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ON SOLUTIONS FOR THE TRANSIENT RESPONSE OF BEAMS!

By Rosrert W. LEoNARD

SUMMARY

Williams type modal solutions of the elementary
and Timoshenko beam equations are presented for
the transient response of several uniform beams to
a general applied load.  Frample computations are
shown. for a free-free beam subject to various concen-
trated loads at its center.  The discussion ineludes
factors influencing the concergence of modal solu-
tions and factors to be considered tn a choice of beam
theory.  Results obtained by two numerical proce-
dures, the traveling-ware method and Tloubolt s
method, are also presented and discussed.

INTRODUCTION

The problem of obtaining the response of elastic
structures to rapidly applied loading is of con-
tinuing concern to the aireraft industry inasmuch
as aireraft structures must withstand blasts, land-
ing impacts, and a variety of other transient loads.
In order to study the various factors involved in
this problem, it is desirable to consider simplified
structures for which thorough studies are possible.
Among the simplest examples of continuous elas-
tic structures are uniform beams. Consequently,
beams have been the subject of a considerable
number of transient response investigations, and
a variety of solutions of particular beam problems
are scattered throughout the existing literature.
(See, for example, refs. 1 to 7. For an extensive
bibliography, see ref. 7.)

It is the purpose of the present paper to provide
a relatively complete source of useful modal solu-
tions and to discuss the factors influencing the
covergence of modal solutions and factors involved
in the choice of the proper beam theory to be used
in an analyvsis. To this end, a consistent presen-
tation is made of Williams type modal solutions

t Supersedes NACA Technieal Note 4244 by Robert W, Leonard, 1958,

for the response to a completely general transient
load of three pertinent uniform beams (a free-free
beam with a concentrated mass as its center, a
cantilever beam, and a simply supported beam).
(Some duplication of the existing literature is in-
cluded for completeness.)  Solutions, based on
both the elementary and Timoshenko beam theo-
ries, are obtained by a process which can be
readily extended to the solution of problems with
time-dependent boundary conditions. The appli-
cation of the method 1s illustrated for the case of
the free-free beam with a concentrated mass, and
results for all the beams are summarized in tables
[ and TI. In addition, some typical computed
results are shown for a free-free beam subjected to
various concentrated loadings.

Another purpose of the present paper is a critical
discussion of two numerical procedures, the travel-
ing-wave method (ref. 6) and Houbolt’s method
(ref. 8). The procedures are briefly desceribed and
computations made with both methods are com-
pared with the modal results.

SYMBOLS
A, effective shear-carryving area of eross section
« arbitrary constant
¢ propagation velocity of bending discontin-
uities, /["IA
\ mr?
3 propagation velocity of shear discontinui-
ties, JL‘G
m
K Young's modulus of elasticity
f applied concentrated load
K dimensionless applied concentrated load,
1
ol
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« shear modulus of elasticity

I moment of inertia of cross section

1] integers

k dimensionless frequency parameter, wzz’\/lfi

kT

bt dimensionless rotary inertia parameter, r//

k. dimensionless transverse shear parameter,
1 JEL

/ length of beam (half-length in case of free-
free beam)

M bending moment (see fig. 1)

M dimensionless bending moment, M{/fT

A, dimensionless static bending moment

n, generalized mass

m mass per unit length

m, concentrated mass

M. ratio of the concentrated mass to total mass
of the beam, m /ml

P, generalized foree

q applicd distributed load (sce fig. 1)

q dimensionless  applied  distributed  load,
qBIET

r cross-sectional radius of gyration

{ time

V transverse shear foree (see fig. 1)

v dimensionless transverse shear foree, VT

T, dimensionless static transverse shear foree

x coordinate along the beam

Y deflection (see fig. 1)

W dimensionless deflection, /!

i dimensionless translational component of
ith natural mode

Ys dimensionless static deflection

W dimenstonless rigid-body translation

a; :kiv/é [— (kit+kp+ J(ll's2—ll'}e12)2+é}]

sk} [(k,ukmz) Gkt ,f:l

;a(2+k(2A‘ﬁ
717}91‘?_11':'2153

5(£)  Dirac delta function (6(5):0 for £50;

f: 8(&)dE= 1)

