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SUMMARY

The theory developed by G. B. Whitham (Com-
munications on DPure and Applied Mathemalics,
August 1952) for the supersonic flow about bodies
in uniform flight in a homogeneous medium 1s
reviewed and an integral which expresses the effect
of body shape upon the flow parameters in the far
field is reduced to a form which may be readily
evaluated for arbitrary body shapes. This ex-
pression is then uscd to investigate the effect of nose
angle, fineness ratio, and location of marimum body
cross section upon the far-field pressure jump across
the bow shock of slender bodies. Curves are pre-
sented showing the variation of the shock strenyth
with each of these parameters. It is found that, for
a wide variety of shapes having equal fineness ratios,
the integral has nearly a constant value. Ilence,
to a first order, the pressure jump in the far field is
independent of the shape and depends only upon the
Sineness ratio.

INTRODUCTION

Airplanes operating at supersonic speeds may
produce shock waves of considerable intensity at
ground level.  The shock pattern travels with the
airplane, sometimes sweeping over large popu-
lated areas on the ground below.  The atmosphere
experiences a sudden increase in pressure,as the
shock wave passes through it. This pressure
jump across the shock is heard by the observer
as a sharp explosive-type sound, the so-called
“sonic boom.” TUnder some circumstances dam-
age may result to building components. Thus,
the sonic boom has become a serious operating
problem and reliable theoretical prediction of the
magnitude of sonic booms has become increasingly
desirable. A variety of conditions—such _ as,

airplane size, speed, altitude, flight path, winds,
and atmospheric nonuniformitics—are known to
affect the strength of a sonic boom. In the
present paper the cffects of body geometry are
investigated.

One of the more promising theoretical methods
for predicting the strength of shock waves from
aireraflt at large distances appears to be that
developed by G. B. Whitham (ref. 1). This
theory is a rather lengthy modification of the
linear supersonic theory of slender bodies which
prediets the location and strength of the shock
waves emanating from a body in addition to the
surface pressures and wave drag. Whitham’s
results, which apply to thickness effects only, may
be conveniently separated into two parts: the
prediction of the complicated pressures and shock
interactions near the body and the greatly simpli-
fied flow pattern at sufficiently large distances.
Whitham shows that the calculation of the
pressure jump across the bow shock in the far
field requires only a single formula which gives
the magnitude of the discontinuity in terms of the
flight Mach number, distance from the flight path,
and a coeflicient which depends upon body shape
and must be cvaluated for each configuration

‘under study.

Whitham’s theory has considerable theoretical
and experimental verification. When applied to
two-dimensional problems the method gives a
first approximation to the result previously
obtained by K. O. Friedrichs (ref. 2). The
theoretically predicted far-field strength and

“decay of the bow shock of a supersonic body
agrees favorably with the experimental evidence

gathered from studies of bullets in flight {ref. 3),
wind-tunnel investigations (ref. 4), and flight tests
B L
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of full-scale airplanes (refs. 5, 6, and 7). On the
basis of these results it is felt that Whitham’s
theory will serve as a useful guide in predicting
the trends of the overpressurcs associated with
sonic booms.

The present paper is concerned with the effect
of body shape and fineness ratio upon the thick-
ness-induced pressures in the far field. For back-
ground the fundamental hypothesis upon which
Whitham’s work is founded is given, the physical
basis for the theory is discussed, and then a brief
development of the equations for the far-field
conditions is given. The expression for the effect
of body shape upon the flow parameters in the
far field is reduced to a convenient form and then
applied to a number of families of body shapes
chosen to investigate the effect of fineness ratio,
location of maximum thickness, and nose angle
on the pressure jump across the bow shock. The
reader interested only in the results may proceed
directly to the application.

SYMBOLS

(63 body-shape constant defined in
equation (24)

v Q7
Fay=o [ 5-8) g
TJo \y—§
1

16)= | F)ay

I oz largest value which I(y) assumes for
given body

l length of body

M free-stream Mach number

n integer

P ambient pressure

Pw free-stream pressure

Ap=p—Da

R radius of body-wake combination

Roer maximum radius of body-wake com-
bination

R'(0) nose semiangle

S cross-sectional urea, =R?

U. free-stream velocity

z,r cylindrieal coordinates;’zis measured
along body axis downstream from
nose, r is radial coordinate meas-
ured perpendicular to z

@/ maz distance from nose at which radius

of body is R

7,61 variables

B=+ 1?—1
polytropic index, 1.4
interval size for numerical integration

B =

6 local direction of flow
I local Mach angle

¢ velocity potential
Subscripts:

b body geometry

w wake geometry

DESCRIPTIVE OUTLINE OF WHITHAM’S WORK
WHITHAM'S BASIC HYPOTHESIS

The theory of reference 1 is a modification of
the linear supersonic theory of nonlifting slender
bodies. The basic idea on which the theory is
based is that the failure of linear theory away from
the body surface and near shocks is due not so
much to incorrect prediction of physical quantities
along the characteristies but to improper placing
of the characteristic curves in the flow field.  More
preeisely, the fundamental assumption upon which
Whitham’s work is based may be stated as follows.
Linear theory gives a first approximation to the
entire flow provided the value it predicts for any
physical quantity at a given distance from the
body axis on a straight Mach line through a given
point on the body surface is interpreted as the
value at the given distance from the axis on the
exact characteristic curve pointing downstream
from the given point on the body surface. Thus,
the failure of linear theory, in which the charac-
teristics are straight Mach lines, may be remedied
by introducing a more cxact expression for the
form of the characteristics which takes their
bending into account. The curved characteristies
may converge in various regions of the flow field
indicating the presence of shocks, and may diverge
in other regions of the flow indicating expansions.

