efforts involving Green's Functions.

Current research on Grant NCC 1-42 involves the development of a multigroup method for the calculation of low energy evaporation neutron fluences associated with the Boltzmann equation. This research will enable one to predict radiation exposure under a variety of circumstances. Knowledge of radiation exposure in a free-space environment is a necessity for space travel, high altitude space planes and satellite design. This is because certain radiation environments can cause damage to biological and electronic systems involving both short term and long term effects.

By having apriori knowledge of the environment one can use prediction techniques to estimate radiation damage to such systems. Appropriate shielding can be designed to protect both humans and electronic systems that are exposed to a known radiation environment. This is the goal of the current research efforts involving the multi-group method and the Green's function approach.

Reference [1] presents a short history of the study of the propagation of space radiation through matter, the development of space-radiation physics and protection techniques. This reference outlines major radiation studies and their results. The accurate prediction techniques for dose fields requires either Monte Carlo type solutions, which require a great amount of computational time, or a study of the Boltzmann equation under various cir-
circumstances. The Boltzmann equation does not lend itself readily to analytical solutions and so various types of numerical solutions have been developed. One such numerical solution is the HZETRN code developed by Wilson et.al., reference [1]. This code has the ability to predict dose fields in simulated tissue behind a shield for high charge and high energy particles. Flux predictions by HZETRN are based upon a straight-ahead transport of evaporation neutrons with one dimensional angular transport. In this research we investigate the transport of evaporation neutrons through a shield-target environment based upon source terms generated by the HZETRN code.

Formulation of Transport Equations

We define the differential operator

\[B[\phi] = \left[\frac{\partial}{\partial x} - \frac{\partial}{\partial E} S_j(E) + \sigma_j(E) \right] \phi(x, E) \]

\[= \frac{\partial \phi(x, E)}{\partial x} - \frac{\partial}{\partial E} [S_j(E) \phi(x, E)] + \sigma_j(E) \phi(x, E) \]

and consider the Boltzmann equation from reference [1]

\[B[\phi_j] = \sum_k \int_0^\infty f_{jk}(E, E') \phi_k(x, E') dE' \]

where \(\phi_j \) is the differential flux spectrum for the type \(j \) particles (\(j = n \) neutrons or \(j = p \) protons), \(S_j(E) \) is the stopping power of the type \(j \) particles and \(\sigma_j(E) \) is the total cross section. The term \(f_{jk}(E, E') \) is a macroscopic differential energy cross section for redistribution of particle type and energy. We write

\[f_{jk}(E, E') = \sum_\beta \rho_\beta \sigma_\beta(E') f_{jk,\beta}(E, E') \]

where \(f_{jk,\beta}(E, E') \) is an elastic collision term, \(\sigma_\beta \) is a microscopic cross section and \(\rho_\beta \) is the number density of \(\beta \) type atoms per unit mass. The collision terms are expressed as

\[f_{jk,\beta} = f^{e}_{jk,\beta} + f^{d}_{jk,\beta} \]

where \(f^{e}_{jk,\beta} \) represents evaporation terms and \(f^{d}_{jk,\beta} \) represents direct cascading terms. The evaporation process dominates over the low energies (\(E < 25 \text{ Mev} \)) and the direct cascading effect dominates over the high energy range (\(E > 25 \text{ Mev} \)). The equation (2) is written as

\[B[\phi_j] = \sum_k \int_0^\infty \sum_\beta \rho_\beta \sigma_\beta(E') (f^{e}_{jk,\beta} + f^{d}_{jk,\beta}) \phi_k(x, E') dE'. \]
For $j = n$ we write equation (3) in the operator form

$$B[\phi] = I_e[\phi] + I_d[\phi] + I_e[\phi_p] + I_d[\phi_p]$$

(4)

where $\phi = \phi_n$ and I_e, I_d are integral operators. Let ϕ_d denote the solution to the transport equation

$$B[\phi_d] = I_d[\phi_d] + I_d[\phi_p]$$

(5)

which is valid over all energy ranges. The solution to equation (4) is then $\phi = \phi_e + \phi_d$ where ϕ_e is the neutron flux due to evaporation and ϕ_d represents neutron flux due to direct cascading effects. The equation (4) can be expressed in the form

(6)

Using the assumption that the numerical solution to equation (5) is readily obtainable from the HZETRN code, reference [6], and that $I_d[\phi_e] \approx 0$, the equation (6) reduces to

$$B[\phi_e] = I_e[\phi_e] + I_e[\phi_d] + I_e[\phi_p]$$

(7)

The stopping power $S_j(E) = 0$ for neutrons and so the equation (7) reduces to the integro-differential transport equation with source term

$$\left[\frac{\partial}{\partial x} + \sigma(E)\right] \phi_e(x, E) = \sum_{\beta} \int_E^{E/\alpha_\beta} f_{s, \beta}(E, E')\phi_e(x, E') \, dE' + g(E, x)$$

(8)

which represents the steady state low energy neutron fluence $\phi_e(x, E)$ at depth x and energy E. The various terms in equation (8) are energy E with units of (Mev), depth in medium is x with units of (g/cm²), $\phi_e(x, E)$ (#particles/cm² – Mev) is the fluence and $g(E, x) = I_e[\phi_d] + I_e[\phi_p]$ (#particles/g – Mev) is a source term. In addition, the equation (8) contains the scattering terms

$$f_{s, \beta} = \rho_{\beta}\sigma_\beta(E')f_{j,k,\beta}^s(E, E')$$

with units of cm²/g – Mev. The limits of integration $(E, E/\alpha_\beta)$ represent cut off values for neutron production because secondary neutrons produced have approximately the same energy as the projectile primary neutrons. The term α_β is defined as the ratio

$$\alpha_\beta = \left(\frac{A_{T_\beta} - 1}{A_{T_\beta} + 1}\right)^2$$

(9)
and is a constant less than 1, where A_T is the atomic weight of the ith type of atom being bombarded. The quantity σ has units of (cm2/g) is a macroscopic cross section given by

$$\sigma = \sum_j \rho_j \sigma_j$$

(10)

where ρ_j is the number of atoms per gram and σ_j is a microscopic cross section in units of cm2/atom. The reference [2] provides approximate Maxwellian averages of cross section values in barns. These values are listed in Table 1 along with other parameters of interest for selected elements.

Other units for equation (8) are obtained from the previous units by using the scale factor representing the density of the material in units of g/cm3.

<table>
<thead>
<tr>
<th>Table 1. Parameter Values for Selected Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Lithium</td>
</tr>
<tr>
<td>Carbon</td>
</tr>
<tr>
<td>Aluminium</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Iron</td>
</tr>
<tr>
<td>Lead</td>
</tr>
</tbody>
</table>

* Maxwellian averages (elastic)

Mean Value Theorem

Throughout the following discussions we employ the following mean value theorem for integrals.

MeanValueTheorem For $\phi(x), f(x)$ continuous over an interval $a \leq x \leq b$ such that (i) $\phi(x)$ does not change sign over the interval (a, b), (ii) $\phi(x)$ is integrable over the interval (a, b), and (iii) $f(x)$ is bounded over the interval (a, b), then there exists at least one point ξ such that

$$\int_a^b f(x)\phi(x) \, dx = f(\xi) \int_a^b \phi(x) \, dx \quad a \leq \xi \leq b$$
Multi-group method

We consider the case $\beta = 1$ which represents neutron penetration into a single element and let $\phi_e = \phi$. We integrate the equation (8) from E_i to E_{i+1} with respect to the energy E to obtain

$$
\int_{E_i}^{E_{i+1}} \frac{\partial \phi(x, E)}{\partial x} \, dE + \int_{E_i}^{E_{i+1}} \sigma(E)\phi(x, E) \, dE = I_i + \xi_i \quad (11)
$$

where

$$
I_i = \int_{E_i}^{E_{i+1}} \int_{E_i}^{E/\alpha} f_s,\beta(E', E')\phi(x, E') \, dE'dE \quad (12)
$$

and

$$
\xi_i = \int_{E_i}^{E_{i+1}} g(E, x) \, dE. \quad (13)
$$

As a first approximation test case we use the approximate source and scattering terms

$$
g = g(E, x) = KEe^{-E/T}, \quad f_s,\beta(E', E') = \frac{\sigma(E')\tau e^{-\tau(E'-E)}}{1-e^{-(1-\alpha)\tau E'}}
$$

so that the equation (13) is easily integrated to obtain

$$
\xi_i = KT \left(E_ie^{-E_i/T} - E_{i+1}e^{-E_{i+1}/T} \right) + KT^2 \left(e^{-E_i/T} - e^{-E_{i+1}/T} \right). \quad (14)
$$

We define the quantity

$$
\Phi_i(x) = \int_{E_i}^{E_{i+1}} \phi(x, E) \, dE \quad (15)
$$

and write the equation (11) in terms of the $\Phi_i(x)$ terms as follows. In the first term in equation (11), we interchange the order of integration and differentiation to obtain

$$
\int_{E_i}^{E_{i+1}} \frac{\partial \phi(x, E)}{\partial x} \, dE = \frac{d\Phi_i(x)}{dx} \quad (16)
$$

Using one of the several mean value theorems for integrals, the second term in equation (11) can be expressed as

$$
\int_{E_i}^{E_{i+1}} \sigma\phi(x, E) \, dE = \bar{\sigma} \Phi_i(x) \quad (17)
$$

where $\bar{\sigma} = \sigma(E_i + \theta(E_{i+1} - E_i))$, for some value of θ between 0 and 1.