0 dummy variable of integration

sin Bi—é sinh «;
Qy
A,’:" T o

1
08 B; +— cosh a;
i

Caad

dimensionless space coordinate, x/l

. ) . t (K1
T dimensionless time,

"BV m
@ ith generalized coordinate
¥ rotation of beam cross section
¥ rotational component of ith natural moae
¥, statie rotation of beam cross section
w circular frequency of natural vibration
I1(z) step function (I(r)=0 for r<0; I{r)=1 for

r120)

Matrix notation:

[ ] rectangular matrix
| ] row matrix

I 1 column matrix

| 1 «diagonal matrix

Primes and Roman numeral superseripts are used
to derote partial differentiation with respect to £.
Dots denote partial differentiation with respect
to 7.

WILLIAMS TYPE MODAL SOLUTIONS

In normal-mode solutions for the response of
beams to transient loads, the response is expanded
in terins of a series of normal modes of the beam.
The eoefficients of the expansion (the generalized
coordinates) are determined from the governing
differential equations and the boundary and
initial conditions, Williams type modal solutions
(ref. 2) differ from ordinary normal-mode solutions
by virtue of the isolation of that portion of the
respot:se which may be obtained in closed form by
a preeess of direet integration --the so-celled
“stati - portion of the response.  Only the remain-
ing “c ynamic”” portion of the response is expanded
in seres form.

The advantage of the Williams method over
ordinsry modal solutions is its ahility to vield, for
many loading conditions, a more accurate result
with the same number of terms in the series.
(See, ‘or example, refs. 4 and 5.) [t 18 particularly
advar tageous where the response function is
discontinuous. (An example of this is the deter-
mination of the shear due to a concentrated load.)
The discontinuity is contained exactly in the
separated static portion of the response and the



ON SOLUTIONS FOR THE TRANSIENT RESPONSE OF BEAMS 3

series 1s only required to reproduce a continuous
remainder.

In the Williams method, the isolated portion of
the response is termed static because significant
parts of the inertia forces are ignored in its
determination.  In general, however, it is time
dependent by virtue of the time dependence of the
applied load and of the nonhomogeneous time-
dependent boundary conditions if such are im-
posed.  In the case of beams with a fixed point of
reference, such as eantilever or simply supported
beams, all inertia forces are ignored in the deter-
mination of this static part of the response: for
beams with rigid-body freedoms, however, the
inertia forces due to the rigid-body motion must
be taken into account.,

One method of obtaining Williams type modal
solutions is illustrated herein for both the ele-
mentary and Timoshenko beam theories.

ELEMENTARY BEAM THEORY

Basic equations.—The motion of a  beam
subjected to an applied load of intensity ¢(rf) is
usually taken to be governed by the Bernoulli-
Euler equation

0% 1., 0% oy _ :
ort Tl gt o= M

where x is the coordinate along the beam, ¢ is
time, y(r,t) is the deflection (see fig. 1), KI(r) ix
the bending stiffness of the beam, and m(x) is its
mass  per unit length. The internal bending
moment M (r 1) and the shear foree Vi) at any
cross section (see fig. 1) are given by

2
M r1 S @)
and
. o ,,, 0 «
Ve O KT a.[z (3)

respectively.
For a uniform beam, these equations may be
written in the dimensionless forms
it y=yq 4)

M=—75" (5)

"v:_Tlur (0)

Timoshenko theory

M+M

M, v ox

ax

' /4
N T B A L

Fravre 1. -Positive distortions and positive internal forees

and moments associated with a typical beam element.

where

v =Y

— M
Mg =1
— T2
Tien =
ql®

and 1 is the length of the beam or half-length in
the ease of a free-free beam.  The primes denote
partial differentiation with respect to g:[- andd
dots denote partial differentiation with respeet to
ey
T=voa /" "
2V m
Symmetrical free-free beam with concentrated
mass.- - For symmetrical motion of a uniform

beam having free ends at £=1 and £=—1, atten-
tion is restricted to the portion 0=f(=<1 with
boundary conditions stated i the form
7 (0,7)=0 (Ta)
¥ (0,7)==0 (7h)
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77 (1,1)=0 (7¢)
7 (1,7)=0 (7d)