THE PRESSURE AS PREDICTED BY LINEAR THEORY

The physical implications of this basic hypo-
thesis may be seen with the aid of figures 1 and 2.
Figure 1 shows the characteristic field and a typical
pressure trace of a simple slender-body-—wake
combination as predicted by linear theory. The
wake, shown by the dashed curves, converges
near the body and rapidly thins to a cylinder of
approximately constant cross section. The char-
acteristics—such as, AB, EF, and WZ—issuing

from various points along the surface and the
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Figure 1.—Characteristics and pressure as predicted by
: linear theory.
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Fraure 2.—Characteristics and pressure as predicted by
the modified theory.

characteristics in the upstream uniform flow are a
series of parallel straight lines, the Mach lines

. . 1
z— Br=~Constant, which make an angle y=sin™! I

with the body axis. Tet T, K, I, . . . R, T, T,
represent various field points along a line paral-
lel to the body axis but at some given distanee,
say 7, from it. The atmosphere experiences a
gradual compression as it passes through the
forward portion of the characteristic field as-
sociated with the body (between T and K), and the
ambient pressure begins to rise above free-stream
pressure.  After reaching maximum compression
at K the atinosphere expands (between K and R)
and the ambient pressure falls to some minimum
value at R which is below free-stream pressure.
Between the maximum and minimum values the
ambicent pressure becomes equal to the free-stream
pressurc at S.  After the ambient pressure reaches
a minimum at R the atmosphere is again com-

pressed ; the ambient pressure slowly rises to free-
stream pressure.

THE CHARACTERISTICS AND SHOCKS IN THE MODIFIED
THEORY

Couspicuously absent from linear theory are
shock waves, clearly visible in photographs of pro-
jeetiles in flight, and their associated pressure dis-
continuitics. The first step in introducing the
shock wavesinto the flow consists in deriving a more
accurate expression for the shape of the character-
istics and then replacing the Mach lines of linear
theory by these more correct curves. The shape
of the characteristics depends upon the local flow
direction and the local speed of sound. The vari-
ation of these quantities from their main-stream
values is neglected in linear theory. 1In the ap-
proximation used by Whitham (ref. 1) the char-
acteristics in the uniform upstream flow remain
unchanged from the straight Mach lines of linear
theory, whereas the characteristics issuing from
the surface of the body and wake are curved, their
exact shape depending upon the cross-sectional-
area development of the body. There will, how-
ever, be one straight characteristic issuing from
a point near the center of the body., This charac-
teristic extends to infinity, and everywhere nlong
it the ambient pressure is equal to the free-stream
pressure. The equation of this line is given by
r—pBr=y, where the exact value of y, depends
upon the body shape. In general, the curved
characteristic through a point on the body surface
is upstream [rom the Mach line through the same
point in those regions for which the ambient pres-
sure is more than the free-stream pressure and is
downstream from the Mach line in regions where
the ambient pressure is less than the free-stream
pressure.

As a result of this varying shape and curvature,
the characteristics tend to run together and over-
lap in some regions of the flow. In such regions
shock waves are introduced by the “angle”
condition: if two regions ol supersonic flow are
separated by a shock then, to the first order in the
strength, the direction of the shock biseets the
Mach direction of the two regions of flow. (The
Mach direction at u point is the outward direction
making the local Mach angle with the local flow
direction.) The resulting shock waves appear
in the flow in such a manner as to cut off the
characteristics before they overlap.
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THE PRESSURE AS PREDICTED BY THE MODIFIED THEORY

The modifications of the flow field in figure 1
are shown in figure 2. In this figure the points
C,H,E, ... Wcorrespond to the points similarly
Iabeled in figure 1. Associated with each of these
points there is a curved characteristic such as
CD’, EF’, UV’ which replaces the corresponding
Mach Hine of linear theory, D, EF, and TV in
figure 1. The shocks are shown as the curves
Inbeled AD'KY and XT'X’.  The Mach line
z—gBr=1, cffcctively separales the characteristic
ficld into two distinet portions, one associated
with each of the two shock waves. In order to
obtain the pressure at any point in the field, the
basic hypothesis stated previously is used. Tt
K, 1/, . . . T’ represent field points along a
line parallel to the body axis and at the given
distance 7 from it. Let the poinis be chosen so
that curved characteristics which pass through
them intersect the body at the same places as do
the Muach lines through the points K, T., M,
... T, T,infigure 1. Then, the basic hypothesis
states that the pressure at T/, M/, . . . 8/, N/ is
the same as the pressure predicted by linear theory
at the points L, M, . . . S, N in figure 1. In
this manner the pressure may be found at any
point not on a shock wave.

