NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
Site Remediation Technology InfoBase:
A Guide to Federal Programs, Information Resources, and Publications on Contaminated Site Cleanup Technologies

First Edition

Prepared by the Member Agencies of the Federal Remediation Technologies Roundtable:

U.S. Environmental Protection Agency
Department of Defense
 U.S. Air Force
 U.S. Army
 U.S. Navy
Department of Energy
Department of Interior
National Aeronautics and Space Administration
Tennessee Valley Authority
Coast Guard
NOTICE

This document has been funded by the United States Environmental Protection Agency under Contract 68-W6-0014. It has been subject to administrative review by all agencies participating in the Federal Remediation Technologies Roundtable, and has been approved for publication. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.
TABLE OF CONTENTS

FEDERAL CLEANUP PROGRAMS ... 1
U.S. Department of Defense Cleanup Programs 2
DoD Environmental Quality Mission and Challenges 2
DoD Environmental Quality RDT&E Process 3
Defense Environmental Restoration Program 4
U.S. Army Defense Environmental Restoration Program 5
U.S. Air Force Major Commands ... 5
U.S. Navy Facilities Engineering Command 5
U.S. Department of Energy Cleanup Programs 6
Environmental Restoration Program Needs 6
Environmental Technology Development Programs and Services 6
Technology Focus Areas ... 7
U.S. Environmental Protection Agency Cleanup Programs 9
Hazardous Waste Cleanup Sites ... 9
RCRA Corrective Action Sites .. 10
Underground Storage Tank Sites ... 10

FEDERAL SITE REMEDIATION TECHNOLOGY DEVELOPMENT
ASSISTANCE PROGRAMS ... 11
Interagency R&D Assistance Programs .. 12
Rapid Commercialization Initiative ... 12
Small Business Innovative Research Program/Small Business Technology Transfer Research Program 13
U.S. Department of Defense R&D Assistance Programs 14
Air Force Center for Environmental Excellence 14
Environmental Security Technology Certification Program 14
National Environmental Technology Test Sites (NETTS) Program 15
Naval Environmental Leadership Program 17
Strategic Environmental Research and Development Program 18
Unexploded Ordnance Technology Demonstration Program 19
U.S. Army Environmental Center .. 20
U.S. Department of Energy R&D Assistance Programs 21
Industry and University Programs Area 21
Program Research & Development Announcements/Research Opportunity Announcements .. 21
TechCon ... 22
Technology Development Initiative .. 23
U.S. Environmental Protection Agency R&D Assistance Programs 24
Environmental Technology Verification Program 24
National Center for Environmental Research and Quality Assurance 25
Remediation Technologies Development Forum 25
Superfund Innovative Technology Evaluation Program 26

FEDERAL SITE REMEDIATION TECHNOLOGY DEVELOPMENT
ELECTRONIC DATA BASES .. 29
U.S. Department of Commerce .. 30
National Technical Information Service (NTIS) Bibliographic Data Base 30
<table>
<thead>
<tr>
<th>Agency/Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Department of Energy</td>
<td>30</td>
</tr>
<tr>
<td>DOE R&D Project Summaries Web Data Base</td>
<td>30</td>
</tr>
<tr>
<td>New Technology from DOE</td>
<td>31</td>
</tr>
<tr>
<td>ReOpt: Electronic Encyclopedia of Remedial Action Options</td>
<td>31</td>
</tr>
<tr>
<td>U.S. Environmental Protection Agency</td>
<td>32</td>
</tr>
<tr>
<td>Bioremediation in the Field Search System</td>
<td>32</td>
</tr>
<tr>
<td>RREL Treatability Data Base</td>
<td>32</td>
</tr>
<tr>
<td>Vendor Information System for Innovative Treatment Technologies/Vendor Field Analytical Characterization Technology System</td>
<td>33</td>
</tr>
</tbody>
</table>

FEDERAL ELECTRONIC RESOURCES FOR SITE REMEDIATION

<table>
<thead>
<tr>
<th>Resource</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Remediation Technologies Roundtable</td>
<td>36</td>
</tr>
<tr>
<td>U.S. Department of Defense</td>
<td>36</td>
</tr>
<tr>
<td>Defense Environmental Network and Information Exchange</td>
<td>36</td>
</tr>
<tr>
<td>Fielding Environmental Solutions</td>
<td>36</td>
</tr>
<tr>
<td>Technology Summary Sheets</td>
<td>37</td>
</tr>
<tr>
<td>U.S. Department of Energy</td>
<td>37</td>
</tr>
<tr>
<td>Environmental Technologies Remedial Actions Data Exchange (EnviroTRADE)</td>
<td>37</td>
</tr>
<tr>
<td>U.S. Environmental Protection Agency</td>
<td>37</td>
</tr>
<tr>
<td>Alternative Treatment Technology Information Center</td>
<td>37</td>
</tr>
<tr>
<td>Hazardous Waste Cleanup Information System</td>
<td>38</td>
</tr>
<tr>
<td>National Center for Environmental Publications and Information</td>
<td>39</td>
</tr>
</tbody>
</table>

OTHER ELECTRONIC RESOURCES FOR SITE REMEDIATION

<table>
<thead>
<tr>
<th>Resource</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Network for Environmental Technology</td>
<td>41</td>
</tr>
<tr>
<td>Groundwater Remediation Technologies Analysis Center</td>
<td>42</td>
</tr>
<tr>
<td>National Technology Transfer Center</td>
<td>43</td>
</tr>
</tbody>
</table>

SELECTED BIBLIOGRAPHY:

FEDERAL PUBLICATIONS ON ALTERNATIVE AND INNOVATIVE SITE REMEDIATION TECHNOLOGIES

<table>
<thead>
<tr>
<th>Category</th>
<th>Agencies</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGICAL</td>
<td>EPA</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>U.S. Air Force</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>U.S. Army</td>
<td>48</td>
</tr>
<tr>
<td>CONFERENCES AND INTERNATIONAL SURVEYS</td>
<td>EPA</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>U.S. Army</td>
<td>50</td>
</tr>
<tr>
<td>GROUNDWATER</td>
<td>DOE</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>EPA</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>U.S. Army</td>
<td>53</td>
</tr>
<tr>
<td>PHYSICAL/CHEMICAL</td>
<td>EPA</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>U.S. Army</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>U.S. Navy</td>
<td>58</td>
</tr>
<tr>
<td>Topic</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Technology Survey Reports</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>DOE</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>U.S. Army</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>U.S. Navy</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Thermal Processes</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>DOE</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Treatability Studies</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>U.S. Army</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Appendix</td>
<td>A-1</td>
<td></td>
</tr>
<tr>
<td>Technology Program Contacts</td>
<td>A-1</td>
<td></td>
</tr>
<tr>
<td>U.S. Department of Defense</td>
<td>A-1</td>
<td></td>
</tr>
<tr>
<td>U.S. Department of Energy</td>
<td>A-2</td>
<td></td>
</tr>
<tr>
<td>U.S. Environmental Protection Agency</td>
<td>A-2</td>
<td></td>
</tr>
</tbody>
</table>
FEDERAL CLEANUP PROGRAMS
U.S. Department of Defense Cleanup Programs

DoD Environmental Quality Mission and Challenges

The Department of Defense's Environmental Quality Research, Development, Testing, and Evaluation (EQ RDT&E) program is based on four requirements that constitute the pillars of DoD's environmental security mission. DoD is required to:

1. **Cleanup** hazardous wastes resulting from past practices at active, formerly used, and to-be-closed military sites;

2. **Comply** with laws by controlling hazardous emissions from its systems and operations;

3. **Prevent pollution** through substitutions of materials and processes to significantly reduce or eliminate the generation of pollutants; and

4. **Conserve** natural and cultural resources through proper stewardship and management.

Cleanup. DoD has identified 17,660 potentially contaminated sites at 1,877 DoD installations and 6,786 formerly used defense sites (FUDs). Of these, about 7,000 will require cleanup. DoD estimates that nearly all sites have been identified and that cleanup of the sites will be completed by 2011. Design and construction work will increase through 1998, then moderate until all cleanup is completed. The most common contaminants at DoD sites are: petroleum products, solvents, metals, pesticides, and paints. Some sites also contain more unusual wastes, such as unexploded ordnance or low-level radioactive materials.

Compliance. DoD must meet all regulatory requirements established by law relating to air, water, and land discharges. Many compliance deadlines have been met with best-available but costly technology; some operations continue under temporary waivers. Experience suggests that future regulations will likely be more stringent, and compliance through emission control will continue to be required, since it will not be possible to eliminate all hazardous discharge through pollution prevention strategies.

Pollution Prevention. DoD is required to reduce waste streams through material substitution and redesign of materials and processes that are environmentally superior while continuing to be functionally effective. The primary targets, derived from the Toxic Release Inventory and EPA's list of the 17 most toxic substances, are volatile organic compounds, ozone depleting substances, and hazardous/toxic materials.

Conservation. DoD must balance conflicting demands of more space-intensive training on diminishing military lands. Maintenance of national infrastructure for flood control, navigation, and other Corps of Engineers national civil works often result in competing uses for land resources. Protection of coastal and marine resources, while conducting operations for military readiness, also presents challenges.

DoD, as "owners" of environmental problems, and with both an interest in safeguarding the public and the legal responsibility for its own contamination, requires more effective and less costly technologies to address environmental security. DoD has an interest in the accelerated development and implementation of cost-effective advanced technologies since it must provide timely solutions for its mission-unique technology needs and its other extensive, costly, complex, and risky environmental needs.

DoD recognizes the need for competent in-house people for smart technology buying from academia, industry, or other agencies. Such competence can only be maintained by active pursuit of research and development in its laboratories and centers and simultaneous pursuit of scientific understanding of issues, processes, and continued advances in technology, coupled with rigorous testing and evaluation through an integrated
DoD Problem Areas and Development Mission Objectives

<table>
<thead>
<tr>
<th>Problem Definition</th>
<th>Development Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEANUP
The remediation of soil, sediment, groundwater, surface water, and structures contaminated with hazardous and toxic materials from past military activities.</td>
<td>Provide new or improved cost effective methods to identify, evaluate, treat, control, and mitigate past hazardous and toxic materials disposal practices in three areas: site investigation/characterization; remediation; and environmental contaminant and effects.</td>
</tr>
<tr>
<td>COMPLIANCE
EQ requirements relating to air, water, and land pollution through the control, treatment, and disposal of solid and hazardous wastes. Primary areas of emphasis are industrial activities, solid and liquid discharges from ships, and environmentally sound disposal of pyrotechnics, explosives, and propellants.</td>
<td>Technologies for advanced end-of-pipe control, treatment, and disposal of wastes to meet air, water, and land requirements. R&D is focused on characterization of pollutant and waste behavior, media-specific control and treatment technologies, and monitoring and assessment tools. To meet existing and future national/international regulatory constraints otherwise inhibiting the DoD mission.</td>
</tr>
<tr>
<td>POLLUTION PREVENTION
Elimination and/or minimization of materials and materials development processes that produce or release hazardous, toxic, or excess wastes into the environment.</td>
<td>Technology in the form of materials, processes, and functional products allowing the eventual elimination of the use of VOC, ODC, and HAZMAT materials and processes in DoD maintenance, overhaul, and remanufacture of new weapons systems.</td>
</tr>
<tr>
<td>CONSERVATION
Maintaining optimum training, testing, and operational mission effectiveness by stewardship and preservation of the natural and cultural resources on DoD lands.</td>
<td>Enhanced and continued testing and training mission effectiveness through effective management of ecological and cultural resources diversity and productivity. Advanced models and techniques for resource characterization/impact analysis and improved mitigation and rehabilitation measures.</td>
</tr>
</tbody>
</table>

Research and development program. Integration is provided through existing mechanisms led by Defense laboratories’ balance of intramural and extramural activities.

DoD Environmental Quality RDT&E Process

DoD’s EQ RDT&E effort is almost totally executed by the Services through Civil & Environmental Engineering, Combat Material, and Corporate laboratories. These laboratories provide the technical expertise to enable the Services to be smart buyers and users of new and improved technologies. Each laboratory generally performs the environmental work required by the primary weapon, platform, or installation mission it supports. For example:

- The Air Force Research Laboratory’s Airbase and Environmental Technology Division and the Naval Air Warfare Center share the lead on environmental work for aviation and maritime aviation.

- The Naval Surface Warfare Center does environmental RDT&E for ships in support of NAVSEA, the acquisition and life-cycle manager for surface weapons systems.

- The U.S. Army Engineer Waterways Experiment Station (WES), where cleanup RDT&E is executed, is under the Command of Headquarters, U.S. Army Corps of Engineers, which administers the cleanup program for the Army.

In the continuous dialogue between technology users and R&D producers, the laboratories interpret science and technology to enable users to separate the R&D requirement from needs that can be addressed through existing and available technology. User stated requirements are cross-checked for commonality by the Tri-Service Project Reliance Joint Engineers’ Panel teams for the four environmental security mission pillars. These pillars are comprised of R&D engineers and scientists from each Service who also sit on parallel teams of the interagency Strategic...
Environmental Research and Development Program (SERDP) (see p. 18). The personnel on the teams possess the subject matter expertise to understand the technology, interpret the requirements to create balanced and focused joint projects and evaluate technical program proposals for inclusion in SERDP, the Environmental Security Technology Certification Program (ESTCP, see p. 14), and other agency programs. The teams provide for DoD inter-laboratory integration and the leveraging of technical concepts, programs, and talents to create projects for innovative dual use technology, while providing for DoD user requirements.

