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SUMMARY

The effect of contraction ratio and chamber pressure on the combus-
tion performance of a gaseous-hydrogen - liquid-oxygen combustor was in-
vestigated analytically and experimentally. The experiment was con-
ducted with a "two-dimensional” gaseous-hydrogen - liquid-oxygen engine
of sbout 150-pound thrust. The contraction ratio was varied from 1.5
to 6 by changing the nozzle throat area. This variation resulted in a
chamber pressure variation of about 25 to 120 pounds per square inch.
The experimental results were corrected for heat transfer to the engine
walls and momentum pressure losses.

The experimental performance, as evaluated in terms of character-
istic exhaust velocity, was 98 percent of theoretical at contraction
ratios greater than 3 but decreased very rapidly at smaller contraction
ratios. The heat-transfer rate increased with increasing contraction
ratio and chamber pressure; it was about 1 Btu per square inch per sec-
ond at a contraction ratio of 1.5 and increased to about 3 at a contrac-
tion ratio of 6.

The combined effects of contraction-ratio and chamber-pressure
changes on performance were investigated analytically with a mixing
model and a vaporization model. The mixing model predicted very poor
mixing at contraction ratios below 3 and almost perfect mixing at higher
contraction ratios. The performance predicted by the vaporization model
was very close to 100 percent for all contraction ratiocs.

From these results, it was concluded that the performance was lim-
ited by poor mixing at low contraction ratios and chamber pressures.



INTRODUCTION

Recent developments in rocket technology have indicated that low-
chamber-pressure and low-contractlon-ratic engines may be advantageous
in certain applications. This is provided, however, that there is not a
serious performance penalty at the lower pressures and contraction
ratios.

The purpose of this paper is to determine the combustion losses, if
any, at low contraction ratios and chamber pressures and to explain
these losses analytically. The chamber-pressure and contraction-ratio
changes in this study were produced by varying the nozzle throat area.
All other operating conditions were held approximately constant. Char-
acteristic exhaust velocity c* was determined with a gaseous-hydrogen -
liquid-oxygen combustor of about 150-pound thrust at a total propellant
flow rate of 0.610 pound per second and an oxidant-fuel ratio of 3.2,
corresponding to peak theoretical characteristic exhaust velocity.

APPARATUS AND PROCEDURE .

Combustor

The engine, shown diagrammatically in figure 1, approximated a
"two-dimensional” configuration, having a 1- by 8-inch rectangular cross

section for combustion. The total engine length was 13% inches, includ-

ing 3 inches of nozzle; the engine walls were 1 inch thick.

The chamber pressure was varled from 25 to 120 pounds per square
inch by means of a set of interchangeable nozzle blocks bolted onto the
engine. The throat areas and corresponding contraction ratios are as
follows:

Contraction Nozzle
ratio throat
area,

sq in.

1.5 5.33

2 4.00

3 2.67

4 2.00

5 1.60

6 1.33 4

The nozzle cross sections were also rectangular, with the chamber width
of 1 inch preserved to the nozzle exit. The chamber and the nozzle .
blocks were made of uncooled copper.
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Injector

A concentric tube-type injector was used, three elements of which
are shown in figure 2. There were 30 such elements arranged in a
straight line parallel to the long dimension of the injector along the
centerline, with l/4-inch hole spacing. The oxygen tubes had an inner
diameter of 0.047 inch and were about l% inches long; they were concen-
tric with gaseous hydrogen orifices of 0.1285-inch diameter and l/4-inch
length.

Test Facilities

A pressurized-tank propellant flow system was used. Liquid-oxygen
temperature was stabilized by submergence of the oxygen flow system in
a boiling liquid-nitrogen bath.

Performance Measurements

Engine performance was evaluated in terms of characteristic exhaust
velocity c¢*, which was calculated from measurements of chamber pressure,
propellant weight flow, and nozzle throat area.

Chamber pressure was measured by both a Bourdon tube and a strain-
gage-type transducer, both sharing a common pressure measurement tap in

the engine wall l% inches downstream of the injector, as shown in
figure 1.