Any point on a shock wave is the meeting place
of {wo characteristics ecach carrying a different
pressure, atd henee a sudden inerease in pressure
is experienced as a shock wave is crossed. In
figure 2 the upstream Mach line through K’
carries with it the free-stream pressure, whereas
the downstream curved characteristic ITK” carries
the same pressure as point K in figure 1. Thus, a
pressure jump equal to Ap at K is experienced as
the shock is erossed ut K7, This method of deter-
mining the pressure discontinuity along the shocks
shows that the strength of the bow shock at first
inereases until maximum strength is reached at
some distance from the body axis, and thereafter
decays with distance. Similarly, at T” on the rear
shock, where the curved characteristics through
G and W on the body-wake surface meet, the
excess pressure on the upstream side of the shock
is the same as that at T,; the excess pressure down-
gtream is the same as that at T;. The pressure
jump as the shock is crossed at T’ is again the
difference in these two pressures.

For a body shape which gives rise to a number
of regions of positive and negative overpressure,

the characteristie field and the resulting shock
system will, of course, be far more complicated
than that described here. Towever, it is important.
{o nolice that the modifications of linear theory
described above tend to smooth out the flow
pattern between the shocks by “pushing” local
irregularities away from the Mach line z—gr=y,
and into the shocks as the distance from the body
increases. Thus, although a system of more than
two shocks may appear in the neighborhood of
the body, in general these will coalesce at some
distance leaving only two shocks extending to
large distances. Tn the far field there is an abrupt
pressure rise across the front shock, a nearly linear
decline in pressure between the shocks, and a
recompression at the rear shock to nearly the free-
stream pressure. This is the typical N-wave
pressure pulse associated with the sonic boom.

FURTHER ASSUMPTIONS AND RESTRICTIONS TO
THE THEORY

Tn addition to the basic hypothesis diseussed,
the assumptions from which Whitham’s theory
proceeds are the usual requirements of linear
theory—that is, the body is axisymmetrie, slender,
and pointed at the nose.  The upstream field 1s
wniform with Mach number sufficiently in excess
of 1.0 for the bow shock to be attached. The
flow within the wake is not determined; however,
the mean boundary of the wake associated with a
given body is assumed known. The wake is then
treated as a solid extension of the body; that
is, there is no flow across the assumed wake
boundary. The radius of the bodyavake combi-
naltion must be continuous although the slope
may be discontinuous.

Under these assumptions, reference 1 gives a
first-order approximation to the entire pressure
field due to thickness. A method is described for
determining the loeation of the shocks, the pressure
jump across the shocks, the pressure signature
between the shocks, and the flow field behind the
body outside the wake.

If the projectile is not axisymmetric or has a
small fineness ratio the shock pattern and pressures
in the near field may differ appreciably from those
of a slender symmetric body to which the theory
is applicable.  TTowever, at sufficiently large dis-
tances from such a body the disturbanees will be
small and the theory may be used to give useful
information of the far-ficld conditions. For a
parabolic body of fineness ratio 5 the trend of the
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far-ficld decay of the bow-shock overpressure as
predicted by theory agrees well with experimental
results (ref. 4).

The assumption that the body is pointed at the
nose, a usual requirement in linear theory is
implicit in Whitham’s equations for the perturba-
tion velocities. Erronecous results may be obtained
if the theory is applied to a blunt shape. For
example, the theory is inapplicable to an elliptical
body (major axis in stream direction) although
experimental work (ref. 4) shows that the far-ficld
pressures are essentially the same as those for a
parabolic body of the same fineness ratio.

At low supersonic Mach numbers the bow shock
will be detached. A region of subsonic flow then
exists in the vicinity of the body nese.  The shock
in the neighborhood of the nose is then consider-
ably stronger than in the case of an attached
shock. Tt is difficult to justify, on a theoretical
basis, the use of Whitham’s equation in this
instance. Iowever, flight test data (ref. 5) ob-
tained at low supersonic Mach numbers indicate
that reasonably good agreement is obtained in this
casc. A detached shock also exists ahead of a
blunt-nose projectile.  There is a real difficulty
in applying the results to such a shape as already
noted for the elliptic body.

THE BASIC EQUATIONS OF THE MODIFIED THEORY

For the sake of completeness a brief derivation
is given of the equations for the far-field conditions
pertinent to the front shock. The numerical
evaluation of the equation obtained for the pres-
sure discontinuity will be dealt with in some detail
subsequently.  Certain general results, applicable
to a variety of axisymmetric problems, arc first
derived, and then the salient features of the far
field of a smooth body are obtained by introducing
the appropriate approximatlions for large values
of r.

From the linearized theory of supersonic flow
it is known (ref. 8) that the form of the perturba-
tion potential appropriate to a nonlifting body of
revolution is

NN i 1)
‘P(‘I:) 7‘)— J:. '\"—_-—~({l',—' t) Z—Bzrz'(

where the function f(?) is to be determined from
the boundary condition of tangential flow at the
body surface. The perturbation velocities arc

then obtained by differentiating ¢:
oo SO f L0 g
35 VA o Je—0—pr

ple_z JO) 1 @0/'M)
or r\m TJo \"(1-—,;0—*2—627'2

M

For axisymmetric slender smooth bodies, S(x) and
S7(x) continuous, the condition of tangential flow
requires that f(.t)=g;°° S’(xr) where S(r) is the
cross-sectional area and U, is the free-stream
velocity.  For small disturbances the body must
be pointed at the nose, 87(0)=0; hence, f(0)=0
and only the integral terms need be retained in
equations (1),

Following the basic hypothesis outlined in the
previous scction, Whitham replaces z—8r, the
characteristic variable of lincar theory, by y(x,r).
The function »(x,r) is determined from the con-
dition that y(x,r)=Constant be a characteristic
curve; that is, along the curve

9 cot(ut ) ©)
r

where u is the local Mach angle and 6 is the local
direction of flow. The characteristic variable y is
defined uniquely by the convention that at any
point on the body surface y is the value of the
lincar characteristic x—gr which passes through
that point. Thus, the equation y=z,—fr, defines
a mnonlinear characteristic curve which passes
through the point z,, r, on the body surface. For
bodics of large fineness ratio /2R .., SR <z and
y=2z. Henee, a convenient interpretation of the
variable 7 is that it is the horizontal distance
from the nose at which the extended characteristic
curve intercepts the body axis.

