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ABSTRACT

This paper contains a study of two methods for use in a generic

nonlinear simulation tool that could be used to determine achievable

control dynamics and control power requirements while performing

perfect tracking maneuvers over the entire flight envelope. The two

methods are NDI (nonlinear dynamic inversion) and the SOFFT

(Stochastic Optimal Feedforward and Feedback Technology)

feedforward control structure. Equivalent discrete and continuous

SOFFT feedforward controllers have been developed. These equivalent

forms clearly show that the closed-loop plant model loop is a plant

inversion and is the same as the NDl formulation. The main difference is

that the NDl formulation has a closed-loop controller structure whereas

SOFFT uses an open-loop command model. Continuous, discrete, and

hybrid controller structures have been developed and integrated into the

formulation. Linear simulation results show that seven different

configurations all give essentially the same response, with the NDI

hybrid being slightly different. The SOFFT controller gave better

tracking performance compared to the NDI controller when a nonlinear

saturation element was added. Future plans include evaluation using a
nonlinear simulation.

Introduction

There is a need within the aerospace community for a generic nonlinear piloted simulation tool that

can be used to determine achievable control dynamics and control power requirements while it is

performing perfect tracking maneuvers over the entire flight envelope. For this application the control

law needs to be simple, and ideally it should be applicable to any aircraft without the need for

adjustments. In addition, control law robustness should never be an issue. A simulation tool such as this

would potentially have many applications within the control and general aerospace communities.

One application of this tool would allow a quick and easy comparison of various aerodynamic

databases, while performing the same maneuvers. These databases could range from crude to high

fidelity and could be used at various stages of development. This capability might be particularly

important during evaluation of some of the novel control effector concepts presently being explored

(ref. 1). A designer could adjust various parameters and evaluate force and moment capability relative to

the entire aircraft database, and it could be done at various stages of development.

A second application could be the adjustment of flying qualities with pilot ratings while performing a

variety of expected worst-case maneuvers. This application could help determine achievable dynamics

and give the control designer guidelines for the best performance possible. Having this information, the

designer could be more efficient while trying to improve performance. Another example is the

development of guidelines for reconfigurable control systems to accommodate failures.

Control allocation configurations could also be evaluated since the control law is capable of perfect

tracking, and the designer would not have to be concerned about the effect of control law deficiencies on

the evaluation. A control allocation configuration must be selected a priori. For a given flying qualities

model, various control allocation configurations can be compared, or vice-versa, for a given control

allocation, various flying qualities models can be evaluated. With a selected flying qualities model and a



control allocation configuration, other variables such as stick shaping, deadband width, and stick gains
could be evaluated.

It is likely that the large aerospace companies have a variety of tools available to accomplish the above

objectives, although they may not have this specific tool. Thtrre is a need for smaller companies and

government research organizations to have tools with the above capabilities to improve research

efficiency.

A tool with the capability described was developed (ref. 2) by the Defence Research Agency (DRA) in

the United Kingdom as part of a NASA/DRA Cooperative Aeronautical Research Program. The DRA
called this exact nonlinear dynamic inversion (NDI) since the methodology is based upon dynamic

inversion that was developed for flight control law design (ref. 3). The DRA application was to use the

NDI as an analysis tool during simulation and extract moments and appropriate coefficients from the
simulation. The ability to extract the appropriate terms from the simulation allows the control approach

to be exact; therefore, control law robustness is not an issue.

The approach was successfully demonstrated on the HARV (High-Alpha Research Vehicle) (ref. 4) in

the NASA Langley Differential Maneuvering Simulator. One deficiency with the reference 2 approach is

that the incorporation of flying qualities was not developed. The control law only consisted of first- order

responses, whereas military specifications (ref. 5) require higher-order responses.

To offset this deficiency, the SOFVF (Stochastic Optimal Feedforward and Feedback Technology)

(refs. 6 and 7) methodology was investigated for applicability. SOFFF was developed for flight control

application, and the feedforward structure allows precise tracking with the ability to incorporate any

desired flying qualities into a command model which is imbedded within the feedforward controller. The

approach was developed for a discrete controller by using linear models. Therefore, a disadvantage is
that linear derivatives must be calculated in real time and then transformed to discrete form. The

advantage over reference 2 is that higher order models can be used for exact tracking.

This paper contains a study of the two approaches for use in the development of a real-time piloted
simulation tool which can be used to determine achievable control dynamics and control power

requirements. The first section contains a review of the DRA approach to NDI. A review of the SOFFT
approach is discussed in the second section and includes equations for both discrete and continuous

controllers. Implementing SOFFT into a form similar to NDI shows that SOFFI" also includes a plant

inversion. The third section contains an analysis of the closed-loop plant model that illustrates the
transfer function characteristics for both the continuous and discrete models. The fourth section shows an

approach for incorporating flying qualities into the closed-loop NDI structure for both continuous

formulations and discrete formulations. Hybrid formulation,, are then developed for both NDI and

SOFFT. In the final section, simulation results illustrate that the methods give the same performance for

purely linear plant models with all-continuous or all-discret_" control systems. The hybrid SOFFT

controller gave essentially the same results while the hybrid NDI controller had a slight error in the pitch

rate response. In addition, the SOFFT structure gives better performance when a nonlinearity such as
actuator saturation is included.