If, in addition, the free-free beam has a concen-
trated mass 2m, located at the center §=0, the
influence of this mass may be introduced into the
problem by changing the boundary condition,
equation (7h), to 17”’(0,1)—{—%(?(0,7):0 where
m.=m,/ml. On the other hand, the boundary
conditions, equations (7), may be left unchanged
and the differential equation (eq. (4)) altered to

P LM =7 (®)

where 8(8) is the Dirac delta function. In the
solution that follows, the latter alternative is
chosen.

The beam is assumed to be initially at rest and
undeflected; that is,

y(£0)=Y(£0)=0 9)
Then the response to a general symmetrical load
g (¢£,7) may be obtained in the Williams form by the
following procedure.
The solution s assumed 1n the form

y(z,r):y,m+.T/s<s,r>+§°°u¢i<r>y,-<z> (10)

The quantity ¥, is the rigid-body translation of
the free-free beam. Tt is determined to satisfy
the differential equation

I 1 b_ .
Bn=p)s [ aend (an
and the initial conditions

7.(0)=%,(0)=0 (12)

The quantity y.(¢,7) i1s the static deflection de-
termined to satisfy

7VED =7 — I+ MS®Y(0)  (13)
and the cantilever boundary conditions
¥:(0,7)=0
7,/(0,7)=0
v (1,71)=0
v (1,7)=0

(14)

Note that, by virtue of the definition of %,, ¥, also
satisfics  the boundary condition 7,7 (0,7)=0.
Finall:r, the shapes 7,(¢) (where 1=0, 1,2, . . )
are the mnatural vibration modes of the heam
satisfy ing

7O = +mSOk V(&) (15)
and the boundary conditions
¥/ (0)=0
¥/ (0)=0

()0 (16)

7 (1) =0

where the dimensionless frequency cocfficients k;
m
EI
Further, it can be shown that the modes 7,(§)
satisfy the orthogonality condition

(where1=0,1,2,. . ) are defined by k,:wilz\/

JIU 1+ 8Oy Oy, (E)dE=0 (=)  (7)

Note that, by virtue of the arbitrary selection of
a datam plane for 7,, the dynamic portion of the
response, in general, still contains a rigid-body
component (¢=0). Asdefined, the total deflection
7(£,7) satisfies the boundary conditions (egs. (7)).
Therc remains the problem of determining the co-
efficients ¢,{7) so that the differential equation
{eq. “8)) and initial conditions {(eqs. (9)) are
satistied.

If sxpression (10) is substituted into differen-
tial equation (8) and equations (13) and (15) are
taken into account, the differential equation is
reduced to

g’[&;‘(fHk?@(r)]@i(s):—i"/s(s,r) (18)
Mult plying equation (18) by [1+m, 8(5)]7,(¢) and

integ -ating with respect to £ from 0 to 1 yields, in
view >f equation (17), the following result:

. _ P
¢i(7) +ki2¢i("')v m

i

(i=0,1,2,..) (19)
wher:

1
mzf (143173 de
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Pir)= f 14+ T80T (&)

Similarly, substitution of expression (10) into the
initial conditions (eq. (9)) and taking into account
equations (12) lead to the following conditions:

o)== o

m;

: (20)
ooy =—-TO G e

my

A simple formula for the generalized-mass inte-
gral m; for =1, 2, . . . has been presented in
reference 9 for uniform beams having any of the
usual end conditions (free, pinned, or clamped)
but without concentrated masses. In terms of
the dimensionless quantities defined herein, the
extension of this formula to beams with a con-
centrated mass m, at £=0 is

mi:J (1477, 6(8)] J.2()d

L m g0+

4 k2 2

qor BETHD=25 (077 )

+7/74(1)] (i=1,2,...) (1)

For the present case where the end (§=1) is free,
equations (21) reduee to

1 m 21.2((}) 77 2
mi:‘I .y 20)+72(1)]

(1=1,2,...) (22a)

The rigid-body generalized mass (1=0) is seen to be

mey=(1 +7ﬁ-r)?702 (22h)

Some reduction of the generalized-load integral
P;(r) may also be accomplished in general terms
for i1=1, 2, The quantity |14-m8(£)17.(8)

may be replaced by k}_,j,»"’(&) (eq. (15)); then, suc-

cessive integrations by parts and application of
the boundary conditions (eqs. (14) and (16))
reduce the integral to

(i=1,2,...)

