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THEORETICAL ELASTIC STRESS DISTRIBUTIONS ARISING FROM DISCON-
TINUITIES AND EDGE LOADS IN SEVERAL SHELL-TYPE STRUCTURES

By RoserT H, Jouns and TroMAS W, ORANGE

SUMMARY

The deformation and complete stress distribution
are determined for each of the following edge-loaded
thin shells of revolution: (1) a right circular cylin-
der, (2) a frustum of a right circular cone, and
(3) a portion of a sphere. The locations of the
mazximum circumferential and meridional stresses
on both the inner and outer surfaces are also found.
The basic equations for the above were selected from
the published literature on the subject and expanded
to produce resultant-stress equations in closed form
where practicable to do so. Equations are also devel-
oped for the discontinuity shear force and bending
moment at each of the following junctions: (1) arial
change of thickness in a circular cylinder, (2) axial
change of thickness in a cone, (3) change of thickness
in a portion of a sphere, (4) a cylinder and a cone,
(5) a cylinder and a portion of a sphere, (6) a
eylinder and a flat head, and (7) a cone and a
portion of a sphere.

INTRODUCTION

Weight considerations in space-flight structures
require loading or stressing of the structures very
nearly to their maximum capabilities. Tt is
therefore important that the operating stresses be
known with a high degree of accuracy. With
this knowledge it is possible to obtuin the best
ratio of structural weight to gross weight and to
ensure the structural integrity of the vehicle,

Shell structures offer execellent weight and fubri-
cucion characteristics for use in missile and space
structures. Tt is the purpose ol this report to
present methods of anulysis for several problems
encountered in this type of structure. The mem-
brane stresses produced by the pressurization of

such shells are usually easily computed. How-
ever, the forces and stresses involved in the dis-
continuity regions are not so readily determined,
and the published techniques of solution are in
many cases of such a nature as to preclude their
use by the design engineer. There are four basic
difficulties involved. First, for some problems no
solution exists in the published literature. Sec-
ond, many of the published solutions involve
mathematical complexities beyond the background
of the average designer. Third, a large propor-
tion of the solutions, as presented, are not carried
to the point where they can be used directly for
determining stress distributions. Fourth, many
of the solutions, depending on the assumptions
involved, require calculations of an extensive and
tedious nature.

In general, the more rigorous solutions are based
on few assumptions and lead to difficult analyses
which are of no practical use to the designer. It
is necessary to sacrifice some degree of accuracy to
obtain a solution in a reasonably direct mathe-
matical manner. The degree of accuracy that is
required and the degree of complexity that is con-
sidered acceptable are factors which must be
weighed in selecting a method of analysis for any
shell problem.

An attempt was therefore mude in the prepara-
tion of this paper to survey the literature to sort
out the more practical types of solutions. [t was
necessary to expand some of the solutions exten-
sively to obtain expresssions [or all the internal
forces. From these, complete stress distributions
and the maximum stresses and their locations
were determined. The selected solutions, as
modified and extended, are compiled in this report
in a form which can be readily used by the average
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engineer. These solutions include treatment of
the following problems:

(A) Deflection, rotation, and internal stresses
in  the following edge-loaded shells of
revolution:

{1) Right circular cylinder

(2) Frustum of a right circular cone

(3) Portion of a sphere

(B) Discontinuity shear and moment at the
following shell junctions:

(1) Axial change of thickness in
cvlinder

(2) Axial change of thickness in a cone

{3) Change of thickness in a sphere

(4) Junction of a cylinder and a cone

(5) Junction of a cylinder and a portion of a
sphere

(6) Junction of a cylinder and a flat head

(7) Junction of a cone and a portion of a sphere

The analyses for the changes in thickness are
intended as an investigation of the edge effect of
chemically milled or machined surfaces where an
abrupt change of thickness symmetrical about the
middle surface occurs. Several special cases can
be deduced from those just given. The equations
for the edge-loaded portion of a sphere can be
specialized to give the case of an edge-loaded
hemisphere. The solution for the junction of a
cylinder and a portion of a sphere will yield the
special case of a cylinder with a hemispherical
dome. The solution of a cylinder with fixed ends
can be obtained from the case of the cylinder with
a flut head. The solution of a junction of a cone
and a portion of a sphere has the special case in
which the cone and spherical shell have a common
tangent to their meridians at the junction. This
solution combined with the solution for a cylinder
with a hemispherical dome will yield the solution
of a toriconical head in which the torus is a portion
of a sphere.

Only the final equations and parameters neces-
sary for the solution of any of the cases are given
in the body of the report. The derivations, to-
gether with intermediate equations and some dis-
cussion, are presented as appendixes A to L.

SYMBOLS

radius of cylinder, in.

thickness ratio

ER3/12(1—»%), 1b-in.

modulus of elasticity, psi

radial shear force in wall of shell acting on a

a circular

SESISRI

plane perpendicular to axis of revolution,
Ib/in.

h thickness of shell wall, in.

M  bending moment in wall of shell, in.-1b/in.

m V12(1—%)

N uniform normal force in wall of shell Ib/in.

P mternal pressure, 1b/sq in.

Q shear force perpendicular to wall of shell,
Ibfin.

n radius of spherical shell, in.

r radius of parallel circle, in.

Vv angle of rotation of a tangent to a meridian,
radians

w deflection perpendicular to axis of revolu-
tion, in.

z distance along meridian from edge of cylin-
der, in.

Y distance along meridian from apex of cone,
in.

a half-angle of cone or portion of sphere,
radians

B V3(1—%)/a’k?, in.~

) edge-deflection influence coefficient

O() e cos()

A V31— RYR?

i V12(1—+?)/k? tanla, in. =172

v Poisson’s ratio

3 2uy

o normal stress, psi

T shear stress, psi

® () e feos( )+sin ()]

¢ angular measure in plane containing merid-

ian and axis of revolution, radians
e [cos( )—sin ()]
e~ sin( )
edge-rotation influence coeflicient
Subscripts:
cylinder
flat head
dummy indices
cone
meridional
spherical shell
meridional direction on cylinder
meridional direction on cone
circum{erential
shear
meridional direction on spherical shell
junction
different thicknesses at change of thickness

£E DWW
N N
Nt N

.,

€ 1R R B F Lo

—
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Because some subscripts are used only once or
twice, they are, for purposes of brevity, defined
where they occur and mnot listed here. This is
particularly true for many parameters appearing
in the cone analyses. Also, the usage of a number
of subscripts is considered self-evident, and no
amplification of their meaning is given.

METHOD OF ANALYSIS

In the design of pressure vessels, certain regions
frequently exist where continuity of the structure
cannot be satisfied by membrane forces alone.
Such regions are known as “discontinuity” areas.
The discontinuity forces which are induced to
make the rotations and deflections of the walls
continuous are usually of a local nature, but they
may considerably alter the stress distributions in
the regions where they occur. It is assumed in
this report that, where more than one discontinuity
is present, the distance between them is sufficient
‘that each does not noticeably affect the discon-
tinuity shear and moment of the other.

All shells are rotationally symmetric and loaded
by internal pressure. The stresses due to the
weight of the structure are not considered. These
are usually much smaller than those due to inter-
nal pressure and may frequently be mneglected
without introducing noticeable error. The
stresses due to dead weight, supports, concen-
trated loads, or other such conditions can be
superimposed upon those presented here when such
conditions exist and are significant.

The usual method of determining the discon-
tinuity forces is to imagine the shell to be physi-
cally separated at the discontinuity. The edges
of the two components will, in general, rotate and
deflect different amounts if the membrane stresses
alone are considered. Deflections and rotations of
the edges of the components can be found from
conventional membrane analyses. To preserve
continuity of rotation and deflection in the actual
structure, a discontinuity shear and moment must
he present on the edge ol each component. Equi-
librium of forces at the cross section requires that
the shear and moment on the edge of one compo-
nent be equal and opp site to those on the mating
edge of the other component. Having expressions
for the edge rotation and deflection of each
component due to edge shear and moment, as
well as to internal pressure, it is possible to
write two equations expressing the equality

of deflection and rotation at the discontinuity.
These two equations can be solved for the un-
known discontinuity shear and moment. Once
these have been determined, it is possible to
find the rotation, deflection, and internal forces
for any element of the shell.

The edge-loaded shells and the regions of the
shell on either side of the discontinuity are as-
sumed to have constant thicknesses. The sur-
face described by the revolution of a meridian
midway through the thickness is called the middle
surface. The middle surface of the shell is as-
sumed to be continuous from one region to another
across the discontinuity. Hence, no additional
moments are induced by mismatching of the
effective lines of action of the meridional forces in
the two regions. A discussion and analysis for
including the effect of nonconcurrence of the
middle surfaces at the junction is presented in
appendix L, but it is not used in the body of the
report. The shear forces acting on sections made
by planes containing the axis of revolution and
intersecting the shell are zero because of axial
symmetry. Thus the circumferentinl or hoop
stresses acting on these meridional planes (planes
containing the axis of revolution and a meridian)
are principal stresses.