For the term I_i in equation (12) we interchange the order of integration as illustrated in the figures 1(a)(b). The integration of equation (12) depends upon the energy partition selected. For example, the figure 1(b) illustrates an energy partition where $E_{i+1} < E_i/\alpha$ and in this case we can write the equation (12) as
\[I_i = \int_{E' = E_i}^{E_i + 1} \int_{E = E_i}^{E'} H \, dE \, dE' + \int_{E' = E_{i+1}}^{E_i} \int_{E = E_i}^{E'} H \, dE \, dE' + \int_{E' = E_i + 1}^{E_{i+1}} \int_{E = E_i}^{E'} H \, dE \, dE', \quad (18) \]

where \(H = f_s(E,E')\phi(x,E') \). The figure 1(c) depicts the case where \(E_{i+1} = E_i/\alpha \) exactly for all \(i \). In this special case the equation (12) reduces to

\[I_i = \int_{E' = E_i}^{E_i + 1} \int_{E = E_i}^{E'} H \, dE \, dE' + \int_{E' = E_{i+1}}^{E_i + 1} \int_{E = E_i}^{E'} H \, dE \, dE'. \quad (19) \]

The integrand \(H \) can be integrated with respect to \(E \) and the results expressed in terms of the quantities

\[F(b,a) = \int_a^b \tau e^{-\tau} \, dE = e^b - e^a \]

and

\[G(E') = \frac{\sigma(E') e^{-\tau E'}}{1 - e^{-(1-\alpha)\tau E'}} \]

and we can write equation (19) in the form

\[I_i = \int_{E' = E_i}^{E_i + 1} G(E') F(E',E_i) \phi(x,E') \, dE' \]
\[+ \int_{E' = E_{i+1}}^{E_i + 1} G(E') F(E_{i+1},\alpha E') \phi(x,E') \, dE'. \quad (20) \]

To illustrate the basic idea behind the multigroup method we use one of the many mean value theorems for integrals and write the equation (20) in the form

\[I_i = G(E_i^*) F(E_i^*,E_i) \Phi_i + G(E_{i+1}^*) F(E_{i+1}, \alpha E_{i+1}) \Phi_{i+1}. \]

where \(E_i < E_i^* < E_i/\alpha \) and \(E_{i+1} < E_{i+1}^* < E_{i+1}/\alpha \). The special partitioning of the energy as illustrated in the figure 1(c) enables us to obtain from the equation (11) a system of ordinary differential equations

\[\frac{d}{dx} \begin{bmatrix} \Phi_0 \\ \Phi_1 \\ \vdots \\ \Phi_{N-2} \\ \Phi_{N-1} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N-1,1} & a_{N-1,2} & \cdots & a_{N-1,N} \\ a_{N-1,N} & a_{N,1} & \cdots & a_{N,N} \end{bmatrix} \begin{bmatrix} \Phi_0 \\ \Phi_1 \\ \vdots \\ \Phi_{N-2} \\ \Phi_{N-1} \end{bmatrix} + \begin{bmatrix} \xi_0 \\ \xi_1 \\ \vdots \\ \xi_{N-2} \\ \xi_{N-1} \end{bmatrix} \quad (21) \]

where \(a_{ii} = G(E_i^*) F(E_i^*,E_i) - \overline{\sigma} \) and \(a_{i,i+1} = G(E_{i+1}^*) F(E_{i+1}, \alpha E_{i+1}) \). We further assume that for large values of \(N \) that \(\Phi_i = 0 \) for all \(i \geq N \). This gives rise to the system of ordinary differential equations

\[\frac{d\overline{y}}{dx} = A \overline{y} + \overline{b} \]

where
subject to the initial conditions $\vec{y}(0) = \vec{0}$. Here \vec{y} is the column vector \(\text{col}(\Phi_0, \Phi_1, \ldots, \Phi_{N-1}) \), \(A \) is an \(N \times N \) upper triangular matrix and \vec{b} is the column vector \(\text{col}(\xi_0, \xi_1, \ldots, \xi_{N-1}) \).

In a similar manner the integrals in equation (18) can be evaluated for other kinds of energy partitioning and we will obtain a system of equations having the form of equation (21). However, for these other energy partitions the structure of the \(N \times N \) square matrix \(A \) will change. It remains upper triangular but with more off diagonal elements which depend upon the energy partition. For our purposes the system of equations (21) will be used to discuss some of the problems associated with the multigroup method.

We construct the energy partition

\[\{ E_0, E_0/\alpha, E_0/\alpha^2, \ldots, E_0/\alpha^N \} , \]

where \(E_0 = 0.1 \text{ Mev} \), for the selected elements of lithium, aluminum, and lead. The table 2 illustrates integer values of \(N \) necessary to achieve energies greater than 30 Mev.

<table>
<thead>
<tr>
<th>Element</th>
<th>(\alpha)</th>
<th>(N)</th>
<th>(0.1/\alpha^N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium</td>
<td>0.563</td>
<td>10</td>
<td>31.53</td>
</tr>
<tr>
<td>Aluminium</td>
<td>0.862</td>
<td>39</td>
<td>32.75</td>
</tr>
<tr>
<td>Lead</td>
<td>0.981</td>
<td>298</td>
<td>30.38</td>
</tr>
</tbody>
</table>

For energy partitions where \(E_{i+1} < E_i/\alpha \) the values of \(N \) will be larger and when \(E_{i+1} > E_i/\alpha \) the values of \(N \) will be smaller. The cases where \(E_{i+1} > E_i/\alpha \) give rise to situations like that illustrated in the figure 1(d). In this figure the area \(A_1 \) is associated with the integral defining \(\Phi_i \) and the area \(A_2 \) is a remaining area associated with an integral which is some fraction of the integral defining \(\Phi_{i+1} \) which is outside the range of integration and so some approximation must be made to define this fractional part. This type of partitioning produces errors, due to any approximations, but it has the advantage of greatly reducing the size of the \(N \times N \) matrix \(A \).

The case of neutron penetration into a composite material gives rise to the case where \(\beta > 1 \) in the equation (8). In this special case the equation (12) becomes

\[I_i = \sum_j \int_{E_{i}}^{E_{i+1}} \int_E^{E/\alpha_j} f_{s_j}(E, E') \phi(x, E') dE' dE. \]
We select $\alpha = \max(\alpha_1, \alpha_2, \ldots, \alpha_j)$ and construct the energy partition where $E_{i+1} = E_i/\alpha$. We then obtain a system of differential equations having the upper triangular form

$$\begin{bmatrix}
 \Phi_0 \\
 \Phi_1 \\
 \vdots \\
 \Phi_{N-1}
\end{bmatrix}
= \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\
 a_{22} & a_{23} & \cdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{N2} & a_{N3} & \cdots & a_{NN}
\end{bmatrix}
\begin{bmatrix}
 \Phi_0 \\
 \Phi_1 \\
 \vdots \\
 \Phi_{N-1}
\end{bmatrix}
+ \begin{bmatrix}
 \xi_0 \\
 \xi_1 \\
 \vdots \\
 \xi_{N-1}
\end{bmatrix}$$

Energy Partition for Finite Values of N

Consider the case of neutron fluence in a single shield material with the energy partitioning as illustrated in the figure 1(c). This is the case where successive energy values are given by $E_{i+1} = E_i/\alpha$ for all values of the index i as i ranges from 0 to N. We select a finite value for N, say $N = 10$, and select E_0 large enough such that the assumption $\Phi_N = 0$ holds true. The system of equations (21) is then a closed system and we can solve for the terms $\{\Phi_0, \ldots, \Phi_{N-1}\}$. If we march backwards N energy partitions from the original starting value E_0, we obtain a new value for E_0, such that the final value Φ_N equals the old starting value Φ_0. The term $a_{N,N+1}\Phi_N$ in the equation (21) is now known and can be moved into the right hand side of the system along with the ξ_{N-1} term. Continuing in this manner we can define groups of energy partitions of size N, where in each group $E_{i+1} = E_i/\alpha$ are the energy values considered. The starting value E_0 changes for each group and, except for the highest energy group, we will have the value of Φ_0 from a higher group equal to the value of Φ_N from the lower energy group. The grouping scheme is illustrated in the Figure 2. In this way, we can break a large energy partitioning into groups of N equations, where the highest energy group of equations is solved first and the lowest group of equations is solved last. The nonzero elements $a_{i,j}$ for the matrix A in equation (22) consists of the diagonal elements and the first diagonal above the main diagonal. This gives the values

$$a_{ii} = G(E_i^*F(E_i^*, E_i) - \bar{\sigma}$$

$$a_{i,i+1} = G(E_{i+1}^*F(E_{i+1}, \alpha E_{i+1}^*)$$

for $i = 1, \ldots, N$ where E_i^* and E_{i+1}^* are selected mean values associated with the lower and upper triangles illustrated in the figure 1(c). These mean values vary with energy and were selected as

$$E_i^* = E_i + \theta_1(E_{i+1} - E_i)$$

$$E_{i+1}^* = E_{i+1} + \theta_2(E_{i+2} - E_{i+1})$$
where
\[
\theta_1 = \begin{cases}
\gamma_1 + m_{11}(E - E_{11}) - \delta_1 & E > E_{11} \\
\gamma_1 + m_{12}(E - E_{11}) - \delta_1 & E_{22} < E < E_{11} \\
\gamma_3 + m_{13}(E - E_{22}) - \delta_1 & E < E_{22}
\end{cases}
\]
and
\[
\theta_2 = \begin{cases}
\gamma_2 + m_{21}(E - E_{11}) & E > E_{11} \\
\gamma_2 + m_{22}(E - E_{11}) & E_{22} < E < E_{11} \\
\gamma_4 + m_{23}(E - E_{22}) & E < E_{22}
\end{cases}
\]

where
\[
\begin{align*}
\gamma_1 &= 0.93 & m_{11} &= 0.0030485 & m_{21} &= 0.004355 \\
\gamma_2 &= 0.90 & m_{12} &= 0.2490258 & m_{22} &= 0.249026 \\
\gamma_3 &= 0.30 & m_{13} &= -0.3937186 & m_{23} &= -0.255920 \\
\gamma_4 &= 0.27 & E_{11} &= 3.037829 & E_{22} &= 0.5079704
\end{align*}
\]
and \(\delta_1\) has the values, 0.0 for lead, 0.02 for aluminum, and 0.075 for lithium. In addition, we set \(\theta_3 = \theta_1\) and \(\theta_4 = \theta_2\) because of the symmetry of the triangles involved in the calculations. The above values of \(\theta\) for the mean value theorems were determined by trial and error so that the multigroup curves would have the correct shape. These selections for the mean values are not unique.