Symbols

A system matrix for continuous systems

filter pole for plant inversion structure, rad/sec



aq

Av, Act, Aq, AO

Bz

Bv, B a, Bq

C

e

Ux,Uy

I

lx, ly,lz

Ixz

K

Ku, Kz, K*x

rl, r2, r 3

L,M,N

LA, MA, NA

Ldes, gdes , Ndes

LT, MT, NT

Lx, Mx, Nx

LDdi r ' NSdi r

trla t 'g_ia t

M_ton

p, q, r

T

row i and column j element in A matrix

row vectors in A x (plant model) matrix

control input matrix for continuous systems

row vectors in B x (plant model) matrix

output matrix for continuous systems

error signal

matrices used to select controlled states and outputs, respectively

identity matrix of appropriate dimensions

moments of inertia about the x-y-z axes, respectively

xz axes product of inertia

gain for second-order continuous system response

matrices used in SOFFT feedforward controller

gains in the second-order discrete system response

roll, pitch, and yaw moments about the x-y-z axes, respectively

aerodynamic roll, pitch, and yaw moments, respectively

desired roll, pitch, and yaw moments, respectively

engine thrust roll, pitch, and yaw moments, respectively

airframe and engine roll, pitch, and yaw moments, respectively

roll and yaw moments for directional control

roll and yaw moments for lateral control

pitch moment for longitudinal control

roll, pitch, and yaw rates about the x-y-z axes, respectively

roll, pitch, and yaw accelerations about the x-y-z axes, respectively

Laplace transform variable

sampling period, sec



u

V

x

k

Y

Z

IX

F

_h

dir , _ lat , _ Ion

0

0

,o

CO

COn

Subscripts:

des

k

x

Z

Superscript:

control signal

velocity

state-variable vector

time derivative of state-variable vector

output-variable vector

z-transform variable

angle of attack

control matrix for discrete systems

row i element in F matrix

directional, lateral, and longitudinal control effectors, respectively

damping ratio

pitch attitude

time constant for first-order continuous system response

state transition matrix for discrete systems

row i and column j element in • matrix

natural frequency for second-order continuous system response

numerator frequency in second-order continuous system response

desired command

coefficient for sampling sequence at time tk

plant model

command model in SOFbT

attached to plant model to represent ideal variables
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Abbreviations:

DRA Defence Research Agency

FB feedback controller

FF feedforward controller

HARV High-Alpha Research Vehicle

NDI nonlinear dynamic inversion

SOFFF Stochastic Optimal Feedforward and Feedback Technology

Review of Nonlinear Dynamic Inversion (NDI)

This section contains a review of the DRA approach to NDI, summarizing the key equations from

reference 2. In this section, the x-y-z coordinate body axes are defined as shown in reference 8 with the

x-axis out the nose, the y-axis positive in the direction of the right wing, and the z-axis down, completing

a right-handed coordinate frame. The nonlinear moment equations (ref. 8) for a flat-earth, rigid-body,
symmetrical airplane are

LA +L T = lxf_-lxzi'-lxzpq+(lz -ly)rq

MA + MT = ly_l + (Ix - I z )pr + Ixz (p2 _ r 2 )

N A + NT = lz_- lxzP+(ly - lx )pq + lxzqr

(1)

where LA, M A, and N A are the aerodynamic roll, pitch, and yaw moments about the x-y-z axes,

respectively; LT, M T, and N T are the moments about the x-y-z axes due to engine thrust; Ix, ly, Iz, and
lxz are the moments and product of inertia; p, q, and r represent the roll, pitch, and yaw rates about the
x-y-z axes; and P, q, and /" are the respective accelerations.

Moment data are usually defined in tables that are generated from wind tunnel and flight data. These

tables usually contain coefficients that are nonlinear functions of many airplane variables, for example,

angle-of-attack ct, sideslip angle 13,Mach, altitude h, and control surface deflections _, and are denoted in
a form such as

L = Lx (o_,13,Mach .... ) + L_, (or, _, Mach, 8 .... )Slat + L_air (or, 13,Mach, 8 .... )Sdi r

M = M x (or, 13,Mach .... ) + Ms,on (or, 13,Mach, 8.... )81on

N = N x (or, [1,Mach .... ) + N?_la ' (OL, [J, Mach, _ .... )8 lat + NSdi _(Ct, [1,Mach, 8,...)8 dir

(2)

For simplicity, the variables in parentheses will be represented by (...) in the remainder of this section.
In equations (2), the nonlinear airframe and engine moment terms Lx(...), Mx(... ), and Nx(...)

are shown separated from the nonlinear control moment effectiveness terms

L_ta, (...), Lsdir (...), M_,on (...), Nsta, (...), and Nsair (...), which are shown multiplied by the control

deflections (Slat,Slon,Sdir). In actual practice, the moments may be a combination of several

incremental moments generated within the simulation. In a linear problem, equations (2) would be



representedby linearderivativesmultipliedby statevariablesandcontrols.Equations(2) assumeone
principalcontrolabouteachof thethreerotationalaxes.Contro]allocationmethods,whichareaseparate
problem,arerequiredto distributethesecontrolmoments.

Desiredaccelerationcommands,denotedby the subscriptdes, are generated by the controller.