The basic results of the modified theory regard-
ing the pressure at any point in the field, the
shape of the curved characteristies, and the loca-
tion of the front shock may be obtained as follows.
In equations (1) (where now f(0)==0), if x is
replaced by y-+8r and the integrands are approx-
imated for small values of y/8r, the following
expressions are obtained:

R ()

U.”  Jagr
(3)

v u

T.x P
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in which

1 v S”(f)
F =—f ——=dt
W=3; ], Kk
In the undisturbed flow ahead of the body F(y)=
0. The pressure at any point in the field is then
given by cquations (3) and the result of linear
theory as

Ap__ap X _ALTFQ)
m_ .YJIZ er_‘\[Q—ﬂ 7'1/2 (5)

The differential equation for the characteristics,
equation (2), may be approximated to the first
order in /U, and »/U,, as

di_go Br _ap(2igt
d_r—“\[ékm w(pteg) O

§ MO+ . o i
where k= T When equation (3) is used,
equation (6) becomes

dx 1
==k 5 @

If equation (7) is integrated along the character-
istic
= xy— 1, (S)

from the point x,,r, on the body surface to a ficld
point z,r, it follows that at large distances on the
characteristic the following equation must hold:

r=0r—kF@)r?+y )

Equations (8) aud (9) constitute a parametric
representation of the curved characteristics.  The
two equations may also be interpreted as defining
the value of %, and hence of F(y), appropriate to
any field point z,r.

With the shape of the characteristics known,
the “angle” property which must be satisfied
along a shock is then applied to determine the
location of the front shock. In terms of the
parametler ¥, it is found that along the front
shock one must have

x=Br-+y—kF(y)r/? (10)

and

rl/2=].[F_%/)_2 J;y F(n)dn (11

The function F(y) defined by equation (4) is
of fundamental importance in the entire theory.
Equation (5) shows that, at a given radial distance
from the body axis, the longitudinal variation in
pressure is proportional to F(y). The atmosphere
undergoes compression over those portions of the
body for which F’(y)>>0 and expansion where
F’()<{0. 1In general, a shock is formed for cach
value of y for which F/(y)=0 and F”(y)>0 hold
simultancously. These shocks wusually run to-
gether at some distance from the body in such a
manner that only two shocks remain in the far
field. If the ultimate cross-sectional area of the
wake S,(«) is finite the function F(y) has the
following properties and physical interpretations:

(a) The initial compression at the nose:

Fy) ~2[R"(0)y"? as y—0

(b) Recompression outside the wake:
F(y)~—§—‘”1(7;i) yE as yow
(¢) The balance of compression and expansion:
|7 Fonn=o0 (12

(d) Reexpansion behind a closed body with no
wake, 8,(o)=0:

F(y) ”% Yy as y—o oo

where V is the volume of the projectile.

FURTHER SIMPLIFICATIONS APPROPRIATE FOR LARGE
DISTANCES

From these general results the simplified equa-
tions for the conditions at the front shock are ob-
tained which are sufficiently accurate in the field
at large distances from the body-wake combina-
tion. This is the region of greatest concern in the
prediction of sonic-boom intensities. Since the
expressions to be obtained are asymptotic results
for large values of r, they should not be expected to
give valid results in the neighborhood of the body.
The conditions under which the results are valid
arc restated: The body is assumed to be axisym-
metrie, slender, and pointed at the nose (S;(0)=
Sy’ (0)=0); the projectile-wake surfuce is smooth
(S(r) and S§’(x) continuous everywhere); and the
ultimate cross section of the walke S,( «) is finite,
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In addition, it is assumed, as is generally the case,
that only two shocks reach into the far field. A
thorough discussion of the structure of the near
ficld, the circumstance leading to the appearance
of three or more shocks in the far field, and the
methods for dealing with such problems as the in-
finite slender cone and bodies with discontinuous
slope, such as the double cone, are given in refer-
ence 1. These problems require more general
techniques than are needed for the body shapes
considered in this paper.

The far-ficld approximations depend upon the
fact that between the shocks the only character-
istics reaching to large distances are those for
which y=y, (fig. 2). The characteristic defined
by y=y, is a straight line and, thercfore, from
equation (9), F(y,)=0. Figure 2 also indicates
that in the far field large changes in the radial dis-
tance along the shocks are equivalent to very small
changes in y. Henee, with little loss of accuracy,
equation (11) becomes

Fy= 2 [Faan 9

From equations (13) and (10), the equation for the
location of the front shock becomes

x—Br—yoz—r”‘\/ 2% f " Fln)dn (14)
0

From equations (13) and (5), the pressure discon-
tinuity across the shock is

A]) 21/4 61/4
ol ,M‘/f F(n)dn 15)

\"'Y

Equation (15) is the fundamental equation widely
used in predicting sonic-boom overpressures at
Iarge distances.