Laboratory personnel play a key role in technology shortfall need identification and assisting field commands to understand and solve urgent problems requiring emerging technologies from any source. Laboratory scientists and engineers communicate their R&D accomplishments and DoD technology needs to professional, trade, and academic forums through scientific or technical papers and numerous other exchanges. The research engineers and scientists link their laboratories with field users and external suppliers of science and technology from industry, academia, and other agencies. This communication interaction that underlies the more formal and visible user requirements development and approval processes is the work of people who have ready access to peer organizations, the private sector, and the users who need their advice. They also have access to industry and academia peers to facilitate their understanding of DoD's specific needs and constraints.

The DoD Cleanup Pillar R&D Structure is appended to this section (see p. 5).

Defense Environmental Restoration Program

DoD cleanup policy is determined centrally under the Defense Environmental Restoration Program (DERP). DERP includes two major components: Other Hazardous Waste Operations (OHW) and the Installation Restoration Program (IRP). Under the IRP, DoD performs all required contaminated site cleanups. Although policy direction and oversight of IRP are responsibilities of the Deputy Assistant Secretary of Defense, each Service (Army, Navy, Air Force) is responsible for program implementation.

DERP has specified procedures for evaluating sites and procuring cleanup services under IRP that follow EPA guidelines for site investigations and remediation. These procedures cover all phases of site operations, including preliminary assessment/site inspection (PA/SI), remedial investigation/feasibility study (RI/FS), and remedial design/remedial action (RD/RA).

Nearly all DoD assessment and remediation work is done through contractors. Generally, there are two types of contractors: those engaged in site assessments and investigations (PA/SI through RI/FS) and those that perform cleanups (RD/RA). Contractors that work on PA/SIs and RI/FSs seldom work on the RD/RA phase.

In selecting and designing remedies, DoD officials coordinate with EPA Regional officials to ensure that cleanup goals meet regulatory requirements. Most contracting is done on an installation-oriented basis, either through centralized contracting service centers or directly by the installation. Although each Service follows general procedures specified by DERP, each procures its own services.

DoD spends approximately $15 million annually on KTD&E, primarily to demonstrate promising technologies. Technologies demonstrated include: bioventing, in situ aerobic and anaerobic bioremediation, monitored natural attenuation, in situ and ex situ vapor extraction, in situ soil venting, chemical detoxification of chlorinated aromatic compounds, incineration of soil contaminated with explosives, infrared thermal destruction, low temperature thermal stripping, thermal destruction, radio frequency thermal soil decontamination, and composting of explosives-contaminated soil.
U.S. Army Defense Environmental Restoration Program

The U.S. Army Environmental Center (AEC) is responsible for program management of the IRP to include program, fiscal, and technical oversight. USACE develops the annual and multiyear IRP workplans based on MACOM requirements, provides assistance to MACOMs in development and quality assurance of requirements through the Installation Action Plans, and monitors and evaluates MACOM performance against the funded requirements. The U.S. Army Corps of Engineers (USACE) performs most phases of project execution. The DoD Formerly Used Defense Sites (FUDS) are administered by USACE.

U.S. Air Force Major Commands

The Air Force IRP is decentralized. It is executed by the Air Force Major Commands. Each may obtain specialized technical support from contractors in one of three ways: through task-order contracts administered by five contract service centers; through individual contracts issued by the commands themselves; or by individual installations. Much of the Air Force’s restoration work is being conducted by the Army Corps of Engineers. In the future, the Air Force plans to issue contracts for this work.

U.S. Navy Facilities Engineering Command

The Navy Facilities Engineering Command (NAVFAC) manages the Navy IRP. Day-to-day operations of the IRP are conducted by ten field divisions that operate within distinct geographical boundaries. The majority of the IRP work is being done by support contractors under two distinct contract mechanisms, each managed by the field divisions:

- Comprehensive Long-Term Environmental Action Navy (CLEAN) contracts for procuring remedial study and design services.
- Remedial Action Contracts (RACs) for procuring remedial cleanup services.

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>SUB-AREAS</th>
<th>PROGRAM THRUSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPROVED SITE CHARACTERIZATION AND MONITORING</td>
<td>Remote Sensing</td>
<td>1A: Detection of Unexploded Ordnance</td>
</tr>
<tr>
<td></td>
<td>Field Sampling and Analysis</td>
<td>1B: Site Characterization and Monitoring</td>
</tr>
<tr>
<td></td>
<td>Database Development</td>
<td>1D: Analytical Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1E: Groundwater Systems</td>
</tr>
<tr>
<td>EXPEDITIOUS, LESS COSTLY REMEDIATION TECHNOLOGIES</td>
<td>Groundwater/Surface Water</td>
<td>1F: Explosives/Organics Contaminated Groundwater</td>
</tr>
<tr>
<td>WHICH PROTECT HUMAN HEALTH AND THE ENVIRONMENT</td>
<td>Soils/Sludges</td>
<td>1H: Solvents/Fuels Contaminated Soils</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1I: Fuels Contaminated Groundwater</td>
</tr>
<tr>
<td></td>
<td>Structures</td>
<td>2A: Remediation of UXO Contaminated Sites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2B: Explosives/Organics Contaminated Soils</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2I: Solvents/Fuels Contaminated Soils</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2N: Inorganics Contaminated Soils</td>
</tr>
<tr>
<td></td>
<td>Sediment</td>
<td>10: Heavy Metal Contaminated Structures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1P: Explosive/Chemical Agent Contaminated Structures</td>
</tr>
<tr>
<td>DEVELOP USER-BASED RISK ASSESSMENT METHODOLOGIES</td>
<td>Fate Transport Models</td>
<td>1T: Fate/Transport Methods and Model Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1U: Risk and Hazard Assessment Model</td>
</tr>
</tbody>
</table>
U.S. Department of Energy Cleanup Programs

Environmental Restoration Program Needs

DOE's Environmental Restoration Program is responsible for cleaning up 110 major installations and other locations. DOE estimates that remediation may be required at about 4,000 of its contaminated areas or sites. Most sites have been used for nuclear weapons research, development, and production. DOE installations tend to be much larger than non-DOE sites. Twenty-three DOE sites are listed on the Superfund National Priorities List.

Key considerations of DOE's Environmental Restoration program include the following:

- Most of the DOE cleanup effort is occurring at 64 installations managed under the Remedial Actions Program.
- Some contaminants at DOE installations are unique to nuclear production, while others are common to more typical industrial processes. Mixed waste (containing both radioactive and non-radioactive constituents) is a widespread problem.
- The Decontamination and Decommissioning Program will involve up to 1,000 facilities. This program manages retired government-owned facilities such as reactors, laboratories, buildings, and storage tanks.
- DOE conducts research and development, primarily in the form of demonstrations of technologies such as in situ bioremediation, air stripping, vitrification, soil washing, solvent extraction, solar detoxification, and above-ground biological treatment.

Contractors perform virtually all cleanup and restoration work at DOE installations. DOE awards remedial action contracts on a site-by-site basis. These contracts are managed by DOE's Operations Offices. Depending on the site, contractors may be responsible for management tasks, actual cleanup work, waste management duties, or various combinations. For example, contractors are responsible for day-to-day project management under Environmental Restoration Management Contracts (ERMCs) awarded at the Hanford and Fermi sites. ERMC contractors have the option of performing remedial investigation/feasibility studies themselves and are responsible for subcontracting remaining work to companies with specialized expertise and technology.

DOE has begun to implement a number of contract reforms that emphasize performance-based approaches and risk sharing, provide incentives for M&O contractors for cost-reduction and safety measures, and identify tasks that should be undertaken by qualified subcontractors. The first two integrated management contracts awarded under the new system have been multi-year efforts for management and cleanup of the Idaho National Engineering Laboratory and Rocky Flats sites.

Environmental Technology Development Programs and Services

DOE provides a range of programs and services to assist universities, industry, and other private sector organizations and individuals interested in developing or applying environmental technologies. Working with DOE's Operations Offices, as well as management and operating contractors, EM employs a number of mechanisms to identify, integrate, develop, and adapt promising emerging technologies. These mechanisms include collaborative arrangements, procurement provisions, licensing of technologies, consulting arrangements, reimbursable work for industry, and special consideration for small business.

EM awards grants and cooperative agreements if 51% or more of the value of the effort is related to a public interest goal. Such goals include advancement of present/future U.S. capabilities in domestic and international environmental cleanup.
markets, technology transfer, advancement of scientific knowledge, or education and training of individuals and businesses.

The Industry and University Programs Area (see p. 21) is a primary DOE vehicle for funding research and development partnerships with the public and private sectors to introduce new technologies into the programs managed by DOE's Office of Science and Technology.

DOE uses several mechanisms under the above Programs Area and otherwise to invite the private sector to participate in its technology research and development programs. These include Cooperative Research and Development Agreements (CRADAs) for collaborative R&D with non-federal partners, and procurements for technology development under Program Research and Development Announcements (PRDAs) (see p. 21) and Research Opportunity Announcements (ROAs) (see p. 21). The Small Business Technology Transfer Program (see p. 13) is a special program through which small businesses may participate in the above programs. DOE also is one of 11 federal agencies involved in the Small Business Innovation Research Program, administered by the Small Business Administration (see p. 13).

CRADAs are agreements between a DOE or other federal R&D laboratory and any non-federal source to conduct cooperative R&D that is consistent with the laboratory’s mission. The partner may provide funds, facilities, people, or other resources. DOE provides the partner with access to facilities and expertise; external participants receive no federal funds. Rights to inventions and other intellectual property are negotiated between the laboratory and the participant.

PRDAs are program announcements which solicit a broad mix of advanced development and demonstration proposals. A PRDA requests proposals for a wide range of technical solutions to specific EM problem areas. Multiple awards, which may have distinct approaches or concepts, are generally made.

The ROA seeks advanced research and technologies for a broad scope of cleanup needs and supports applied research ranging from concept feasibility to full-scale testing. Each ROA is open continuously for a full year following the date of issue and includes a partial procurement set-aside for small businesses.

Developers and vendors of innovative technologies interested in more information about DOE's technology development efforts should contact the DOE's Center for Environmental Management Information, toll-free, at 800-736-3282.

Technology Focus Areas

DOE recognizes that DOE cleanups provide an opportunity for developers of innovative technologies. DOE's technology-related research and development activities target five "Focus Areas" that represent key remediation and waste management problems within the DOE complex. Five areas for the development of cross-cutting technologies also have been established.

Each Focus Area includes specific categories of technologies that require research and development. These are:

Subsurface Contaminants Focus Area, which is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals, and dense, nonaqueous phase liquids. Numerous contaminant plumes have contaminated soil and groundwater. Some of these contaminants have migrated from the numerous landfills at DOE facilities, and SCFA is responsible for supplying technologies for the remediation of radioactive and hazardous buried waste, as well as for developing new or alternative technologies for in situ stabilization and noninvasive characterization of these sites. Technology developed within this specialty area will provide effective methods to contain contaminant plumes and innovative technologies for remediating contaminated soils and groundwater, with
emphasis on *in situ* technologies to minimize waste disposal costs and potential worker exposure.

Mixed Waste Characterization, Treatment, and Disposal Focus Area, which planned to conduct a minimum of three pilot-scale demonstrations of mixed waste treatment systems, using actual mixed waste, by 1997.

Radioactive Tank Waste Remediation Focus Area, which has concentrated on four DOE installations where most DOE underground storage tanks are located.

Facility Deactivation, Decontamination and Material Disposal Focus Area, which is in the process of selecting a site for a full-scale demonstration of facility decommissioning technology with an emphasis on the recycling of contaminated building materials for reuse within the DOE complex.

Cross-cutting technologies are defined as those which overlap the boundaries of Focus Areas, and technologies developed in these areas will be used in Focus Area testing and evaluations programs wherever they are applicable. These areas are: Characterization, Monitoring, and Sensor Technology; Efficient Separations and Processing; Robotics; Innovative Investment; and Pollution Prevention.
U.S. Environmental Protection Agency Cleanup Programs

Hazardous Waste Cleanup Sites

The Superfund program for the cleanup of closed or abandoned hazardous waste sites is administered by EPA under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Since 1980, the primary responsibility for site cleanups has shifted from EPA to responsible parties. Currently, almost 75% of all cleanups are being implemented by responsible parties, with EPA or state oversight.

Superfund emphasizes remedies that include the use of hazardous waste treatment technologies. The use of innovative technologies for Superfund cleanup has been increasing. Innovative treatment technologies currently account for more than half of the treatment technologies selected for controlling waste sources.

EPA has an active research and demonstration program for innovative cleanup technologies. EPA’s primary mechanisms for promotion of innovative technologies for site remediation are testing/verification programs such as the Superfund Innovative Technology Evaluation (SITE) Program (see p. 26) and the Environmental Technology Verification (ETV) Program (see p. 24). EPA sponsors other interagency technology development programs and initiatives.

Remedies have not yet been selected for hundreds of sites on the NPL. In addition, EPA estimates that 80% of future sites (either on the NPL or otherwise requiring remediation) will require remediation of contaminated ground water, 74% will require soil remediation, 15% sediments remediation, and 10% sludge treatment. The data available on these sites indicate the types and extent of treatment technology applications needed in the future:

- Chlorinated VOCs are the most common organic contaminant, followed by other VOCs, PCBs, PAHs, and phenols.
- The most common metal is lead, followed by chromium, arsenic, and cadmium.

Based on contaminant occurrence and historical technology trends, some general observations can be made about the potential Superfund market for specific technologies. These observations do not necessarily consider several other important factors in remedy selection, such as federal and state cleanup standards, competing technologies, other site characteristics, and public acceptance.