Rewriting equations (1) to reflect these desired commands and combining the aerodynamic and engine-

generated moments yields

Lde s = I x [9de s - lxz ide s - lxz pq + (I z -- ly )rq

Mde s = lyitdes + (I x - I z )pr + lxz (p2 _ r 2 )

N de s = 1 z ide s - lxz [gde s + ( ly - I x )pq + lxz qr

(3)

which defines the required moments about each axis for any desired rotational acceleration. The required

control deflections are calculated by rearranging equations (2) after substituting the desired moments for

the left-hand sides. Separating the longitudinal and lateral-direc:Jonal axes gives

8lo,, = (Mae, - (...) (4)

Slat ILStat (''') LSdir('")l-lILdes-Lx('") _

=LNs,o,(...) NSdir("') A [Ndes Nx (...)J

(5)

where the control effectiveness terms are inverted.

It is possible to bypass the control inversion and actuator models and pass moments directly to the

simulation equations of motion in order to study control-powe)requirements. This configuration would

effectively be a simulation with virtual moments. For example, Mde s - Mx(...) represents the longitudinal
control moment required to make the aircraft respond perfectly to the desired moment. By using this

operational mode, control allocation problems and actuator nonlinearities are avoided. During

simulation, the required control power can be monitored for any desired flying qualities and maneuvers.
For any maneuver in which peak control moments exceed available control moments, the excess required
moments can be measured.

The above procedure can be summarized as

1. Create desired angular accelerations i)des, itdes, ides from the Command Generator.

2. Implement eqs. (3) for Ldes, Mde s, Nde s

3. Implement eqs. (4) and (5) to calculate fitat, ilion, _dir

Outputs from the simulation include

1. Inertias Ix, ly, I_ lxz

2. Airplane angular rates p, q, r

3. Aerodynamic and engine thrust moments Lx (...), M x (...), N_. (...)
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4. Control effectiveness terms Lstat (...),LSair (...),Ms,on (...),Ns/_, (...),gSdir (...),

Figure 1 shows an example of the NDI procedure for a longitudinal case. The positive sign on the

nonlinear dynamics terms is for consistency with the longitudinal expression in equations (3).

Review of the SOFFT Approach

SOF_ was developed (ref. 6) as a flight control methodology to separate the feedforward (FF) and

feedback (FB) control objectives, in which each controller can be designed with different cost functions.

The FF controller should be influenced mainly by objectives that relate system response to pilot input

commands, whereas the FB controller should be influenced by objectives such as closed-loop stability,

robustness, and noise attenuation. The SOFFT structure is shown in figure 2, where nominal trajectory

commands Yx and ux are calculated by the FF controller and then sent to the FB controller and plant

input, respectively. Errors in the FF signals are then compensated for by the feedback controller.

Since the objective of this paper is to investigate a technique that can perform perfect tracking during

simulation, only the SOFFT FF part of the control methodology needs to be explored. As shown in

figure 3, the SOFFT FF controller consists of a command model, a plant model, and FF gains. All

SOFFI' dynamics are in discrete form, and the subscript k represents the sampling sequence at time tk.

Pilot l

input I I qde, _ + Mdes V- I
_____Command_.[ ly _ 1

-Igenerat°r]- L.._J- _J+-+M-J- I M,_,o (...)

Nonlinear

q dynamic
terms

t

Airframe and engine
aero moments

Simulation

Figure 1. Longitudinal example of NDI approach.

U x

 ee fo war IJ Yx I Feedbackcontroller controller

+
Plant

Figure 2. SOF_ control system structure.



Uz,k

Ux,k

- I model[__]Xk

-? ek
r

Figure 3. SOFFT feedforward controller structure.

The command model incorporates flying qualities dynamics and transforms the input vector Uz,k,

representative of pilot commands, into a commanded state vector Xz, k and its corresponding output vector

Yz, k" The difference between pilot stick input and Uz, k would t2_pically include stick gains, stick shaping,
_g

and possibly a small deadband. A calculated control signal vector Ux, k is input to the plant model that

contains discrete dynamics representative of the actual plant. Outputs from the plant model are the state

vector x k, which is fed back to the plant model input and the corresponding output vector Yx,k. Feed-

forward (FF) controller gain matrices K u, K z , and K x are based upon making selected plant model

outputs (or combinations of outputs), defined by constant matrix Hy, precisely track command model

outputs. With perfect plant model tracking, the error vector signal e k is always zero. When this concept

is used, the FF controller will always have perfect tracking for whatever plant model is being used.

Discrete Modeling

Discrete dynamic equations describing the plant model and command model are

Xk+ 1 : lYPxX k + FxUx, k

Yx,k = Cxxk

(6)

Xz,k+ 1 = ¢YPzXz,k + I"zUz, k

Yz,k = CzXz,k
(7)

where subscripts x and z represent the plant model and corrtrnand model, respectively, • represents a

discrete state transition matrix, F represents a discrete control matrix, and C represents the output matrix.