The pressure at any point between the shocks
may be determined by approximating equation
(9) as
Fa) =l

and combining with equation (5) to obtain

AP (y+1)u2 (ﬁr r+1,)

from which for fixed large values of » the pressure

between the shock falls linecarly at a constant rate
independent of the body shape.

NUMERICAL EVALUATION OF THE INTEGRAL
FOR THE PRESSURE JUMP IN TERMS OF
CROSS-SECTIONAL-AREA DISTRIBUTION

It is to be noticed that the detailed behavior of
the function F(y) is of no concern in the prediction
of the magnitude and decay of the pressure jump
across the bow shock in the far field. From equa-
tion (15) it can be seen that only the value of

Vo
the expression f F(n)dy is required. The value
0

of this definite integral depends upon shape of the
body-wake combination under investigation (as
shown by eq. (4)) and, of course, varies from one
shape lo another.

The value of the upper limit ¥y, is determined
from the condition that the integral

v
16)= [ Fonan
A necessary condition

is & maximum at y=y.,.
for a maximum at y=y, is

dI

& =F(y)=0

hence, ¥, is a root of the equation F(y)=0. How-
ever, the appropriate root is not necessarily the
first solution of F(y)=0 (excluding y,=0) as has
been indicated in some of the literature concerned
with Whitham’s method. One must integrate to
that root which maximizes the integral I(y) in
order to account for the total strength of any
subsidiary shocks which may have run together
near the body to form a single intensified bow
shock reaching to large distances.  Sinee the total
expansion and compression must balance (eq. (12)),
there is always a root satisfying the required con-
ditions for body-wake combinations whose ulti-
mate radius is finite.

The expression for I(y) will now be reduced to
a form which avoids determining F(y) explicitly.
The result to be obtained allows rapid calculation
of the required maximum value and is particularly
useful in dealing with shapes for which no analytie
expression is available or for which the analytic
expression is tedious to handle in an exaet manner.

Write equation (4) in the form

Foy= - [ 78" @ =E de
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Then, the following expression for I(y) is ecasily
obtained by integration:

16)= [ Fain=y [* 7@t
0 T Jo

Integrating by parts and using the condition
S’(0)=0 yiclds

It)=5- f S; (52 i

This integral will now be evaluated numerieally
by using an equal-interval Simpson’s rule.  This
rule requires that the wupper limit ¥ be an even
multiple of the interval size which will be denoted
by A, For the shapes treated in this paper 7(y)
is a well-behaved function which presents no
difficulty if the integration is carried out analyti-
cally. However, if the integral is to be evaluated
numerically one must take eare in handling the
singularity of the integrand at the upper limit.
For this purpose it is convenient to separate the
integral into two parts

I)=5 L)+ 1.0)]

where

y-2A S'(E)
Il 7)=f
(y NNy E

S’ (§)

L(p=
-2 3y—§

dk
I the condition S(0)=0 is used,
integrated by parts (o obtain

S{y—24) 1f”’“ S(¢)
VoA 2Jy (g2

L,(p) may be

Ly)= dg  (16)

Applying Simpson’s rule to the integral remaining
in equation (16) yields

.i 11‘\,‘_‘2' 4 Q
Ix(.?/)=6\13 1 SW—28)— 55 Sy—34)

2 4
—pa SW—4) =z S(y—58)— .. ] (a7

The number of terms in equation (17) depends
upon the values chosen for  and A; however,

it may be noted that the last term always involves
S(0) which is zero.
The integral 7,(y) may similarly be integrated

by parts:
L(y)= l:S(E) “‘1 yS(ga/z d&:l (18)

The integral in equation (18) is equivalent to the
expression

fS(E)H?/ HS' () — S(J)
(y E)S/Z

—S8'(y)
\

1
9 Jg

which may be simplified by integrating the last
two terms as follows:

fS(EH(J E)S'(?/)—S(./)
(y—8)*"?

+28" (Py—E+2 ==

S(J) (19)
Vy—&

Thus, substituting equation (19) into equation (18)
gives

L ={ SO g
\y—¢
SO+ n=Sw .. T
2f (y—&)¥* df]
1 SO+ -8 (n—Sy d
2Jy-2a (y—£)3*
+8" (1)~ °A+Sf;£ S(",ﬁ 2 (20)

The integrand of the integral appearing in equa-
tion (20) is finite over the range of integration and
vanishes at the upper limit. Evaluating this
integral by using a three-point Simpson’s rule
gives

11,2—8 ~

) 1 [1342
Ly)=—"15— VA5 ()= A[ 2
\

S(y—24)

+4As*(y—A)———13"i+1GS(y)] 21

If the results obtained for I;(y) and I(y) (eqs.
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(17) and (21)) are combined, 7(y) is found to be
1142~

[(1‘3\ 2416

43“S(lj 4A)— . ]}

The number of terms in the series in brackets
depends upon 7 and A and terminates with the
term involving S(0), which is zero. I no analytic
expression is available for S(y), the S"(y) term 1n
equation (22) may be eliminated by introducing
the approximation

VAS' ()

S —4S(y—A4)