- Based on current trends, at least 30% of the Superfund sites will implement innovative technologies for some degree of source control. Innovative technology use should grow as more cost and performance data become available.
- The use of SVE technologies for all types of VOCs is expected to continue at current levels, and may even increase.
- Thermal desorption for the treatment of VOCs and PCBs may increase.
- The selection of bioremediation at Superfund sites may increase.
- Alternatives to incineration for the treatment of SVOCs are in demand.
- Treatment of metals in soil represents a potentially large, but untapped, market for innovative treatment.
- New in situ ground water treatment technologies are in great demand. Pump-and-treat technologies often cannot achieve desired cleanup goals.
RCRA Corrective Action Sites

Approximately 5,100 hazardous waste treatment, storage, and disposal facilities (TSDFs) may be subject to corrective action under the Resource Conservation and Recovery Act (RCRA). The facility owners or operators are responsible for the necessary corrective action, with oversight by EPA or a state.

Between 1,500 and 3,500 of the regulated TSDFs will require corrective action. A wide variety of wastes, many of which are similar to those found at Superfund sites, will require corrective action. Some of the most prevalent wastes include corrosive and ignitable wastes, heavy metals, organic solvents, electroplating waste, and waste oil.

About half of all RCRA corrective action facilities use off-site disposal remedies and half use innovative treatment. Of the innovative technologies, about one-third each are SVE, in situ bioremediation, and above-ground treatment, primarily bioremediation.

Underground Storage Tank Sites

Underground storage tanks (USTs) containing petroleum products or hazardous chemicals are also regulated under RCRA. Tank owners are responsible for remediation under state UST programs. Major factors concerning UST site remediation include the following:

- As of 1995, approximately 306,000 UST sites require cleanup. Of these, 131,000 sites have completed cleanups, leaving a universe of 170,000 requiring some level of cleanup. An additional 100,000 releases are expected by 2000. There is an average of almost three tanks per site. Per site cleanup costs range from $10,000 to $125,000 for soil remediation and $100,000 to $1 million for ground water remediation. At an average cost of $125,000, the potential UST market could reach $34 billion.

- Approximately 98% of USTs contain petroleum products and 2% contain hazardous materials.

- About 68% of UST cleanups use innovative technology. For sites contaminated with petroleum, landfilling is used most frequently at sites (one-third), followed by natural attenuation, biopiles, soil vacuum extraction, landfarming, and thermal desorption. For sites with ground water contamination, natural attenuation is the most common remedy, followed by pump-and-treat, air sparging, and in situ bioremediation.
FEDERAL SITE REMEDIATION TECHNOLOGY DEVELOPMENT ASSISTANCE PROGRAMS
Interagency R&D Assistance Programs

Rapid Commercialization Initiative

Coordinating Agency: U.S. Department of Commerce

The Rapid Commercialization Initiative (RCI), an interagency effort coordinated by the U.S. Department of Commerce, fosters cooperative interaction of the private sector, states, and Federal agencies to help bring environmental technologies to market more rapidly and efficiently. RCI acts as a gateway to other federal agency programs that provide opportunities for environmental technology demonstration, verification, and transfer. RCI provides in-kind assistance for selected companies with commercially-ready environmental technologies in four categories: avoidance; control; monitoring and assessment; and remediation and restoration.

The primary goal of RCI is to provide services to industry that help lower three key barriers to commercialization:

(1) finding sites for full-scale technology demonstrations;
(2) evaluating and verifying technical performance and the cost of performance of technologies;
(3) promoting regulatory acceptance of verified data and expediting the permitting process.

The selection of technologies for participation in RCI programs centers on two criteria:

- The technology addresses environmental and market needs, with a focus on solutions to private sector needs and added consideration for application to public sector environmental problems.
- There is a clear path to commercialization and the technology is only a few, final steps from commercialization, such that testing, evaluation and verification will complete the process.

Marketing, financing, or production assistance are not available under RCI. Exemptions from federal laws and regulations also are not available under RCI. Participants in RCI are selected through program announcements and an intensive peer-review process that examines both technical and business soundness.

Contact: Stanley Chanesman
U.S. Department of Commerce
H4418
Washington, DC 20230
202-482-08250

Website: http://rci.gnet.org/
Small Business Innovative Research Program/Small Business Technology Transfer Research Program

Coordinating Agency: U.S. Small Business Administration

The Small Business Innovative Research (SBIR) Program is a multi-media assistance program designed to assist and promote U.S.-owned high technology companies with 500 or fewer employees. SBIR activities are overseen by the Small Business Administration. Funding is provided to companies through grants and contracts awarded by SBIR program offices in 11 Federal agencies. Each agency offers at least one SBIR program solicitation annually that specifies the types of research to be funded.

SBIR is a three-step grant and contract program. Phase I grants and contracts are awarded in amounts of $60,000 to $100,000 each for technology feasibility studies that can last up to six months. Only Phase I recipients are eligible for Phase II awards. Phase II grants and contracts can last from one to two years of principal research and development, and range from $150,000 to $750,000. Phase III funding assistance is provided either through commercial application with additional funding from the private sector, or through non-SBIR funding provided by the participating agency for research and development in areas of particular interest to the agency.

The Small Business Technology Transfer Program (STTR) expands funding opportunities in the federal innovation research and development arena. Under STTR, a specific percentage of federal R&D funding for five agencies (including DoD and DOE) is reserved for awards to small business and nonprofit research institution partners. These agencies designate R&D topics and accept proposals. Small businesses must meet certain eligibility criteria (similar to SBIR) to participate in the STTR Program.

Following submission of proposals, agencies make STTR awards based on small business/nonprofit research institution qualification, degree of innovation, and future market potential. Small businesses that receive awards or grants then begin a three-phase program. Phase I is the start-up phase, with awards of up to $100,000 for approximately one year fund the exploration of the scientific, technical, and commercial feasibility of an idea or technology. Phase II awards of up to $500,000, for as long as two years, to expand on Phase I results. During this period, the R&D work is performed and the developer begins to consider commercial potential. Only Phase I award winners are considered for Phase II. Phase III is the period during which Phase II innovation moves from the laboratory into the marketplace. No STTR funds support this phase. The small business must find funding in the private sector or other non-STTR federal agency funding.

Contact: U.S. Small Business Administration
Office of Technology
409 Third Street, SW
Washington, DC 20416
(202) 205-6450

Website: http://www.sba.gov/SBIR/
U.S. Department of Defense R&D Assistance Programs

Air Force Center for Environmental Excellence

The Air Force Center for Environmental Excellence (AFCEE) has an Innovative Technology Program that identifies and field tests innovative site characterization, remediation, and pollution prevention technologies, with an emphasis on technologies that save time and money and facilitate compliance with air, soil, and water regulations.

Special areas of interest within the Innovative Technology Program include:

• remediation technologies to treat fuels, chlorinated solvents, pesticides, PCBs, and heavy metals;
• vapor phase capture and treatment;
• cost effective site characterization;
• stripping and removal of protective coatings;
• parts cleaning and degreasing; and
• industrial process sludge treatment.

Successful projects have been based on sound scientific principles and offer widespread applicability to Air Force sites and significant cost savings.

Contact: Mary Urey
Air Force Center for Environmental Excellence (AFCEE)
Technology Transfer Division
8001 Arnold Drive
Brooks AFB, TX 78235-5357
210-536-4419

Website: http://www.afcee.brooks.af.mil

Environmental Security Technology Certification Program

ESTCP’s goal is to demonstrate and validate promising, innovative technologies that target the Department of Defense’s (DoD’s) most urgent environmental needs. These technologies provide a return on investment through cost savings and improved efficiency. ESTCP’s strategy is to select lab-proven technologies with broad DoD and market application. These projects are aggressively moved to the field for rigorous trials that document their cost, performance, and market potential. To ensure that the demonstrated technologies have a real impact, ESTCP incorporates these players in the development and execution of each technology. ESTCP demonstrations—

• Address real DoD environmental needs.
• Significantly reduce costs and risks and expedite implementation.
• Document and validate the cost and performance of new technologies for DoD end-users and the regulatory community.

DO NOT QUOTE OR CITE
The ESTCP Process (below) ensures approved technologies meet DoD environmental challenges:

- DoD environmental requirements are specified.
- ESTCP requests proposals.
- Rigorous and expert scientific reviews are made.
- ESTCP projects are selected in cleanup, compliance, and pollution prevention.
- Technologies are demonstrated and evaluated at DoD sites.
- Cost and performance data are validated.
- Effective and affordable technologies are transferred across DoD.

Contact:
Dr. Jeffrey Marqusee
C/o ESTCP Program Office
1725 Jefferson Davis Highway, Suite 1100
Arlington, VA 22202
(703) 412-7688
E-MAIL: estcp@bah.com

or
Dr. Jeffrey Marqusee
Director, ESTCP
901 N. Stuart Street, Suite 303
Arlington, VA 22203
(703) 696-2120
E-MAIL: marqusj@acq.osd.mil

Website: http://estcp.xservices.com

National Environmental Technology Test Sites (NETTS) Program

The National Environmental Technology Test Sites (NETTS) Program sponsored by SERDP, is an environmental technology testing and evaluation program that provides locations, facilities, and support for applied research demonstration, and evaluation of innovative cleanup and characterization technologies that are candidates for Installation Restoration efforts at DoD facilities. NETTS, which is managed under the SERDP Cleanup Program, promotes technology transfer from research to proof-of-principle demonstration and facilitates expeditious transfer of technologies between government agencies and the private sector.

There are currently four DoD SERDP NETTS Test Sites and one NETTS technology support center which primarily focus on the proof-of-principle demonstrations of cleanup technologies. They consist of:

- Dover NETTS Test Site: The Dover National Test Site (DNTS) at Dover AFB provides sites where research can be conducted on the transport, detection, monitoring, and cleanup of solvent and fuel contaminants in the subsurface. DNTS provides a unique opportunity for conducting experimental, contained releases of dense nonaqueous phase liquids (DNAPLs). DNTS also provides other well-characterized contaminated plume sites and support services.

- McClellan NETTS Test Site: The Air Force also manages a Chlorinated Hydrocarbon Remedial Demonstration Site at McClellan AFB, which provides areas to evaluate investigative...
technologies and remediation technologies for chlorinated hydrocarbons contamination in soil and groundwater.

- Naval Facilities Engineering Service Center NETTS Test Site: The Environmental Technology Demonstration Site at Port Hueneme, California, provides in situ and ex situ locations to demonstrate advanced fuel hydrocarbon remediation technologies for treatment of Navy specific fuels contamination in soil and groundwater. Areas include a soil stockpile facility contaminated with fuels; an 11-acre gasoline station plume; and underground storage tank and spill areas.

- Former Wurtsmith AFB NETTS Test Site: The National Center for Integrated Bioremediation Research and Development at Wurtsmith AFB, Michigan, co-sponsored by EPA and the university of Michigan, operates a controlled field test-bed facility for investigations to support the design and engineering of integrated bioremediation systems. This project focuses on in situ bioremediation of surface soils, subsoils, surface water, and groundwater contaminated by fuels, solvents and other organic substances.

- EPA NETTS Technical Support Center: EPA also co-sponsors the Consortium for Site Characterization Technology, established by the National Exposure Research Laboratory/Characterization Research Division, Las Vegas, Nevada, which identifies, demonstrates, evaluates, verifies, and transfers data about innovative monitoring, measurement, and site characterization technologies. Planning assistance is offered to developers to ensure verified data collection and to extend the application of new technologies to other sites.

Contact: NETTS Principal Investigator:

Mr. Jack Robertson
HydroGeoLogic, Inc.
1155 Aerndon Parkway
Suite 910
Herndon, VA 22070
(703) 736-4560
E-MAIL: jbr@hgl.com

Individual Test Locations:

Air Force:
Dover National Test Site
Mr. Steve Farrington
Air Force Research Laboratory
P.O. Box 02063
909 Arnold Drive Extension
Dover AFB, DE 19902-6600
PHONE: (302) 677-4100
E-MAIL: sfarring@ara.com

Air Force:
Chlorinated Hydrocarbon Remediation Technologies
Mr. Tim Chapman
SM-ALC/EMR
5050 Dudley Blvd, Suite 3
McClellan AFB, CA 95652-1389
PHONE: (916) 643-0830, ext. 412
E-MAIL:
chapman.timothy@ema..McClellan.af.mil
Naval Environmental Leadership Program

The Naval Environmental Leadership Program (NELP) seeks to expedite cleanup and compliance at two Naval installations (Naval Air Station North Island, San Diego, California, and Naval Station Mayport, Jacksonville, Florida) using innovative technologies and focused management. The two NELP bases serve as prototypes for identification, development, testing, implementation, evaluation, and refinement of new initiatives and export of successful applications for implementation as part of the Navy’s Environmental Management Program.

Interested public or private sector parties in possession of innovative technologies that may be implemented at full-scale to address environmental problems at the two NELP bases and that address problems of concern in the Navy-wide environmental management program may be eligible to participate in NELP. Innovative technologies are selected and included in the Program through a variety of mechanisms. The NELP Initiative solicits proposals for innovative technologies via the Commerce Business Daily.

NELP emphasizes full-scale technology implementation to solve an environmental problem at one of the NELP bases. It is not an R&D program; however, the NELP Initiative may serve as a host for technology demonstrations if the developer requires a demonstration site, once the NELP bases meets the requirements for a successful demonstration, and funding is provided by the developer or other source. Successful demonstrations will lead to full-scale implementation at the NELP base and within the execution of the Navy’s Installation Restoration Program.