Perfect tracking is accomplished when

ek = HyYx,k - Yz,k = O. (8)
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Define H x by

suchthatHx=HyC _

HyYx, k = HyCxx k = Hxx k

The FF gain matrices are calculated based upon equation (8) as (ref. 6):

Ku = _[Hxrx ]-1Czrz

Kz = _[HxFx ]-1 Cz_z

K*x=[H_Fx]-tHx*x

(9)

(10)

(11)

(12)

An equivalent SOFFT feedforward controller structure can be developed by inserting the FF gains into

the control equation

Ux,k = -Kuuz,k - Kzxz,k - Kxxl ¢ (13)

and after factoring out the control inverse term [HxF x ]-l and using equations (6) and (7) yields

* =[HxFx]-l{ *}Ux,k Yz,k+l - Hxfl_xXk • (14)

This equivalent SOFFT feedforward control structure is illustrated in figure 4. Clearly one advantage of

this form over the form shown in figure 3 is that gain matrices K u and Kzdo not have to be explicitly

Open-loop command model

Xz,k+l : _zXz,k -1- Fzuz, k

Yz,k+l : CzXz,k+l

Yz,k : Czxz,k

Yz,k

Yz,k+l

Ux,k

--+- ................................._-i I 1 _

/ "- I • x xj I "-I plant ["f"n

_ l I I model [i I

,_,,,, I--4 ! I

Plant inversion

Figure 4. Equivalent SOFFT discrete feedforward controller structure.

Yx,k

X k

9



calculated. The closed-loop plant model shown within the dashed box represents a plant inversion for the

controlled variables, with inputs clearly coming from an open-loop command model. The approach to

calculate moments as in the NDI approach will be discussed after the next section on continuous

modeling.

Continuous Modeling

Although SOFFT was developed by using a discrete form, similar equations can be developed for

continuous plant and command models. Dynamic equations for the continuous plant model and
command model are

x = Axx + Bxu x

Yx = Cxx
(15)

JCz = Azxz + Bzuz (16)
Yz = Czxz

where A represents the state transition matrix, B represents the control matrix, C represents the output
matrix, and the subscripts are the same as defined previously. Perfect tracking is accomplished when

e = HyYx - Yz = 0 (17)

Defining the FF gain matrices as

Ku = _[HxBx ]-1CzBz (18)

K z = -[ HxBx ]-1CzAz (19)

Kx:[HxBxl-lHxAx (20)

and inserting these gain matrices into the control equation gives

u x =[HxBx]-l{.yz-HxAxx*t (21)

The equivalent form for the continuous SOFFF feedforward controller is shown in figure 5. Again, the

closed-loop plant model shown within the dashed box represznts a plant inversion. In the following
section it will be shown that the transfer function of the continuous model is different from the transfer

function of the discrete model.

Incorporating inertia terms into the controller in figure 5 creates a closed-loop plant model that can be

shown to have effectively an equivalent portion in figure 1. The nonlinear dynamics terms are not

included in figure 5. Using the longitudinal example and multiplying -Yz(which corresponds to ildes in

figure 1) by ly gives a moment command. Multiplying the phmt model feedback by ly is the same as

feeding back the plant aerodynamic moments, and incorporating: the inverse of ly into the plant input path
gives the inverse of the control effectiveness term in figure 1.

10



Open-loop command model _+ e*uzl xz=Azxz+Bzuz[yz - +

I Yz =Czxz [____ .................. ] ...... u!______:_.... -,

t" axl"
L ....................................... I

Plant inversion

Yx

X

Figure 5. Equivalent SOFFT continuous feedforward controller structure.

Moments can also be generated in the discrete controller in figure 4, but the approach is more

complicated. A moment command can be generated by taking the time increment Yz, k+l - Yz, k, which is

then multiplied by ly / T, where T is the sampling period. Similar increments must be created in the plant

feedback path and the plant input path.

Closed-Loop Analysis

This section contains an analysis of the closed-loop plant model and illustrates the transfer function
characteristics for both the continuous model and the discrete model. It should be noted that a

nonminimum phase system will result in an unstable closed-loop system for any configuration since the

zeros of the open-loop plant become poles of the closed-loop plant model.

The continuous model transfer function is illustrated first using a longitudinal example. Let

x* = [V, tx, q, O] T (22)

where V is the total velocity, {_ is the angle of attack, q is the pitch rate, and 0 is the pitch attitude. The A x

matrix is defined in terms of row vectors, and the B x matrix is defined in terms of scalar elements as

A X

Av

Aa

= Aq

AO

Bct
and B x = (23)
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since there is one control for this example. Assuming a pitch ra_e command with the plant model output

matrix Cx an identity matrix, then H x and Hy are identical from tl" e definition in equation (9) as

H x=Hy=[O 0 1 0] (24)

giving

HxA x = Aq

HxB x = Bq
(25)

Inserting equations (25) into (21) and then the combination into equations (15) and making use of the

definition in equation (9) gives

iavaqi 1* A a - BotBqlAq ]BotBq 1j¢ = X* +

0 [ 10 "Vz
A0

Hyy x = HyCxx = Hxx

(26)

showing that the transfer function from -Vz to Hxy x is an integrator, as illustrated in figure 6. Notice that

the internal dynamics for the uncontrolled states will be modified from their open-loop characteristics.