2

. 1 o -
Pin=ps [ B EnT 6

Substituting from equation (13) and recalling that,
in natural vibration, the inertia loads on a free-free

beam are self-equilibrating yield, finally, the gen-
eralized load

. 1 (2 — . ey
[)"(T'):l{ﬁ ju q (&, 7y, (5)dE (1=1,2,...) (23a)
On the other hand, for ¢=0, the quantity Py(r) is
most simply expressed as

1
Po()=T, JO yo(E, ) (23h)

It might be noted here that, in the usual method
of normal modes, the expressions for generalized
force corresponding to equations (23a) do not
have the factor 1/k2  This i1s one manifestation
of the more rapid convergence of the Williams
method.

The problem now requires direct integration of
equations (11) and (13) for the deflections 7, and
¥, solution of equations (19) for the generalized
coordinates ¢, and solution of equation (15) for
the natural modes of vibration 7%, with each
function satisfyving the designated boundary or
initial conditions. Direet integration of equation
(11) with the initial conditions (eqs. (12)) taken
into account yields

- 1 A A \
= 1= | aendeans  es

Substituting equation (11) into equation (13) and
integrating four times, taking into account the
boundary conditions on ¥, (eqs. (14)), vields the
following result:

gen=[[*[’ [ a@nuy:

1+m<6'4—6 4>J 2Emd (25)

The solution of equation (19), satisfyving also
cquations (20), is readily obtained by means of the
Laplace transform. The result is

_ I)I(j) _k_z r > . A _
qbi(r);———;ﬁi—_' +miJ; ,(6) sin k,(r—0)do
(i=0,1,2,...) (26)
Finally, the natural-mode shapes ¥; and the

corresponding frequeney equation are derived in
reference 10, These results, including the natural-



6 TECHNICAL REPORT R—21 --NATIONAL AERONAUTI(S AND SPACE ADMINISTRATION

mode shapes and the frequency equation, are
summarized for easy reference in table I(a).
Relations are also given in table I(a) for the
moment 3 (&7) and shear V(&7) obtained by
substitution of the deflection response into equa-
tions (5) and (6). (It is also possible to obtain
these quantities by integrating the total load as

_— Al | "
V- jE (@— i)t

—_— bl B,
A —J Tdt
£

However, some care must be exercised in using
these formulas when the load function is discontin-
uous in time or has discontinuous first derivatives
with respect to time.)

Other configurations. —The response of a
uniform free-free beam without a concentrated
mass is given by the results in table I(a) with
m.=0. The response of a cantilever beam may
also be obtained from the response of the free-free
beam with the concentrated mass by a limiting
process in which the mass W, approaches infinity.
Results for the cantilever beam are summarized in
table I(h). For completeness, the  Williams
solution for a simply supported beam is shown in
table 1(¢).

Time-dependent boundary conditions. It is
worthwhile to point out that the method outlined
in this report is directly applicable to the solution
of problems with nonhomogencous time-dependent
boundary conditions.  Such problems require the
sepuration of the solution into two parts; one
satisfying the time-dependent boundary conditions
atd the other capable of being expanded in terms
of time-independent funcetions such as the natural
modes of the beam, (See, for example, ref. 11.)
In the Williams method, this separation is already
made and time-dependent boundary displacements
or forees are simply introduced into the boundary
conditions imposed on ¥, or into the equations for
rigid-body displacements

Constder, for example, a uniform beam fixed at
one end and given a variable displacement at the
other, such that its differential equation and
boundary conditions are

Y EDFYED=qlET)