Sy+4)—Sk—2a)
24

S ()=

The expression for I(y) may then be written

1) =5 7 LI g - 1 )

S+1142 2
i4 V2 S(y—a) o S—28)

33/1 S(J 3A) +4';/z ‘9(J 4'-\)

53,2 S(y—54)+ . ] (23)

Equation (23) is the working form desired from
which the maximum of 7(y) may be readily found.
It is particularly appropriate for application to
shapes which cannot be readily expressed analyti-
cally since it involves only the cross-sectional-avea
distribution. In application a rough ecalculation
is first made to isolate the positive peaks in I(y).
More than one peak may occur.  The peak regions
are then investigated more thoroughly to deter-
mine which is the absolute maximum. The pres-
sure discontinuity across the bow shock of the
body is then simply

AP 21/4 61/4 _—
P TP VI

It is convenient to normalize S(y) to its maximum
value Spaz, and normalize the interval size A to

S

the body length L T Tne==7" Tz, the for-
N

mula for the pressure jump beconies

A’ ‘81/4 21])7”([1
P ™t Co
(%)
where
S
Cy=—1 T (24)

¥
23/4\7_*_1 maz
RESULTS OF APPLICATION TO SPECIFIC BODIES

In order to investigate the effect of certain body-
shape parameters upon the magnitude of the bow-
shock overpressures, the body-shape constant (%
defined in equation (24) was evaluated for several
familics of body shapes by using equation (23).
Tt should be remembered that €, depends upon
the cross-sectional-area distribution and, hence,
is a function of such local details as nose angle and
location of maximum thickness.

The first Tamily of shapes was chosen to investi-
gate the effect of vary ing the location of maximum
thickness. The body shapes in this group for
which the maximum thickness lies ahmd of the
center are shown in figure 3. By reversing these
bodies, four shapes were obtained for which the
maximum thickness lies behind the center.  Sinee
the nose angle varies as the location of maximum
thickness is varied, the cffect of the two parame-
ters has not been completely isolated.

The cffect of nose angle was investigated with
the bullet-shape bodies of figure 4. The nose
angles for these shapes vary from about 5 5° to 20°,
The maximum thickness is held fixed at the base.

o] 2 4 6 R 10

~x

Ficvrr 3.—Curves showing the radius of body shapes
having various locations of maximum thickness.
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Wake
region

0 2 4 6 8 10
X
i

Froure 4.—Curves showing the radius of body shapes
having various nose slopes.

By normalizing these shapes appropriately the
group of body shapes shown in figure 5 are ob-
tained. The nose angle is now constant, about
7°, and the maximum thickness is again fixed at
the base; however, the fineness ratio varies from
8 to 28.

The shapes shown in figure 6 are similar to the
shapes obtained at high Mach numbers by apply-
ing the supersonic arca rule to actual airplane
configurations, The forward portion of the shape
is the same for all bodies and the location of the
rearward hump is essentially fixed. Two shocks,
one from the nose and another from the hump,
contribute to the strength of the bow shock., The
five shapes shown in figure 7 are equivalent bodies
of revolution for actual airplanc configurations,
These body shapes are included for comparison
with the idealized shapes treated elsewhere.

EFFECT OF LOCATION OF MAXIMUM THICKNESS

Figure 8 shows the variation of the body-shupe
constant for a family of shapes having various

10 —
L n y

8 2 :

6 3 ;
R 4 " Woke
1/16 L region

4+ 5 -

& 8
2k T 3
{ 1 1 | L
[¢] 2 4 6 8 1.0
X
3

Fiaure 5—Curves showing the radius of body shapes
having various fineness ratios.

5—
.4
100
4~.
85
70\\
3.—
55
NN
i ‘\ N N
Ry 40NN N TN~
2} N T
\ \\\ _=
9 o —_—
10\Y, TS~
l.__ \ s
\ S~
N
i L 1 1 1 J
o} 2 4 6 8 1.0 12 1.4

Figure 6.—Curves showing the radius of body shapes
[l similar to those obtained from the supersonic area rule.

Shape
— I, Cp = 0.62
o6 —_—— 2, Cp = 0.62
—— 3,6"=O.57
—_— 4,cﬁ= 062 ==
Oi2f- ——==- 5,6 =064 .7 , \\
s
e \
s 1// \\\
— - // - N~
12 008 /// _/ ) \<§\
o Pt / ~
004 // / .
7, e \_\
G
I 1 | I
[¢] 2 4 6 8 10
X

Fiaure 7.—Curves showing the radius of the equivalent
bodics for several airplane configurations.

9
8
Cp 7
K
1 { 1 1 J
o] 2 4 : 8 10
(X! O pay

Ficure 8.—Shape coefficient for bodies having various
locations of maximum thickness.

locations of maximum thickness. The shapes for
which the location of the maximum section is
ahead of #/1=1/2 are determined from the equation

a=u:(7) [l_(g:)"”] (25)

where Al=g (1+%>5+]. The constant A, nor-




THE EFFECTS OF BODY SHAPE ON THE BOW SHOCK OF BODIES IN SUPERSONIC FLOW 11

malizes the right-hand side of the equation so that
its maximum value on the interval 0=5 I <1 is

unity. The maximum cross section is located
(/D) maz=2/(2+n). These shapes are shown in
figure 3. The shapes for which the maximum
cross section is behind #/{=1/2 arc determined
from the equation

Eea (DT e

The location of the maximum section is given by
(@/D) mar=n/(2+n). The right-hand side of equa-
tion (26) is also normalized by Al so that its maxi-

mum value on the interval 055 l Z1lisunity. The
shapes given by equation (26) are obtained by
making the substitution %zl—% in equation (25).