Contact: Ted Zagrobelny
Naval Facilities Engineering Command*

Website: http://www.hgl.com/serdp/netts/default.html
Strategic Environmental Research and Development Program

Coordinating Agency: U.S. Department of Defense

Participating Agencies: U.S. Department of Energy, U.S. Environmental Protection Agency

The Strategic Environmental Research and Development Program (SERDP) is a multiagency program funded through the Department of Defense. SERDP responds to environmental needs of DoD, along with those it shares with the Department of Energy, the Environmental Protection Agency, and other federal government agencies.

SERDP seeks to identify, develop, demonstrate, and transition technology for four thrust areas. The four thrust areas correspond to the four pillars of DoD's Environmental Quality Program: environmental cleanup technology is one of the thrust areas. Specific objectives of the cleanup technology thrust area focus on conducting research and development to achieve more effective and efficient environmental characterization, assessment, monitoring, and cleanup of soil, sediment, groundwater, surface water, and structures contaminated by past defense practices with hazardous materials (including unexploded ordnance), and toxic substances. The cleanup technology area also seeks to:

- develop cost-effective methods to determine fate, transport, and effects of contaminants related to defense activities;

- develop risk-based modeling methods for establishing cleanup priorities; and

- facilitate transfer of technology to field use by means of the proof-of-principle demonstration of R&D projects, particularly, at the SERDP National Environmental Technology Test Sites.

On an annual basis, SERDP solicits proposals from the federal and private sector in the areas of site characterization, monitoring, remediation, and risk assessment. Each year specific statements of needs are issued. For current topics of interest and information on how to become involved, please see the SERDP web site.

Contact: Dr Femi A. Ayorinde
SERDP Program Office
901 N. Stuart Street, Suite 303
Unexploded Ordnance Technology Demonstration Program

JPG Phases I, II, III and Live Site Projects

The Congressionally funded Unexploded Ordnance (UXO) Technology Demonstration Program has established technology performance baselines by demonstrating and highlighting the strengths and capabilities of numerous UXO technologies.

The U.S. Army Environmental Center (USAEC), in partnership with the Naval Explosive Ordnance Disposal Technology Division, has conducted over 60 demonstrations of UXO characterization and remediation technology. Phase I, Phase II and Phase III were conducted in 1994, 1995 and 1996 at the U.S. Army Jefferson Proving Ground in Madison, IN. These demonstrations were performed on a controlled test site containing a known baseline of emplaced, inert ordnance.

Additional technology demonstrations were conducted during 1995 at five sites located throughout the United States that contained live ordnance. Congress has funded a Phase IV effort with demonstrations to be conducted in the summer of FY98. The Program has been structured to demonstrate and evaluate systems which are used for detection, identification and remediation of UXO.

Program Objectives and Benefits

The primary objective of this demonstration program has been to evaluate, establish and advance UXO technology performance. Prior to this, no broad technology performance baseline existed. A framework has been established to better understand and assess UXO technology. Additionally, Program demonstrators have benefited from target data feedback; they are better able to undertake or continue system improvements. The primary focus of the Phase IV effort, to be conducted during the summer of 1998, is to advance target discrimination and classification techniques.

Available Reports

Details of the multi-phase demonstration programs can be found in published reports. The most recent document is entitled: UXO Technology Demonstration Program at Jefferson Proving Ground, Phase III, April 1997. These reports and additional information can be obtained by contacting USAEC's hotline or by e-mail.

Technology Capabilities

Results of the most recent Phase III demonstrations show that overall technology detection rates have improved since the initial Phase I Demonstration Program (1994). Phase III results show that state-of-the-art technology is capable of detecting a substantial portion of emplaced ordnance (over 95%). However, significant technology limitations still exist.
There has been no substantial change in the ability of demonstrators to discriminate UXO from non-UXO material (clutter). This deficiency is a major cost driver in UXO characterization due to additional data analysis requirements and subsequent unnecessary excavation. During the Phase IV demonstration effort, the government is partnering with a select group of demonstrators to advance the ability to characterize and discriminate UXO. Remote excavation of UXO has been shown to be feasible; the systems were able to locate, excavate and handle the UXO; however, they were slow and inefficient.

The Future

The UXO Technology Demonstration Program has highlighted the capabilities and limitations of UXO technologies. Demonstrators show continued improvement in detection performance. But because there has been no substantial improvement in the ability to discriminate UXO from clutter, focused efforts are needed. The Phase IV effort, currently underway, will capitalize upon the previous UXO technological investments by focusing on target discrimination and reduction of false alarms rates. This will provide the government with economical and effective technology that will significantly reduce the overall cost of UXO clearance, by reducing the number of anomalies which must be found.

Contact: U.S. Army Environmental Hotline
(800) USA-3845, DSN 585-1699

U.S. Army Environmental Center

The Environmental Technology Transfer and Technology Demonstration Branches within the Pollution Prevention and Environmental Technology Division (P2&ETD) develop, demonstrate, and deliver tools to help the Army sustain readiness, protect resources, and improve soldiers’ quality of life. These programs enable the Army to test and implement cost-effective technologies in pollution prevention, conservation, compliance, and restoration. From cleanup devices to better ways of doing business, these innovations protect the environment while supporting military operations, installation management, and material development.

P2&ETD assesses Army environmental needs and works with researchers and future users to adapt ideas. P2&ETD searches government labs or finds “off the shelf” commercial tools with potential military application. P2&ETD produces “real world” cost and performance data by testing lab-proven technologies in field demonstrations. P2&ETD helps transfer successful products to the Army community, tracking technology performance and user needs even after the demonstration.

P2&ETD’s guidance and technical support programs address the main elements of the Army’s environmental program, meeting specific user needs on pollution prevention, conservation, compliance, and restoration, as well as specialized programs in SCAPS, UXO, and Range XXI.

Technology is a major weapon in the Army’s efforts to defend the nation and protect its environment. Through these programs, USAEC gives the Army ready access to the most effective and affordable environmental tools.
Industry and University Programs Area

The mission of the Industry and University Programs Area is to identify and provide development support for technologies that show promise in addressing DOE's Environmental Management needs, but require proof-of-principle experimentation and already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs.

The underlying objective is to ensure that private industry, other Federal agencies, and universities are major participants in developing and deploying new and emerging technologies. Tools used to achieve this objective include Program Research and Development Announcements (PRDAs, see p. 21), Research Opportunity Announcements (ROAs, see p. 21), Cooperative Research and Development Agreements (CRADAs), other grants, and inter-agency agreements (IAGs).

Program Research & Development Announcements/Research Opportunity Announcements

Program R&D Announcements (PRDAs) and Research Opportunity Announcements (ROAs) are DOE's major assistance vehicles for developing technologies. PRDAs solicit a broad mix of proposals where R&D, including demonstration, testing, and evaluation, is required within broadly defined areas of interest. DOE may issue a PRDA in response to an individual program need such as the cleanup of a particular contaminant at a specific site. Multiple awards for proposals, which may have varied approaches or concepts, are generally made. Numerous PRDAs may be issued each year.

ROAs solicit industry and academic proposals throughout the year ("rolling admissions") for potential contracts in applied research. ROAs support research efforts for the development of technologies with potential application to the EM program. A proposed technology should improve DOE's capabilities in areas such as in situ remediation; detection, characterization, and monitoring; efficient separations technology for...
radioactive waste; and robotics. ROAs are published in the Commerce Business Daily. The program includes some set-asides for small businesses. DOE anticipates making 25-30 awards through an active ROA at its Morgantown facility.

For information on the full range of DOE/EM assistance programs, contact the EM Central Point of Contact (CPOC). The CPOC is a referral service that expedites and monitors private sector interaction with EM. The CPOC can identify links between technologies and program needs and connect potential partners with an extensive network of Headquarters and field program contacts.

Developers can gain more information on DOE’s business and research opportunities by obtaining the U.S. Department of Energy Environmental Cleanup Technology Development Program Business and Research Opportunities Guide (DOE/EM-0115P). The Guide can be obtained from the National Technical Information Service (NTIS, see p. 30).

Contact: EM Central Point of Contact
U.S. Department of Energy
19901 Germantown Road
Germantown, MD 20874-1290
800-845-2096
301-903-7238 fax

For information on ROA awards through the Morgantown Energy Technology Center:

Contact: Thomas Martin
304-291-4087

TechCon

TechCon is a DOE program developed to increase the use of commercially available technologies at DOE cleanup sites with an emphasis on technologies that have shown superior performance characteristics. TechCon’s mission is to identify, screen, and support the implementation of available environmental technologies from both the private and public sector in the U.S. as well as from international sources.

The TechCon Program works with sites to identify clean-up needs, finds commercially available technologies and services that have proven performance capabilities, matches technologies to needs at DOE sites, and delivers information on these technologies to site personnel. By connecting representatives of technology companies with those at remediation sites, TechCon promotes the use of available technologies and resolves barriers to their field application.

A key to TechCon’s success is improving communication among companies, site representatives, and regulators. To that end, TechCon has instituted an electronic mail discussion list that is hosted at ANL. With over 60 members, including DOE, EPA, site contractor, and technology company personnel, this e-mail list facilitates dissemination of information and can expedite the matching of technology needs with commercially available technologies.
Technology Development Initiative

DOE's Technology Deployment Initiative (TDI) seeks to:

- achieve multiple deployments of cleanup technologies and processes that expedite DOE's environmental management effort,
- obtain third party validation of cost savings,
- facilitate the reinvestment of cost savings to increase participation in the program, and
- break down barriers to the implementation of new technologies.

Under TDI, technologies selected for participation and deployment support DOE's environmental management mission and provide for multiple applications. Applications include a Pricing Proposal that compares an estimated cost with that of a baseline technology; the technology should accelerate or reduce the cost of that referenced baseline, or both. Applications must also include a commitment from the proposing DOE site manager. TDI funding is for deployment of commercial-ready technologies, rather than demonstrations.

Ranking criteria for applicants are divided into four areas: impact/technical approach; business management approach; stakeholder/regulatory management approach; and cost. Incentives for developers to participate in TDI include the availability of funds to accelerate deployment and cleanup, increased visibility for the technologies through deployment and the generation of validated cost savings, multiple state acceptance of the technology, and the opportunity for reinvestment of cost savings.

Contacts:

TDI Team
Jeff Walker - LOE-HQ
Kurt Gerdes - DOE-HQ
Jihad Aijayoushi - DOE-ID
Julie Conner - DOE-ID
Susan Prestwich - DOE-ID

To send regular mail to the TDI program:

(Contact Name)
TDI Support Office
502 South Woodruff
Idaho Falls, ID 83401

Fax: (208) 528-2401
E-MAIL: tdi@wpi.org

Website: http://wastenot.inel.gov/tdi

Website: http://www.cad.anl.gov/~techcon/index.html
U.S. Environmental Protection Agency R&D Assistance Programs

Environmental Technology Verification Program

Over the years, EPA has evaluated technologies to determine their effectiveness in preventing, controlling, and cleaning up pollution. EPA has expanded these efforts by instituting the Environmental Technology Verification (ETV) Program to verify the performance of a larger universe of innovative technical solutions to problems that threaten human health or the environment. ETV accelerates the entrance of new environmental technologies into the marketplace by supplying technology buyers and developers, consulting engineers, States, and EPA Regions with high quality data on the performance of new technologies.

ETV expands past verification efforts, such as the SITE program (see p. 26) for remediation technologies, into multiple pilot areas. In these pilot areas, EPA utilizes the expertise of partner “verification organizations” to design efficient processes for conducting performance tests of innovative technologies. EPA selects its partners from both the public and private sectors including Federal laboratories, States, universities, and private sector facilities. Verification organizations will oversee and report verification activities based on testing and quality assurance protocols developed with input from major stakeholders/customer groups associated with the technology area.

Verification under ETV means confirmation of the performance characteristics of a commercial-ready environmental technologies through the evaluation of objective and quality assured data. ETV’s targeted customers are:

- Technology users and purchasers
- Technology enablers
 - permiters, regulators
 - consulting engineers
- Technology developers and vendors

Each pilot will announce its intention to begin accepting technologies for verification in the Commerce Business Daily and in the trade press. The pilot areas include the Consortium for Site Characterization Technology (see NETTS program p. 15). By the year 2000, EPA envisions that the ETV program will be comprised of numerous public and private testing entities covering all major classes of environmental technology.

Contact: Penelope Hansen
U.S. Environmental Protection Agency
TCS/NRMRL/ORD (8301)
401 M St., SW
Washington, DC 20460
202-260-2600

Website: http://www.epa.gov/etv/
National Center for Environmental Research and Quality Assurance

The EPA National Center for Environmental Research and Quality Assurance (NCERQA), administered by the EPA Office of Research and Development, has primary responsibility to issue and manage research grant and fellowship programs designed to expand EPA's science and technology base and the pool of qualified environmental professionals. NCERQA also serves as EPA's focal point on quality assurance and peer review. NCERQA is comprised of four divisions:

- Environmental Engineering Research
- Environmental Sciences Research
- Quality Assurance
- Peer Review

The Environmental Engineering Research Division (EERD) is responsible for planning, administering, and managing the following programs:

- grants for research projects and centers in the engineering disciplines relevant to public health and ecosystem protection;
- EPA's participation in the Small Business Innovation Research Program (see p. 13) and the Strategic Environmental Research and Development Program (see p. 18); and
- coordination of ORD efforts in support of the EPA-wide Common Sense Initiative.