The normal stresses perpendicular to the middle
surface of the shell are neglected, since they are
usually much smaller than those in the circumfer-
ential and meridional directions. These radial
stresses which are neglected vary in magnitude
from the value of the pressure on the inside
surface of the shell to zero on the outside. Con-
sequently, since the radial stress is neglected,
a biaxial stress state is assumed. The direct
stresses are assumed uniform throughout the
thickness. The bending stresses are assumed to
vary linearly through the thickness from zero at
the middle surface to maximum values at the
inner and outer surfaces.

The shearing stress varies parabolically through
the thickness with the maximum occurring at the
middle surface and decreases to zero at the inner
and outer surfaces. As mentioned before, no
shear stresses act on meridional planes. The
meridional stresses, that is, stresses acting on
planies normal to the meridian, are very nearly
equul to principal stresses, This is because the
shear stresses are usually much smaller than the
normal stresses. In fact, the meridional stresses



on the inner and outer surfaces are principal
stresses because the shear stresses are zero at these
surfaces.

Beeause of the nature of the bending stresses,
the maximum and minimum stresses will be found
on the inner and outer surfaces. When solving
for the locations of the maximum stresses, mu]
from these the stresses themselves, the usmxl
theory of maximums and minimums is employed.
Since the equations for stress are exponentially
decaying sine [unctions, more than one solution
will be found for the possible location.  However,
only the smallest positive value of the independent
variable so obtained is significant.

The maximum stress sometimes occurs at the
loaded edge of the shell when the slope of the com-
bined stress curve has a nonzero value. There-
fore, when solving for maximum stresses, it is
always necessary to check the loaded edge of the
shell in addition to the location of zero slope
nearest to the loaded edge. Because of the bend-
ing stresses, both the inner and outer surfuces must
be checked for the maximum stress. By checking
both surfuces, both the maximum and minimum
stresses will be obtained.

The material is assumed to be homogeneous
and isotropic and to obey Hooke's law. The
results are applicable only to stresses within the
elastic region for thin-walled pressure vessels.
Also, small deflections are assumed throughout
the report in the derivation of the basic equations.

SUMMARY OF SOLUTIONS

The summaries are arranged here in the order
+m which they would ordinarily be used. First,
the discontinuity shear and moment are deter-
mined for the particular shell junction being con-
sidered. Having determined these, it is only
necessary to substitute them into the corre-
sponding edge-loaded shell equations to deter-
mine the stress distributions. The arrangement
of the summaries is not the same as the order in
which they are derived in the appendixes. This

(61,M0_52,MO) (wn. p W2, p) - (51, p—52. p) (wx,nfo—wz,uo)
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is because some of the equations derived for the
edge-loaded shells were necessary for the solu-
tion of the junction problems. Consequcmlv
the edge-loaded shell solutions appear first in the’
appendixes.
DETERMINATION OF DISCONTINUITY SHEAR
FORCES AND BENDING MOMENTS

Shear and moment at an axial change of thick-
ness in a circular cylinder.—Referring to figure 1
for sign convention, the discontinuity shear and
moment for this case are

_2—v[ (e=D(c241) 7]
“=25 | @+ +2e(e+1) 4 ? M

and
(e—1{c2—1) 7
=2 432 | @t D2t 1) | P @
where
c=f7; 3)

and the subscript 1 refers to the cylinder with
thickness %,. Because of the sign convention
chosen in figure 1, the sign for ), must be changed
when solving for the stresses in the cylinder of
thickness A;.

T i
W~
@ ; M e @,
ot °‘:,3, ( fau%z ! Middle
v po WL 'Y surface
N i
/72 P +V2 14 /7‘ )
< <
- {_ { _ | | Axis of
¢ revolution

Ficrre 1.—Change of thickness in cylinder.

Shear and moment at an axial change of thick-
ness in a cone.—With the sign convention as
shown in figure 2, the discontinuity shear and
moment for this case are

Ho——'-

and

(81,1, — 832, 1,) (W1,20,— w2, 00,) — (81,20 —B2.50,) (W1, 5, —w2.57,)

(51‘ p—02, p) (“’l.flo —“’Z.Hu) -

(4)

(51.30_52,30) (‘*’1, p W2, p)

J[(]=

(51.110'—52.1;0) (wl_‘\!o —wz,yo) -

(5)

(51,510—52.1\1‘,) (wl.l!(,_“’z.lio)




The subscripts 1 and 2 refer to the regions of
thicknesses k, and A,, respectively. The expres-
sions for the edge influence coefficients are ob-
tained from their more general counterparts pre-
sented in the section “Frustum of a cone loaded
by edge shear and moment and internal pressure.”
For the problem being considered here, y;=y,=1,
and r,=r;=r,, but A\ and { are not the same for
the two edges at the junction, because 4, does not

ELASTIC STRESSES FROM DISCONTINUITIES
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— m
£1=2l‘1\!y0 W=
+vhi tan a
(6)
— m
=2u4" —_———
f2=2un o # vh tan a

The parameters A\, &, w, and §, are associated
with the region of thickness A; likewise, A;, &,
wy, and 8, are associated with ;.

The expressions for the edge influence coeffi-

equal ;. Therefore, cient are
w ms \/ 2ry )
LMy hy cos & &
m*r
wl'”":E_hfo Q,
_m¥itana 3(1+v») tan? a‘/ o 3ro tan «
@i 2Eh} St mE 2h, cos « 5 2Eh; cosa
m?r
61 Mo Ehgo Q2
____mr [2r)cos a
61'H°_ Eh, hy &
s ___mrdsin a\/ n__ g __mr, tan’a +<1_§
b Eh, 2k, cos a 8(1—»)E ©t R cos @
- - ¢))
o o= 2y
M ERN by cos a
mr
w?.Ho Ehzo Q5
_m”réta,naQ __3(14») tan? a\/ T o 3r, tan a
RCLNY 5 ¥ E mE 2h,cosa ' 2FEhcosa
mr
62,.W0 Ehg QS
_mra [2rg cos a
5"'”"_Ehz\/———h2 Q

m?r, tan? aq

(=)

mr? 3in a o
62. p— 5 . QG—
Eh, 2h, cOs a

506835-—61-—2

S(l—v)E

Fkr C0Ss « J



Ficrre 2.—Change of thickness in cone.

where
TBCF2R) T 2(Cr+2vG)
0 _—4 ") ——Ax
T O+2G ¥ Cx+2vGx > (8)
402G 42G,
B— —£, x
) =£_1#. Q =ﬁl
§ \[Q(C‘f‘zVG) ¢ \’Q(CK+2VGK)J

and
A=¢t,(beryt: beisgi—betst; bert) )
B=(bery:)*+ (beizf1)?
CO=¢, (bers§: beryt+betst) beish))
G=(bers1)*+ (bersfy)?
Ap=E(kerst, ket —keizk; kergks)
Br=(kerit,)*+ (kei:t,)?
Cr=£§, (kersts kerstyt-keist, keisks)
Gr=(kersts)*+ (keizts)? J

(9)

Figure 3, taken {rom reference 1, can also be used
to determine graphically the Q functions for cer-
tain ranges of £, If the analytical expressions are

1.00

.98 Za

967\; I 4.
e || )

%4040 60 80 100 (20 140 160
1.00—r i 1
- |
.98—- o — //
T P -
96 PR S
A% |
/
.94 e
e 7/
Q.92 / > —
9057
8853 14 i6 I8 20 22 24
.08
1.06
\06
1.04 = -
S
1.02
$2g
10O
] ///n—‘
iy _

9854 18 22 26 30 34 38
'3

Ficure 3.—Functions used in analysis of conical shells
(based on »=0.3).

used, reference 2 can be used to find values for the
Bessel-Kelvin functions and their derivatives up
to arguments of 107.5. For large arguments, the
following asymptotic expressions may be used:

B 1.855 3 1.855 A
~l Y% __ a] LYo ~O0YY
=1 U=~1+1G— "5
2 3.730 2 3.730
~l]—¥L__2-9F alXe 2097 >
RS T =1t
0.84853 1.865 0.84853 1.865
Q] — 2 Qp 1222200
? £ £ Lat g )
(10)
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The desired discontinuity shear and moment are
now found by use of equations (4) and (5), respec-
tively. Essentially all of the preceding analysis
is taken directly from reference 1. The nomen-
clature is essentinlly the same as in reference 1
except for some differences due to changes in sign
convention.

Shear and moment at a change of thickness in
a portion of a sphere.—The discontinuity shear
and moment for this case are

(I_V)R [ (1_0)(1+c5/2) P (11)
Q1

M=oy sin o LT+ @)+ 287(1+0)
and
_(1—yR? (1—c)(1—e2)
M= lgrorreeraro ? 12
where
_h
=%, (13)

and the sign convention is as shown in figure 4.
The subseript 1 refers to the portion of the sphere

8e,aap) — (8,,—8

used in figure 4, the sign for H, must be changed
when solving for the stresses in the region of thick-
ness h;. Also, the angle (r—a) must be substi-
tuted for a in the stress equations for thickness A,.