Thus, for a fixed value of n the shape given by
equation (26) is identical to that given by equa-
tion (25), but reversed in the flow. The wake
assumed in the calculations is defined by R,=0.
(Although the Von Karman drag is identical for
two such reversed bodies, it is of interest to note
that the sonic-boom pressure is different.)

Figure 8 shows that the body-shape constant
(', decreases by 20 percent as (/1) ne increases from
0.2 to 0.5. For the reversed shapes (7, increases
as (x/l) mez Increases from 0.5 to 0.8.  This increase
1s due to the extreme pointed nose. As (/) mer
increases, these shapes behave like bodies having
a shorter length and a long thin probe pointed
forward into the oncoming stream.

Since the nose angle for the nine shapes in this
family varies with the location of maximum thick-
ness the effects of these two parameters on the
value of (', have not been 1solated.

EFFECT OF NOSE ANGLE AND FINENESS RATIO

The body shapes shown in figures 4 and 5 are
determined from the equation

a==1-(1-%)
Roar

=5—=10; this fixes the fineness ratio

In figure 4, 2R

of the shapes, but allows the slope at the nose to
vary according to the relation

R (0)=5;

In figure 5 =4n. In this case the nose

{

’ 2Rma:
angle for all shapes is fixed at 7°, and the fineness
ratio varies linearly with n. The body shapes
as shown in figures 4 and 5 are considerably exag-
gerated in order to display more clearly their area
development close to the nose. The wake for
these shapes is taken to be a cylinder extending
to an infinite distance downstream with a radius
equal to that of the body base.

Figures 9 and 10 show a ncarly linear increase
in (7, with nose angle and fineness ratio.  Although
these two parameters vary by a factor of 3.5, the
shape coefficient increases by only 20 percent.
The increase in €, in figure 9 represents an actual
increase in the pressure jump due to increasing
bluntness. However, the pressure jump associ-
ated with the shapes in figure 5 is proportional to
‘)Rl"mC’a—g—; and decrcases with increasing fine-
ness ratio.

For the simple bullet-shape bodies shown in
figures 9 and 5 the bow shock and the nose shock

66
82

G
% sg|-

54

L

Figure 9.—Shape coefficient for bodies having wvarlous
nose slopes,

1 | .
10 15 20
Nose ongle, deg

-

66—

62

__/\,

1 1 1 1 1
o] 5 10 15 20 25 30
Fineness ratio

Fraure 10.—S8hape coeflicient for bodies having various

fineness ratios.



12 TECHNICAL REPORT R—76—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

arc identical. For more complicated configura-
tions the bow shock may be a combination of
several shocks which coalesce near the body. In
such cases the nose angle may have even less
cffect upon the bow-shock overpressures than
indicated in figure 9 as can be seen clearly for the
next family of shapes discussed where the strength
of the nose shock is a relatively small contribution
to the total strength of the bow shock.
SOME SHAPES SIMILAR TO THOSE OBTAINED BY APPLYING
THE SUPERSONIC AREA RULE

The body shapes shown in figure 6 have area
distributions similar to those obtained at high
Mach numbers by applying the supersonic arca
rule to actual flight configurations. The shapes
were obtained from the equation

o[-+ e

These shapes are quite flat in theregion 0.3 Z<05.

The radius of the body in this region is denoted by
Iy, The important properties of these shapes
are given in the following table:

K | e | Bomue (_1_)(&)! (R erltegly | T
R 2R maz 4 | 2R max l 844
10 0.83 1.1R 0. 424 35.8 1.48
25 .87 1,64 . 305 25.7 217
40 .89 2.15 . 2325 18.6 3.05
55 .89 2. 66 . IS8 15.9 3.95
T .90 3.18 L1573 13.3 4.83
R5 .90 3.70 135 11. 4 5.70
100 .90 4,22 L1185 10 . 57

As K increasoes, the location of the maximum cross
section remains relatively fixed; however, the
maximum radius increases by a [actor of 4 for the
range of K considered here. A given value of K
Yinaz
I
aatio of the shape is then determined from the

value of the fineness-ratio parmneter( ! )(&>
2R e/ \ 1

fixes the value of the ratio The fineness

Rs .
once a value of —l—s is chosen. The wake used for

each body in the calculations is shown as the
broken curve in figure 6. It was chosen so that
when %=§h the flow turns through an angle
of 15° after passing over the peak. The flow then
separates from the rear surface of the projectile
and asymptotically approaches a cylinder of
constant cross section. For K=10 the wake is
simply R%,=0.

When K>10, the bow shock which extends into
the far field from these shapes is a combination of
two shocks —one from the nose and another from
the steep incline ahead of the maximum cross
section-—which coalesce at some distance from
the body. The nose shock has the same strength
for all shapes; the strength of the second shock
increases with 1 ,.;.  Thus, if y, in equation (15)
were taken as the first root of F(y)=0 only the
contribution of the nose shock would be taken into
account.