Solution Method Shield Material

We consider the energy partition \(E_{i+1} = E_i/\alpha\) and the resulting system of equations (21). The solution of this system of equations is obtained by first solving the last equation of the system. This equation has the form
\[
\frac{d\Phi_{N-1}}{dx} = a_N\Phi_{N-1} + \xi_{N-1}(x), \quad \Phi_{N-1}(0) = 0
\]
and has the solution
\[
\Phi_{N-1}(x) = e^{a_Nx} \left(\Phi_{N-1}(0) + \int_0^x \xi_{N-1}(s)e^{-a_Ns} \, ds \right)
\]
which implies
\[
\Phi_{N-1}(x_0 + \Delta x) = e^{a_N\Delta x}\Phi_{N-1}(x_0) + e^{a_N(x_0+\Delta x)} \int_{x_0}^{x_0+\Delta x} \xi_{N-1}(s)e^{-a_Ns} \, ds.
\]

We then consider each of the remaining equations above the last equation. A typical equation from this stack has the form
\[
\frac{d\Phi_i}{dx} = a_i\Phi_i + f_i(x), \quad \Phi_i(0) = 0
\]

9
where \(f_i(x) = \xi_i(x) + a_{i,i+1} \Phi_{i+1}(x) \) is known since \(\Phi_{i+1}(x) \) is calculated before \(\Phi_i(x) \). This typical equation has the solution

\[
\Phi_i(x) = a^{a_{ii}x} \left(\Phi_i(0) + \int_0^x f_i(s)e^{-a_{ii}s} ds \right)
\]

which implies

\[
\Phi_i(x_0 + \Delta x) = e^{a_{ii}\Delta x} \Phi_i(x_0) + e^{a_{ii}(x_0+\Delta x)} \int_{x_0}^{x_0+\Delta x} f_i(s)e^{-a_{ii}s} ds
\]

Another Viewpoint for the Resulting System of Equations

The equations resulting from the energy partitioning of each group can be expressed as a system of ordinary differential equations

\[
\frac{d\Phi_i}{dx} + \sigma_i \Phi_i = I_i + \xi_i, \quad i = 1, 2, \ldots, N - 1
\]

which is equivalent to the vector system of ordinary differential equations

\[
\frac{d\overline{\Phi}}{dx} = A\overline{\Phi} + \overline{b}
\]

subject to the initial condition \(\overline{\Phi}(0) = \overline{0} \). Here \(\overline{\Phi} \) is the column vector \(\text{col}(\Phi_0, \Phi_1, \ldots, \Phi_{N-1}) \), \(A \) is a \(N \) by \(N \) upper triangular matrix, and \(\overline{b} \) is the column vector \(\text{col}(\xi_0, \xi_1, \ldots, \xi_{N-1}) \). From the solution of this system of ordinary differential equations we calculate the average fluence over each energy interval

\[
\Phi_{i-\text{avg}} = \frac{1}{E_{i+1} - E_i} \int_{E_i}^{E_{i+1}} \phi(x) \, dx.
\]

Fundamental matrix solution

Let \(Y(x) = e^{Ax} \) denote the fundamental matrix solution defined by the matrix differential equation

\[
\frac{dY}{dx} = AY, \quad Y(0) = I
\]

where \(I \) is the \(N \) by \(N \) identity matrix and \(A \) is an upper triangular matrix. The solution of the system of equations (21) can then be represented in the form

\[
\overline{\Phi}(x) = Y(x) \int_0^x Y^{-1}(s)\overline{b} \, ds = \int_0^x Y(x-s)\overline{b} \, ds
\]

(23)
The exponential matrix $Y(x)$ satisfies the properties that
\[
AY(x) = Y(x)A \\
Y(-x) = Y^{-1}(x)
\]
and
\[
Y(x + s) = Y(x)Y(s)
\]
Consequently, for \bar{b} constant, the solution given by equation (24) can be represented in the form
\[
\bar{y}(x) = (Y(x) - I)A^{-1}\bar{b}.
\]
The solution, as given by equation (25) can also be expressed in terms of a Green’s function for discrete systems. We rewrite the solution system (25) in the equivalent form
\[
\bar{y}(x + h) = (Y(x + h) - I)A^{-1}\bar{b} \\
\bar{y}(x + h) = (Y(x)Y(h) - I)A^{-1}\bar{b} \\
\bar{y}(x + h) = Y(h)(Y(x) - Y(-h) + I - I)A^{-1}\bar{b} \\
\bar{y}(x + h) = Y(h)\bar{y}(x) + (Y(h) - I)A^{-1}\bar{b}.
\]
If \bar{b} is not constant, but a function of x, then the solution is left in the integral form of equation (23) and becomes
\[
\bar{y}(x) = Y(x) \int_0^x Y^{-1}(\xi)\bar{b}(\xi) d\xi.
\]
In this case, we have
\[
\bar{y}(x + h) = Y(x + h) \int_0^{x+h} Y^{-1}(s)\bar{b}(s) ds = Y(h)\bar{y}(x) + Y(x)Y(h) \int_x^{x+h} Y^{-1}(s)\bar{b}(s) ds.
\]
Calculation of the Exponential Matrix Exp(Ax)

The fundamental matrix solution $Y(x) = e^{Ax}$ can be calculated from the Putzer algorithm, reference [3]. This algorithm states that for A an $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \ldots \lambda_n$, the exponential matrix is given by
\[
e^{Ax} = \sum_{j=0}^{n-1} r_{j+1}(x)P_j
\]
where
\[
P_0 = I, \quad P_j = \Pi_{k=1}^j(A - \lambda_k I), \quad j = 1, \ldots, n
\]
and \(r_1(x), \ldots, r_n(x) \) are solutions of the triangular system

\[
\begin{align*}
\frac{dr_1}{dx} &= \lambda_1 r_1, \quad r_1(0) = 1 \\
\frac{dr_j}{dx} &= r_{j-1}(x) + \lambda_j r_j(x), \quad r_j(0) = 0
\end{align*}
\]

for \(j = 2, \ldots, n \). Here each eigenvalue is listed in an ordered form from high to low values and multiplicity of eigenvalues is permissible.

Numerical Solution

The solutions obtained from the system of equations (21) or (22) depend upon the selection of mean values associated with each energy interval. The selection of these mean values is determined by examining the numerical solution in certain special cases. We obtain a numerical solution of equation (8) in the special case given by \(g = g(E, x) = KEe^{-E/T} \) where \(K \) (\#particles/cm\(^3\) Mev) and \(T \) (Mev), are constants. We construct the solution over the spatial domain \(x \geq 0 \) and energy range \(0.1 \leq E \leq 80 \text{ Mev} \). This domain is discretized by constructing a set of grid points \(x_i = i\Delta x \) and \(E_j = j\Delta E \) for some grid spacing defined by \(\Delta x \) and \(\Delta E \) values. For \(i, j \) integers we define \(u_{i,j} = \phi(x_i, E_j) \), then the transport differential-integral equation (8) can be written in a discrete form. We use the starting values \(u_{0,j} = 0 \) and \(v_{0,j} = 0 \). For the first step in \(\Delta x \) we write

\[
u_{1,j} = \Delta x KE_j e^{-E_j/T}.
\]

followed by the numerical calculation of

\[
\begin{align*}
v_{i,j} &= \int_{E_j}^{E_i} \frac{\sigma(E')ra^{-\tau(E'-E_j)}}{1 - e^{-(1-\alpha)\tau E_j^-}} u(x_i, E') \, dE', \\
\end{align*}
\]

when \(i = 1 \). After each numerical step the integrals of the type \(v_{i,j} \) given by equation (29) are evaluated using Simpson's 1/3 rule. We evaluate the equation (28) for \(j = 0, 1, \ldots, \), we then use a two step algorithm in a repetitive fashion to advance the solution. For values of \(\alpha \) near one the numerical solution of equation (8) requires that \(\Delta E \) become small. For numerical accuracy we must have \(\Delta x << \Delta E \). The low energy spectrum then becomes difficult to calculate without special procedures, reference [1]. In this case we use a two step modified Euler predictor-corrector scheme, references [4],[5], which is defined by

Second step:

\[
\begin{align*}
f_{1,j} &= v_{1,j} + E_j e^{-E_j} - \sigma u_{1,j} \\
u_{2,j} &= \begin{cases}
 u_{1,j} + \Delta x f_{1,j} & j = 0 \\
 \frac{1}{2} (u_{1,j-1} + u_{1,j+1}) + \Delta x f_{1,j} & j > 0
\end{cases}
\end{align*}
\]

Third step:

\[
\begin{align*}
f_{2,j} &= v_{2,j} + E_j e^{-E_j} - \sigma u_{2,j} \\
u_{3,j} &= u_{1,j} + 2\Delta x f_{2,j}
\end{align*}
\]
The second step is an adaption of the Fredrichs method from reference [4]. The third step is a central difference second order step in Δx. After each 100 such applications of the above numerical two step algorithm, we apply the following stability correction as suggested in reference [5].

$$f_{3,j} = v_{3,j} + E_j e^{-E_j} - \sigma u_{3,j}$$

$$u_{3,j} = \frac{1}{2} (u_{3,j} + u_{2,j}) + \Delta x f_{3,j}$$

(30)

Recursive Solution

In the special case $g(E,x) = g(E)$, we assume a solution to equation (8) of the form

$$\phi(x, E) = \sum_{n=1}^{\infty} \phi_n(E)f_n(x) = \phi_1(E)f_1(x) + \phi_2(E)f_2(x) + \cdots$$

(31)

We substitute this series into the equation (8) and obtain a solution by requiring that

$$\phi_1(E) = g(E)$$

$$\phi_{n+1}(E) = \int_{E}^{E/\alpha} f_s(E',E')\phi_n(E')dE' \quad n = 1, 2, 3, \ldots$$

$$f_1(x) + \sigma f_1(x) = 1$$

$$f'_n(x) + \sigma f_n(x) = f_{n-1}(x)$$

(32)

where the differential equations are subject to the initial condition that $f_n(0) = 0$ for all n. Here the $\phi_n(E)$ terms are defined recursively and take a great deal of computational time for large values of n. The differential equations have the solutions given by the recursive relations

$$f_1(x) = \frac{1}{\sigma} (1 - e^{-\sigma x})$$

$$f_n(x) = \int_0^x f_{n-1}(u)e^{-\sigma(x-u)}du$$

(33)

which are easily evaluated for as large an n as desired. We find numerically that $|f_n(x)|$ decreases with increasing n when x is less than 1 and increases for $x > 1$ so that the series solution does not converge in this case. For $|x|$ less than or equal to one we calculate the solution given by equation (33) for terms through $n = 5$ and $n = 6$ and compared them with the numerical solution. The mean values associated with the numerical solution of equations (21) and (22) where then adjusted in order that all solutions agree for this special circumstance. We then used these same mean values which where associated with numerical source terms as provided by the HZETRN code.