If the controlled variable is a linear combination of states where, for example, H x and Hy are

defined as

H x = Hy =[0 0.1 1 0] (27)

then the system and control input matrices in equation (26) will be modified as

x

O.IAot + Aq
A v - B v

0.1Bot + Bq

0.1Aot + Aq

0.1Bot + Bq

0.1A a + Aq

Aq - Bq 0.1Bot + Bq

AO

Aot - not

Hyy x = HyCxx = Hxx

X* +

J3V

0.1B, t + Bq

J_/ot

0.1B_:t + Bq

Bq

0.1B,_ + Bq
0

Yz

(28)

Similar to the previous example, the transfer function from -Yz to HxY x is an integrator. This integration

can be easily seen by premultiplying the _* equation by H x. The resulting system matrix will be 0 and

the resulting control input will be scalar and equal to 1.

12



Continuous closed-loop plant model

s-'

Discrete closed-loop plant model

z- 1 _ HyYx'k

Figure 6. Transfer functions for continuous and discrete closed-loop plant models.

A similar analysis can be made for a discrete system by making use of equation (14) for Ux,k. Given

the same pitch rate command defined in equation (24), the dynamic equations for the FF controller
become

- rvrql_q] FFVFff I ]x,+,= 0 Jx,+/ , lye,+,
¢0 J Lror;'J

Hyyx, _ = Hxx_

(29)

where again Cx is an identity matrix. The main point of equation (29) is that the transfer function for the

controlled variables in a discrete system is not an integrator, but is a time delay as illustrated in figure 6.

Other Configurations

It is possible to create a system matrix for continuous systems or a state transition matrix for discrete
systems with nonzero elements in the controlled channel. For example, a first-order filter can be

developed by modifying the feedback in figure 5 to be Hx(A x + afl)where af is the filter frequency and

I is an appropriate identity matrix. By using this feedback, the pitch rate closed-loop system in
equation (26) is modified as

[a: v q Aq+ai'][ viql]._*: BctBql(Aq +af ) x* B_ ql
+ afy z

-af

AO

Hyy x = HyCxx = Hxx

(30)

where the filter frequency is the only element in the modified system matrix. Since a low-pass filter is

created, the input should be the commanded response Yz rather than the first derivative, which is needed

when an integrator is formed. The input is shown multiplied by af to create a unity-gain filter. This
modified feedback will be shown in a later section for development of a SOFFT hybrid controller. A

13



linearcombinationof states,as illustratedin equation(28), canalsobe implementedfor thefilter
approach.

Discretesystemscanbemodifiedin a similarmanner.For example,a discreteintegratorcanbe
implementedbyfeedingbackHx(O x - I) in place of Hx_Px in figure 4. This revised feedback will create a

"1" in the modified system matrix replacing the "0" in equation (29).

The next section will show how to implement closed-loop controllers for all continuous models, for all

discrete models, and for two hybrid cases where the plant is continuous but the controller is a sample data

system. The hybrid system is expected to be the case for the desired application.

Incorporation of Flying Qualities

This section shows how command models can be integrated with the closed-loop plant inversion

transfer function to get the NDI form illustrated in figure 1. First- and second-order models are shown for

continuous, discrete, and hybrid controllers. These models can be used either as open-loop command
models for use in SOFFT (figs. 4 and 5) or as closed-loop integrated models as in NDI. In this section,

subscript "c" is used for the input command.

First-Order Continuous Formulation

Suppose a first-order transfer function with time constant x of the form shown below is desired,

Y (s)- 1 - l//x (31)
u c xs+l s+_

then the problem is to transform equation (31) into a form that uses the integrator characteristic of the

closed-loop plant inversion model. The modeling approach usec is to cross multiply as

1-Uc(S ) (32)

then solve for y(s) as

y(s) = 1 s_ l {u c (s) - y(s)} (33)
,[

which is implemented as a closed-loop controller, as shown in figure 7. The plant inversion transfer
function described in the previous section is illustrated by the d_shed box when y = x. Implementation of

the first-order controller does not require any dynamic elements.

The state-space transfer function is given as

1 +lucJr= -¥x

y=x

1
f= -lx+¥Uc

(34)

14



Plant inversion

transfer function
.................. q

I I

Uc ' Jc x ' Y

,, ._
I !

I !

I .................. !

Y(s)-
Uc S +_

Figure 7. First-order transfer function for continuous models.

where equation (34) can be used as the SOFFT continuous open-loop command model shown in figure 5.

Second-Order Continuous Formulation

The first-order transfer function was trivial and could have been implemented directly from

equation (31). The next case is for a second-order transfer function with numerator dynamics such as

K(s + to n ) (35)
--_Y(S)= 2 0_2
Uc S + 2_O_S +

where 0_ is the natural frequency, _ is the damping ratio, and _n is a zero of the transfer function. Using

the approach shown above gives

(s 2 + 2;ms + o_2 )y(s)= K(s + mn)Uc(S) (36)

and after combining terms with powers of s, the equation to be programmed for y(s) is

y(s)= s -1 {Kuc(S ) - 2;coy(s)} + s -2 {KO_nUc(S)-O_ 2y(s)} (37)

which is implemented as a closed-loop controller, as shown in figure 8.

The state-space transfer function for this model is given as

--O}

,1Ix,+ K0jLx2} uc

ol x, +iO}clJlx2J

which can be used as the SOFFT continuous open-loop command model shown in figure 5.

(38)
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_ Plantinversion
r _ | . transfer function

[ + y, :-:............

I .............. j

E}]

Y

K(s +
Y---(s) = s2 + 2_ms + a_2

blc

Figure 8. Second-order transfer function for continuous models.