Figure 4.—Change of thickness in sphere.

Shear and moment at the junction of a cylinder
and a cone.—In this case the discontinuity shear
and moment are

¢, p) (wk. Mo— We, A‘ln)

(88,538, p) (wr, Ho_wc,HD) —w, (8, Hy ™ 5c.H0)

y 2 (14)

(s, My 0, Mo) (ws, Hy™ We,Hy

(15)

with thickness #,. Because of the sign convention
Hym 2 Crto
(e, Hy™ de. Ho) (wr, Mo_wc,Mo) -
and
Mo—_—

(‘sk.Ho_ )

Ficure 5.—Junction of cone and cylinder.

c Ho)(wk.Mo—wc. Mo)— (e, My

éc, Mo) (wr, Hy ™ @e, Ho)

where the subscripts ¢ and k refer to the cylinder
and cone, respectively. Most of the edge in-
fluence coeflicients appearing in the preceding
equations are evaluated from the expressions
found in the summaries for the edge-loaded
cylinder and edge-loaded cone (egs. (30) and

(38)). In addition, from membrane theory
We, p=— ,
and
a? v (16)
A

The sign convention for X, and 3/, is given in
figure 5.
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(a) Geometry and sign convention.
) a<90°.
(¢) «a=90°,
(d) «>90°,

Fierre 6.—Junction of cylinder and portion of sphere.
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Shear and moment at the junction of a cylinder
and a portion of a sphere.—Referring to figure

6(a) for the sign convention, the discontinuity
shear and moment for this shell junction are

1— _ g T _l__ 2108 T
e v)c] [14¢tyesina] )‘x [14¢2+2¢2y e sina) cos a OB
Ho= 2 (17)
(1+c)? +
and
cos
M= sin a v)c:”: 2>\2;]+[( Jesin a> ] o (19)
(14-e¥)2+ (1 +¢sin a)
where the subscript ¢ refers to the cylinder and where
s to the portion of a sphere and c—%— 22)
1

hs

C=h—c ) (19)
Equations (17) and (18) are true whether a is
greater than or less than 90° (see fig. 6). For
the particular case a=90°, or R=a, the solution
is obtained for a cylinder with a hemispherical
dome. Note that, when solving for the stresses and
displacements in the spherical portion of the shell,

R ) . . .
Ho+£2— cos « is substituted for H; in equations

(42) to (52) (see fig. 6(a)) for this case.

Shear and moment at the junction of a cylinder
and a flat head.—The discontinuity shear and
moment for this case are

o ENA2(2—) e\ +2(2—») (1) a
Ho= { 26N +[(1—v)e*+ 1+ e+ (1 =) }

(20)

and
ir={ 20 (1 —NeN 22— (L) ) o
T N A T A e (T—00e [ 8K 0
<21>

and the subscripts ¢ and f refer to the cylinder
and flat head, respectively. The sign convention
is given 1n figure 7. If the thickness of the
flat plate is very large in comparison with the
thickness of the cylinder (h, > h.), ¢ approaches
zero and the solution for a cylinder with fixed
ends free to expand axially is obtained.

b
f
! M°a Y
L
Aé/ Yy //j/ HO\}
a a
*%— p g m
H ﬂ\ o
0 ! e
"
+lz
5: =" a
; ) hc —{f—
4
/
/ /
/

I
W

Frgure 7.—Junction of cylinder and flat head.
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pf? }
HO + = cos as—\\

(a}

{d)

(e) (f) {q)

(a) Geometry and sign convention,

®) a>5—a. © a=F—a. @) a<F—a

© a>5+a 0 ar=F+e. ® e<gta

Ficuvre 8.—Junction of cone and portion of sphere.




ELASTIC STRESSES FROM DISCONTINUITIES AND EDGE LOADS IN SHELL STRUCTURES 11

Shear and moment at the junction of a cone
and a portion of a sphere.—Using the sign con-

vention shown in figure 8, the discontinuity
shear and moment for this case are

R
Hl):{ [ws,ﬁo(ak,.'.lo_as,,\lo)_61.H°(wk,MD_ws,Mo)] 5 COS

+ (51: p_as, p) (_wk.Mo—ws.Mo) - (61:,M0—53,M0)(wk. p W, p) }P

+[(5k,Mo—5s,Mo) (e, Hy w:,no) — (. Ho—as,ﬂo) (wk.Mo— wa.Mo)] (23)

and

R
(5s,ﬁowk.yo—5k.yowsﬂo) P cos as+(6k.H0—aa.H0)(wk.p—w.l.p)—(6k.p_51.p) (“’Ic,Ho—ws,Ho)

M=

where the subscripts & and s refer to the cone and
the portion of a sphere, respectively. From
membrane theory

w,, ;=0

and 1—v R? (25)

8,,,,-—'—-—2— Eh, SIN o

The remaining edge influence coefficients are ob-
tained from the summaries for the edge-loaded
cone and portion of a sphere (eqs. (38) and (50))
with changes in the signs for @s,z, and @s,x, due to
the change in sign convention for V. Also the
signs for e, and c.s, must be changed because
of the change in sign convention from H, to H,.
Because of the sign convention chosen in figure 8,
the sign for H, must also be changed when it is
substituted for H; in the equations for the edge-
loaded cone to find the stresses (see also fig. 11).

R ) . .
Note that HO—Q—Z;—1 cos a, is substituted for H, in

equations (42) to (52) when solving for the stresses
and displacements (see fig. 6(n)). The cone and
portion of a sphere need not have a common
tangent to their meridians at the junction. For
the special case where the cone and spherical shell
are tangent and the spherical shell is tangent to
cylinder of the sume radius, the solution is obtained
for a toriconical head that has a torus which is a
section of u sphere. The various possible sym-
metrical junctions of conical frustums and
spherical shells are shown in figures 8(b) to (g).

(5k,uo—5s.u0) (ws, Ho—w:,no) — (8, ;10—5:.110) (wk.Mo— w:,Mo)

2 (24)

DETERMINATION OF STRESSES AND DEFORMATIONS IN
EDGE-LOADED SHELLS

Right circular cylinder loaded by edge shear and
moment.—The following equations are applicable
at any distance z from the loaded edge of the
cylinder. The type and location of stress, as well
as the rotation and deflection, are given by equa-
tions (26) to (29). Where + or T signs occur, the
upper sign refers to the stresses on the inner
surface and the lower sign to the stresses on the
outer surface. See figure 9 for the sign convention
and figure 10 for curves of the functions 6, &, ¥,
and Q. Values of these functions are also tabulated
in references 3 and 4.

Meridional stress:

o=t B[ Mr@n 50060 | @0
Circumferential stress:
so=| 262 % \f(Br) :i:% fb(ﬁr)];\[o—i—[QB % 0(8x)
000 |0 @D
Rotation of meridian:
V:-z_glzb [25.}[00((31‘) +Qn<p<af)] 28)

Outward displacement:

wz‘mi_al)[m,\pmwoue(en] (29)
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(b)

(a) Geometry and loading.
(b) Internal forces and moments.

Ficure 9.—Cylinder.
At the loaded edge, these equations reduce to

671
(Ux)z-0= + Tﬂ

(26a)
(o0emo=(26" § £ 0 MoA265 Q0 (270)

V"zﬁﬁ (28 Mo+ Qo) =wrr Mo+wa, Qo

(28a)
- 1
w0=23_3D (M, + Qo) EBMOMO'){'aOoQO
(294)
where
1 1
SeTED TaED (30)
1 1
dar, =380 50052—,335

The locations of the peak stresses are given by
the following equations: '
Meridional stress:

;c,,‘=1 arc tun( & ) (31)

B ({o-"r?BxMu
Circumferential stress:
_1 F28mM 4+ (F m“—i-(iv)()(.]
Te= 3 arc tan IQVB‘M(;—E-(i mH—-Gv)Q.,

(32)

Frustum of a cone loaded by edge shear and
moment and internal pressure—The following
equations are applicable at any distance y from
the apex of the conical frustum where y, >y >,
(see fig. 11). The type and location of stress, as

1.0

of\ 1

S

Q2,¥,8, or @

F1gure 10.—Functions used in analysis of cylindrical
and spherical shells,




(n) Geometry and loading.

(b) Imnternal forees and moments,

Froure 11. ~Frustum of cone.

well as the rotation and deflection, are given by
equations (33) to (36). Where £ or F signs
occur, the upper and lower signs refer to the
stresses acting on the inner and outer surfuces, re-
spectively. See figure 11 for the sign convention
and londing. The solutions are given in terms
506335 —61——3

of the Bessel-Kelvin functions as tabulated in
reference 2. The primes denote differentiation
with respect to & Solutions for the constants of
integration €, (b, (%5, and 4y, as well as other
parameters appearing in the following equations,
are given at the end of this summary.