Contact: Steve Lingle
U.S. Environmental Protection Agency
EERD/NCERQA (8722)
401 M St., SW
Washington, DC 20460
202-260-4073
202-260-4524
E-MAIL: lingle.stephen@epamail.epa.gov

Website: http://es.inel.gov/ncerga/

Remediation Technologies Development Forum

The Remediation Technologies Development Forum (RTDF) was established in 1992 by EPA to identify ways of working together with industry to solve complex hazardous waste remediation problems. The RTDF is open to all interested parties and has grown to a consortium of partners from private industry, government agencies, and academia who share the common goal of developing more effective, less costly hazardous waste characterization and treatment technologies. RTDF partnerships undertake research, development, demonstration, testing, and evaluation efforts to achieve common cleanup goals.

The RTDF advances the development of cost-effective technologies for the remediation of hazardous wastes, and works to achieve these goals by:

- identifying priority remediation technology development needs;

DO NOT QUOTE OR CITE 25
RTDF members establish self-managed action teams that bring members together to work on their highest priority problems. These teams define technology research needs, develop and implement research project plans, and produce and disseminate scientifically credible results to facilitate broad acceptance of the technology.

EPA facilitates the operation of the Action Teams and the RTDF Steering Committee, and contributes its research efforts to the jointly-led projects. EPA provides funding for RTDF research activities and Action Team meetings. Other federal agencies, industry, and academic participants also provide funding, laboratory, and field support for Action Team projects. Participants in each Action Team provide funding and/or in-kind support for the Team’s research efforts.

RTDF is currently made up of seven Action Teams:

- Bioremediation Consortium
- IINERT Soils-Metals Action Team
- In Situ Flushing Action Team
- Lasagna Consortium
- Permeable Barriers Action Team
- Phytoremediation of Organics
- Sediments Remediation Action Team

Contacts:

Robert Olexscy
U.S. Environmental Protection Agency
26 West Martin Luther King Dr.
Cincinnati, OH 45268
513-569-7861

Dr. Walter W. Kovalick, Jr.
Technology Innovation Office (5102G)
U.S. Environmental Protection Agency
401 M Street, SW
Washington, DC 20460
703-603-9910

Website: http://www.rtdf.org

Superfund Innovative Technology Evaluation Program

The Superfund Innovative Technology Evaluation Program was established by EPA’s Offices of Research and Development (ORD) and Solid Waste and Emergency Response (OSWER) to promote the development and use of innovative technologies to remediate Superfund sites. The SITE Program places a special emphasis on demonstrating technologies, including support for bench-scale through pilot-scale and field-scale demonstrations, and includes reports of cost and performance data. The SITE Program consists of three major components to achieve these goals: a Demonstration Program; an Emerging Technology Program; and a Monitoring and Measurement Technologies Program.

The Demonstration Program generates performance, engineering, and cost data through innovative technology demonstrations. EPA publishes an annual solicitation for proposals from developers to
demonstrate their technologies. Typical demonstrations take place at Superfund sites. Under the Program, the cost of the demonstration is split between the vendor and EPA. The vendor pays for the operation of the demonstration, while EPA pays for all planning, sampling, and analysis. EPA also reports the results of the demonstration.

The Emerging Technology Program supports bench-scale and pilot-scale development and testing of innovative treatment technologies. EPA publishes an annual solicitation for proposals from developers.

The Monitoring and Measurement Technologies Program supports the development and demonstration of innovative field technologies that monitor, or measure hazardous substances.

Over the years, the SITE Program has completed demonstrations and issued reports for over 100 technologies. The advent of environmental technology development and commercialization as national priorities in the last few years, along with the initiation of other EPA environmental technology programs, has led EPA to review and reconsider the future role of the SITE Program in the overall federal environmental technology strategy. For this reason, participation in the SITE Program by new partners has been temporarily suspended.

Contact: Annette Gatchette
U.S. Environmental Protection Agency
National Risk Management Research Laboratory
26 W. Martin Luther King Drive
Cincinnati, OH 45268
513-569-7696
This page intentionally left blank.
FEDERAL SITE REMEDIATION
TECHNOLOGY DEVELOPMENT
ELECTRONIC DATA BASES
U.S. Department of Commerce

National Technical Information Service (NTIS) Bibliographic Data Base

The National Technical Information Service (NTIS) Bibliographic Data Base is a self-supporting agency of the U.S. Department of Commerce and is the largest single source for public access to Federally produced information. NTIS is the Federal agency charged with collecting and distributing Federal scientific, technical, and engineering information. The NTIS collection covers current technologies, business and management studies, foreign and domestic trade, environment and energy, health, social sciences, general statistics, and hundreds of other areas. When Federal agencies and their contractors forward reports and other items to NTIS, these items are entered into the NTIS computerized bibliographic data base and become part of the NTIS archive.

The NTIS bibliographic data base contains data about Federal data and software files, U.S. government inventions available for licensing, reports on new technologies developed by Federal agencies, Federally generated translations, and reports prepared by non-U.S. government agencies. An increasing proportion of the data base consists of unpublished material originating outside the U.S. Most NTIS records include an abstract.

Contact: National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
703-487-4650
703-321-8547 (fax)

Website: http://www.ntis.gov

U.S. Department of Energy

DOE R&D Project Summaries Web Data Base

Access to over 12,000 R&D projects currently ongoing within the DOE can be found within this application. Projects pertaining to Departmental activities in Energy Research, Fossil Energy, Environmental Management, and Energy Efficiency and Renewable Energy, are just some of the R&D disciplines found in the database.

The DOE R&D Project Summaries application, developed by the Office of Scientific & Technical Information, contains a subset of the Department’s FY 1995/1996 R&D holdings. Only projects contained in the DOE R&D Tracking Database System with a Funding Mechanism of Managing and Operations (M&O), Grant, Contract, Cooperative Agreements (Non-CRADA), or Small Business Innovative Research (SBIR) are now available through this application. Additional R&D information such as Work For Others, Lab Directed R&D, or the remaining DOE Only R&D information is accessible to Department of Energy entities through the R&D Client/Server interface with the appropriate security levels.

DO NOT QUOTE OR CITE
Over 75% of the total Department’s R&D holdings are available through this Web based application. Project descriptions and other information about the projects may be viewed after performing a quick search, topical search, or an advanced search.

Website: http://www.doe.gov/rnd/dbhome.html

New Technology from DOE

New Technology from DOE (NTD) contains brief descriptions of Department of Energy (DOE) research results that have potential for commercialization by United States industries. This data base is the centralized source of online information on DOE technical innovations and advancements.

Each NTD record includes a technology description, patent status, secondary or spinoff applications, literature citations, DOE laboratory and sponsoring information, subject descriptors, and a contact for further information. The NTD currently contains 1200 records from 1986 to the present. It is anticipated that older records dating from 1983 will be added to the data base.

Integrated Technical Information System
U.S. DOE Office of Science and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
615-576-1222

The data base is available to DOE and its contractors through the Integrated Technical Information System (ITIS). Public access is provided through the National Technical Information Service’s Technology Transfer Program (see p. 30).

ReOpt: Electronic Encyclopedia of Remedial Action Options

ReOpt provides information about remedial technologies drawn from DOE, EPA, and industry sources. ReOpt provides descriptions of over 100 technologies, breaking the information into categories, including application and regulatory information for nearly 850 contaminants. ReOpt was developed as part of DOE’s Remedial Action Assessment System project.

For each technology, ReOpt contains information for the following categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Information Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow diagram</td>
<td>Associated Technologies</td>
</tr>
<tr>
<td>Description</td>
<td>Technical Constraints</td>
</tr>
<tr>
<td>Engineering or Design Parameters</td>
<td>Regulatory Constraints</td>
</tr>
<tr>
<td>Contaminant Applicability</td>
<td>References</td>
</tr>
<tr>
<td>Data Requirements</td>
<td>Previous Applications</td>
</tr>
</tbody>
</table>

ReOpt allows users to search by media, contaminant, and the way the functional manner in which the user wants to restore the site (such as, *in situ* treatment) to focus the analysis of those technologies potentially applicable to the scenario.
The system is available on diskette for Federal staff and contractors under a Limited Government License from the Energy Science and Technology Software Center (ESTSC). Others may purchase ReOpt through Sierra Geophysics in Kirkland, Washington, (1-800-826-7644, ext. 120).

Contact: Energy Science and Technology Software Center
615-576-2606
or
Janet L. Bryant
Pacific Northwest National Laboratory
P O. Box 999
Richland, WA 99352
Phone: (509) 375-3765
Fax: (509) 375-6417
E-mail: jl_bryant@pnl.gov Janet Bryant

ReOpt FAX Hotline:
509-375-6417

U.S. Environmental Protection Agency

Bioremediation in the Field Search System

The Bioremediation in the Field Search System (BFSS) provides information on waste sites across the country where bioremediation is being tested or implemented or has been completed. BFSS users can search the database electronically, view data on specific types of bioremediation sites, and print reports of selected information. Registered users also receive EPA’s quarterly Bioremediation in the Field bulletin.

BFSS currently provides information on ex situ and in situ technologies at more than 160 bioremediation sites nationwide. The database includes full-scale remediation efforts and treatability and feasibility studies that cover sites under EPA’s CERCLA, RCRA, TSCA, and UST authority. Data for sites include location, media, contaminants, and cost and performance. BFSS is available online through the ATTIC (see p. 37) and CLU-IN (see p. 38).

RREL Treatability Data Base

The Treatability Data Base provides a thorough review of the effectiveness of proven treatment technologies in the removal or destruction of chemicals from media such as municipal and industrial wastewater, drinking water, groundwater, soil, debris, sludge, and sediment. The data base includes only those technologies that are commercially available. The data base is distributed to Federal, State, and local governments, foreign governments, academia, industry, and many other groups.

The data base is organized by chemical. For each compound, the data base includes:

Physical/Chemical Properties
Freundlich Isotherm Data
Aqueous and Solid Treatability Data
Scale (Bench, Pilot, or Field)
Average Concentration of Contaminants in Influent and Effluent
Average Percentage of Removal
Reference Citations with a Reference Abstract

The RREL Treatability Data Base is searchable online through ATTIC (see page 37) and downloadable from CLU-IN (see page 38).

Vendor Information System for Innovative Treatment Technologies/Vendor Field Analytical Characterization Technology System

The Vendor Information System for Innovative Treatment Technologies (VISITT) contains technical information submitted by vendors of innovative treatment technology equipment and services. The Vendor Field Analytical Characterization Technology System (VendorFACTS) contains similar information on field analytical characterization technologies. These systems are designed for use by hazardous waste cleanup professionals wishing to learn about the application and performance of these technologies.

VISITT and VendorFACTS contain data on vendors of innovative remediation technologies to characterize and treat ground water in situ, soils, sludges, and sediments. The systems do not include established technologies such as incineration and ex situ groundwater treatment. Technologies may be at the bench-, pilot-, or full-scale. Each profile includes company information, technology description, and applicable media, wastes, and contaminants. Other information may include unit costs, performance, waste limitations, hardware and capacity, project names and contacts, treatability study capabilities, and references.

VISITT and VendorFACTS are free and available through ATTIC (see p. 37) and CLU-IN (see p. 38). The systems are also available on diskette from EPA’s National Center for Environmental Publications and Information (NCEPI, see p. 39).
This page intentionally left blank.
FEDERAL ELECTRONIC RESOURCES FOR SITE REMEDIATION TECHNOLOGY INFORMATION
Federal Remediation Technologies Roundtable

The Federal Remediation Technologies Roundtable (FRTR) is an inter-agency executive committee made up of Federal agencies with hazardous waste cleanup responsibilities. The Roundtable was created to facilitate the exchange of information and provide a forum for joint action regarding the development and demonstration of innovative technologies for hazardous waste remediation. Roundtable member agencies expect to complete many site remediation projects in the near future, and recognize the importance of providing expedited access to Federal resources for technology developers and others interested in innovative technology development. As part of this effort, FRTR has established a site on the World Wide Web to provide access to FRTR products and publications. The address for the site is: http://www.frtr.gov.

Resources available on the FRTR website:

- Information on cost and performance data reporting, including the Guide to Documenting Cost and Performance for Remediation Projects and Case Study Abstracts.
- Remediation Technologies Screening Matrix and Reference Guide, Version 3.0, an online "yellow pages" of remediation technologies that screens and evaluates candidate cleanup technologies to assist remedial project managers (RPMs) in selecting among remedial alternatives.
- Completed North American Innovative Remediation Technology Demonstration Projects Data Base.

U.S. Department of Defense

Defense Environmental Network and Information Exchange

The Defense Environmental Network and Information Exchange (DENIX) serves as a centralized communication platform for disseminating environmental information pertaining to DOD's environmental security mission area. It fosters online communications and technology transfer among DOD components. DENIX contains a messaging component as well as the capability for file transfers. DENIX includes information on cleanup technologies, policies, and regulatory information.

Fielding Environmental Solutions

Fielding Environmental Solutions is provided by the U.S. Army Environmental Center's (USAEC) Pollution Prevention and Environmental Technology Division (P2&ETD). The purpose of this service is to provide subscribers information on recently published documents and field demonstrations of innovative technologies, and to highlight technology transfer efforts of the P2&ETD. Important messages will be disseminated through an e-mail approximately once a month. This will highlight new publications and events of interest to site remediation and site assessment professionals. This free service will be a method of bridging the gap between the developers, regulators, and user of innovative technologies.

Technology Summary Sheets

The Air Force Research Laboratory Airbase and Environmental Technology Division (AFRL/MLQ) has developed Technology Summary Sheets (TSSs) to publicize its research and development programs. The TSSs describe capabilities, facilities (both laboratory and test sites), research interests, collaborative efforts, and the major research projects and programs completed or underway in the Division. These summary sheets identify new technologies, provide information on how technologies are applied, and give results of completed projects or the status of on-going projects. They also provide the name and telephone number of project managers if additional information is needed.