70,7 =95(0,7)= ¥/ (1,7)=0

y(1,m)=g(r)

The solution would be assumed in the form of
equation (10) but with %,=0 since there 1s no
rigid-body translational freedom in this case. The
static portion of the solution would be determined
to satisfy
TN =q(ET)
and
y.(0,7)=y/ (0,1 =y, (1,1)=0

V. (Lry=g(7)

while the expansion funetions ¥, (where :=1,2,...)
are the solutions of

7V (E) =k y(8)

and

yi(g):yi,(o):yi”(]):gi(l):0

(the netural modes of a clamped-pinned beam).
In order to complete the solution, the generalized
coordinates corresponding to a beam initially at
rest and unstressed would have the usual form

/ I(T),_+_ ’I“J 1'I’,.(O) sin k,(r—0)db
m; 0

m;

¢ (1)= —

(i=1,2,...

where

1 {'_ -
Pun = | T

*1
m,.:J _T/,Z(g):/g:—‘);v2 v (g (1)
0 - g

Similarly, a uniform free-free beam with a speci-
fied timre-dependent displacement g(7) at its center
moves weording to

7ET 4 YED =)
y(O0.r)=yg(7)
Yy On)=9"0,7)=y""(1,71)=0

In this case
Yolr)=g(7)

and 7,£,7) 15 determined from

yYED) ) =g ()

and

70 =9/ (0,7)=9."(1L,1)=7.""1,1)=0

while the natural modes 7, (where (=1, 2, . . .)



ON SOLUTIONS FOR THE TRANSIENT RESPONSE OF BEAMS

-1

TABLE I.—RESPONSE OF A UNIFORM ELEMENTARY BEAM TO A GENERAL LOAD

(a) vamvtuc&l free-free beam with a concentrated mass

Quantity Analytical expression !
! | B B o - S o
| bED Yo (1) A 1)+ 20 6 (1) Yuld)
M, Mg 1+25 6.0 Mo(®)
i) i(s,rwi o(n T
| Pir , |
o (1) | — 1 sin k;(r—8) d8 ‘
| m, ml
J qUE, Y (E) dE (i=1,2,...)
[)[(T) }
| ;T/OJ g TidE (T=0)
i [
\
| 1 = .
| Vi me 2 —1,2,...
} m, | (P FROFEA] =12,
! (1+77,) 0 (1=0)
|
- , ] A B A _ Vo
v 1477, Jn .[(. Jn 9(& Tt
e ‘ — ~E ot E (' =06 () i g3 ) v
Y E’T J J I] ‘Il q E,‘T) ( E) —ii:}:mr ﬁ_(_;+ J (l E T (‘E
7 | 1 B
M. (g7) | —J I ) (dE) +1+” (A i+, )J qlE, 1)t
—~ | _ |
Tien —Jl B, e [ e
‘ . [(-()sh Ay cos T cos kb cosh Vg
vitd) AN Ak sinh ~ b osh + F, os e ]
e vy (siny ki sinhoy B (cosy kg coshiy k) Y ig._hf" 1»\“\,:5 oshaKE=cos Vg
2 sin 'k sinh 'k, cosy ki+cosh vk,
1 ‘ — 'k, [—('()sh vk, cos Vhg+cosyky cosh kg
) Me o : N g fsin g kEbsinh kg cosy kg cosh bk ]
—}——2’\/.:',- {siny b, +sinhyk,) (cosy k4 coshyk) | ‘;—\ "N.‘ s N = 1{4, N 1’v* ;
sin y'k;+sinh 4 &, cos A b A-cosh by _‘
— (kB I:('()sh VE sin oy Igcos kg sinh kg \
Vit \ : — — feos vkt tcoshy kg siny kig—sinh bk 1
ey (siny eyt sinhiy £7) (cosy By cosh y ) (€05 VEATCOSA R Sy Ridmsiniu v B
+ siny b, -sinhy k) (cosy b+ cosh kb)) ( win b sinh K, + cosy i Lcosh A 1, ‘
7 l;‘;‘(:glllt‘ll(‘)' oqurﬂ‘li()n:
cos y b sinh oy k-Fsin b cosh vh-bar vk (T cos y kb coshiy k) =0 |