Tn order to compare the relative strengths of the
two shocks for a given body, it is convenient to
2Rmaz

R

introduce the parameter C’,,z( (7, so that

‘ 1/4 —
ap_ 8 , Ut (.. Tor a fixed value of Ut all the
D <C>3/4 { 1
{
bodies have the same nose shape ahead of %% and,

hence,noseshocks of equal strength.  The rearward
hump gives risc to a second shock which augments
the nose shock in the far ficld. The differences in
the size and shape of the hhump are responsible for
the variation in (,. The values of O, are given
in the preceding table. When K=10 the bow
shock and the nose shock are identical. By
comparing C, for K=10 with (, for the other
shapes it can be seen that the strength of the nose
shock becomes less important as K increases.
Thus, any changes in the strength of the nose
shock due to changes in the nose shape of these
bodies will be less significant than in those cases
where the nose shock alone is responsible for the
far-field pressure discontinuity.

Figure 11 again indicates only a small variation
in the cocfficient (7, in spite of the difference in the
body shapes. Tn the present case there is a
20-percent decrease in (%, as the fineness ratio

8
7
G

6

1 [ 1 1 J
) N 2 3 4 5

Ry
ZRmﬂ’

Fraure 11.—Shape coeflicient for bodies similar to super-
sonic-area-rule shapes.
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varies by a factor of 3.5. This trend in (), is the
reverse of that shown in figure 10.

EFFECT OF THE WAKE

In order to investigate the flow field near the
body close to and behind the base, Whitham’s
theory requires that some form be assumed for
the shape of the wake. Pictures of projectiles in
flight indicate that the wake turns roughly
through 12° at the base and then converges to
form a cylinder of nearly constant cross section
equal to one-half the base area. Since the exact
form of the wake is not specified, it is of interest
to determine the effeet of various wake shapes on
the pressure rise across the shocks in the far field.

In order to investigate this question a shape
obtained from equation (27) was used in which
K=55 and R/l=1/84.4. Tour different wake
shapes were then considered as shown in figure 12.
The first is a cylinder of constant cross section
which joins smoothly to the maximum cross
section of the body. The two intermediate wake
shapes separate from the body after the flow has
turned through 15° and 30° respectively. At
large distances behind the body these two shapes
become asymptotic to eylinders of constant cross
section. The fourth wake is defined by S,=0,
that is, the flow is tangent to the surfuce every-
where along the rear surface of the body. This
requires the flow to turn through 38°.

The body-shape constant was calculated to be
the same for all four wake shapes. This result is
believed to hold in all cases where the wuke
separates from the body behind the maximum
scection and becomes thinner thereafter but no
general demonstration can be given. The strength
of the tail shock, however, is affected by the shape
of the wake as shown in reference 1.

3 o°

2k
R

,.?—a 15°
’ b

30°

38°
1 1 ! | | S
] 2 4 ) B8 10 12 14

Frgure 12,—Curve showing the radius of a body shape
with various assumed wakes.

SEVERAL AIRPLANE AREA DISTRIBUTIONS

References 4 and 9 indicate that the sonic-boom
pressures associated with a nonaxisymmetrice air-
plane configuration may be predicted from Whit-
ham’s theory by replacing the actual area distri-
bution by an equivalent body of revolution
obtained from the supersonic arca rule. Whit-
ham’s method has recently been extended to
lifting configurations in another manner which is
also bused on an “equivalent body’ concept (ref.
10). The five shapes shown in figure 7 are
equivalent-body area distributions for actual air-
plane configurations. These shapes have a rather
irregular area development and are included for
comparison with the smooth shapes treated
previously.

Shape 2 is a Mach number 3 supersonic arca
distribution which is similar to the shapes in figure
6. The other four shapes (1, 3, 4, and 5) are
Muach number 1 area distributions. The bow
shocks on shapes 1, 2, and 3 are a combination of
three shocks which appear ahead of (#/0) ez,
whereas the bow shocks for shapes 4 and 5 are a
combination of two shocks. In spite of the
diversity of the local details of these five shapes
C, again changes very little and the pressure jump
is largely determined by the fineness ratio.

CONCLUSIONS

The physical implications of the basic hypoth-
esis for Whitman’s modification of lincar theory
(Communications on Pure and Applied Mathe-
matics, August 1952) have been considered and
a brief derivation given of the far-field equations
for the bow shock. An integral which determines
the cffect of body shape upon the bow-shock
overpressures in the far field has been reduced to
a form which involves only the cross-sectional-
area distribution and can be readily evaluated for
body shapes for which no analytical expression is
available. The integral has been evaluated for
a number of families of body shapes chosen to
investigate the eflects of nose angle, fineness ratio,
and location of maximum cross section on the
bow-shock overpressures. The results of these
calculations indicate the following conclusions:

"1. In regard to body geometry, the pressure
discontinuity in the far field is, to a first order,
independent of body shape and depends only on
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the fineness ratio. Local details have second-
order effects which, in general, can be accounted
for only by direct computation of the body-shape
constant.

2. The calculated values of the shape constant
which determines the effect of body geometry
upon the pressure jump varied from 0.54 to 0.81.

A convenient value of the shape constant is 0.64,
but an accurate determination of this constant
should be made if a careful comparison between
theory and experiment is desired.

LancLEY REsearcH CENTER,
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
LancLey FieLp, Va., March 29, 1960.
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