Comparison of Multigroup and Other Solutions

The numerical solutions and recursive solutions are compared with the multigroup solution for neutron penetration in lithium, aluminum and lead mediums for the case
\(n = 2 \). The results are illustrated in the figures 3, 4, and 5. Excellent agreement is obtained in these cases. In these figures, the solid line represents the numerical solution. The circles represent the recursive solution and the triangles represent the multigroup solution. The various curves were calculated for depths of \(x = 0.1, 0.5, 1.0, 5.0, 10.0, 50.0 \) and 100.0 centimeters. Similarly, the figures 6, 7 and 8 illustrate the multigroup method in the case \(n = 10 \) for neutron penetration into lithium, aluminium and lead respectively.

The multigroup method has a huge advantage in the computational time needed to calculate the solution. The multigroup method takes less than one minute of computational time while the other methods require many hours of computational time.

Application for Al - H\(_2\)O shield-target configuration.

We now apply our previous development to an application of the multigroup method associated with an aluminium-water shield-target configuration. In particular, we consider the case where the source term \(g(E, x) \), in equation (8), represents evaporation neutrons produced per unit mass per Mev and is specified as a numerical array of values corresponding to various shield-target thicknesses and energies. The numerical array of values is produced by the radiation code HZEBIO, which is a modification of the radiation code HZETRN developed by Wilson, et. al., reference [6]. The numerical array of values are actually given in the form \(g(E_i, x_j, y_k) \) in units of particles/gm - Mev, where \(y_k \) represents discrete values for various target thicknesses of water in gm/cm\(^2\), \(x_j \) represents discrete values for various shield thicknesses of aluminium, also in units of gm/cm\(^2\), and \(E_i \) represents discrete energy values in units of (Mev). We use these discrete source term values in the following way. We consider first the solution of equation (8) solved by the multigroup method with no target material i.e. all shield material with target thickness \(y = 0 \). We next consider the cases 2, 3,... of discrete shield thickness \(x_2, x_3, \ldots \) and apply the multigroup method to the solution of equation (8) applied to all target material \(y > 0 \). For each \(x_i \)-value considered, the initial conditions are obtained from the previous solutions generated where \(y = 0 \). This represents the application of the multigroup method to two different regions. Region 1 of all shield material and region 2 of all target material. We then continue to apply the multigroup method to region 2 for each discrete value of shield thickness, where the initial conditions on the start of the second region represents exit conditions from the shield region 1. This provides for continuity of the solutions for the fluence between the two regions. In this way we develop a series of graphs for fluence vs energy associated with various shield thickness.
In our application of the multigroup method we consider the case where the source term \(g(E, x) \), the scattering term \(f_s(E, E') \) and cross section \(\sigma(E) \) are all given numerically (obtained from the above HZETRN code).

For a single shield material we solve

\[
\left[\frac{\partial}{\partial x} + \sigma(E) \right] \phi(x, E) = \int_{E}^{E/\alpha_1} f_s(E, E') \phi(x, E') \, dE' + g(E, x) \tag{34}
\]

Integration of equation (34) from \(E_i \) to \(E_{i+1} \) produces

\[
\int_{E_i}^{E_{i+1}} \frac{\partial \phi}{\partial x} \, dE + \int_{E_i}^{E_{i+1}} \sigma(E) \phi(x, E) \, dE = \int_{E_i}^{E_{i+1}} f_s(E, E') \phi(x, E') \, dE' \, dE + \int_{E_i}^{E_{i+1}} g(E, x) \, dE \tag{35}
\]

We define the quantities

\[
\Phi_i = \int_{E_i}^{E_{i+1}} \phi(x, E) \, dE \quad b_i = \int_{E_i}^{E_{i+1}} g(E, x) \, dE \tag{36}
\]

and interchange the order of integration of the double integral terms in equation (36). We then apply a mean value theorem to obtain the result

\[
\frac{d\Phi_i}{dx} + \sigma \Phi_i = \int_{E_i}^{E_{i+1}} \int_{E=E_i}^{E'} f_s(E, E') \, dE' \phi(x, E') \, dE' + \int_{E_{i+1}}^{E_i} \int_{E=\alpha_1 E'}^{E_{i+1}} f_s(E, E') \, dE' \phi(x, E') \, dE' + b_i \tag{37}
\]

where \(E_i < E' < E_{i+1} \). The first double integral in equation (37) represents integration over the lower triangle illustrated in the figure 1(c). The second double integral in equation (38) represents integration over the upper triangle illustrated in the figure 1(c). Let

\[
g_1(E') = \int_{E=E_i}^{E'} f_s(E, E') \, dE \quad \text{and} \quad g_2(E') = \int_{E=\alpha_1 E'}^{E_{i+1}} f_s(E, E') \, dE \tag{38}
\]

then employ another application of a mean value theorem for integrals to write equation (37) in the form

\[
\frac{d\Phi_i}{dx} + \sigma \Phi_i = g_1(E_i + \theta_1(E_{i+1} - E_i)) \Phi_i + g_2(E_{i+1} + \theta_2(E_{i+2} - E_{i+1})) \Phi_{i-1} + b_i \tag{39}
\]
This produces the coefficients associated with the energy interval \(E_i \) to \(E_{i+1} \) given by

\[
a_{ii} = g_1 - \sigma \quad \text{and} \quad a_{i,i+1} = g_2
\]

(40)

needed for the numerical integration of equations (21). In this way the diagonal and off diagonal elements of the coefficient matrix in equation (21) are calculated.

For a compound target material, comprised of material 1 and material 2, there are two values for \(\alpha \). A value \(\alpha_1 \) is selected for material 1 and a value \(\alpha_2 \) is selected for the material 2 of the compound material. In this case the equation (34) takes on the form

\[
\left[\frac{\partial}{\partial x} + \sigma(x, E) \right]\phi(x, E) =
\int_{E_i}^{E_i+1} f_{s_1}(E, E') \phi(x, E') \, dE' +
\int_{E_i}^{E_i+1} f_{s_2}(E, E') \phi(x, E') \, dE' + g(x, E)
\]

(41)

where \(f_{s_1} \) and \(f_{s_2} \) are scattering terms associated with the respective materials. These terms are calculated in the HZETRN code. We consider two cases. The first case requires that the \(E/\alpha_2 \) line be above the \(E/\alpha_1 \) line. (See figure 1(d)) The second case is where \(\alpha_2 = 0 \) (the hydrogen case), and the limits of integration for the second integral go to infinity. We consider each case separately.

For the first case we assume that \(\alpha_1 > \alpha_2 > 0 \) and we select the exact energy spacing dictated by the \(E/\alpha_2 \) line. We then proceed as we did using the single shield material. We integrate equation (41) from \(E_i \) to \(E_{i+1} \) and interchange the order of integration on the double integral terms. Define \(b_i = \int_{E_i}^{E_{i+1}} g(E, x) \, dE \) and obtain the equations

\[
\frac{d\Phi_i}{dx} + \sigma \Phi_i = I_{11} + I_{12} + I_{21} + I_{22} + b_i
\]

(42)

where now the \(I_{21} \) and \(I_{22} \) integrals have, because of the exact spacings, the forms

\[
I_{21} = \int_{E_i}^{E_{i+1}} \int_{E_i}^{E'} f_{s_2}(E, E') \, dE \phi(x, E') \, dE'
\]

(43)

\[
I_{22} = \int_{E_i}^{E_{i+2}} \int_{E_{i+1}}^{E_i} f_{s_2}(E, E') \, dE \phi(x, E') \, dE'
\]

Defining the terms

\[
h_{1(i)}(E') = \int_{E_i}^{E'} f_{s_i}(E, E') \, dE, \quad i = 1, 2
\]

\[
h_{2(i)}(E') = \int_{E_{i+1}}^{E_{i+1}} f_{s_i}(E, E') \, dE \quad i = 1, 2
\]
and using the mean value theorem for integrals we obtain

\[I_{21} = h_{1(2)}(E_i + \theta_1(E_{i+1} - E_i)) \Phi_i \quad \text{and} \quad I_{22} = h_{2(2)}(E_{i+1} + \theta_2(E_{i+2} - E_{i+1})) \Phi_{i+1} \]

where \(\theta_1 \) and \(\theta_2 \) define intermediate energy values associated with the mean value theorem. The integrals \(I_{11} \) and \(I_{12} \) are associated with integration limits \((E, E/\alpha_1)\) and energy intervals dictated by our selection of \(\alpha_2 \) for determining the exact energy spacings. These integrals are associated with the trapezoidal area 1 and triangular area 2 illustrated in the figure 1(d). These areas are a fraction of the triangle area’s associated with the line \(E' = E/\alpha_2 \). These fractions are given by

\[
\begin{align*}
 f_1 &= \frac{1}{2}(E_{i+1} - E_i)^2 - \frac{1}{2}(E_{i+1} - E_i/\alpha_1)(E_{i+1} - \alpha_1 E_{i+1}) \\
 f_2 &= \frac{(E_{i+1}/\alpha_1 - E_{i+1})(E_{i+1} - \alpha_1 E_{i+1})}{(E_{i+1} - E_i)(E_{i+2} - E_{i+1})}
\end{align*}
\]

and we write

\[I_{11} = f_1 h_{1(1)} \Phi_i \quad \text{and} \quad I_{12} = f_2 h_{2(1)} \Phi_{i+1} \]

The coefficients for our system of differential equations (22) are then given by

\[a_{11} = h_{1(2)} + f_1 h_{1(1)} - \overline{\sigma} \]

\[a_{12} = h_{2(2)} + f_2 h_{2(1)}. \]

For the case 2, of hydrogen, \(\alpha_2 = 0 \) and so one of the limits of integration becomes infinite. We let \(\alpha_1 \) determine the energy spacing in this case. We again integrate equation (42) over and energy interval \((E_i, E_{i+1})\) which is determined by the \(E' = E/\alpha_1 \) line. Using the definitions given by equations (36) we integrate the equations (41) over the interval \((E_i, E_{i+1})\) and then interchange the order of integration in the resulting double integrals to obtain

\[
\frac{d\Phi_i}{dx} + \overline{\sigma} \Phi_i = I_1^* + I_2^* + b_i
\]

where

\[
I_1^* = \int_{E_i}^{E_{i+1}} \int_{E=E_i}^{E'} f_{s_1}(E, E') dE \phi(x, E') dE' + \int_{E_{i+1}}^{E_{i+2}} \int_{E=\alpha_1 E'}^{E_{i+1}} f_{s_1}(E, E') dE \phi(x, E') dE'
\]

and

\[
I_2^* = \int_{E_i}^{E_{i+1}} \int_{E_i}^{E'} f_{s_2}(E, E') dE \phi(x, E') dE' + \sum_{j=1}^{N} \int_{E_{i+j}+1}^{E_{i+j+1}} \int_{E_i}^{E_{i+j}} f_{s_2}(E, E') dE \phi(x, E') dE'
\]
where for all \(N^* \) greater than some integer \(N > 0 \) we know that \(f_{s2}(E, E') \) will be zero. We define

\[
h_3(E') = \int_{E_i}^{E'} f_{s1}(E, E') \, dE, \quad E_i < E' < E_{i+1}
\]

\[
h_4(E') = \int_{E_i}^{E_{i+1}} f_{s1}(E, E') \, dE, \quad E_{i+1} < E' < E_{i+2}
\]

\[
h_5(E') = \int_{E_i}^{E} f_{s2}(E, E') \, dE, \quad E_i < E' < E_{i+1}
\]

\[
h_6(j) = \int_{E_{i+j}}^{E_{i+j+1}} f_{s2}(E, E') \, dE, \quad E_{i+j} < E'_j < E_{i+j+1}
\]

then we can write the coefficients associated with the system of differential equations as

\[
a_{i,i} = h_3 + h_5 - \bar{\sigma} \quad a_{i,i+3} = h_6(3)
\]

\[
a_{i,i+1} = h_4 + h_6(1) \quad \vdots
\]

\[
a_{i,i+2} = h_6(2) \quad a_{i,i+n} = h_6(n)
\]

In this way we generate a system of equations having the triangular form given by the equations (22).