14 TECHNICAL REPORT R-103--NATIONAL

NMeridional stress:

/”/{ ' [bm E?:— (Ebeist+2vbeist, ]

- 3 . L
A‘(’I'gf‘f‘m (.Ek/'léf‘%?vl’(//ﬁ)]

b(h

+0

+0

kei b+ sz (Ekerys+ QVIC(’/‘QE)] }

Stfma
h )”

Circumferential stress:

+0

.

tan a

T

(33)

AERONAUTICS AND SPACE ADMINISTRATION

Outward displacement :

W= qma[(, (E ber, t— uber,é)

e (—2 b«i;s—vb«af:s)w& f (5 kerse=vier.g)

7isin? o

+C (Ek“gﬂylm’ :l+[,h(0qa(l %\)/}
(136)

These equutions reduce to the following equa-
tions at the loaded edges, where the subseripts 1
and 2 refer to the edges ¥ and ., respectively,

_Wsinacosa  sina o+ I\l (330)
a,=%{(g [g ber;gx—?f—ﬂ (2b01'3£+v£b(>i._',g):| oy, 2h P Mhip i
_ _W sinacosa  sina 1. 6M, 331
+ [ § beirt oy @ber,tugberty) | =" gy Py HhETE (38)
1 1
+C; g kerst F—s (2kez)$+v£kez2£):l _3tan’a (5 m:A;VCq:ZG:}; 1> )
"TIT C+2vF ?
¥ 7] 3 ’
+, —;—kezgfi—z(2ker2£+v$ker2£)]} R 1—:2 A—E—% By
+?/1 tan a 14 sm?a m 2' .
+tan a (h 3 tam a> P (34) h 2 C+2v6G
- +61=2 4 f‘ B—»C
Rotuation of meridian: +sm a m? 17
m? ) C+2v G ‘
=E (Crbett—Crbers -+ Cakets & ]
—_m? 2
—Cikerp)—S P @ o +§< 6" AiPOi”G)M (34a)
I ) ' h? C+2,G !
3t 1 m2Ax FrOx F26x
aoz—z I"'V 6 0K+2VGK :i::l)I)
-, 8
+.7/z tan a 1_{_sm o +6 m2 AK_§ Bx—vCx ,
A 2 Cr+2vGx !
161224 EZB —v( LY RN A
sin a 2 KT UK 1, 48 6 K=K K v (34b)
+ h CK+2VGK PR Cx+2vGx :
T’x'—_wx,}ulﬂll+0)1,111111+w1,p]7 (35n)
Vz=w2, M,A[z“f‘wz,nsz +ws, P (35b)
=61, 20, M+, Hi+81.,p (36a)
ﬁ2=62,M22"Ié +52,112H2 +8,,,p (36b)
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where
=
Cy=
(3=
=
and

2 2
(I—Lylh sin a+2 phy? sin’a tan a ) (& berbi+2v berky) +2miy betaky [\[l %ﬂl—;)-‘-ﬂ

MCH2vG)

2 2 .71
<H1J1h sin a+ phyf sin’a tan a ) (& berst+2v beist) —2m2y bersk [1[1 pg(___lt_i_%x

L(C+2v@)
2 2
(sz,)h sin a+2 phif sinta tan o (Ez kerit+2v kergs) +2my, keisk [ M, Iil—t%ﬂ
MOt 2vGr) i}
ph? tan’a’]
szgh sin a+2 phy sinfa tan a ) (& keigk,+2v keisky) —2my, keryty | M— ~R0—»)
W(Ox oG )
w . _ﬂa_ 27'1 ' W
VT ERYV R cos a
2
W1‘H1=%}‘S‘ 97
_miitanag 3(1+») tan? aJ rx _ 3ritan «
wo="3gm et nE 3 cos a B 2Eh cos a
2
6I,M1=% Q,

mr, [2r cos a Q,

b =TERN T R

-5y

+Fh oS a L

mr?sin a r m2r, tan? o

So=—"pp \/‘thosa SO—wE

m? 2r,
WM = T
2M7FR N hcosa !

merr,
wy H2 Ehz

o __m?r tan 75 tan a Q,_i(l_'L") tan® « g 3r, tan o
! ml;

Qs

2. p Y : -
2Lk 2hcosa ' 2Kk cosa

_mr,
Qs
2. TR

—
mry /2/3. COS o

=Nk

. 14 o
mri sin a\/ rs _min tanzaQ + 1_§>'2
Joi 3 Shcosa ® S(A—wE ' Ehcos a J

80, =i

15

(37a)

(37b)

(37¢)

(37d)

(38)
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The remaining parameters necessary for the solu-
tion of the cone are given in equations (8) and (9).
Equation (10) can also be used where appropriate.
As previously mentioned, the cone analysis was
taken directly from reference 1.

When H,, M,, H,, and M. are sct equal to zero, it
will be seen that the resulting equations for stress
are not the membrane stresses. This is true
because the edge support is not the same as that
necessary for the membrane condition when there
are no edge shears or moments. This must be
borne in mind if one wishes to scparate the
bending stiesses from the total stresses at any
given point.

The locations of the stress peaks were not
determined for this case because of the complicated
nature of the stress equations.

Portion of a sphere loaded by edge shear and
moment.—The following equations are applicable
at any angle ¢ from the loaded edge of the spherical
shell. The type and location of stress, as well as
the rotation and deflection, are given by equations
(42) to (45). Where £+ or F signs occur, the
upper sign refers to the stresses on the inner
surface and the lower sign to the stresses on the
outer surface. See figure 12 for the sign conven-
tion and figure 10 for curves of the functions 8, &,
¥, and 2. Values of thesc functions are also
tabulated in references 3 and 4.

Meridional stress:

22 6
s=—| 7 0ot (a—)200) F: 20w |21,

—-[;—L cot (a—¢@)T(Ap) i)ﬁ‘_f; Q()\go)] Hsin «
(42)

csc? (a—e,,) — 2\ cot (a—¢m)i6%] RH, sin a+2)? cot (a—¢,,) M,

Circumferential stress:

2x
o= wwi 7 & M)] M,

6}

ew)i T

Q()\tp)] Il;sina  (43)

Rotation of meridian:

2)? 2)
Ev|l TR

Outward displacement:

V= 6 (AN M+ B(rg) H, sin a] (44)

sin (a— @) [NV () My— RO (M) I, sin a]
(45)

the previous equations

= 2A
Y=Fr

At the loaded edge,

reduce to
(04)gmo= :izﬁzu0 @ (46)
(o) 5=t h,)zuo Afsina (47
, 222
T/Q-—Eh R Alo‘*“HD Sln a J=wy, Alo—*‘wya 0
(48)
E;‘L sin « WMo— RH,sin a) =8y My+8y H,
4)
where
4 _2Msina
O 7 S
(50)
2X\2 sin 2\R sin? a
S="FgR - M= Ep

The locations of the peak stresses are given by
the following equations:
Meridional stress:

1
em=y arc tan

Circumferential stress:

( NS v) RHsin ot M,
(52)

—mctan
ACEY

(Sv o )\2) RH,sin a—6v\ % R

hA

[csc’ (a—@n)+6 %] RH,sina—2) [csc’ (a—e¢n)—Acot (a—¢,,) £ 6 %] M,

(1)

It is apparent that equation (51) is transcendental

and must be solved by an iterative procedure. -

Because of this fact and the length of the equation,
it might be more advantageous to plot the merid-
ional stress distribution for a short distance using

¥
E
i
s
g
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(c)

(b)

{d)

(a) Geometry and loading.
(b) Internal forces and moments.
(e) a<90°,
v () a=90°,
(&) a>90°.

Fiaure 12.—Portion of sphere,

(e)
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equation (42). Then the location of the maximum
stress, as well as its magnitude and the stress
distribution curve, is obtained.

The solution for the edge-loaded hemisphere
can be obtained by simply substituting e=#/2 in
the previous equations.

A discussion of edge influence coeflicients for
thin spherical shells is presented in reference 5.
Three different approximate solutions, including
the Geckeler epproximation used in this section,
are ohtgined for the differential equation of the
thin spherical shell. The aceuracy of these solu-
tions and recommendetions for their use are dis-
cussed.