The TSSs, along with software, technical reports, protocols, and manuals can be accessed through the AFRL/MLQ web page at: http:\\\www.ml.af.af.mil/divisions/mlq/mlq.htm.

U.S. Department of Energy

Environmental Technologies Remedial Actions Data Exchange (EnviroTRADE)

The Environmental Technologies Remedial Actions Data Exchange (EnviroTRADE) is an international information system that matches environmental problems with potential technological solutions by combining information management techniques, graphical interfaces, and the Geographical Information System (GIS). EnviroTRADE was developed to identify domestic and international environmental technology market opportunities.

EnviroTRADE contains both foreign and domestic technologies and needs profiles. Users can identify possible matches between worldwide environmental restoration and waste management needs and technologies. EnviroTRADE will also provide general information on international environmental restoration and waste management organizations, sites, activities, funding, and contracts. The system is user friendly, providing visually oriented information such as photographs, graphics, maps, and diagrams of technologies and sites. The system has expanded into a fully functionally (GIS).

Website: http://em-50.em.doe.gov/et/et.html

U.S. Environmental Protection Agency

Alternative Treatment Technology Information Center

The Alternative Treatment Technology Information Center (ATTIC) is a free computer bulletin board and database system providing up-to-date information on innovative treatment technologies. ATTIC provides access to several independent databases as well as a mechanism for retrieving full-text documents of key literature. The bulletin board features news items, bulletins, computer files, and a messaging system that enables users to communicate and request advice from another users and to seek help from the system operator. ATTIC can be accessed with a personal computer (PC) and modem.
Data bases available through ATTIC include:

ATTIC Treatment Technology Database
RREL Treatability Database (see p. 32)
Bioremediation in the Field Search System (BFSS) (see p. 32)
Vendor Information System for Innovative Treatment Technologies (VISITT) (see p. 33)
Underground Storage Tank (UST) Database
Oil/Chemical Spill Database

The dial-in number for ATTIC is (513) 569-7610. The FTP and Telnet address is cinbbs.cin.epa.gov.

ATTIC support line:
(513) 569-7272

Website: http://www.epa.gov/attic/index.html

Hazardous Waste Cleanup Information System

The Hazardous Waste Cleanup Information (CLU-IN) site on the World Wide Web (http://clu-in.com) is a comprehensive information resource designed to assist hazardous waste cleanup professionals in finding the latest information on innovative hazardous waste treatment technologies, including information on programs, organizations, publications, and access to data bases and other tools for cleanups. CLU-IN users include EPA staff, other Federal and State personnel, consulting engineers, technology vendors, remediation contractors, researchers, community groups, and the public.

CLU-IN features include the following:

Data bases that can be searched or downloaded, including:
Bioremediation in the Field Search System (BFSS) (see p. 32)
RREL Treatability Database (see p. 32)
Vendor Information System for Innovative Treatment Technologies (VISITT) (see p. 33)
Vendor Field Analytical Characterization Technology System (VendorFACTS) (see p. 33)

TechDirect, an information service that highlights new publications and events of interest to site remediation and site assessment professionals.

Publications for downloading on a wide variety of subjects related to hazardous waste cleanup, including remediation technologies, site characterization technologies, supply and demand of technologies, partnerships and consortia, and regulatory and policy issues.

Website: http://clu-in.com

CLU-IN System Operator
301-589-8368
301-589-8487 (fax)
National Center for Environmental Publications and Information

The National Center for Environmental Publications and Information (NCEPI) is a central repository for all EPA documents with over 5500 titles in paper and/or electronic format, available for distribution. Titles may be searched and ordered via the Internet at http://cioma40.cin/epa.gov:6003. Publications may also be ordered by calling 1-800-490-9198.
This page intentionally left blank.
OTHER ELECTRONIC RESOURCES FOR SITE REMEDIATION TECHNOLOGY INFORMATION
Global Network for Environmental Technology

The Global Network of Environment & Technology (GNET) utilizes the latest communications technology to bring together the people, processes, and policies that shape environmental business. GNET provides services to enhance efforts to communicate, exchange information, and conduct business. GNET was developed by the Global Environment & Technology Foundation (GETF), a not-for-profit organization sponsored in part by DOE’s Global Environmental Technology Enterprise initiative. GNET was created to promote the commercialization of innovative environmental technologies to achieve environmentally sustainable development. GNET provided an interactive communications service for the White House’s Technology for a Sustainable Future Initiative, bringing together high-level environmental decision-makers and facilitating development of the national environmental technology strategy, “Bridge to a Sustainable Future.” GNET services are used by the Interagency Environmental Technologies Office, governmental agencies, businesses, and individuals in the environmental technology field. Membership in and information from GNET and GETF are free.

The GNET website has the following features:

TechKnow™ Data Base—TechKnow™ offers provides environmental technology information using a targeted search capability that combines multiple category schemes, including contaminant groups, affected media and other keywords.

Environment & Technology NewsBriefs—Environment & Technology NewsBriefs is a round-up of summaries of the top stories in the environmental business field, culled from over 750 published sources.

Environment & Technology Business Forum—GNET members can interact on-line with top policy makers and executives through the monthly Environment & Technology Business Forum.

Contact: Global Environment & Technology Foundation
7010 Little River Turnpike, Suite 300
Annandale, Virginia 22003
703-750-6401
703-750-6506 (fax)
Email: GETF@gnet.org

Website: http://www.gnet.org

Groundwater Remediation Technologies Analysis Center

The Groundwater Remediation Technologies Analysis Center (GWRTAC), established in 1995, is a specialized national environmental technology transfer center that provides current information concerning innovative ground-water remediation technologies. GWRTAC is operated by the National Environmental Technologies Applications Center (NETAC), in association with the University of Pittsburgh’s Environmental Engineering Program, under a Cooperative Agreement with the U.S. EPA Technology Innovation Office (TIO). GWRTAC compiles, analyzes, and disseminates information on innovative groundwater remediation technologies. GWRTAC offers a wide range of information on the state of development of all emerging ground-water remediation activities through a World Wide Web
site that provides access to searchable case study databases and pertinent technical documents. Information resources include:

Technology Database—Searchable database that contains case study information on ground-water remediation technologies including project location, target contaminants, site characterization, and project contacts.

Vendor Information Database—Database that allows interested parties to locate remediation technology developers and service providers. Links to vendors are included in the Vendor Information database portion of our web site. Potential vendors can request submittal through on-line forms.

Technology Evaluation Reports—Peer-reviewed reports, prepared by experts, that provide state-of-the-art reviews of selected remediation technologies.

Information Reports—A variety of reports that review trends in technology utilization, regulatory issues and perspectives, state policies, and sources of information.

Technology Overview Reports—GWRTAC authored reports that provide a general overview and brief introduction of specific ground-water remediation technologies.

Status Reports—A snapshot of the status and current development efforts of emerging technologies, prepared by GWRTAC, EPA-TIO, and others.

Contact: GWRTAC
615 William Pitt Way
Pittsburgh, PA 15238
(800) 373-1973
(412) 826-5512 ext. 215
E-mail: gwrtac@netac.org

Website: http://www.gwrtac.org

National Technology Transfer Center

The National Technology Transfer Center (NTTC) at Wheeling Jesuit University works with federal entities like NASA, EPA, Department of Defense, Department of Energy, Department of Justice, Department of Commerce, universities, entrepreneurs and Fortune 500 companies in presenting effective ways to help U.S. corporations and taxpayers access and use federally-financed technologies. NTTC's task is to take technologies off laboratory shelves and put them to work in U.S. businesses and industries. The NTTC website provides a large number of links to electronic technology resources.

Contact: National Technology Transfer Center
Wheeling Jesuit University
316 Washington Avenue
Wheeling, WV 26003
(800) 678-6882

Website: http://www.nttc.edu/
This page intentionally left blank.
SELECTED BIBLIOGRAPHY:
FEDERAL PUBLICATIONS ON
ALTERNATIVE AND INNOVATIVE SITE
REMEDIATION TECHNOLOGIES
BIOLOGICAL

EPA

A Bioventing Approach To RemEDIATE A Gasoline Contaminated Surface
EPA 600-A-92-220; NTIS: PB93-119816

Bioremediation: A Video Primer (Video)
EPA 510-V-94-001

Bioremediation Field Evaluation: Champion International Superfund Site, Libby, MT
EPA 540-R-96-500

Bioremediation Field Evaluation: Eielson Air Force Base, Alaska
EPA 540-R-95-533

Bioremediation Field Initiative Site Profile: Champion Site, Libby, MT
EPA 540-F-95-506A

Bioremediation Field Initiative Site Profile: Eielson Air Force Base, AK
EPA 540-F-95-506B

Bioremediation Field Initiative Site Profile: Hill Air Force Base Superfund Site, UT
EPA 540-F-95-506C

Bioremediation Field Initiative Site Profile: Public Service Company of Colorado
EPA 540-F-95-506D

Bioremediation Field Initiative Site Profile: Escambia Wood Preserving Site, FL
EPA 540-F-95-506G

Bioremediation Field Initiative Site Profile: Reilly Tar and Chemical Corporation, MN
EPA 540-F-95-506H

Bioremediation of Former Manufactured-Gas Plant Sites
NTIS: PB95-235123

Bioremediation of Hazardous Wastes: Research, Development, and Field Evaluations
EPA 540-R-95-532; NTIS: PB96-130729

Bioremediation of Petroleum Hydrocarbons: A Flexible, Variable-Speed Technology
EPA 600-A-95-140; NTIS: PB96-139035

Bioremediation Using the Land Treatment Concept
EPA 600-R-93-164; NTIS: PB94-107927

Bioremediation Resource Guide and Matrix
EPA 542-B-93-004; NTIS: PB94-112307

DO NOT QUOTE OR CITE
Champion International Superfund Site, Libby, Montana: Bioremediation Field Performance Evaluation of the Prepared Bed Land Treatment System, Volumes I & II
EPA 600-R-95-156; NTIS: PB96-205448

EPA 540-MR-93-527

Demonstration Bulletin: New York State Multi-Vendor Bioremediation: ENSR Consulting and Engineering/Larsen Engineers; Ex-Situ Biovault
EPA 540-MR-95-524

Demonstration Bulletin: New York State Multi-Vendor Bioremediation: R.E. Wright Environmental, Inc.'s In-Situ Bioremediation Treatment System
EPA 540-MR-95-525

EPA 540-F-93-506

Emerging Technology Bulletin: Two-Zone PCE Bioremediation System, ABB Environmental Services, Inc.
EPA 540-F-95-510

Engineering Bulletin: In Situ Biodegradation Treatment
EPA 540-S-94-502; NTIS: PB94-190469

EPA 600-A-95-142; NTIS: PB96-139092

EPA 600-J-95-176

Innovative Site Remediation Technology: Bioremediation
EPA 542-B-94-006

EPA 540-R-95-529; Demonstration Bulletin: EPA 540-MR-95-529; SITE Technology Capsule: EPA 540-R-95-529A

In Situ Bioremediation of Contaminated Unsaturated Subsurface Soils
EPA 540-S-93-501; NTIS: PB93-234565

DO NOT QUOTE OR CITE
In Situ Bioremediation of Ground Water and Geological Material: A Review of Technologies
EPA 600-SR-93-124; NTIS: PB93-215564

EPA 600-A-95-112; NTIS: PB95-274213

Intrinsic Bioremediation of Fuel Contamination in Ground Water at a Field Site. Wilson, J.T., et al.
EPA 600-A-95-141; NTIS: PB95-139084

Microbial Activity in Subsurface Samples Before and During Nitrate-Enhanced Bioremediation
EPA 600-A-95-109; NTIS: PB95-274239

Proceedings of the In-Situ Bioremediation Symposium, Sept. 20-24, 1992
EPA 600-A-93-073; NTIS: PB93-175545

EPA 600-A-93-176; NTIS: PB93-221943

Review of Intrinsic Bioremediation of TCE in Groundwater at Picatinny Arsenal, New Jersey and St. Joseph, Michigan
EPA 600-A-95-096; NTIS: PB95-252995

Solid Oxygen Source for Bioremediation in Subsurface Soils (Revised)
EPA 600-J-94-495; NTIS: PB95-155149

U.S. Air Force

ESL-TR-86-44; NTIS: AD-A184 948/8

U.S. Army

Biodegradation of Propellants M3IA1E1 and NOSIH-AA2 in Compost, Soil Slurries, and Liquid Culture
CERL-TR-96/83; NTIS: AD-A315 199

NTIS: AD-A277 750/6

Development of a Zero Headspace Aerobic, Suspended Growth Bioreactor
Report No. MP-EL-94-8
Evaluation of Operational Factors Contributing to Reduced Recharge Capacity of the North Boundary Treatment System, Rocky Mountain Arsenal, Commerce City, CO
WES: EL-94-12

Field Demonstration of Slurry Reactor Biotreatment of Explosives-Contaminated Soils
SFIM-AEC-ET-CR-96178

Hot Gas Decontamination of Explosive-Contaminated Items, Process and Facility Conceptual Design
SFIM-AEC-ET-CR-94118

WES/TR/IRR-P-94-3; NTIS: AD-A285 645/8

Rapid Development of Microbial Stains for Bioremediation of Military Soils and Dredged Materials Contaminated with Polycyclic Aromatic Hydrocarbons
WES: EL-93-18