Various comparisons have been made to check the validity of the multigroup method. The figure 9 shows low energy neutron fluence vs depth for a shield-target aluminium water medium. Note the increase in low energy neutron production at the aluminium water interface at a depth of 100 g/cm\(^2\). This is due to high energy neutrons colliding with hydrogen atoms. In these type of collisions the high energy neutrons give up over one-half of their energy, thus increasing the low energy neutron fluence.

Using the source terms generated by the HZETRN program for an aluminium water configuration the figures 10 through 19 result for the evaporation neutron fluence as a function of energy for various shield thicknesses. The shield thicknesses in these figures are \(y = 0.0, 0.3, 1.0, 5.0, 10.0, 20.0, 30.0, 50.0, \) and \(100.0 \) g/cm\(^2\). The figures 20, 21 and 22 illustrate the comparison of the old HZETRN code results with and without the addition of the evaporation neutrons. These results are also compared with the Monte Carlo results for fluence associated with the February 1956 solar flare data. The multigroup method for the calculation of the low energy evaporation neutrons is computed much faster numerically than any of the previous approximation methods. The method also produced much more accurate results when compared to the Monte Carlo method, see for example reference [157] and [158] of Appendix A.
REFERENCES

APPENDIX A

Publications that have resulted from research associated with grant NCC 1-42.

52. Impulse Excitation Energies in Relativistic Heavy Ion Collisions, APS Meeting (1986).
59. Theoretical Contributions to Coherent Pion Production in Subthreshold and Relativistic Heavy Ion Collisions, Nuclear Physics A 454, 733 (1986).
60. Cross Section Calculations for Subthreshold Pion Production in Peripheral Heavy Ion Collisions, NASA TP-2600 (1986).

90. Corrections to Pole Diagram in 4He Fragmentation at 1 GeV/A, APS Bull. 34, 1138 (1989).

152. α-Production Cross Section in Heavy-Ion Fragmentation Under Abrasion-Ablation Models. Paper presented at the joint meeting of CAP (Canada) and SMF (Mexico), June 1995.

The research grant NCC 1-42 has produced the following Ph.D. students and their associated thesis work.

Figure 1. Energy partitioning
Figure 2. Overlapping last position of multiple energy groups
Figure 3. Comparison of numerical solution with multigroup solution (n=2) for lithium.
Figure 4. Comparison of numerical solution with multigroup solution (n=2) for aluminum.
Figure 5. Comparison of numerical solution with multigroup solution ($n=2$) for lead.
Figure 6. Comparison of numerical solution with multigroup solution (n=10) for lithium.
Neutron Fluence for Aluminum

Figure 7. Comparison of numerical solution with multigroup solution ($n=10$) for aluminium.
Figure 8. Comparison of numerical solution with multigroup solution ($n=10$) for lead.
Figure 9. Multi-group low energy evaporation neutron fluence vs depth in shield-target configuration for various energies.
Figure 10. Multi-group low energy evaporation neutron fluence vs energy for target 0.0 g/cm2 and various shield thicknesses.
Figure 11. Multi-group low energy evaporation neutron fluence vs energy for target 0.3 g/cm² and various shield thicknesses.
Figure 12. Multi-group low energy evaporation neutron fluence vs energy for target 1.0 g/cm² and various shield thicknesses.
Figure 13. Multi-group low energy evaporation neutron fluence vs energy for target 3.0 g/cm² and various shield thicknesses.
Figure 14. Multi-group low energy evaporation neutron fluence vs energy for target 5.0 g/cm2 and various shield thicknesses.
Figure 15. Multi-group low energy evaporation neutron fluence vs energy for target 10.0 g/cm² and various shield thicknesses.
Figure 16. Multi-group low energy evaporation neutron fluence vs energy for target 20.0 g/cm² and various shield thicknesses.
Figure 17. Multi-group low energy evaporation neutron fluence vs energy for target 30.0 g/cm² and various shield thicknesses.
Figure 18. Multi-group low energy evaporation neutron fluence vs energy for target 50.0 g/cm² and various shield thicknesses.
Figure 19. Multi-group low energy evaporation neutron fluence vs energy for target 100.0 g/cm2 and various shield thicknesses.
Figure 20. Energy spectra of neutron fluence at 1.0g/cm² depth of water slab exposed to February 1956 solar flare, as calculated by HZETRN with and without multi-group addition of low energy evaporation neutrons.
Figure 21. Energy spectra of neutron fluence at 10.0 g/cm2 depth of water slab exposed to February 1956 solar flare, as calculated by HZETRN with and without multi-group addition of low energy evaporation neutrons.
Figure 22. Energy spectra of neutron fluence at 30.0 g/cm\(^2\) depth of water slab exposed to February 1956 solar flare, as calculated by HZETRN with and without multi-group addition of low energy evaporation neutrons.
Appendix C

Green's Function Associated with the Transport of Light Ions in Matter.
Green's Function Associated with the Transport of Light Ions in Matter.

Basic Boltzmann equation

\[
\left(\text{Change in ion flux within a volume element} \right) = \left(\text{Gains within the volume element} \right) - \left(\text{Losses due to any nuclear collisions} \right)
\]

This gives the Boltzmann equation

\[
\left[\hat{\Omega} \cdot \nabla - \frac{1}{A_j} \frac{\partial}{\partial E} S_j(E) + \sigma_j(E) \right] \phi_j(\vec{x}, \vec{\Omega}, E) = \sum_{k>j} \int_0^\infty dE' \int d\Omega' r_{jk} \phi_k(\vec{x}, \vec{\Omega}', E') \tag{1}
\]

where

\(\phi_j(\vec{x}, \vec{\Omega}, E) \) is the flux of ions of type \(j \) moving in direction \(\vec{\Omega} \)

having units \(\text{(#particles/cm}^2 - \text{sec - sr - Mev/amu)} \)

\(E \) is the ion energy. (Mev/amu)

\(A_j \) is the atomic mass of the \(j \)th type ion (amu)

\(\sigma_j(E) \) is the macroscopic cross section. (cm\(^{-1}\))

\(S_j(E) \) is the average energy loss per unit length or stopping power

or linear energy transfer \(dE \). (Mev/cm).

\(R_j(E) \) is the slowing down range for type \(j \) ions. (cm) \(R_j(E) = \int_0^E \frac{A_j dE'}{S_j(E')} \)

\(j \) is the ion type.

\(\vec{\Omega} \) is a unit vector in the direction of propagation.

\(r_{jk} \) is production cross section of type \(j \) ions with energy \(E \) and direction \(\vec{\Omega} \)

by collision with type \(k \) ions of energy \(E' \) and direction \(\vec{\Omega}' \)

having units of \(\text{(cm - sr - Mev/amu)} \)

\(\hat{n} \) is the outward directed unit normal to boundary.

\(\vec{r} \) is vector to boundary point. (cm)

\(\vec{x} \) is the position vector to arbitrary point in region (cm) \(\vec{x} = \rho \vec{\Omega} + \vec{x}_n \)

\(\rho \) is the projection of \(\vec{x} \) on \(\vec{\Omega} \) (cm)

\(\vec{x}_n \) is the component of \(\vec{x} \) perpendicular to \(\vec{\Omega} \) direction.

The equation (1) is to be associated with the geometry of figure 1.
Multiply the equation (1) by $S_j(E)$ and define the quantities

$$
\bar{\phi}_j(x, \bar{\Omega}, E) = S_j(E)\phi_j(x, \bar{\Omega}, E)
$$

(2)

$$
\bar{G}_j(x, \bar{\Omega}, E) = S_j(E) \sum_{k>j} \int_{E_{J}}^{\infty} dE' \int d\bar{\Omega}' r_{jk} \phi_k(x, \bar{\Omega}', E')
$$

(3)

to obtain

$$
\left[\bar{\Omega} \cdot \nabla - \frac{S_j(E)}{A_j} \frac{\partial}{\partial E} + \sigma(E) \right] \bar{\phi}_j(x, \bar{\Omega}, E) = \bar{G}_j(x, \bar{\Omega}, E).
$$

(4)

Note that $\bar{\Omega} \cdot \nabla \bar{\phi}_j = \frac{\partial \bar{\phi}_j}{\partial \rho}$ is the directional derivative in the direction $\bar{\Omega}$ and that

$$
\frac{\partial \bar{\phi}_j}{\partial E} = \frac{\partial \bar{\phi}_j}{\partial R_j} \frac{\partial R_j}{\partial E} = \frac{\partial \bar{\phi}_j}{\partial R_j} \frac{A_j}{S_j(E)}
$$

so that the equation (4) can be written as

$$
\left[\frac{\partial}{\partial \rho} - \frac{\partial}{\partial R_j} + \sigma(E) \right] \bar{\phi}_j(x, \bar{\Omega}, E) = \bar{G}_j(x, \bar{\Omega}, E).
$$

(5)