First-Order Discrete Formulation

For the application being investigated in this paper, an all-discrete simulation is unlikely since

variables extracted from the simulation are expected to be in continuous form. The desired approach is to

extract variables directly from the nonlinear simulation, if possible. Another possible approach is to

create linear models during each iteration and, if this is the case, these linear models could then be

discretized. Furthermore, for a FF flight controller applicaticn, an all discrete formulation is a viable

candidate. For these reasons and since this methodology is closely aligned to the continuous formulation,

the approach is included.

The discrete state-space representation for a dynamic system is

Xk+ 1 = ¢YPxk + ruc, k

Yk = Xk

Yk+l = dPXk + FUc,k

(39)

which is illustrated in figure 9. Typically, the designer specifies a transfer function of the form shown in

equation (31) or the equivalent state-space form shown in equation (34), which must then be transformed

to the discrete plane. The equations for • and F are approximaled by the series expansion

T I(T] 2 I(T_ 3
• =e AT =1---+-- +...

F=A-1IO-I]B'_T[ 1 1T l(Z'-_2 ]--2x--+6`x) -""

(40)

where a third-order expansion is used above. A third-order expansion is practical for a flight controller

with sampling rates of 40 to 80 Hz. Since the plant model is discrete, the plant inversion transfer

16



function,shownin thedashedboxof figure9, is representedasatimedelay,asdiscussedpreviously.
The closed-loopNDI controller doesnot have any dynamicelementsin the implementation.
Equations(39)areusedastheSOFFTopen-loopcommandmodelin figure4.

Second-Order Discrete Formulation

Starting with the continuous state-space model in equations (38), the four components of • and two

components of F can be expanded as

T 3
_11 =l+allT+T-_--_(all 2 +a21)+--8-(all 3 +2alia21)+-.-

*12 = r[Tall +T-_(all2 +a21)+...]

_21 -''=T[a21 + T al la21 + T__ (a 112a21 + a212 ) + ...]

T2 T 3
_22 =1 +-_-a21 +'_-alla21 +...

(41)

K
'Y1 =_-_21(_21 +b2_22 -b2)

'Y2 -''=K(_ll - 1 + b2l_l 2 ) - a 1171

(42)

where the subscripts represent row and column designation. These equations can then be implemented by

transforming equations (39) into the form

x(z) = [z/- _]-I Fuc (z)

y(z) = [1 0Ix(z) : x_(z)
(43)

and for the second-order discrete system the solution for y(z) is

[zT1 +K1]
y(z)= 2 Uc(Z) (44)

z + K3z + K 2

Uc,k

Yk+l

Plant inversion

transfer function

! !

',xk+l,,._ i xk 1', r Z -1 I

! !

L .................. J

Y(z)- F
uc Z -(/:)

Figure 9. First-order transfer function for discrete models.

Yk
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where

K! --72012 -_t1_22

K2 = 011t_22 - 012_21

K 3 = -(t_l I + t_22)

(45)

Figure 10 contains the diagram for the second-order discrete model. For the NDI implementation, the

controller only requires one dynamic element.

The state-space representation for figure 10 is

Xl,k+l -K 3
x2,k+l}=I-K2 0jLxz,kJ _

(46)

which is the same form as the original continuous state-space equations (38), but with transformed

elements. Equations (46) would be implemented in figure 4 for the SOFFT open-loop command model.

If a discrete integrator implementation is used for the plant inversion process by feeding back

Hx(O x - I) in place of HxO x in figure 4, then a SOFFT open-loop incremental model would be used. The

incremental command into the plant inversion is [Yz,k+l -Yz,k)" Moments can easily be generated in this
linear implementation by multiplying the incremental command and the plant feedback by the inertia

normalized by the sampling period (ly / T for the longitudinal example) and dividing the control input by
this same factor.

Uc,k

Plant inversion

transfer function

+V " .............. ;

Xl k '
I

!
i

t .......... !

¢

Yk

+
Y(z)=uc z 2 + K3z

Figure 10. Second-order transfer function for discrete models.
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Hybrid Controllers

The typical situation for the application defined in this paper is to have a combination of a continuous

plant and a sampled data controller that contains discrete dynamic elements. The plant would appear to be

continuous since numerical integration will be used for the equations of motion, and variables extracted

from the simulation are expected to be in continuous form, as opposed to being in discretized form.

Inputs and outputs from the simulation will be sampled data at the controller sampling period T.

The approach is to use the continuous models described earlier in combination with a Tustin

transformation for integrators within the controller. By using this approach, the first-order model shown

in figure 7 remains unchanged. The second-order model shown in figure 8 will have the integrator
modified by the transformation

-1 T z+l
s - (47)

2z-I

which is shown in figure 11. Combining this Tustin integrator with the second-order continuous model

shown in figure 8 and expanding the controller portion of the closed-loop plant inversion model gives the

NDI hybrid controller implementation shown in figure 12. This approach allows variables to, 4, and ton to

be varied directly without the need for transformations. A state-space representation for the Tustin
integrator is

Xk+ 1 = x k + Tu k

Yk = Xk + T Uk
(48)

A SOFFT hybrid controller implementation is illustrated in figure 13, where the filter implementation
of equation (30) is used for the controlled variable(s). The only dynamics within this controller are for

the discrete open-loop command model. In a simulation of this hybrid configuration, a Tustin model was

found to be slightly better than the standard exponential discrete model because the desired output has a
slight lead which helps to compensate for the first-order filter lag in the plant.