Simply supported circular flat plate with uni-
form load, edge moment, and edge normal load.—
Refer to figure 7 for the geometry, loading, and
sign convention for this case. The maximum and
minimum stresses are found on the inner and outer
surfaces at the center of the plate and are given by

H A 2
(Ur)r=[): (U'),_Oz—_h.g:t%nb_f’_q:ﬁg‘;;’lp (53)

where the upper and lower signs refer to the
stresses acting on the inner and outer surfaces,
respectively. The rotation of the edge of the
plate is given by

3

The radial deflection of the edge of the plate is

@:—Q‘—E—%)G,HOEago 0 (55)

Given or implied in equations (54) and (55) (see
appendix D) is

a b
wM°=—(1Tl')D— 6M.=0
wg,=0 5,,0__(1_2,h")_“. > (56)
aS
=g +n)D 8,=0 )

DISCUSSION

In all shell junctions analyzed in this report,
the shell is assumed to be long enough that one
edge or junction can be analyzed independently
of any other. In general, it is not necessary Lo
make this assumption in order to solve for the
induced forces at the junctions or for the stresses
within a given shell. If the theory is avesilable or
can be derived for a given shell, it is only necessary
to add two additionsl simultaneous cquations for
each junction to account for the close proximity of
one junction to another. Then &ll equations for
the junctions that are near each other are solved
simultancously. However, for most shells gen-
erally used in engincering practice, the junctions
are usually far enough apart to consider cach one
individually. Thus no serious limitation is in-
curred by considering cach junction separately as
is done in this report. The work is considerably
simplified because the mathematical difficulty in-
creases very rapidly with the number of simultane-
ous equations.

The solution for the right circular cylinder is
based on theory given in reference 3, as is that for
the portion of a sphere. The analysis of the por-
tion of a sphere is not valid in the region of the
poles. For edge-loaded spherical segments with
small included angles, shallow-shell theory such
as in references 5 and 6 should be used.

The analysis chosen for the cone (ref. 1) is
essentially an “‘exact” analysis for relatively long
cones, that is, those in which the edge effects do
not overlap each other. In reference 7, by use of
essentially the same basic differential equations,
a solution is obtained for the short conical frustum
with edge loads. The equations for both solutions
are in terms of Bessel-Kelvin functions.  Although
it is not possible to present the results for the cone
in as concise a form as some of the other shell
solutions, most of the work has already been per-
formed in putting them into their present form.

Lewis REsEarcH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CLEVELAND, Ounro, January 5, 1961



APPENDIX A

RIGHT CIRCULAR CYLINDER LOADED BY EDGE SHEAR AND MOMENT

Consider a thin right circular cylindrical shell,
subjected to axially symmetric shear forces and
bending moments uniformly distributed along one
edge, as in figure 9(a). Because of this loading,
the internal forces and moments shown in figure
9(b) arise. According to reference 3 (pp. 466 to
471), the internal forces and moments are given by

N,=0
No=2aB(BM,¥(Bx) + Q0 (Br)]

M,=M3(8z) +}3 Qu2(82)

] ,=»M,=vMoq>(ax>+§ Q2(Bx)

Q.=—26M,2(Br) +Q,¥ (8z)

The equatlons for the rotation 17 and the deflection
w are given as equations (28) and (29) in the text.
The functions 6, ®, ¥, and Q are shown graphically
in figure 10. They are also tabulated in references
3 and 4. The largest stresses at a given section
corresponding to these forces and moments are

Ns

Tg™

T 24 [B‘lo‘I'(BIHQoG(BI)]
6, 6 1
=2 = S A130(82) 45 @280 |
' > (A1)
Cyg= Vﬂ'uz:% [Alu{b(ﬂf) +113 Qo2 (ﬂf)]

=3 %2 Quean—28M,0050) |

Tr==

o

The combined stresses in the axial and circumfer-
ential directions are

=tou, (A2)

and

Uozd.voﬂ: O3, (A:})
respectively, and, with proper substitution, can be
written as equations (26) and (27) in the text.
In all instances where + or F signs occur, the
upper sign refers to the inner surface and the lower
sign to the outer surface.

Equations (26), (27), and (A1) give the stress
distribution throughout the eylinder. In addition
to the stress distribution, the locations and magni-
tudes of the various maximum stresses are usually
of considerable interest to the designer. The lo-
cations where the various combined stresses are a
maximum (except the possibility at the loaded
edge) may be obtained by the usual theory of
maximums and minimums (see the section
METHOD OF ANALYSIS). Equating the de-
rivative of 7, with respect to r to zero gives

1,=l arc tan (l-i--QQ-)

8 g\, (A4)

where «, is the distance from the loaded end of the
cylinder to the location of the shear-stress peak.
Similarly, the locations of the meridional and eir-
cumferential stress peaks are obtained and given
as equations (31) and (32) in the text.

1




APPENDIX B

FRUSTUM OF A CONE LOADED BY EDGE SHEAR AND MOMENT AND INTERNAL PRESSURE

The equations for the internal forces in a conical
frustum subjected to edge shears and moments
and internal pressure as shown in figure 11(a) can
be obtained from references 1 and 8. These are
given in terms of the Bessel-Kelvin functions as
tabulated in reference 2. With the sign conven-

tion as shown in figure 11(b), they are

Q,= cota (Cy bers £+ Cubedyt

+ Cyker £+ Cy ketr))  (Bla)

H,

bPrz£+02 b612£+03 ]CergE

+Cokeirt) +E = sinfa B 1p)

0S8 a

A;=}/ (Cy berab+Cy beiyb+Cy kers

+C; kez'ﬁ)-{-pyt%g (Ble)

\2=% (Ch berlt+C, beisk+Cy kerst

+Ckeizf)+py tana (Bld)

M,=— "m’ [Cr(E betyt+2v bery §)
— Cy(k beryt+2v ber, §)+ 03(5 ket 42y ket )
k2t
— Oy kers+2v ker,f)]+p&(1—a”)a
My=— [(’ (2 bety £+ vt bety£)
— 02(2 ber,E+vE bery£) + C5(2 ket £+-vE ket §)
— Oz ket horyo) - L (0
where B
E=2uy
=12(1—»?)
2— m2
" htana

and the primes denote differentintion with respect
to & The equamong for the rotation 77 and the
deflection w are given as equations {35) and (36)
in the text. Tl)(fe}\proqmon: for the “constants
of integration (%, Cy, Cy, and C, are presented in
the text as equations (37) for the loading condition
shown in figure 11(a).

The four constants of integration are deter-
mined {rom the following boundary conditions:

at F=H=2uv

Hy="‘H1 ]l’[‘,:ﬂfl B

- 3

at E= 522\ ®3)
H=—H, M, =M,

As discussed in reference 3 (p. 563), the loads
applied at one edge do not appreciably affect the
stresses and deformations at the other edge if the
cone is sufficiently long. It will be assumed that
the thin shells considered here are long enough to
conform to the above assumption. This is almost
universally true for the conical frustums used in
missile and spacecraft applications.

The ber and be: functions and their derivatives
increase rapidly in an oscillatory manner as the
distance y increases. Conversely, the ker and
kei functions and their derivatives which also have
an oscillatory character decrease rapidly as the
distance y increases. Hence, the terms involving
ker and kei and their derivatives are neglected
when working near the large end of a conical
frustum (or with a complete cone). The con-
stants C; and C, (which are associated with the
ber and bei functions and their derivatives) are

* then determined from the boundary conditions

at the edge y=%. Only when working with a
frustum of a conical shell are all four constants
of integration necessary. The constants (; and
C, (associated with the ker and ke: functions and
their derivatives) are determined from the bound-
ary conditions imposed upon the small opening of
the truncated cone.

For a long thin-walled conical shell whose half-
angle « is not close to /2, the calculations can
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be simplified by solving two sets of two simulta-
neous equations instead of one set of four equa-
tions. (; and C, are neglected when evaluating
¢, and C, from the conditions at the large end
of the frustum, and ¢, and C; are neglected when
evaluating C and C, from the conditions at the
small end.

Substituting the boundary conditions at y=y,
into equations (B1b) and (Ble) and neglecting the
terms containing C; and (7, the following equa-
tions are obtained:

—le%x (Cy ber:1+C bei2$1)+p1/1 sin’a

2cosa
Ml=—§%—% [Cu(&: beist+2v beint)— Colk berity
+2, berzfl)]+ph tan? «

&(1—»)

C, and (; are obtained from these equations and
given as equations (37a) and (37b) in the text.
Substituting the boundary conditions at y=y,
into equations (B1b) and (Ble) and neglecting the
terms containing €, and (; yield the following two
equations:

'—Hz—&w (Ca ker:+Cy keizt,) +p2% (S)lsn =

Wz—— [03(52 keist:+2v keioky) — Cu(E, kersts
+25 kersk, )]+’———"‘ “‘"p)‘"

From these equations, O and C, are found and
presented as equations (37¢) and (37d) in the text.
The closed-form solutions for the four constants
of integration can now be substituted into equa-
tions (B1) to determine the complete distribution
of internal forces. As wus true in the derivation
of the constants, the terms containing (% and €,
can be neglected when working near the large
end of a long frustum (or on a complete cone),

and the terms containing (; and (; can be neg-
lected when working near the small end of a
frustum of a long thin-walled conical shell. )

The influence coefficients for the edge rotation
and deflection of a truncated cone can now be
found. Substitute the expressions for the con-
stants of integration (egs. (37)) into equations
(35) and (36) and solve for the edge rotations and
deflections. The coeflicients of the applied loads
will be the desired edge influence coefficients, as
shown symbolically in equations (35a), (35b),
(36a), and (36Db).