Introduce the characteristic variables (η_j, ξ_j) given by the transformation equations

$$
\eta_j = \rho - R_j(E) \quad \xi_j = \rho + R_j(E)
$$

(6)
where $\rho = \Omega \cdot \vec{x}$. Also introduce the variables

\begin{equation}
\begin{aligned}
\chi_j(\eta_j, \xi_j) &= \phi_j(\rho \Omega + \vec{x}_n, \Omega, E) \\
g_j(\eta_j, \xi_j) &= \phi_j(\rho \Omega + \vec{x}_n, \Omega, E) \\
\sigma_j(\eta_j, \xi_j) &= \sigma_j(E)
\end{aligned}
\end{equation}

Figure 2. Geometry for characteristic variables

By the chain rule we have

\begin{align*}
\frac{\partial \phi_j}{\partial R_j} &= \frac{\partial \phi}{\partial \eta_j} + \frac{\partial \phi_j}{\partial \xi_j} \\
\frac{\partial \phi_j}{\partial \eta_j} &= \frac{\partial \phi}{\partial \eta_j} (-1) + \frac{\partial \phi_j}{\partial \xi_j}
\end{align*}

so that the equation (5) simplifies to

\begin{equation}
\left(2 \frac{\partial}{\partial \eta_j} + \sigma_j \right) \chi_j(\eta_j, \xi_j) = g_j(\eta_j, \xi_j)
\end{equation}

in terms of the new variables. This equation can be integrated using the integrating factor

\begin{equation}
\exp \left[\frac{1}{2} \int_{a}^{\eta_j} \sigma_j(\eta', \xi_j) d\eta' \right]
\end{equation}

to obtain

\begin{equation}
\begin{aligned}
\chi_j(\eta_j, \xi_j) &= \exp \left[- \frac{1}{2} \int_{a}^{\eta_j} \sigma_j(\eta', \xi_j) d\eta' \right] \chi_j(a, \xi_j) \\
&\quad + \frac{1}{2} \int_{a}^{\eta_j} \exp \left[- \frac{1}{2} \int_{\eta'}^{\eta_j} \sigma(\eta'', \xi_j) d\eta'' \right] g_j(\eta', \xi_j) d\eta'
\end{aligned}
\end{equation}
where \(a\) is any real number. Consequently, the solution to the equation (4) can be written as

\[
\tilde{\phi}_j(\vec{x}, \vec{n}, E) = f(a, \rho - R_j(E)) \tilde{\phi}_j \left(\frac{1}{2} (\xi_j + a) \tilde{\omega} + \vec{x}_n, \vec{\omega}, R_j^{-1}(\frac{\xi_j - a}{2}) \right) \\
+ \frac{1}{2} \int_{\alpha}^{\rho - R_j(E)} f(\eta'', \rho - R_j(E)) \tilde{\phi}_j \left(\frac{1}{2} (\xi_j + \eta'') \tilde{\omega} + \vec{x}_n, \vec{\omega}, R_j^{-1}(\frac{\xi_j - \eta''}{2}) \right) d\eta''
\]

where

\[
f(a, \rho - R_j(E)) = \exp \left[-\frac{1}{2} \int_{\alpha}^{\rho - R_j(E)} \sigma_j(R_j^{-1}(\frac{\xi_j - \eta'}{2})) d\eta' \right]
\]

From equations (6) we find that

\[
2\rho = \eta_j + \xi_j \quad \text{and} \quad 2R_j(E) = \xi_j - \eta_j
\]

so that when \(\eta' = a\) we will have \(\rho = \frac{1}{2}(a + \xi_j)\). Observe from figure 2 that along the line of integration we will have \(\xi_j = \text{constant}\). The value of \(a\) is selected such that \(\rho \tilde{\omega} + \vec{x}_n = \vec{r}\) is a point on the boundary. Thus, the vector \(\left(\begin{array}{c} \xi_j \\ \eta_j \end{array} \right) \tilde{\omega} + \vec{x}_n = \vec{r}\) dotted with \(\tilde{\omega}\) gives the value

\[
a = 2 \tilde{\omega} \cdot \vec{r} - \xi_j = 2d - \rho - R_j(E)
\]

where \(d = \tilde{\omega} \cdot \vec{r}\). Note that when \(E' = E\) and \(\eta_j = \eta'\) we have from equation (13) that

\[
2R_j(E') = \xi_j - \eta'
\]

or

\[
E' = R_j^{-1} \left(\frac{\xi_j - \eta'}{2} \right) = R_j^{-1} \left(\frac{\rho + R_j(E) - \eta'}{2} \right) \quad \text{with} \quad dE' = \frac{-S_j(E')}{2A_j} d\eta'
\]

and similarly by changing symbols when

\[
E'' = R_j^{-1} \left(\frac{\rho + R_j(E) - \eta''}{2} \right) \quad \text{we have} \quad dE'' = \frac{-S_j(E'')}{2A_j} d\eta''.
\]

We examine the limits of integration in equation (11) and observe that when \(\eta' = a\) we have

\[
2R_j(E') = \rho + R_j(E) - a
\]

and from equation (14) we have

\[
2d = \rho + R_j(E) + a.
\]
Adding the equations (18) and (19) we find

\[R_j(E') + d = \rho + R_j(E) \]

(20)

or

\[E' = R_j^{-1}(\rho - d + R_j(E)). \]

(21)

Next we examine the lower limit of integration and find that when \(\eta' = \rho - R_j(E) \), then \(2R_j(E') = \rho + R_j(E) - \rho + R_j(E) \) implies that \(E' = E \). In the second term of equation (11) when \(\eta'' = a \) we again find that \(E'' = R_j^{-1}(\rho + R_j(E) - d) \) and when \(\eta'' = \rho - R_j(E) \) then \(E'' = E \). Also,

\[
\frac{1}{2}(\xi_j + \eta'') = \frac{1}{2}(\xi_j + \xi_j - 2R_j(E'')) = \xi_j - R_j(E'') = \rho + R_j(E) - R_j(E'').
\]

Consequently, the equation (11) can be written in the form

\[
\frac{1}{2}(\bar{\xi}_j, \bar{\eta}, \bar{E}) = F_1(E, R_j^{-1}(R_j(E) - d + \rho)\bar{\xi}_j, \bar{\eta}, R_j^{-1}(R_j(E) + \rho - d))
\]

\[
+ \int_{E}^{R_j^{-1}(R_j(E) + \rho - d)} F_1(E, E'') \mathcal{G}_j((\rho + R_j(E) - R_j(E''))\bar{\eta} + \bar{\xi}_n, \bar{\eta}, E''') \frac{A_j}{S_j(E''')} \, dE'''
\]

(22)

where

\[
F_1(E_1, E_2) = \exp \left[- \int_{E_1}^{E_2} \frac{A_j \sigma_j(E')}{S_j(E')} \, dE' \right]
\]

(23)

Define the nuclear survival probability (reference Wilson 1977) as

\[
P_j(E) = \exp \left[- \int_{0}^{E} \frac{A_j \sigma_j(E')}{S_j(E')} \, dE' \right]
\]

(24)

then the equation (23) can be written as

\[
F_1(E_1, E_2) = \frac{P_j(E_2)}{P_j(E_1)}.
\]

Then from equation (22) we can write the solution to equation (3) in the form

\[
\phi_j(\bar{\xi}, \bar{\eta}, E) = \frac{S_j(E_j)P_j(E_j)}{S_j(E)P_j(E)} \phi_j(\bar{\xi}, \bar{\eta}, E_j)
\]

\[
+ \sum_{k > j} \int_{E_j}^{E} dE' \frac{A_j P_j(E')}{S_j(E)P_j(E)} \int_{E'}^{\infty} dE'' \int d\bar{\eta}' r_{jk}(E', E'') \phi_k(\bar{\xi} + (R_j(E) - R_j(E')) \bar{\eta}', \bar{\eta}', E'')
\]

(25)

where \(E_j = R_j^{-1}(\rho + R_j(E) - d) \), \(\bar{\xi} = \bar{\xi}_n + \rho \bar{\Omega} \) and \(E' \) and \(E'' \) have been interchanged.
In the one-dimensional straight ahead approximation \(\tilde{\Omega} \) is a unit vector in the direction of \(\tilde{x} \) with \(\rho = x, \ x_n = 0, \eta_j = x - R_j(E), \xi_j = x + R_j(E) \) and \(\tilde{r} = \tilde{\theta} \). (i.e. the origin 0 moves to the boundary \(x = 0 \)). The equation (25) then reduces to

\[
\phi_j(x, E) = \frac{S_j(E_j)P_j(E_j)}{S_j(E)P_j(E)} \phi_j(0, E_j) \\
+ \sum_{k > j} \int^{E_j}_E dE' \frac{A_jP_j(E')}{S_j(E)P_j(E)} \int^{\infty}_E dE'' \sigma_{jk}(E', E'') \phi_k(x + R_j(E) - R_j(E'), E'')
\]

(26)

where \(E_j \) is determined from \(x \) and \(E \) such that

\[
E_j = R_j^{-1}(x + R_j(E)).
\]

(27)

The solution given by equation (26) can be expressed in terms of Green's function as

\[
\phi_j(x, E) = \sum_{k > j} \int^{\infty}_0 G_{jk}(x, E, E_0) \phi_k(0, E_0) dE_0
\]

(28)

where \(\phi_k(0, E_0) = f_k(E_0) \) are boundary conditions. Substituting the assumed solution given by equation (28) into equation (26) we obtain

\[
\sum_{\ell} \int^{\infty}_0 G_{j\ell}(x, E, E_0) \phi_\ell(0, E_0) dE_0 = \sum_{\ell} \int^{\infty}_0 \frac{S_j(E_j)P_j(E_j)}{S_j(E)P_j(E)} G_{j\ell}(0, E_j, E_0) \phi_\ell(0, E_0) dE_0 \\
+ \sum_{k > j} \int^{E_j}_E dE' \frac{A_jP_j(E')}{S_j(E)P_j(E)} \int^{\infty}_{E'} dE'' \sigma_{jk}(E', E'') \sum_{\ell} \int^{\infty}_0 G_{k\ell}(x + R_j(E) - R_j(E'), E''', E_0) \phi_\ell(0, E_0) dE_0.
\]