Simulation Results

Several of the configurations described in this paper were evaluated in MATRIXx BUILD by using a
linear longitudinal plant model with four states and one control. The model was taken from the HARV

-1 _ TZ+Is
2z-1

Figure 11. Tustin transformation for an integrator.
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Figure 12. NDI hybrid controller implementation for a second-order continuous command model.
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Figure 13. SOF_ hybrid controller implementation for including a filter in the controlled channel.

(High-Alpha Research Vehicle) database (ref. 9, see appendix for some longitudinal models) for a flight

condition of Mach 0.7, t_ = 3.58 °, and 25 000-ft altitude. The four states are velocity V, angle-of-attack 0_,

pitch rate q and pitch attitude 0, and the control is a symmetric elevator.

A second-order command model was used for the response. Referencing equation (35), to = 4 rad/sec,

= 0.8, ton = 1.5 rad/sec, and K = 10.667 to give unity steadystate gain. A value of to = 4 rad/sec is

level 1 (ref. 5) since the ratio of n z / tx is approximately 16 and 1he CAP (control anticipation parameter)

is approximately 1.0, which is between the level 1 limits of 0.28 and 3.6. Also, _ = 0.8 is well above the
minimum level 1 lower limit. The numerator zero was selected _bitrarily, but it is a reasonable number.

A pitch-rate command was used giving Hx and Hy as shown in ecluation (24).

Configurations tested were

1) the standard SOFI_ FF controller structure in figure 3
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2) theequivalentSOFFTdiscreteFFcontrollerstructurein figure4

3) theequivalentSOFFTcontinuousFFcontrollerstructurein figure5

4) theNDI closed-loopcontinuouscontrollerstructurein figure8

5) theNDI closed-loopdiscretecontrollerstructurein figure10

6) the NDI hybridcontrollerstructurein figure12

7) theSOFFFhybridcontrollerstructurein figure13

In eachcasea stepinputof unitygainandof two secondsdurationwastheforcingfunction,anda
samplingperiodof 0.0125secondswasusedfor thediscretestructures.Basedupontheparametervalues
selected,two secondsis sufficientto capturetheresponseandsettlingtime. TheequivalentSOFFT
discreteFF controllerstructurewasusedfor thebaselinetestfor thesereasons:1)a momentcommand
Mdes, was easily implemented, 2) an error signal for the difference between the command model

response and plant model was readily available compared to the NDI formulations shown, and 3) it was
discrete and was a very small change from the standard SOFFT configuration.

The first step was to verify that the equivalent SOFFT discrete FF controller configuration was correct

by comparing it against the standard SOFFr FF controller structure in figure 3. All signals were identical

and the error signal was zero. Simulation results for the baseline response are shown in figure 14. The

left-hand column represents the four plant model outputs (V, ct, q, 0), while the right-hand column

contains the control signal U'x,k the command model output Yz,k, the moment command Mde s, and the

error signal.

In figure 14, Ux,k and Mde s have nonzero values at time zero, which is due to the direct feedforward

path from the input in figure 3. This result can also be seen in the equivalent SOFFT model in figure 4

since the plant inversion loop is driven by Yz, k+l" The step input was chosen at time zero to avoid

numerical integration error. When the input was administered at a time greater than zero, the numerical
integrator assumed the step to be a fast ramp between input points, leading to error in the continuous

systems time responses (configurations 3 and 4). This anomaly was investigated, and the error was

essentially eliminated by increasing the number of input data points by an order of magnitude. Inputting

the step at time zero completely eliminated this problem.

The second step was to evaluate all seven configurations, as demonstrated by the pitch rate response in

figure 15. Data for the first five configurations are identical to at least 5 digits. Both of the hybrid

controllers have a sampling period of 0.0125 second, and these configurations both have some error in the

time response. The pitch rate response of the NDI hybrid controller (sixth configuration) leads all other

cases and has a slightly larger peak amplitude. This error is likely due to approximating the controller

integrator by using a Tustin integrator (see fig. 12). The response of the SOFFT hybrid controller

(seventh configuration) initially lags the response of the first five configurations, but it catches up by

approximately 0.3 second. This configuration contains a Tustin open-loop command model and a filter

frequency af of 160 rad/sec (see fig. 13). The filter frequency was selected to approximately balance the
lead (T/2 sec) of the Tustin command model.
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Figure 14. Baseline response for a two-second step input.

A second investigation was made to evaluate results with a control-signal position limiter of _+0.8 °

inserted prior to the plant model input. This limit was selected ,xrbitrarily to limit the peak values of Ux,k .

A doublet at u c of unity magnitude and of one second full width was the forcing function. Figure 16

shows time history plots of the pitch rate response, the contr31 signal into the limiter, and the control

signal limiter output, which is also the plant input control. Three cases are shown:

1. the baseline case using the standard SOFF-T FF controller structure in figure 3 with no limiting (solid

line)
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Figure 15. Pitch rate response for seven configurations.

the SOFFT hybrid controller structure in figure 13 with a limiter (dashed line)

the NDI hybrid controller structure in figure 12 with a limiter (dotted line)

2.0

Only two cases with control position limiters are shown since results for case 2 were very close to

those of another SOFFT controller configuration with a limiter, and results for case 3 were very close to

those of another NDI controller configuration with a limiter. In both cases, the hybrid configurations

were slightly worse than their counterpart configurations.
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Figure 16. One-second duration doublet response for baseline and two hybrid configurations with actuator limiter.