The relations between edge loading and edge
rotation and deflection can be expressed in terms
of the edge coeflicients as equations (35a), (35b),
(36a), and (36b) in the text, where the subscript 1
refers to the edge of the large end (y=y:) and the
subscript 2 to the edge of the small end (y=y,).
Using the loading condition shown in figure 11(a)
and the sign convention of figure 11(b), the expres-
sions are obtained for the edge influence coeffi-
cients and given as equations (38) in the text.

The meridional stresses and the circumferential
stresses are given by

_ N, 68M,

=t (B4)
and
_No_ 61,
=525 (B5)
respectively. 'With the proper substitutions, these

equations become equations (33) and (34) in the
text. In all instances where + or F signs occur,
the upper sign refers to the inner surface and the
lower sign to the outer surface. At any given
section the maximum shear stress acting on a
middle surface is given by

E&_? cot a
2 b 2hky

(Cyderst+C beist

T==

+Cskerst+Cokeit)  (B6)

Equations (33), (34), and (B6) give the complete
stress distribution throughout the conical frustum.




APPENDIX C

PORTION OF A SPHERE LOADED BY EDGE SHEAR AND MOMENT

A portion of a sphere sub]ected to rotatlonalh
symmetric uniformly distributed edge loading, as
in figure 12(a), will have present 1ntcrnal forces
and moments shown in figure 12(b). According
to reference 3 (pp. 549 to 551), the internal forces
and moments are given by the following (with a
change in notation for ¢):

No=—| 2,200 +H, (sin ) wx@] cot (a—4)

2\
R
Lo

Ny= 7

M,=Moq>(x¢)—-’% H, (sin &)2(\p)

MoV () —2NH, (sin )6 (M)

My=vM,=rM® (w)—fg o (sin ) 2 (0e)

The equations for the rotation ¥V and the deflection
W are given as equations (44) and (45) in the text.
The functions 6, ®, ¥, and @ may be obtained
from figure 10 or the tables in references 3 and 4.

In this analysis, circumferential stresses (sub-
script 8) refer to the stresses normal to the cross
section obtained by cutting the spherical segment
with a plane containing the axis of revolution.
Meridional stresses (subscript ¢) are those acting
on the cross section cut by a cone whose apex is at
the center of the sphere and whose axis coincides
with the axis of revolution of the spherical seg-
ment.

The largest stresses at a given section corre-
sponding to the various internal forces and mo-
ments are

Q=1 Me200)+Ho (sin )¥(p)
_ N, cot(a—e)[2A
e
Ny 22
ONy= h, Rh O‘I’()‘ﬁo)

6M, 6
M8 [M@(A@-

O'M.’=
6M, 6v
TMY=TRE T B
3 3A
re=30 = 2000 o

The combined stresses in the meridional and
circumferential directions are

2

vo=0w, % 0u, (€2)

and

os=0nyt oum, (C3)
respectively, and can be written (with proper
substitution) as equations (42) and (43) in the
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[Afofb()\so)——Ho(Sm o) szw)]

-

2 M2+ H, (sin aww)]
Ho (sin a) (M)
% Hy(sin ) szw)] (1)

o(sin &) T(Ag)

text. Where 4 or F signs occur, the upper sign
refers to the inner surface and the lower sign to
the outer surface.

Equations (42), (43), and (C1) present a com-
plete picture of the stress distribution throughout
the spherical segment. From these equations,
the locations and magnitudes of the various
maximum stresses can be obtained as a further
aid to the designer. The points where the com-
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bined stresses are a maximum (except for the
possibility at the loaded edge) may be found by
the usual theory of maximums and minimums
(see the section METHOD OF ANALYSIS).
Setting the derivative of r, with respect to ¢
equal to zero and solving for ¢ give

E HO Sin a)

N M, (C4)

¢,=%arc tan (1—

where ¢, is the angle between a radius at the
loaded edge and a radius (in the same meridional

plane) at the location of the shear-stress peak.
The locations of the meridional and circumfer-
ential stress peaks, given as equations (51) and
(52) in the text, are obtained in a similar manner.

The equations presented in this appendix apply
to a portion of a spherical shell whose half-angle
a may be less than or greater than »/2 but does
not approach 0 or = (fig. 12). The reason for
this is that shallow-shell theory (refs. 5 and 6)
must be used near the poles. The special case of
the edge-loaded hemisphere may be obtained by
substituting a==/2.




APPENDIX D

SIMPLY SUPPORTED CIRCULAR FLAT PLATE WITH UNIFORM LOAD, EDGE MOMENT, AND EDGE
NORMAL LOAD

Consider the case of a simply supported circular
flat plate under the action of a uniformly distrib-
uted normal load » and with a radially symmetric
edge normal load H, and an edge moment A, as
shown in figure 7. The plate can most readily be
analyvzed as three separate problems and then, by
superposition, the final results can be obtained.

Consider first the action of H; on the plate.
This is a case of hydrostatic plane stress:

(]
a’,=0’a=——}7

The radial deflection at the edge is

E=_Q‘%}:lg HogayoHo

The surface of the plate remains flat, and therefore
wgo=0

Next analyze the plate under the influence of
AM,. The moment at any point in the plate is A,.
Therefore, the stresses at the inner and outer sur-

faces are
6M,
R

0,r=0p=

For small deflections normal to the plate, the radial
deflection is zero and
6M :0

0
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From reference 3 (p. 43) it can be shown that the
rotation of the edge of the plate due to A, is

y_ a]" 0 _
T’ = (_~—1+V)D—w_uo]‘lo

Now consider the simply supported plate acted
upon by the uniformly distributed load p. From
reference 3 (p. 57) the maximum stresses occur at
the center of the plate and are shown to be

(O'r)maz= (09)m= 3:3_(:38_{}_#& r

For small deflections normal to the plate, the
radial deflection can once again be assumed zero.
Therefore,

§,=0

The angle of rotation of the edge can be shown
to be

3
V=30 D P=P

By adding the effects of the conditions described
préviously, the following results are obtained. The
maximum and minimuimn stresses are found on the
inner and outer surfaces at the center of the plate
and are given by equation (53) in the text. The
edge rotation and deflection are given by equa-
tions (54) and (55) in the text, respectively.




APPENDIX E

SHEAR AND MOMENT AT AN AXIAL CHANGE OF THICKNESS IN A CIRCULAR CYLINDER

In this appendix and in the following appendixes
the discontinuity shear force and bending moment
are determined for several specific shell junctions.
Because the derivations for the shear force and
bending moment at the various junctions are very
similar, they are given here in a general way.
These equations are then used with the proper
subscripts for the shear and moment in most of
the following junction problems.

The general equations for the so-called edge
rotations and deflections of two shells, 7 and j, at
their junction can be written in terms of internal
pressure, discontinuity shear force and moment,
and edge influence coeflicients as

(81,3,—85.305) (wi.p—1,5)— (8:.5—81.5) (@i, 09— w1 31)

Wo, 1= 84, wgH o+ 8120y Mo+ 815D
Vo.i=wq, g HotwisgMotwi,p
Wo, = 81, wgH o+ 83,20, Mo+ 35, P
Vo, 5=w;. HOH otw;, MOM 0T wW; P

(ED

The equations for continuity of rotation and de-
flection at the junction are
Vo.1=Vo.;
(E2)

Wo, 1= Wo, 5

By substituting equations (El) into equations
(E2), the unknown discontinuity shear force and
moment are found to be

H,

J[o=

- (811, 8y.110) (@e.2ty—s.200) — (34,315 8.310) (s, w1.110)

(80,551, p) (wi. sty — @y.1g) — (19— 87, 1) (@i, p— @5.5)

(E3)

(E4)

These equations can now be used with the proper
subscripts and edge coefficients to determine the
discontinuity forces at most of the junctions
considered in this report.
The case considered in this appendix is that of
a radially symmetric longitudinal change in the
wall thickness of a thin-walled circular cylindrical
pressure vessel. The radial expansion of a pres-
surized cylinder with closed ends due to the mem-
brane stresses is
.ujp=<l_% %(% =0,p (E5)
This equation applies only at a distance from the
closed ends where the effects of the closures are
negligible.  The membrane stresses cause no ro-

(51'.110—'5;,110) (wz,MO— wy, MO) - (5t,Mo—51.M0) (wi,Ho—wj.Ho)

- (51, n_a‘l. n)(wl,j!n—'w‘.’,jln)

tation of the meridians of a cylinder, and therefore
(E6)

The free radial expansion of a eylinder due to inter-
nal pressure is inversely proportional to the wall
thickness. Consequently, discontinuity forces
and moments must be present which will make the
displacements and rotations of two adjacent re-
gions of different wall thicknesses identical at
their junction.