Note that when \(\ell = m \) we can equate like coefficients and find that \(G_{jm}(x, E, E_0) \) must satisfy the integral equation

\[
G_{jm}(x, E, E_0) = \frac{S_j(E_j)P_j(E_j)}{S_j(E)P_j(E)} G_{jm}(0, E_j, E_0) \\
+ \sum_{k > j} \int^{E_j}_E dE' \frac{A_jP_j(E')}{S_j(E)P_j(E)} \int^{\infty}_{E'} dE'' \sigma_{jk}(E', E'') G_{km}(x + R_j(E) - R_j(E'), E'', E_0)
\]

(29)

subject to the boundary condition \(G_{jm}(0, E, E_0) = \delta_{jm} \delta(E - E_0) \), where the value for \(E_j \) is determined from the inverse relation \(E_j = R_j^{-1}(x + R_j(E)) \). The \(G_{jm} \) terms are written using the Neumann expansion as a perturbation series

\[
G_{jm}(x, E, E_0) = \sum_{i=0}^{\infty} G_{jm}^{(i)}(x, E, E_0)
\]

(30)
with leading term

$$G_{jm}^{(0)}(x, E, E_0) = \frac{S_j(E_j)P_j(E_j)}{S_j(E)P_j(E)} \delta_{jm} \delta(E_j - E_0).$$ \hfill (31)$$

with $E_j = R_j^{-1}(x + R_j(E))$. Note that when $x = 0$ we have $E_j = E$ so that $G_{jm}^{(0)}(0, E, E_0)$ satisfies the above boundary condition. The higher order terms are determined from the recursive definition

$$G_{jm}^{(n+1)}(x, E, E_0) =$$

$$\sum_k \int_{E_j}^{E_k} dE' \frac{A_j P_j(E')}{S_j(E)P_j(E)} \int_{E'}^\infty dE'' \sigma_{jk}(E', E'') G_{km}^{(n)}(x + R_j(E) - R_j(E'), E'', E_0).$$ \hfill (32)$$

and must satisfy the boundary conditions $G_{jm}^{(n+1)}(x, E, E_0) = 0$ for $n = 0, 1, 2, \ldots$. In the special case $n = 0$ the equation (32) reduces to

$$G_{jm}^{(1)}(x, E, E_0) =$$

$$\sum_k \int_{E_j}^{E_k} dE' \frac{A_j P_j(E')}{S_j(E)P_j(E)} \int_{E'}^\infty dE'' \sigma_{jk}(E', E'') \frac{S_k(E'_k)P_k(E'_k)}{S_k(E'')P_k(E'')} \delta_{km} \delta(E'_k - E_0)$$

where $R_k(E'_k) = x + R_j(E) - R_j(E') + R_k(E'')$. (i.e. treat $x + R_j(E) - R_j(E'')$ as an x^* value. See for example equation (27) .) Again we observe that when $x = 0$ we have $E_j = E$ and so the boundary condition at $x = 0$ is satisfied.

Cross Section assumption 1

For interactions dominated by peripheral processes we use

$$\sigma_{jm}(E', E'') = \sigma_{jm}(E'') \delta(E' - E'')$$ \hfill (34)$$

so that the equation (33) becomes

$$G_{jm}^{(1)}(x, E, E_0) =$$

$$\sum_k \int_{E_j}^{E_k} dE' \frac{A_j P_j(E')}{S_j(E)P_j(E)} \int_{E'}^\infty dE'' \sigma_{jk}(E'', E'') \frac{S_k(E'_k)P_k(E'_k)}{S_k(E'')P_k(E'')} \delta_{km} \delta(E'_k - E_0)$$

where

$$E'_k = R_k^{-1}(x + R_j(E) - R_j(E') + R_k(E'')).$$ \hfill (36)$$

We integrate with respect to E'' and observe that the only nonzero term occurs when $E'' = E'$. This gives

$$G_{jm}^{(1)}(x, E, E_0) = \sum_k \int_{E_j}^{E_k} dE' \frac{A_j P_j(E')}{S_j(E)P_j(E)} \sigma_{jk}(E') \frac{S_k(E'_k)P_k(E'_k)}{S_k(E')P_k(E')} \delta(E'_k - E_0) \delta_{km}$$ \hfill (37)$$
where

\[
R_k(E'_k) = x + R_j(E) - R_k(E_k') + R_k(E_k')
\]

(38)

\[
R_j(E') - R_k(E') = x + R_j(E) - R_k(E_k').
\]

(38)

We know that \(\nu_j R_j(E') = \nu_k R_k(E')\) so that the above can be written as

\[
\left(\frac{\nu_k}{\nu_j} - 1\right) R_k(E') = x + R_j(E) - R_k(E_k')
\]

or

\[
\left(1 - \frac{\nu_j}{\nu_k}\right) R_j(E') = x + R_j(E) - R_k(E_k').
\]

Thus, we can write

\[
R_j(E') = \frac{\nu_k}{|\nu_k - \nu_j|}(x + R_j(E) - R_k(E_k'))
\]

(39)

or

\[
R_k(E') = \frac{\nu_j}{|\nu_k - \nu_j|}(x + R_j(E) - R_k(E_k')).
\]

Differentiate the equation (39) with respect to \(E_k'\) to obtain

\[
R'_k(E')dE' = \frac{\nu_j}{|\nu_k - \nu_j|}(-R'_k(E_k'))dE' \quad \text{or} \quad dE' = \frac{\nu_j}{|\nu_k - \nu_j|} \frac{A_k}{S_k(E_k')}dE_k'
\]

(40)

The equation (35) can then be written as

\[
G^{(1)}_{jm}(x, E, E_0) = \sum_k \int_{E_{k1}'}^{E_{k2}'} dE_k' \frac{A_j P_j(E')}{S_j(E) P_j(E)} \sigma_{jm}(E') \frac{\nu_j}{|\nu_m - \nu_j|} \frac{P_k(E_k')}{P_k(E')} \delta(E_k' - E_0) \delta_{km}
\]

(41)

The only nonzero contribution comes when \(k = m\) and \(E_k' = E_0\) and so equation (41) reduces to

\[
G^{(1)}_{jm}(x, E, E_0) = \begin{cases} h_{jm}(x, E, E_0, E') & \text{if } \frac{\nu_m}{\nu_j} (R_m(E_0) - x) < R_j(E) < \frac{\nu_m}{\nu_j} R_m(E_0) - x \\ 0 & \text{otherwise} \end{cases}
\]

(42)

where

\[
h_{jm}(x, E, E_0, E') = \frac{A_j P_j(E')}{S_j(E) P_j(E)} \sigma_{jm}(E') \frac{\nu_j}{|\nu_m - \nu_j|} \frac{P_m(E_0)}{P_m(E')}
\]

(43)

and

\[
E' = R_j^{-1}\left(\frac{\nu_m}{|\nu_m - \nu_j|}[x + R_j(E) - R_m(E_0)]\right).
\]

(44)
That is, when $E_k' = E_0$ and $k = m$ we have from the equation (38) that

$$R_m(E_0) = x + R_j(E) - R_j(E') + R_m(E')$$

$$R_j(E') - R_m(E') = x + R_j(E) - R_m(E_0)$$

$$\left(1 - \frac{\nu_j}{\nu_m}\right) R_j(E') = x + R_j(E) - R_m(E_0)$$

$$R_j(E') = \frac{\nu_m}{|\nu_m - \nu_j|}(x + R_j(E) - R_m(E_0)).$$

Also from the transformation equations (13) the $\eta_k, \xi_k, \eta_j, \xi_j$ variables are related through the range scale factors ν_j and ν_k, where $\nu_j R_j = \nu_k R_k$. This produces the relations

$$\eta_k - \xi_k = -2R_k = -2\frac{\nu_j}{\nu_k} R_j = \frac{\nu_j}{\nu_k}(\eta_j - \xi_j).$$

Then from the equations

$$\xi_j + \eta_j = \xi_k + \eta_k \quad (45)$$

$$\eta_j - \xi_j = \frac{\nu_k}{\nu_j}(\eta_k - \xi_k) \quad (46)$$

we find that by adding the equation (45) and (46) we obtain

$$2\eta_j = \left(1 + \frac{\nu_k}{\nu_j}\right) \eta_k + \left(1 - \frac{\nu_k}{\nu_j}\right) \xi_k \quad (47)$$

and subtracting (46) from (45) we obtain

$$2\xi_j = \left(1 - \frac{\nu_k}{\nu_j}\right) \eta_k + \left(1 + \frac{\nu_k}{\nu_j}\right) \xi_k. \quad (48)$$

Interchanging j and k in the equations (47) and (48) we find that

$$\eta_k = \left(\frac{\nu_j + \nu_k}{2\nu_k}\right) \eta_j + \left(\frac{\nu_k - \nu_j}{2\nu_k}\right) \xi_j$$

$$\xi_k = \left(\frac{\nu_k - \nu_j}{2\nu_k}\right) \eta_j + \left(\frac{\nu_k + \nu_j}{2\nu_k}\right) \xi_j. \quad (47)$$

Then when η_j is a value η' lying between the constants $-\xi_j$ and $+\xi_j$, (See Figure 2(b)), we will have

$$\eta_k = \left(\frac{\nu_j + \nu_k}{2\nu_k}\right) \eta' + \left(\frac{\nu_k - \nu_j}{2\nu_k}\right) \xi_j$$

$$\xi_k = \left(\frac{\nu_k - \nu_j}{2\nu_k}\right) \eta' + \left(\frac{\nu_k + \nu_j}{2\nu_k}\right) \xi_j.$$
Changing \(k \) to \(m \) we find

\[
\xi_m = \left(\frac{\nu_m - \nu_j}{2\nu_m} \right) \eta' + \left(\frac{\nu_m + \nu_j}{2\nu_m} \right) \xi_j.
\]

Note that the boundary condition \(G_{jm}(0, E, E_0) = \delta_{jm}\delta(E - E_0) \) can be written in the form

\[
G_{jm}(0, E, E_0) = \delta_{jm}\delta(R_j^{-1}(\xi_j) - E_0) = \delta_{jm}\delta(\xi_j - R_j(E_0)) = \delta(\xi_m - R_m(E_0))
\]
so that when \(\xi_m = R_m(E_0) \) we have

\[
\eta' = \frac{2\nu_m}{\nu_m - \nu_j} R_m(E_0) - \left(\frac{\nu_m + \nu_j}{\nu_m - \nu_j} \right) \xi_j. \tag{49}
\]