Ligquid-oxygen flow was measured with a rotating-vane-type flowmeter.
The output of this meter was recorded directly as frequency and also
as a direct-current voltage.

Gaseous-hydrogen flow was measured with a standard ASME orifice.
The flow was computed from measurements of pressure and temperature above
the meter and the pressure drop across the orifice.

The maximum possible random error in c¢* values measured with this
instrumentation was approximately 12% percent.

Procedure

Five or more runs of 2.2-second duration at each contraction ratio
were used to evaluate the c¢* performance. Only those runs whose oOXi-
dant and fuel flow rates were within 210 percent of the predetermined



values of 0.464 and 0.145 pound per second, respectively, were used.

This gave a mean oxidant-fuel ratio of 3.2. In addition, any runs having
irregular liquid-oxygen flow, as indicated by the direct-current voltage
records of oxidant flow, were discarded. The performance data are shown
in table I.

Correction of Observed Performance

The observed c* values were corrected for heat-transfer losses
and momentum-pressure losses. The value of the theoretical c¢* was
also corrected for the enthalpy change in the propellants due to the use
of gaseous rather than liquid hydrogen. The heat-transfer loss and en-
thalpy corrections were made by the method presented in reference 1,
which treats the heat losses of the combustion gases to the engine walls
and the enthalpy change in the propellants as a change in heat content
of the combustion gases in the combustion chamber. The change in theo-
retical equilibrium c¢* was from 8000 to 8240 feet per second at an
oxidant-fuel ratio of 3.2. The heat-loss correction factors are listed
in table II.

The momentum-pressure-loss correction is needed because the ob-
served pressure was higher than the actual total pressure of the gases
at the nozzle throat. The correction factors were computed with equa-
tions (3-13) and (3-41) of reference 2 and are given for each contrac-
tion ratio in table II.

Heat-Transfer Measurements

Although the engine was uncooled, an average overall heat-transfer
rate was measured by using the engine structure as a calorimeter. The
heat-transfer rate was thus calculated from the engine weight and spe-
cific heat, run-duration time, and temperature increase. The tempera-
ture increase was taken to be the difference between the initial engine
temperature at the start of the run and the highest engine temperature
reached after the end of the run. Both the fuel and oxidant flows wére
stopped simultaneously because the flow of ccld propellant after shut-
down would have affected the heat-transfer measurements. The total
heat-absorption rate and per-unit area rate are given in table II. The
engine temperature was detected with a thermocouple imbedded about 1/2
inch deep in one face about 5 inches below the injector, as shown in
figure 1. A single thermocouple was sufficient because the high conduc-
tivity of the copper allowed the entire engine to approach a uniform
temperature quickly after shutdown. Also, the heat losses of the engine
to the surroundings were negligible, as evidenced by the long time
needed for the engine to cool off after its maximum temperature was
attained.
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RESULTS AND DISCUSSION

The experimental characteristic-exhaust-velocity data are presented
in table I; and the averaged c¢* +wvalues and efficiencies and the cor-
rected efficiencies are presented in table II.

These corrected and averaged experimental results are shown in fig-
ure 3 as data points within a band whose width is that of the experi-
mental error. The experimental performance appears to consist of two
regions. One is a high-performance (98-percent) region above a contrac-
tion ratio of 3 and a pressure of €60 pounds per square inch; in this
region, contraction-ratio changes have little effect on performance.

The other region is below a contraction ratio of 3 and below chamber
pressures of 60 pounds per square inch; in this region, the performance
decreased very rapidly with decreasing contraction ratio and chamber
pressure.