Technical Approach for In Situ Biotreatment Research: Bench-Scale Experiments
TR-IRR-P-93-3

Windrow Composting Demonstration for Explosives-Contaminated Soils at the Umatilla Depot Activity, Hermiston, Oregon, Contract No. DACA31-91-R
CETHA-TS-CR-93043

Windrow Composting of Explosives-Contaminated Soil at Umatilla Depot Activity: Technology Application Analysis
SFIM-AEC-ET-CR-94072

DO NOT QUOTE OR CITE
CONFERENCES AND INTERNATIONAL SURVEYS

EPA

NATO/CCMS Pilot Study — Evaluation of Demonstrated and Emerging Technologies for the Treatment and Cleanup of Contaminated Land and Groundwater (Phase II). Interim Status Report Number 203
EPA 542-R-95-006; NTIS: PB95-227849

Northeast Remediation Marketplace: Business Opportunities for Innovative Technologies (Summary Proceedings)
EPA 542-R-94-001; NTIS: PB94-154770

EPA 600-R-94-011; NTIS: PB94-159092

Rocky Mountain Remediation Marketplace: Business Opportunities for Innovative Technologies (Summary Proceedings)
EPA 542-R-94-006; NTIS: PB95-173738

Symposium on Bioremediation of Hazardous Wastes: Research, Development, and Field Evaluations,
Rye Brook, New York, August 8-10, 1995. (Abstracts only)
EPA 600-R-95-078

Symposium on Natural Attenuation of Chlorinated Organics in Ground Water: Dallas, TX, Sept. 11-13, 1996: Proceedings
EPA 540-R-96-509

21st Annual Environmental Protection Agency Risk Reduction Engineering Laboratory (RREL) Research Symposium: Abstract Proceedings, Cincinnati, OH 4-6 Apr 1995
EPA 600-R-95-012; NTIS: PB95-193322

United States/German Bilateral Agreement on Hazardous Waste Site Clean-up Projects: Conference Proceedings
EPA 600-A-95-068; NTIS: PB95-217675

West Coast Remediation Marketplace: Business Opportunities for Innovative Technologies (Summary Proceedings)
EPA 542-R-94-008; NTIS: PB95-143319

U.S. Army

Proceedings of the Second Tri-Service Environmental Technology Workshop
SFIM-AEC-ET-CR-97050

Proceedings of the Tri-Service Environmental Technology Workshop
SFIM-AEC-ET-CR-96187
GROUNDWATER

DOE

Subsurface Contaminants Focus Area
DOE/EM-0296; NTIS: DE96-013524

EPA

Advanced Oxidation Technologies for the Treatment of Contaminated Groundwater.
EPA 600-A-94-005; NTIS: PB-94-137353

Assessing UST Corrective Action Technologies: Lessons Learned About In Situ Air Sparging at the Denison Avenue Site, Cleveland, Ohio (Project Report)
EPA 600-R-95-040; NTIS: PB95-188082

Case Study: Natural Attenuation of a Trichloroethene Plume at Picatinny Arsenal, New Jersey.
EPA 600-A-96-078; NTIS: PB97-122949

Compilation of Ground-Water Models
EPA 600-R-93-118; NTIS: PB93-209401

Complex Mixtures and Groundwater Quality
EPA 600-S-93-004; NTIS: PB94-196970

Emerging Abiotic In situ Remediation Technologies for Ground Water and Soil. Summary Report
EPA 542-S-95-001; NTIS: PB95-239299

Evaluation of Ground Water Extraction Remedies; Phase II
Vol. 1, Summary Report
OSWER Directive 9355.4-05; NTIS: PB92-963346
Vol. 2, Case Studies and Updates
OSWER Directive 9355.4-05A; NTIS: PB92-963347

Evaluation of Technologies For Cleanup of DNAPL Contaminated Sites
EPA 600-R-94-120; NTIS: PB94-195039

EPA 600-A-94-019; NTIS: PB94-146396

Ground Water Issue: Nonaqueous Phase Liquids Compatibility with Materials Used in Well Construction, Sampling, and Remediation
EPA 540-S-95-503; NTIS: PB95-269643

Ground Water Treatment Technology Resource Guide
EPA 542-B-94-009; NTIS: PB95-138657

DO NOT QUOTE OR CITE
EPA 540-R-95-511; Site Technology Capsule: EPA 540-R-95-511A; NTIS: PB96-100193

In situ Immobilization and Detoxification of Chromate-Contaminated Ground Water Using Zero-Valent Iron: Field Experiments at the USCG Support Center, Elizabeth City, North Carolina
EPA 600-A-96-036; NTIS: PB96-169313

In Situ Remediation Technology Status Report: Electrokinetics
EPA 542-K-94-007; NTIS: PB95-236873

In Situ Remediation Technology Status Report: Treatment Walls
EPA 542-K-94-004; NTIS: PB95-252383

In Situ Treatments of Contaminated Ground Water: An Inventory of Research and Field Demonstrations and Strategies for Improving Ground Water Remediation Technologies.
EPA 500-K-93-001; NTIS: PB93-193720

Introduction to Groundwater Investigations
EPA 540-R-95-060; NTIS: PB95-963240

Methods for Monitoring Pump-and-Treat Performance
EPA 600-R-94-123; NTIS: PB95-125456

EPA 600-R-94-174; NTIS: PB95-179495

EPA 600-R-94-039A; NTIS: PB94-189487

Modeling: The Hydrocarbon Spill Screening Model (HSSM) Volume II: Theoretical Backgrounds and Source Code
EPA 600-R-94-039B

Natural Attenuation of Trichlorethene at the St. Joseph, Michigan, Superfund Site
EPA 600-SV-95-001

EPA/600/A-96/075; NTIS: PB97-122915

State Policies Concerning the Use of Injectants for In-Situ Ground Water Remediation
EPA 542-R-96-001; NTIS: PB96-164538

Status Reports on In Situ Treatment Technology Demonstration and Applications:
- Surfactant Enhancements
- Treatment Walls
- Hydrofracturing/Pneumatic Fracturing
- Cosolvents

DO NOT QUOTE OR CITE
Electrokinetics
Altering Chemical Conditions

Surfactant Injection for Ground Water Remediation: State Regulators’ Perspectives and Experiences
EPA 542-R-95-011; NTIS: PB96-164546

Technology Evaluation Report: Accutech Pneumatic Fracturing Extraction and Hot Gas Injection, Phase I
EPA 540-R-93-509; NTIS: PB93-216576

The Use of Cationic Surfactants to Modify Aquifer Materials to Reduce the Mobility of Hydrophobic Organic Compounds
EPA 600-S-94-002; NTIS: PB95-111951

U.S. Army

Phytoremediation of Explosive-Contaminated Groundwater in Constructed Wetlands: I-Batch Study
SFIM-AEC-ET-CR-96166

Phytoremediation of Explosive-Contaminated Groundwater in Constructed Wetlands: II-Flow Through Study
SFIM-AEC-ET-CR-96167

Pink Water Treatment Options
SFIM-AEC-ETD-CR-95036

Removal of N-Nitrosodimethylamine from Rocky Mountain Arsenal Waters Using Innovative Adsorption Technologies (Final Report).
WES/TR/EL-96-11; NTIS: AD-A314 374

Treatment of Propellant Production Wastewaters Containing 2,4-Dinitrotoluene
SFIM-AEC-ETD-CR-95048
PHYSICAL/ CHEMICAL

EPA

Applications Analysis Report (SITE Program): Bergmann USA Soil Sediment Washing Technology
EPA 540-AR-92-075; PB96-138771

Applications Analysis Report (SITE Program): Magnum Water Technology Inc.-CAV-OX Ultraviolet
Cavitation Oxidation Process
EPA 540-AR-93-520; NTIS: PB94-189438

EPA 540-AR-93-513; NTIS: PB96-138763

Applications Analysis Report (SITE Program): Perox-Pure- Chemical Oxidation Technology-
Peroxidation Systems, Inc.
EPA 540-AR-93-501; NTIS: PB94-130325

Applications Analysis Report (SITE Program): POWWER- Evaporation Catalytic Oxidation
Technology
EPA 540-AR-93-506; NTIS: PB94-124658

Applications Analysis Report (SITE Program): Toronto Harbour Commissioners—Soil Recycling
Treatment Train
EPA 540-AR-93-517; NTIS: PB94-124674

EPA 540-AR-93-508; NTIS: PB94-130275

Assessing UST Corrective Action Technologies: Diagnostic Evaluation of In Situ SVE-Based System
Performance
EPA 600-R-96-041; PB96-163597

Assessing UST Corrective Action Technologies: In Situ SVE-Based Systems for Free Product Recovery
and Residual Hydrocarbon Removal
EPA 600-R-96-042; NTIS: PB96-163605

Assessment and Remediaiton of Contaminated Sediments (ARCS) Program
EPA 905-R-94-003

Chromate Reduction and Remediation Utilizing the Thermodynamic Instability of Zero-Valence State
EPA 600-A-94-070; NTIS: PB94-163516

Combined Chemical and Biological Oxidation of Slurry Phase Polycyclic Aromatic Hydrocarbons
EPA 600-A-95-065; NTIS: PB95-217642

DO NOT QUOTE OR CITE
EPA 600-J-95-447

EPA 540-MR-94-501

EPA 540-MR-94-522

EPA 540-MR-93-514

EPA 540-MR-93-522

Demonstration Bulletin (SITE Program): Geosafe Corporation In Situ Vitrification
EPA 540-MR-94-520

EPA 540-MR-93-524

EPA 540-MR-93-505

Demonstration Bulletin (SITE Program): Inplant Systems, Inc.; Sfc 0.5 Oleofiltration System
EPA 540-MR-94-525

EPA 540-MR-94-510

Demonstration Bulletin (SITE Program): In Situ Vitrification, Geosafe Corporation.
EPA 540-MR-94-520

EPA 540-MR-95-510

EPA 540-MR-93-513

EPA 540-MR-94-514
Demonstration of VOC Treatment and Disposal via Spray Irrigation, Hastings, Nebraska: Fact Sheet. EPA/540/F-96/503

Emerging Technology Bulletin: Electrokinetic Soil Processing
EPA 540-F-95-504; Project Summary: EPA 540-SR-93-515

EPA 540-F-95-509

Emerging Technology Report: Demonstration of Ambersorb 563 Adsorbent Technology
EPA 540-R-95-516; NTIS: PB95-264164; Emerging Technology Summary: EPA 540-SR-95-516

Emerging Technology Summary: Bench-Scale Testing of Photolysis, Chemical Oxidation and Biodegradation of PCB Contaminated Soils, and Photolysis of TCDD Contaminated Soils
EPA 540-SR-94-531

Engineering Bulletin: In Situ Vitrification Treatment.
EPA 540-S-94-504; NTIS: PB95-125499

Engineering Bulletin: Solvent Extraction
EPA 540-S-94-503; NTIS: PB94-190477

Innovative Site Remediation Technology: Solvent/Chemical Extraction
EPA 542-B-94-005

Innovative Site Remediation Technology: Vacuum Vapor Extraction
EPA 542-B-94-002

EPA-540-R-95-522; NTIS: PB95-268041
SITE Technology Capsule: EPA/540/R-94/522A; NTIS: PB95-213229

Innovative Technology Evaluation Report: Geosafe Corporation In Situ Vitrification
EPA 540-R-94-520; NTIS: PB95-213245

EPA 540-R-93-505; NTIS: PB94-100161

Innovative Technology Evaluation Report: Inplant Systems, Inc.; Sfc 0.5 Oleofiltration System
EPA 540-R-94-525; NTIS: PB95-236410

EPA/540/R-95/010; NTIS: PB95-255709

EPA 540-R-94-514; NTIS: PB96-113899
Laboratory Study on the Use of Hot Water to Recover Light Oily Wastes from Sands
EPA 600-R-93-021; NTIS: PB93-167906

EPA 600-J-95-485

Physical/Chemical Treatment Technology Resource Guide and Physical/Chemical Treatment Technology Resource Matrix
EPA 542-B-94-008; NTIS: PB95-138665

EPA 600-J-95-019

EPA 600-J-94-169, NTIS: PB94-162740

EPA 600-J-95-174

EPA 600-J-93-005; NTIS: PB93-149854

Surfactant-Enhanced DNAPL Remediation: Surfactant Selection, Hydraulic Efficiency, and Economic Factors
EPA 600-S-96-002

EPA 600-J-94-349; NTIS: PB94-210465

U.S. EPA's Mobile In Situ Containment/Treatment Unit.
Videocassette from EPA, Edison, NJ

Videocassette from EPA, Edison, NJ

Waste Vitrification Through Electric Melting: Ferro Corporation
EPA 540-F-95-503
U.S. Army

Evaluation of Ultraviolet/Ozone Treatment of Rocky Mountain Arsenal (RMA) Groundwater Report No. Y-78-1

Field Demonstration of the Hot Gas Decontamination SFIM-AEC-ET-CR-95011

Technology Application Analysis, Physical Separation and Acid Leaching: A Demonstration of Small-Arms Remediation at Folk Polk, Louisiana SFIM-AEC-ET-CR-97045

TNT Redwater Treatment by Wet Air Oxidation (Final Report) CERL-TR-EP-95-01; NTIS: AD-A293 204/4

U.S. Navy

NAS North Island: NELP Fact Sheet No. 2
TECHNOLOGY SURVEY REPORTS

DOE

Albuquerque Operations Office, Albuquerque, New Mexico: Technology Summary
DOE/EM-0200; NTIS: DE95002324

NTIS: DOE/CH-9303

Contaminant Plumes Containment and Remediation Focus Area Technology Summary
DOE/EM-0248; NTIS: DE95016125