Using the equations (6) and (49) we now calculate the inequality which occurs in the equation (42). From the equation (10), with \(a = -\xi \), we have the inequality

\[
-\xi_j < \eta' < \eta_j
\]
which implies

\[
-x - R_j(E) < \frac{2\nu_m}{\nu_m - \nu_j} R_m(E_0) - \left(\frac{\nu_m + \nu_j}{\nu_m - \nu_j} \right) (x + R_j(E)) < x - R_j(E)
\]

\[
x < \frac{2\nu_m}{\nu_m - \nu_j} R_m(E_0) + R_j(E) - \left(\frac{\nu_m + \nu_j}{\nu_m - \nu_j} \right) (x + R_j(E)) < x
\]

\[
(\frac{\nu_m + \nu_j}{\nu_m - \nu_j}) x - x < \frac{2\nu_m R_m(E_0)}{\nu_m - \nu_j} + \left(1 - \frac{\nu_m + \nu_j}{\nu_m - \nu_j} \right) R_j(E) < x + \left(\frac{\nu_m + \nu_j}{\nu_m - \nu_j} \right) x
\]

\[
\nu_j x < \nu_m R_m(E_0) - \nu_j R_j(E) < \nu_m x
\]

\[
-\nu_j x > \nu_j R_j(E) - \nu_m R_m(E_0) > -\nu_m x
\]

\[
\nu_m R_m(E_0) - \nu_j x > \nu_j R_j(E) > \nu_m R_m(E_0) - \nu_m x
\]

\[
\frac{\nu_m}{\nu_j} (R_m(E_0) - x) > R_j(E) > \frac{\nu_m}{\nu_j} (R_m(E_0) - x)
\]

\[
\frac{\nu_m}{\nu_j} (R_m(E_0) - x) < R_j(E) < \frac{\nu_m}{\nu_j} R_m(E_0) - x
\]

Cross Section assumption 2

We start with equation (33) and assume \(\sigma_{jm}(E', E'') \) has a Gaussian distribution of the form

\[
\sigma_{jm}(E', E'') = \tilde{\sigma}_{jm}(E'') \frac{1}{\Delta_{jm} \sqrt{2\pi}} \exp \left[-\frac{(E' - E'' - \epsilon_{jm})^2}{2\Delta_{jm}^2} \right]
\]

67
we can then write the equation (33) in the form

\[G_{jm}^{(1)}(x, E, E_0) = \int_{E}^{E_j} dE' \int_{E'}^{\infty} dE'' F_{jk}\delta_{km} \]

(50)

where

\[F_{jk} = \frac{A_j P_j(E')}{S_j(E) P_j(E)} \sigma_{jk}(E', E'') \frac{S_k(E'_k) P_k(E'_k)}{S_k(E'') P_k(E'')} \delta(E'_k - E_0) \]

(51)

with

\[E'_k = R_k^{-1}(x + R_j(E) - R_j(E') + R_k(E'')) \]

(52)

The integration of (50) is over the region illustrated in the figure 3 in the limit as \(T \to \infty \). In expanded form the equation (50) has the form

\[
G_{jm}^{(1)}(x, E, E_0) = \\
\int_{E}^{E_j} dE' \int_{E'}^{\infty} dE'' \frac{A_j P_j(E')}{S_j(E) P_j(E)} \sigma_{jk}(E', E'') \frac{S_k(E'_k) P_k(E'_k)}{S_k(E'') P_k(E'')} \delta_{km}\delta(E'_k - E_0).
\]

(53)

where

\[\sigma_{jk} = \bar{\sigma}_{jk}(E'') \frac{1}{\Delta_j \sqrt{2\pi}} \exp \left[-\frac{(E' - E'' - \epsilon_{jk})^2}{2\Delta_j^2} \right] \]

\[= \frac{1}{\Delta_j \sqrt{2\pi}} \exp \left[-\frac{(E' - E'' - \epsilon_{jk})^2}{2\Delta_j^2} \right] \]

Figure 3. Limits of integration for Green's function term.
Note that for the first integration in the E'' direction we have E' is a constant. Consequently, we let

$$r = \frac{E'' + \epsilon_{jk} - E'}{\sqrt{2}\Delta_{jk}} \quad \text{with} \quad dr = \frac{dE''}{\sqrt{2}\Delta_{jk}},$$

(54)

The equation (53) can then be written in the form

$$G_{jm}^{(1)}(x, E, E_0) = \int^{E_j}_{E} dE' \int^{\infty}_{\epsilon_{jk}} dr \frac{A_j P_j(E')}{\sqrt{\pi} S_j(E) P_j(E)} \bar{\sigma}_{jk}(\bar{r}) e^{-r^2} \frac{S_k(E'_k) P_k(E'_k)}{S_k(\bar{r})* P_k(\bar{r})*} \delta_{km} \delta(E'_k - E_0).$$

(55)

where $\bar{r} = \sqrt{2}\Delta_{jk} r - \epsilon_{jk} + E'$ and

$$E'_k = R_k^{-1}(x + R_j(E) - R_j(E') - R_k(\bar{r})).$$

(56)

This integral can be simplified by using one of the mean value theorems for integrals and written as

$$G_{jm}^{(1)}(x, E, E_0) = \int^{E_j}_{E} dE' \frac{A_j P_j(E')}{2 S_j(E) P_j(E)} \bar{\sigma}_{jk}(\bar{r}_*) \frac{S_k(E'_k) P_k(E'_k)}{S_k(\bar{r}_*) P_k(\bar{r}_*)} \delta_{km} \delta(E'_k - E_0) \frac{2}{\sqrt{\pi}} \int_{\epsilon_{jk}}^{\infty} e^{-r^2} dr.$$

(57)

with $\bar{r}_* = \sqrt{2}\Delta_{jk} r^* - \epsilon_{jk} + E'$ and

$$E'_k = R_k^{-1}(x + R_j(E) - R_j(E') - R_k(\bar{r}_*))$$

(58)

where r^* is some mean value in the interval (ϵ_{jk}, ∞) and when $E'_k = E_0$, then E' is a solution of the nonlinear equation

$$R_k(E_0) = x + R_j(E) - R_j(E') - R_k(\sqrt{2}\Delta_{jk} r^* - \epsilon_{jk} + E')$$

(59)

provided $E < E' < E_j$. Consequently, we can write

$$G_{jm}^{(1)}(x, E, E_0) =
\begin{cases}
\frac{1}{2} \frac{A_j P_j(E')}{S_j(E) P_j(E)} \bar{\sigma}_{jm}(\bar{r}_*) \frac{S_m(E_0) P_m(E_0)}{S_m(\bar{r}_*) P_m(\bar{r}_*)} \text{erfc} \left(\frac{\epsilon_{jm}}{\sqrt{2}\Delta_{jm}} \right) & \text{if } E < E' < E_j \\
0 & \text{otherwise}
\end{cases}$$

(60)

where E' is a solution of the nonlinear equation (59), r^* is some mean value and erfc is the complimentary error function.
Figure 4. New limits of integration for Green's function term.

Another viewpoint

By interchanging the order of integration in equation (33) we obtain the limits of integration illustrated in the figure 4 and the equation (33) can be written as

\begin{equation}
G_{jm}(x, E, E_0) = \int_E^{E_j} dE'' \int_E^{E''} dE' F_{jk} \delta_{km} + \lim_{T \to \infty} \int_{E_j}^{T} dE'' \int_E^{E_j} dE' F_{jk} \delta_{km}. \tag{61}
\end{equation}

Observe that along the line \(E'' = \text{constant}\), we have from equation (52) that

\[
\frac{dR_k(E'_k)}{dE'_k} \frac{dE'_k}{dE'} = - \frac{dR_j(E')}{dE'}
\]

\[
\frac{A_k}{S_k(E'_k)} \frac{dE'_k}{dE'} = - \frac{A_j}{S_j(E')}
\]

or

\[
dE' = - \frac{A_m S_j(E')}{A_j S_k(E'_k)} dE'_k.
\]

Hence, when \(k = m\) and \(\delta_{km} = 1\), the equation (61) reduces to

\begin{equation}
G_{jm}(x, E, E_0) = \int_E^{E_j} dE'' \int_{E_m}^{E_m1} F_{jm} \frac{A_m S_j(E')}{A_j S_m(E'_m)} dE'_m + \lim_{T \to \infty} \int_{E_j}^{T} dE'' \int_E^{E_j} F_{jm} \frac{A_m S_j(E')}{A_j S_m(E'_m)} dE'_m \tag{62}
\end{equation}
The limits in the above equation are determined as follows. Observe that when $E' = E$ and $k = m$ the equation (52) gives

$$R_m(E'_m) = x + R_j(E) - R_j(E) + R_m(E'')$$

or $E'_m = R_m^{-1}(x + R_m(E'')) = E_{m1}$

and when $E' = E_j$ and $k = m$ the equation (52) gives

$$R_m(E'_m) = x + R_j(E) - R_j(E_j) + R_m(E'')$$

But $R_j(E_j) = x + R_j(E)$ so that $E'_m = E''$. Also when $E' = E''$ and $k = m$ we obtain from the equation (52) that

$$R_m(E'_m) = x + R_j(E) - R_j(E'') + R_m(E') + \nu_j R_j(E'')$$

or $E'_m = R_m^{-1}(x + R_j(E) - \left(\frac{\nu_j}{\nu_m} - 1\right) R_j(E'')) = E_{m3}$

with

$$E' = R_j^{-1}(x + R_j(E) - R_m(E'_m) + R_m(E''))$$

Using the properties of the Dirac delta function we find that the only nonzero contribution to the integral dE'_m occurs when $E'_m = E_0$. In this case the integral given by equation (62) simplifies to

$$G_{jm}^{(1)}(x, E, E_0) = \int_{E_j}^E dE'' A_m S_j(E') P_j(E') \sigma_{jm}(E', E'') \frac{P_m(E_0)}{S_m(E'')P_m(E'')} f_1$$

or

$$+ \lim_{T \to \infty} \int_{E_j}^T dE'' A_m S_j(E') P_j(E') \sigma_{jm}(E', E'') \frac{P_m(E_0)}{S_m(E'')P_m(E'')} f_2$$

where

$$E' = R_j^{-1}(x + R_j(E) - R_m(E_0) + R_m(E''))$$

and

$$f_1 = \begin{cases} 1 & \text{if } E_{m3} < E_0 < E_{m1} \\ 0 & \text{otherwise} \end{cases}$$

and

$$f_2 = \begin{cases} 1 & \text{if } E'' < E_0 < E_{m1} \\ 0 & \text{otherwise} \end{cases}$$
References