Assume the discontinuity forces to be directed
as shown in figure 1(a). Refer to equations (E3)
and (E4); for this case, H, = (. Letting sub-
seripts 1 and 2 refer to the regions of thicknesses
By and ks, respectively, the expressions for the un-
known discontinuity shear and moment are (with

w,=0

wp=0)

N

M=

—(51,00—5-.»,00) (wx.Mo“‘ w-z,MO) "‘(51,110—‘52,‘110)(wl,qo—wz,oo)

(81, p— 2, ) (@1.0,— @2.0p)

(E7)

(ES)

(51.00—52,00)(wx,.vo—wz,uo)"— (51,:;!0'—52,1»:0) (w‘-Qo_ O)z,qo)
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If the discontinuity shear and moment are di-  the influence coefficients obtained from equations
rected as shown and the pressure is internal, then (E5), (E6), and (30) are as follows:
\

v\ a? y\ a2

51p=<1—§ ET] 52,,:<1—§ m
oo 1 oo
28D, w2810,
N oo 1
28D, b (E9)
wi,,=0 we, ,=0

1 .
wl'qo—zﬁfD] Wa, 00‘—26302

_1 . 0
LMD, MR D, J

Substituting the edge influence coefficients as  chosen in figure 1(a), the sign for @, must be
given in equations (E9) into equations (E7) and  changed when solving for the stresses in the cyl-
(E8) results in equations (1) and (2) in the text for  inder of thickness ,.

Qo and M, Because of the sign convention




APPENDIX F

SHEAR AND MOMENT AT AN AXIAL CHANGE OF THICKNESS IN A CONE

The radial expansion of a conical shell due to
internal pressure is a function of the thickness;
therefore, if the thickness varies along a meridian,
discontinuity forces are induced to make the slopes
and deflections continuous along the meridian.
The discontinuity shear and moment are deter-
mined here in terms of the edge influence coefhi-
cients and internal pressure for a truncated
conical shell with a radially symmetric sudden
change of thickness at a distance ¥, from the apex.
Positive shear and moment are as shown in figure
2,

Letting the subscripts 1 and 2 refer to the regions
of thicknesses h, and h,, respectively, the expres-
sions for the discontinuity shear and moment can
be written as equations (4) and (5) in the text by
referring to equations (E3) and (E4).

The expressions for the edge influence coeffi-
cients for the cone are given in the section ‘“Frus-

tum of a cone loaded by edge shear and moment
and internal pressure.” For the problem being
considered here, 7 =1=%, and 71=r;="y, but A\
and £ are not the same for the two edges at the
junction because h, does mnot equal k.. The
parameters \,, £, w;, and 8, are associated with the
region of thickness h;; hkewise, Ns, &2, w, and &
are associated with A;. The expressions for the
edge influence coefficients necessary for the solu-
tion of H, and M, are given explicitly as equations
(7) in the text.

The desired discontinuity shear and moment
are found by use of equations (4) and (5), respec-
tively. The deflection, rotation, and internal
stresses at any point in the cone can now be de-
termined by use of the equations in the section
“Frustum of a cone loaded by edge shear and
moment and internal pressure.”

27




- APPENDIX G

'~ SHEAR AND MOMENT AT A CHANGE OF THICKNESS IN A PORTION OF A SPHERE

Consider the case where a change of thickness
takes place in a thin-walled spherical shell, sym-
metrical about an axis as shown in figure 4. The
radial expansion due to the membrane stresses
only is different in the regions of different thick-
nesses. The shear and moment required to make
the slopes and deflections of the two regions

H,

B (51. »— B2, p) (wl,M‘;_wﬂ,Mo)

coincide at their junetion are determined in the
following paragraphs.

Let the subscripts 1 and 2 refer to the regions
of thicknesses &, and h,, respectively. Then the
expressions {or the discontinuity shear and moment
can be written in the following manner by referring
to equations (E3) and (E4):

A[[):

where w;,,=w,,,~0.
ventional membrane theory that the displace-
ment perpendicular to the axis of symmetry of a
point on the shell due to membrane forces only is

— 2
E,,:(lz—y %Rh— sin a=4§,p

Since the membrane f{orces cause no rotation
of the meridians,

w,=0

The other necessary edge influence coefficients
can be found in equation (50).

With internal pressure and the discontinuity
shear and moment in the directions shown, the
edge influence coefficients are as given in the
following equations:

28

= G1
(81, 51y 82, 1) (w1, ag— 2, 1) — (81, a0, 02,21, (1. 1y — 2. 51, P (G1)
(51.p—52.p) (wl,Ho_w2,HD) P (G2)
(51,170— 52,110) (wl,MO—‘wz,Mo) - (51,M0— 52.M0) (0’1,}10—602,110) .
It is known from con- _(I;V)Rz . _(=nnr .3
6,,,——-——2Ehl sin a 82, ———2qu sin a
__ 2MmRsin?a _ 2R sinta
61'30——'—E_7-n_ 52,Ho—m——'
(G3s) _2\{sina s _ 2\ sina
LMy A
0 Ehl 0 E‘h2 > (G4)
wl',,=0 wz,,,=0
_ 2\ sina _2\jsina
Gsby T Bl R Ehy
4 _ 4
M= TR ER, “2.30= B, J

If the influence coeflicients of equations (G4)
are substituted into equations (G1) and (G2), the
equations for Hy and M, take the form of equa-
tions (11) and (12) in the text.




APPENDIX H

SHEAR AND MOMENT AT THE JUNCTION OF A CYLINDER AND A CONE

N @
s~(1-3) 2,

In missile or space structures, a conical dome
or bulkhead is usually attached to the main
cylindrical body by means of a transition section
such as a torus. However, there are applications
where the cone is welded directly to the cylinder
(fig. 5). For such cases, the discontinuity shear
and moment at the junction are determined in
the following paragraphs.

Let the subscript ¢ refer to the cylinder and &
to the cone. DPositive shear and moment are as
indicated in figure 5. From equations (E3)
and (E4), the discontinuity shear and momem
are determined as equations (14) and (15) in
the text,

From membrane theory, the edge-displacement
influence coefficient for the cylinder is

(H1)

Since the meridian of a cylinder does not rotate
because of membrane stresses, the edge-rotation
influence coefficient is

we, =0 (H2)
The other necessary edge influence coefficients
are given in equations (30) and (38), where the
coefficients for the large end of the cone (subscript
1) are used. There are instances when the
cylinder may be attached to the small end of the
conical frustum. For this case, the coefficients
for the small end of the conical frustum (subscript
2) should be used.
29




APPENDIX I

SHEAR AND MOMENT AT THE JUNCT{ON OF A CYLINDER AND A PORTION OF A SPHERE

The eylindrical pressure vessel is frequently
closed at the ends by a portion of a sphere. The
dome may subtend an angle considerably less
than 180° (fig. 6(b)). The special case of a
hemispherical dome as the closure (fig. 6(c)) is
commonly used. The equations given here are
also applicable to the case of a subtended angle
in the dome greater than 180° (fig. 6(d)). The
restrictions imposed upon the spherical shell in
appendix C apply here also. The discontinuity
shear and moment at the junction of the cylinder
and spherical dome are determined in the following

of the two shells at their junction:
Wo, =8¢, u Hy~+8c.a1Mo+8:,,p )
T/’0. czwc.HOH(l+wc.M0A/IO+wc. pp

Eo.tzax,ffo (H0+22_Ri 08 o )4-85, 3, Mo+8,.,P r an

Vo, s=we 5, (H[,-{-I%R- CoS @ +w,,M°ZlIO—{&-ws_,,pJ

Continuity of rotation and deflection at the
junction requires

paragraphs. Positive shear and moment are as
shown in figure 6(a). Vo..=Vo. (12)
With the subscript ¢ referring to the cylinder To. o =T0,s
and s to the portion of a sphere, the following
equations express the edge rotation and deflection Substituting equations (I1) into (I2) gives
H,= L) ) ) — Ecos
0= [‘-’J:.HO( [¥ s,MO)'_' s.Ho(wc.Mo ws.MO)] 9 ¢ x
+(6c,p'—6s. p) (wc.Mo—ws.MO)— (6c,M0_6:,M0) (“’c.p—ws, p) }])
+[(6C»Mo_5"”o) (“’C'”o_w‘v”o) - (ac-”o_a‘vﬂo) (“’"Mo_w*"‘fo)] (I3)
and
R
(as.Howc,HO_‘sc H®s .HO). 5 COS at (ac.Ho—aa,Ho) (we, p—ws, p)_ (6c.p_5s.ﬂ) (“’c.lx’o—""a.lio) (14)
AI()= = ¥4

(65.4\(0'—5:.‘1{0) ("’c.Ho—' wa,Ho) - (5c,}10'_6l.110> (wc.MO_ws.Ho)

The edge coefficients for the membrane stresses

are
v\ a? _(1—»)R?sin o
2Eh, (15)

sr=(1-5 ), b=

we, ,=0 w,, ,=0
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The remaining edge influence coefficients are
obtained from equations (30) and (50). Substitu-
tion of the edge coefficients into equations (I3)
and (I4) results in equations (17) and (18) in
the text.