302023 5 ——2
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TABLE [-—RESPONSE OF A UNIFORM ELEMENTARY BAM TO A GENERAL LOAD—Continued

(b) Cantilever beam

Quantity Analytical expression
A i A I
g Tolen) (0Tl
M) ABESIACIAG
T V.0 + ST
P ke (T o
o, (7) = +E JO P,®) sink,(+—6)d8
1 t_ —
P A R AT
_ - ) - B
m, f y@dE= ;)
0]
_ » o Coptpr e e -
7. | | aen s
0 0 1 J1
— TR
.60 - [ aen
o Jooe } y e
— ! g
T (1) — [“aenae
7.0 o sinilg,@:ﬁinh \f’ki,E (*Qsl_l_)f]f,—,-gj(‘()s\l‘jig
! sinyk;+sinh vk cosyk +cosh vk,
.0 h sin };‘Eﬁfi’?,}],,i}';g_('os“ kiE+cosh vk g
o ‘\ sinyk;+sinh ~Eeo cosyki+coshyk,
T ¢ ponf oSVt coshy g sin vk g—sinh kg
' ' sin vk, +sinh &, cosv k,+coshy k,

Frequency equation:

1+ cos vk cosh yk=0

S
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TABLE I.—RESPONSE OF A UNIFORM ELEMENTARY BEAM TO A GENERAL LOAD--Concluded

(¢) Simply supported beam

Quantity !

.775 (517)
M0

Vg, \

are the modes of a cantilever beam.  Or if, instead
of %(0,7)=g(r), there is given the force boundary
condition %"’ (0,7r)=h(7r), the rigid-body motion
is determined from

v

. 1
Bi(n— | aende—hin)
The static solution ¥, 1s taken to satisfy

L) =87 — Y. (7)

7.0,1)=9,0.7)=y""(1,1)=y""(1.71)=0

and the modes 7; (where i=0, 1, 2, . . .) are the

Analytical expression

FolE,7) +§) ,(r) sin int
M6, +3 it (r) sin i
i=1
‘_}(E,Ti)%-é P (1) cos iwk
—2P,(r) +21.27F2J‘TI)L(0) sin *z?(r—0)d8
0
1 (' _ ..
i‘fij(, q(&,7) sin inE dt
— —— : .
I aen @[] aenwos a—e [ | Fenwe:
(1) 0 0O 0 0 0 0 ) WSO RSO
oy
[T aen e

£ ‘1t
—L ?1<s,r)dg+jo j T (D

*1

f‘ G360 (dD)?
[)]

0

natural modes of a free-free beam. In this case,
it can be shown by integrating the differential
equation governing ¥, that ¥,/ (0,7) =h(7).

Thus, the treatment of problems with time-
dependent boundary conditions involves no spe-
cial separate procedure when the Williams” method
is used.

TIMOSHENKO'S BEAM THEORY

Basic equations.—In the elementary beam
theory, deflection occurs only by virtue of the
rotation of the beam elements and only their
translational inertia is taken into account. The
Timoshenko beam theory (ref. 9) permits addi-
tional deflection due to (ransverse shear and
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accounts also for the rotational inertia of the beam
clements.  According to this theory, the motion
of a beam subjected to an applied load of intensity
q(rt) is governed by the equations (see, for ex-
ample, ref. 6):

oY o __

o

0 4 ) v,a;y__ 2 V¥
o}EIa*A*‘G(ar w) e op 0

O v (%_y\l=,, @V _
b}[‘w(ax “)] moap T 4

where ¢ is the rotation of the cross section (see
fig. 1), r 1s the radius of gvration of the cross see-
tion, and A, is the stiffness in transverse shear.
The effective shear-carrving area A; differs from
the total area because the shear stress is not con-
stant over the cross section. The bending mo-
ment M and transverse shear foree 1 are given by

M=—FET (28
or
and
a0 (% ) :
Ve=A,G (m v (29)

For uniform beams, these equations may be
written in the dimensionless forms

] — .
‘V'ﬂ-z’ ¥ —¥)—kr=0

1 ) (30)
'k‘g’@'-‘@'—l_/:—;l_
M=—y' (31)
- 1 _, .
! = (¥’ =¥ (32)
where the transverse shear coeflicient /.-X:; -%%,

1s a measure of the freedom of the beam to deflect
through transverse shearing action and the rotary
inertia coeflicient k,,,r;z— 1s a measure of the rota-
tional inertia per unit length.