Both hybrid controllers show approximately the same performance for the first 0.9 second, but then

the NDI hybrid controller shows additional phase lag. Whene,_er the SOFFT hybrid control signal is not

position-limited, the pitch-rate response matches the baseline response. The SOFFT hybrid control signal

into the limiter has a significantly larger amplitude during saturation, but the control signal gets out of

saturation much faster than the NDI hybrid control signal. These results could be misleading since the

control signal of the SOFFT hybrid controller could possibly exceed a rate limit. Rate-limiting has not

been investigated during this study, but it is important and will be investigated in the future.
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A sinusoidalinputof 0.5Hzand3deg/secamplitudeatu c was used to verify that the previous results

are independent of a quick changing input. The amplitude was chosen such that the unlimited control

signal would exceed the saturation limit of +0.8 ° inserted prior to the plant model input, and the

frequency was chosen since it is a reasonable pilot input and is within the bandwidth of the command

model. Figure 17 has time history plots of the same signals shown in the previous example and the

results are the same. Tracking performance of the controlled variable for the SOFFT hybrid configuration

is better than that of the NDI hybrid configuration, but the control signal of the former case changes

rapidly. If rate limiting is encountered, tracking performance would be reduced and additional problems

would be encountered.
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Figure 17. One-half Hz sinusoidai response for baseline and two hybrid configurations with actuator limiter.
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Conclusions and Discussion

This paper contains the initial results of an ongoing study fol developing a generic simulation tool to

determine achievable control dynamics and control power requirements while undergoing simulation

maneuvers with perfect tracking. The two approaches that were investigated were exact nonlinear

dynamic inversion (NDI) and SOFFT (Stochastic Optimal Feed:forward and Feedback Technology), and
both continuous and discrete formulations were included for each approach. The following list contains

the main conclusions and explanations where required:

. Equations for SOFFT can be rearranged into a form that eliminates the need to explicitly calculate the

feedforward gain matrices. The revised equations clearly illustrate a closed-loop plant model

structure that performs plant inversion.

. Equivalent models have been developed for both discrete and continuous versions of SOFFT. The

original version of SOFFT had only been developed for a discrete model. Inertia terms can be

incorporated into each of these configurations to create moment commands, and it can be seen that
SOFFT and NDI have the same form for the closed-loop plant model.

3. The SOFFT approach uses an explicit open-loop command model whereas NDI integrates the

command model into a closed-loop approach.

. The transfer function for the controlled variable of the closext-loop plant model is an integrator for the

continuous controller and a time delay for the discrete controller. Any linear combination of states
can be used for the controlled variable. The internal dynamics for the uncontrolled states will be

modified from the original open-loop characteristics. In addition, a nonminimum phase system will

result in an unstable closed-loop system for any configurati,3n since the zeros of the open-loop plant

become poles of the closed-loop plant model.

. First- and second-order models have been developed for continuous control systems, discrete control

systems, and hybrid control systems. The NDI approach makes direct use of the transfer function

characteristics of the plant inversion model in the controller characteristics and therefore uses one

dynamic element less than the SOFFT controller.

, Formulation of the discrete controller shows that the structure is the same as the continuous

controller. The main difference is that gains for the discr, zte controller are combinations of terms
used in the continuous controller. The discrete controller also requires an approximation of the

discrete gains in order to implement in real time.

. The typical situation for the application defined in this paper is to have a combination of a continuous

plant and a sampled data controller that contains discrete dyaamic elements, forming a hybrid control

system. The plant will appear to be continuous since numerical integration will be used for the

equations of motion and variables extracted from the sim_Hation are expected to be in continuous
form, as opposed to discretized form. Inputs and outputs from the simulation will be sampled data at

the controller sampling period.

. Seven control structure variations were evaluated in simula:ion by using a linear longitudinal model.

As demonstrated by a two-second step input pitch-rate response, all configurations gave effectively

the same results. The NDI hybrid controller has a slight error in the pitch rate response, which is

likely due to approximating the controller integrator by usin_,_a Tustin integrator.
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. A control signal position-limiter was inserted at the plant input of both a SOFFT hybrid controller

and an NDI hybrid controller. A pitch doublet and a sinusoid were used to test these configurations.

The SOFFT hybrid controller gave better tracking performance in both cases, but the control signal

changed rapidly when it came out of saturation, and it is possible that rate limiting, which would

reduce performance, might be encountered. Rate limiting was not included in this ongoing study, but
it is a source of concern.

The next major step in this study is to investigate use of a full nonlinear airplane simulation. A key

aspect is to determine whether the desired variables can be extracted from the airplane aerodynamic

database, which is typically in table form. The preferred approach is to extract aerodynamic moments
(or moment increments) separately from control moments, as described in the first section on the review

of NDI. If this approach cannot be accomplished, then the calculation of linear plant models for each

iteration during a simulation will be investigated. Any of the configurations described in this paper can
then be used with linear plant models.
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