APPENDIX J

SHEAR AND MOMENT AT THE JUNCTION OF A CYLINDER AND A FLAT HEAD

One of the simplest closures for a cylindrical 7

pressure vessel is the flat plate head. This is a
very stiff restraint on the cylinder and therefore
induces stresses in the cylinder higher than would
be produced by most of the other closures.
However, since it is the easiest and cheapest to
fabricate, it is sometimes used in experimental
facilities or for other such purposes where the
weight of the vessel is not critical or where the
higher induced stresses can be tolerated.

The discontinuity shear and moment are deter-
mined here for this case with the sign convention
being as shown in figure 7. Let the subscript ¢
refer to the cylinder and f to the flat plate. With

“’C.p'—_‘sf.Mo:‘sl.p:“’f.Ho:O (J1)

eqﬁations (E3) and (E4) become

- 5c,M0wf. P be.p (wc. My Wy, MO)

Hy= J2
’ (8., Hy ™ oy, Ho) (“’c.Mo— Wy, Mo) —3.. MyWe, Hy J2)
and

M0= d., pwc,Ho+wf. p(ac.Ho—af.Ho) (JB)

(8. Hy™ 4, HO) (w, My Wy, MO) —4, MWe, Hy

Substituting the expressions for the edge
influence coefficients found in equations (16),
(30), and (56) into equations (J2) and (J3) yields
equations (20) and (21) in the text. Having found
the desired discontinuity shear and moment, the
stresses in the cylinder and plate can now be
computed.
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APPENDIX K

SHEAR AND MOMENT AT THE JUNCTION OF A CONE AND A PORTION OF A SPHERE

The toriconical head is frequently used in tank
design.  The special ease in which the torus is a
portion of a sphere (fig. 13) can be analyzed in
the following manner. Because the expansions of
the cone and the portion of a sphere due to mem-
brane stresses only are not, in general, the same
at the junction, discontinuity forces must be
present to make the rotations and deflections
identical at their common boundary.

Assume positive shear and moment to be in the
directions shown in figure 8. The rotation and
deflection at the junction of the cone and the
portion of a sphere can be expressed in terms of
edge influence coefficients, discontinuity shear and
moment, and internal pressure. The equations
expressing the relations can be written as follows:

b

e, k=6k,HOHO+6k,MOJIO+6k, 2D
. k=wk,H0H0+wk,M0ﬂ[0+wk. »P

Y

Q—Eo.szfsx,ﬂo (FIO‘i‘pT}?‘g cos as)+6x.MOAlo+5:, Py Y

T"yr).s:ws‘lio <H0+p% €08 a:)'*‘wa.ﬂloz‘i[o"}‘ws, pPJ
(K1)

The subscripts & and s refer to the cone and spheri-
cal shell, respectively. Continuity of rotation
and deflection at the junction results in the
following equations:

Vo, = Vo. s } ! (K2)
Eo,k=wo. s

Substitution of equations (K1) into equutions
(K2) gives equations (23) and (24) in the text.
The edge influence coefficients are obtained from
equations (38) and (50). Note the changes in
the signs of some influence coefficients, as men-
tioned in the body of the report. In addition, the
coefficient w,, s zero, since the meridians of a
sphere do not rotate when subjected to membrane
stresses only. The edge-displacement coefficient
for the portion of the sphere due to internal pres-
sure 3, can readily be obtained from membrane

theory. The expressions for w,, and &, are
then

ws, =0
and l—V R? (K3)

5,,p=T E—h; SN a,

Ficure 13.—Toriconical head on cylinder.




APPENDIX L

EFFECT OF NONCONCURRENCE OF MIDDLE SURFACES AT SHELL JUNCTIONS

Frequently the middle surfaces of two shells do
not coincide at their junection. This situation
may arise because the shell has been milled on
only one surface or because two shells of different
thicknesses have been joined to give a smooth
outer contour or for some other reason.

This eccentricity of the middle surfaces induces
bending stresses in addition to those previously
found for the shell junctions which have continuous
The following paragraphs show

middle surfaces.

Axis of

(b)

(a) Fundamental foree system.
(b) Conventional foree system.

revolution,-,

Ficrre 14.—Shell junction with nonconcurrent middle
surfaces.

how these additional bending stresses can be
found.

Consider first the case where the tangents to
the meridians at the shell junction are parallel.
Let the meridional membrane force be denoted by
N and the distance normal to the shell between
the middle surfaces be d as shown in figure 14(a).
As before, imagine the shell to be cut into two
pieces by a plane passing through the junction.
Very fundamentally, it is possible to represent the
forces at the cut by equal and opposite shear
forces H and equal, opposite, and colinear normal
forces NV acting along some unknown line of action.
Assume this line of action is at distances f and ¢
from the middle surfaces of shells 7 and j, respec-
tively. Since N represents the resultant meridi-
onal force on either side of the cut, there is no
bending moment present. The meridional forces
are moved to the middle surfaces along with
bending moments Nf and Ng as shown. Notice
that the moments acting on the two edges are not
equal. This is a result of the nonconcurrence of
the middle surfaces and the fact that the meri-
dional forces N are not now colinear. Let

M ,=Nf (LD

Then, considering only the geometry, the moment
on the other side of the junction is

M, =Ng=M,—Nd (L2)
The equations of continuity at the junction are
'YO.I'= v’O.j}
wo.;-:'l_b:o.f
In terms of edge influence coefficients, edge loads
and internal pressure, equation (I.3) becomes

(L3)

w,_,,fl—{—wivyﬂ[i-{—w,,r,,p:wj_H[I+wj__\13[,—r—wj_ pp
8 a8 s M +0, ,p=8, W1 +8, 3 M ;+5, ,p

(L4
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Substituting equation (L2) into (I.4) and solving for IT and M, yield

H= (wiu‘[—'wj,z\l) (5i.p—5j, p) _(wi. p W5 p) (5:'.M—'5,;M)
(wi.H_wj.H) (5:,91—51'.51) - (wl,,u—wj,nﬂ (5f,H—5j.H)

wi.Méj.M—wj,}\!aiJf

(wi,n'—wj,y) (51,,‘\1“‘5;',1‘1) - (w;',M_wj,M) (_51,H_51,H)

(w,-, W p) (5:,5—51.11) - (w;.n—fﬂzﬂ)f(éf. p—aj[p)

M,

o (wl.ﬁ—w,-,u‘) (5[,.11—‘51‘,1&!)— (wi,ﬂl_wj,lt{) (61‘.}]_6]',}1)

SN (L)

Substitution of equation (L6) into (L2) gives

_ (wi,p—wj. p) (51‘.}1_5}.11)— (wi,H_wj.H) (51‘ p_aj, p)

a1,

T (@i m—wy 1) (B ar— 8, 3) — (@i ar—wy20) (80— 85

w].)’\’(ai,H'—aj.H}—(wi,H—wj.H)aj,M .

L LH N
(wi,r—00;,8) (80 20— 8;,30) — (Wi —w; 20) (81, r— 85, 1) ¢ (16)

wi,M(ai.H_aj.H)'—(wi,H_wj,H)ai,M 'Vd ('LT)

(willi'—wj,}l) (61‘,.’\!_61,.2\{)— (wi,M_wj,M) (51,11_61.17)

The first parts of equations (L5) to (L7) are
recognized to be the discontinuity forces deter-
mined before when the middle surfaces were con-
tinuous (see egs. (E3) and (E4)). The other
terms are the effect of the nonconcurrence of the
middle surfaces. Thus the discontunity forces
due to only the nonconcurrence of the middle sur-
faces can be computed by using the second half of
equations (L5) to (I.7). These forces can then be
added to those given in the body of the report to

obtain the resultant stress distribution.

- The sign of the bending moment Nd must be
assigned with care. It would be oppositely di-
rected if the middle surface of shell ¢ were inside
the middle surface of shell § at the junction (fig.
14(b)).

If the tangents to the meridians at the shell
junction are not parallel, it is not possible to use
the foregoing equations because the meridional
forces are not equal and opposite. In such a case,
it is probably most convenient to work with forces
at the junction which are either parallel or per-
pendicular to the shell axis. As in the previous
analysis, the components perpendicular to the
shell axis do not affect the edge moment. In com-
puting the bending moments due to nonconcur-
rence of the middle surfaces in this case, the eccen-

tricity of the middle surfaces must be measured
normal to the shell axis. Equations similar to
(L5) to (L7) will finally result. Because of the
lack of availability of all necessary influence coef-
ficients, this case was not pursued further.
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