Note that the functions % and ¢ are both neces-
sary for adequate definition of the deformation of
the beam,  Sinee these go hand-in-hand, the terms
“solution”” and *‘response,” as used herein, will
apply to these funetions collectively and the single
notation y(&.7);¢(&,7) will be used to specify both
functions,

Symietrical free-free beam with concentrated
mass. - For the application of Timoshenko’s
theory to the syvmmetrical motion of a uniform
free-free beam with a mass 27, at the center £=0,
attention will again be restricted to the portion
0=¢t=<1. Asin the case of the elementary theory,
the effect of the mass may be introduced into the
differential equations if desired. However, for
illustrative purposes, the differential equations
(30) will be left unchanged and the mass will be
mtroduced in  the boundary conditions; the
boundsry conditions then become

$(0,1) =0

Y (17)=0

Y (7)) —y¢(1,7)=0

k]}' 7 (0,1)=m. ¥(0,r)

(33)

Note that the location of the concentrated mass
at £=0 and the restriction to symmetrical motion
exclude any effect of the rotational inertia of the
concen.rated mass.

The beam is assumed initially at rest and unde-
flected: henee,

y(,0)=0
Y(£,0)=0
(34)
Y(£,0)=0
Y(£0)=0

With thie problem thus completely defined by the
differer tial equations (eqs. (30)), the boundary
conditinns (eqs. (33)), and the initial conditions
{eqs. (34)), the solution may be obtained as
follows

Assume that

'@(e,r):a,m+ys(z,r>+z"’”¢i<f>yi(s>
) = (35)
VED 1)+ 0 (V)

where 7,(r) 1s again the rigid-body translation of
the beum, ¥.(&7)¢(¢7) is the static solution,
and ¥, £);¢,(8) (where =0, 1, 2, . . .) are the
natural vibration modes. The rigid-body trans-
lation of the beam ¥, is governed again by the
differential equation

23

1 - 6
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and the initial conditions

7,(0)=%,(0)=0

The static solution is determined to satisfy
’r 1 = 7/ 4_0
‘//s +E§ (ys —‘lbs)_

1, -
Fsg (ys,—¢3) :—fj'H/r

and the cantilever boundary conditions
Y:(0,7)=0
¥s(0,7)=0
¥, (1,7)=0
¥ (1,1)—¥,(1,7)=0

The mode shapes ¥,(¢); ¢.(£) satisfy

(39)

1
‘/’i”'}"k—g (¥ —¥:) +kery, =0
L (40)
F (?711“1’1)’+k12§i:(]

the boundary conditions

¥ (0) =
¥/ (1)=0
¥ (1) —¢:(1)=0 (41)

1o

k 2 (O)_ Tnckﬁyi(‘())

and the orthogonality relation

[Mn+mawmoE
FkrY(E)¢;(H) JdE=0

The derivation of this orthogonality relation is
shown in the appendix along with the solutions
to equations (40) and (41).

Substituting equations (35) into the differential
equations (egs. (30)) and utilizing equations (38)
and (40) reduce the differential equations to

(1#))  (42)

g (¢1+ kz‘2¢z‘)?_/i:—?.7s (43a)
i (bt kiopdyi=—", (43h)

i=0

Multiplying equation (43a) by [1+m8(6)]¥, and

J
equation (43b) by kg%, adding the two equations
and integrating the sum over the range 0<¢<1
yield the result