FY95 Technology Catalog. Technology Development for Buried Waste Remediation
NTIS: DE96001578

Heavy Metals Contaminated Soil Project, Resource Recovery Project, and Dynamic Underground Stripping Project
DOE/EM-0129P; NTIS: DE94008861

Idaho Operations Office: Technology Summary
DOE/EM-0172P; NTIS: DE94014933

Innovation Investment Area: Technology Summary.
DOE/EM-0146P; NTIS: DE94012997

In Situ Remediation Integrated Program: Technology Summary
NTIS: DOE/EM-0134P

Minimum Additive Waste Stabilization (MAWS). Technology Summary
DOE/EM-0124P; NTIS: DE94008856

Mixed Waste Integrated Program: Technology Summary
NTIS: DOE/EM-0125P

Morgantown Energy Technology Center, Technology Summary
DOE/EM-0192T; NTIS: DE94018616

Oak Ridge Operations Office, Oak Ridge, Tennessee, Technology Summary
DOE/EM-0207; NTIS: DE95003173

Oakland Operations Office, Oakland, California: Technology Summary
DOE/EM-0222; NTIS: DE95003622

Technology Catalog. Second Edition
DOE/EM-0235; NTIS: DE95011541

VOCs in Non-Arid Soils Integrated Demonstration: Technology Summary.
DOE/EM-0135P; NTIS: DE94008863

DO NOT QUOTE OR CITE
EPA

Abstracts of Remediation Case Studies
EPA 542-R-95-001

Accessing EPA's Environmental Technology Programs
EPA 542-F-94-005

An Overview of UST Remediation Options
EPA 510-F-93-029

Approaches for Remediation of Federal Facility Sites Contaminated With Explosives or Radioactive Waste
EPA 625-R-93-013

EPA 600-R-96-031; NTIS: PB96-153556

Behavior of Metals in Soils.
EPA 540-S-92-018; NTIS: PB93-131480

Bibliography for Innovative Site Clean-Up Technologies, September 1996 Update
EPA 542-B-96-003; NTIS: PB96-114193

EPA-542-R-96-005; NTIS: PB96-178041

Completed North America Innovative Technology Demonstration Projects
EPA 542-B-96-002; NTIS: PB96-153127

Contaminants and Remedial Options at Pesticide Sites
EPA 600-R-94-202; NTIS: PB95-183869

Contaminants and Remedial Options at Selected Metal-Contaminated Sites
EPA 540-R-95-512; NTIS: PB95-271961

Contaminants and Remedial Options at Solvent-Contaminated Sites
EPA 600-R-94-203; NTIS: PB95-177200

Contaminants and Remedial Options at Wood Preserving Sites
EPA 600-R-92-182; NTIS: PB92-232222

Emerging Abiotic In Situ Remediation Technologies for Ground Water and Soil, Summary Report
EPA 542-S-95-001; NTIS: PB95-239299

Emerging Technology Program
EPA 540-F-95-502
Emerging Technology Report: Reclamation of Lead from Superfund Waste Material Using Secondary Lead Smelters
EPA 540-R-95-504; NTIS: PB95-199022 (Project Summary: EPA 540-SR-95-504)

Engineering Bulletin: In-Situ Biodegradation Treatment
EPA 540-S-94-502

Groundwater Treatment Technologies Resource Guide
EPA 542-B-94-009; NTIS: PB95-138657

Guide to Documenting Cost and Performance for Remediation Projects
EPA 542-B-95-002; NTIS: PB95-182960

How to Evaluate Alternative Cleanup Technologies For Underground Storage Tank Sites: A Guide For Corrective Action Plan Reviewers
EPA 510-B-94-003

Initiatives to Promote Innovative Technologies in Waste Management Programs
EPA 540-F-96-012; NTIS PB96-963245

Innovative Treatment Technologies: Annual Status Report, Eighth Edition
EPA 542-R-96-010

In Situ Technologies for Remediation of Organic Chemicals-Contaminated Sites: A Critical Review
EPA 600-A-94-143; NTIS: PB94-192713

Light Nonaqueous Phase Liquids
EPA 540-S-95-500; NTIS: PB95-267738

Literature Review Summary of Metals Extraction Processes Used to Remove Lead from Soils: Project Summary
EPA 600-SR-94-006

Musts for USTs: a Summary of the Regulations for Underground Tank Systems
EPA 510-K-95-002

Natural Attenuation of Hexavalent Chromium in Ground Water and Soils
EPA 540-S-94-505; NTIS: PB95-182614

Physical/Chemical Treatment Technology Resource Guide
EPA 542-B-94-008; NTIS: PB95-138665

Profile of Innovative Technologies and Vendors for Waste Site Remediation
EPA 542-R-94-002; NTIS: PB95-138418

Progress in Reducing Impediments to the Use of Innovative Remediation Technology
EPA 542-F-95-008; NTIS: PB95-262556
Recent Developments for In Situ Treatment of Metal Contaminated Soils
PB96-153135

Regional Remediation Market Study: Northeast Remediation Marketplace: Business Opportunities For Innovative Technologies (Summary Proceedings)
EPA 542-R-94-001; NTIS: PB94-154770

Regional Remediation Market Study: Rocky Mountain Remediation Marketplace: Business Opportunities For Innovative Technologies (Summary Proceedings)
EPA 542-R-94-006; NTIS: PB95-173738

Regional Remediation Market Study: West Coast Remediation Marketplace: Business Opportunities For Innovative Technologies (Summary Proceedings)
EPA 542-R-94-008; NTIS: PB95-143319

Regional Remediation Market Study: Regional Market Opportunities For Innovative Site Cleanup Technologies: Middle Atlantic States
EPA 542-R-95-010; NTIS: PB96-121637

Regional Remediation Market Study: Market Opportunities For Innovative Site Cleanup Technologies: Northeastern States
EPA 542-R-96-007

Remediation Case Studies: Bioremediation
EPA 542-R-95-002; NTIS: PB95-182911

Remediation Case Studies: Groundwater Treatment
EPA 542-R-95-003; NTIS: PB95-182929

Remediation Case Studies: Soil Vapor Extraction
EPA 542-R-95-004; NTIS: PB95-182937

Remediation Case Studies: Thermal Desorption, Soil Washing, and In Situ Vitrification
EPA 542-R-95-005; NTIS: PB95-182945

EPA 542-B-94-013; NTIS: PB95-104782

Remediation Technologies Screening Matrix and Reference Guide (Updated and Expanded Version Fact Sheet)
EPA 542-F-95-002

Role of Cost in the Superfund Remedy Selection Process
EPA 540-F-96-018; NTIS: PB96-963245

Selected EPA Products and Assistance on Alternative Cleanup Technologies (Includes Remediation Guidance Documents Produced by the Wisconsin Department of Natural Resources)
EPA 510-E-94-001
Soil Screening Guidance: User's Guide
EPA 540-R-96-018; NTIS: PB96-963505; Fact Sheet: EPA 540-F-95-041

Soil Vapor Extraction Treatment Technology Resource Guide
EPA 542-B-94-007

Subsurface Characterization and Monitoring Techniques
EPA 625-R-93-003A&B

Superfund Innovative Technology Evaluation (SITE) Program: An Engineering Analysis of the Demonstration Program
EPA 540-R-94-530

EPA 540-R-95-522

Superfund Innovative Technology Evaluation (SITE) Program — Emerging Technology Program
EPA 540-F-95-502

Superfund Innovative Technology Evaluation Program — SITE Program Fact Sheet
OSWER Directive 9330.1-03FS

Th.: Superfund Innovative Technology Evaluation Program: Technology Profiles, Seventh Edition
EPA 540-R-94-526

Technology Alternatives for the Remediation of PCB-Contaminated Soil and Sediment
EPA 540-S-93-506

Treatment Technologies for Superfund (Training Manual)
EPA 540-R-95-056; NTIS: PB95-963237

U.S. Army

FY 96 Annual Report, Innovative Technology Demonstration, Evaluation and Transfer Activities, U.S. Army Environmental Center
SFIM-AEC-ET-CR-97013

Heavy Metals Soil Contamination at U.S. Army Installations: Proposed Research and Strategy for Technology Development.
TR-IRRD-94-1

Proceedings from the 15th Annual Army Environmental R&D Symposium
CETHA-TS-CR-91076

Technology Assessment of Currently Available and Developmental Techniques for Heavy Metals-Contaminated Soils Treatment.
WES: IRRP-93-4

DO NOT QUOTE OR CITE
DOE

Evaluation of the Molten Salt Oxidation Process Technology
DOE/ID/12584-97, GJPO-105

Flameless Thermal Oxidation. Innovative Technology Summary Report
DOE/EM-0287; NTIS: DE96-009312

EPA

Applications Analysis Report (SITE Program): Thermal Desorption Unit, Eco Logic International, Inc.
EPA 540-AR-94-504

Demonstration Bulletin: Low Temperature Thermal Aeration (LTTA) System, Canonis Environmental Services, Inc.
EPA 540-MR-93-504

EPA 540-MR-94-507

EPA 540-MR-93-502

Emerging Technology Bulletin: Development of a Photothermal Detoxification Unit
EPA 540-F-95-505; Full Report: EPA 540-R-95-526; NTIS: PB95-255733
Summary Report: EPA 540-SR-95-526

Engineering Bulletin: Thermal Desorption Treatment
EPA 540-S-94-501; NTIS: PB94-160603

EPA SITE Demonstration of the Sonotech Frequency-Tunable Pulse Combustion System. Volume 2
EPA 600-A-95-038; NTIS: PB95-190526

EPA 540-R-94-510; NTIS: PB95-271854; SITE Technology Capsule: EPA 540-R-94-510A; NTIS: PB95-270476

EPA 540-R-94-527; NTIS: PB95-267084; SITE Technology Capsule: EPA 540-R-94-527A; NTIS: PB95-231254
EPA 540-R-94-528; NTIS: PB95-249454; SITE Technology Capsule: EPA 540-R-94-528A; NTIS: PB95-249454

Innovative Technology Evaluation Report: Sonotech Pulse Combustion System

Innovative Treatment Technology Status Report: Thermal Enhancements
EPA 542-K-94-009

SITE Technology Capsule: Clean Berkshires, Inc., Thermal Desorption System
EPA 540-R-94-507A; NTIS: PB95-122800

66
DO NOT QUOTE OR CITE
TREATABILITY STUDIES

EPA

Engineering Forum Issue: Considerations in Deciding to Treat Contaminated Unsaturated Soils In Situ
EPA 540-S-94-500; NTIS: PB94-177771

Feasibility Study Analysis for CERCLA Sites with Volatile Organic Compounds in Soil
EPA 540-R-94-080; NTIS: PB95-963302

Feasibility Study Analysis: Volume 1, Findings and Analysis
EPA 542-X-95-001

Feasibility Study Analysis: Volume 2, Site Summaries
EPA 542-X-95-002

Guide for Conducting Treatability Studies under CERCLA: Biodegradation Remedy Selection
EPA 540-R-93-519A; NTIS: PB94-117470

Removal of PCBs from Contaminated Soil Using the CF Systems Solvent Extraction Process: A Treatability Study
EPA 540-R-95-505; NTIS: PB95-199030; Project Summary: EPA 540-SR-95-505

Temperature, Radioactive Tracer, and Noise Logging for Injection Well Integrity
EPA 600-R-94-124

U.S. Army

NTIS: AD-A-304160

UV/Chemical Oxidation Treatment of RDX Contaminated Waters at Picatinny Arsenal.
WES: EL-95-7

DO NOT QUOTE OR CITE

67
APPENDIX

TECHNOLOGY PROGRAM CONTACTS

U.S. Department of Defense

U.S. AIR FORCE

GENERAL INFORMATION:
Col. Richard Drawbaugh
Office of Environment, Safety and Occupational Health
703-697-0997

RESEARCH PROGRAMS:
Dr. Jimmy Cornette
AF Research Laboratory, Airbase and Environmental Technology Division
850-283-6007

U.S. ARMY

GENERAL INFORMATION:
Rick Newsome
Office of the Assistant Secretary for Installations, Logistics and Environment
703-614-9531

RESEARCH PROGRAMS AND GRANTS INFORMATION:
Dr. Clem Meyer
USACE Research and Development Directorate
202-761-1850

DEMONSTRATION PROGRAMS:
Dr. Donna Kuroda
USACE Environmental Restoration Division
202-761-4335

R&D ASSISTANCE PROGRAMS:
Jim Arnold
USAEC P2 & Environmental Technology Division
410-671-2466

U.S. NAVY

DEMONSTRATION PROGRAMS:
Ted Zagrobelny
Naval Environmental Leadership Program
703-325-8176
U.S. Department of Energy

RESEARCH PROGRAMS:
Office of Technology Development
301-903-7911

DEMONSTRATION PROGRAMS:
Office of Technology Development
301-903-7917

SMALL BUSINESS TECHNOLOGY INTEGRATION:
Office of Technology Development
301-903-7449

COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENTS:
Office of Technology Development
301-903-7900

U.S. Environmental Protection Agency

GENERAL INFORMATION:

Site Cleanup Technologies:
Technology Innovation Office
703-603-9910

Cleanup Technologies for Sites Contaminated with Radioactive Material:
Office of Radiation Programs
202-654-9350

RESEARCH PROGRAMS:

General Information:
National Risk Management Research Laboratory
513-569-7418

Grants Information:
National Center for Environmental Research and Quality Assurance (NCERQA)
202-260-4073

COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENTS:
National Risk Management Research Laboratory
513-569-7960