The effects of contraction ratio and combustion pressure on per-
formance were also studied analytically by using both a mixing-limited
and a vaporization-limited approach. The mixing model of reference 3
was used to determine mixing efficiency as a function of contraction
ratio. The mixing efficiency, called a "ripple factor" in reference 3,
is a measure of concentration variations at any given chamber length and
has a value of unity for perfectly mixed gases. Mixing efficiencies at
a chamber length of 10 inches were calculated for each contraction ratio.
To calculate a mixing efficiency, the turbulence intensity (ratio of
fluctuating to mean-stream velocity) was determined as follows: An ex-
perimental value of fluctuating veloclty was obtained for a contraction
ratio of 6 from reference 4. These measurements were made with the same
engine used in the present study. The mean-stream velocity as a func-
tion of contraction ratio was calculated from equation (2) of reference
5. Then, with the assumption that the fluctuating velocity is independ-
ent of mean-stream velocity, as indicated in reference 4, the turbulence
intensities were calculated by taking the ratio of fluctuating to mean-
stream velocities. Mixing efficiencies were then determined from figure
(6) of reference 3. The mixing efficiencies thus calculated are shown
in figure 3 as a function of contraction ratio. This curve shows almost
perfect mixing at contraction ratios greater than 3 but rapid falling off
as the contraction ratio is decreased below 3.

The striking similarity of the experimental performance curve and
the mixing efficiency curve of figure 3 suggests that the performance was
mixing-limited at contraction ratios less than 3. This analysis would
seem to indicate that performance, when limited by poor gas-phase mixing
caused by low turbulence conditions, may perhaps be improved by increas-
ing the ratio of chamber length to injector hole spacing.



The performance efficiency as a function of contraction ratio was
also predicted with the vaporization model of reference 6. The
vaporization-limited performance, however, was found to be very nearly
100 percent over the entire experimental range of pressures and contrac-
tion ratios. Therefore, it is unlikely that the loss in performance at
low contraction ratios or chamber pressures was due to incomplete
vaporization.

Poor performance at the lower contraction ratios may also have been
due to low stay times of the gases at these contraction ratios. At a
contraction of 1.5 the stay time is only about one-third that at a con-
traction ratio of 6. Therefore, the propellants had less time to mix and
burn as the contraction ratio was decreased. However, in view of the very
high chemical space heating rates, and therefore short reaction times as
indicated in reference 7, it is doubtful whether the performance at the
low chamber pressures and contraction ratios was chemically limited by
reaction rates.

Limitations and Errors

One possible source of experimental error may have been boundary-
layer buildup at the square corners of the nozzle. This would cause the
effective throat area to be slightly smaller than that used in computing
c* wvalues and contraction ratios. The use of the effective throat aresa
would have the effect of shifting the experimental curve of flgure 3
slightly downward and to the right. This, however, would leave the per-
formance trends unchanged.

Although the mixing model appears to offer a reasonable explanation
for the experimental performance trend, it must be remembered, however,
that the mixing calculations are at best only very approximate. The er-
rors in the mixing calculations would be due to assumptions made regard-
ing chamber gas velocity calculations, the value of the fluctuating ve-
locity obtained from reference 4, and the extrapolation of the cold-flow
conditions of reference 3 to combustion conditions. The values of in-
tensity of turbulence used, however, are thought to be on the high side,
which would tend to minimize the performance limitation indicated by the
mixing model.

It must also be remembered that the mixing efficiency cannot be con-
verted directly to .¢* values but should indicate performance trends.
Although at off-stoichiometric propellant ratios complete mixing is un-
necessary for complete combustion, high performance probably cannot be
attained with poorly mixed gases.

Il
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SUMMARY OF RESULTS

The effects of chamber pressure and contraction ratioc on combustor
performance were investigated for a gaseocus-hydrogen - liquid-oxygen
combustor. The contracticon ratio was varied from 1.5 to 6 with a re-
sultant chamber pressure variation of about 25 to 120 pounds per square
inch.

Experimentally the performance was very high, approximately 98 per-
cent, at contraction ratios above 3 and chamber pressures greater than
60 pounds per square inch. As the contraction ratic and chamber pres-
sure were decreased below these values, the performance decreased very
rapidly. Analytically, it appeared that the poor performance in this
region was caused by poor gas-phase mixing due to low turbulence condi-
tions. This analysis indicated the possible importance of the ratic of
chamber length to injector-hole spacing in combustors whose performance
may be limited by gas-phase mixing. For such a combustor, a high value
of this ratio may be needed In order to achieve a high performance.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, November 23, 1960
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Figure 2. - Typical injector section.
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Figure 3. - Effect of contracticon ratic on performance.
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