I_’:n(_T) (i=0,1,2, . . ) (44)

i

&'i—{_kizd’i: -

which takes into account the orthogonality rela-
tion (eq. (42)). The generalized mass and general-
ized load appearing in equation (44) are

m= J‘l {[1+ m.b (E)]?_/zz+ km?\&iﬂ} dt

])i (T) :Jo { [1 +Tn-c5 (5)1271173 —I_'ICRIZ‘//i\I/s } df

and

respectively.
By a similar process the initial conditions (eqs.
(34)) become

¢;(0) = ‘(0) (1=0,1,2, .. )

. (45)
w

(1=0,1,2, . . )
m;

d;i (O) =

It is shown in the appendix that the generalized
masses m; of the given free-free beam can be
evaluated for 7=1, 2, . . . as follows:

()
me=—" ¢ (1)1 . ,2,

The remaining generalized mass m, reduces, as in
the elementary theory, to

) (46a)

mo= (1 M) Yy* (46b)

since the symmetric rigid-body mode has no
rotational component ¢, Further, the general-
ized force I’,(7) for i=1, 2, . . . may be reduced,
by a process of substitution from equations (38)
and (40) and integration by parts, to

Pio= [ T@Tend =12 @)
and the rigid-body generalized foree £2) is

Po()=T || Tttt (47h)
On the basis of the assumed form of the solution

expressed in equations (35), the problem of deter-
mining »(£,7); ¢ (£,7) has been replaced by a number
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of component problems requiring determination
of the functions ¥,(r), ¥.(E.7) . (E,7). ¢:(+), and
78w 8. The solutions of these component
problems must now be obtained.

For ¥,(r), integration of equation (36) in con-
junction with equations (37) vields

Since equations (44) and (45) are identical to
equations (19) and (20) of the elementary solu-
tion, the generalized coordinates ¢,(r) are again
given by equation (26). The solution of equations
(40 for the natural modes ¥, (&), (£) 1s given
the appendix.

The solution just obtained and corresponding
solutions for cantilever and simply supported
beams are summarized in table 11,

TWO NUMERICAL METHODS OF SOLUTION

TRAYELING-WAVE METHOD

A traveling-wave method for caleulating the
response of a structure to transient loads ean be
devised only if the motion of the structure is
governed by differential equations of the hyper-
bolic type.  The simplest beam theory which
completely  fulfills  this Timo-
shenko's theory, which includes the effects of hoth
transverse shear and rotary inertia.

requirement. is

In developing a traveling-wave method of solu-
tion, it 1s convenient to first replace the Timo-
shenko partial differential equations (eqs. (27))
with the following four cquivalent ordinary
differential equations written along four charac-
teristic lines I4, I—, II4, and 11— in the
x, t plane:

% dM+mrtdQ—Vdt=0
1
(50n)

1
A]()Ilg I+ where ilf:‘:
dr ¢

here @ —— L Yanr e o
Along I— “h“(d!”‘ o cld‘” mridQ-+ Vdt=0

(50b)

_ P (E (M
Uolgm)= j J J j qE,7) (dg)'—
JO 0 1 1
1 . g? A '54 53 52‘ '1_
R e R e e R

e ‘
l/’,v(E-T):JO J1 J1 q(&E7) (dE)*— —

_ 1 Yrf'r '1_ . o
Y, (r)= S J” J‘) J“ q(&.7)dE (dr) (48)

For 7. t,7) .08, substituting ¥, from equation
(36) into equations (38) and integrating, in con-
juncticn with the boundary conditions (eqs. (39)),
gives

(e 7
k2 [ e e
(U 1
> (<M
l Eii 52 E *1 _
o, (6 -543) ), 7@
\ : J
Along 11+ where (1—,:—1': 1 %
dr e ¢
—mde+ (me, Q4+ @ de=0 (50¢)
pepe 11
Along 11— wher N ra dl
+mde+- (me,Q—@dt=0 (50d)

The derivation of equations (50) is given in refer-
ence 6. The dependent variables are the moment
M, the shear V7, and the linear and angular veloei-
. o)) O Iy
ties r= 2 and Q= v, 72
ot ot mr

A , e
and (‘2:\ e the propagation veloeities of

The quantities (’1:\/

discon inuities in moment and shear, respectively
(phase velocities of disturbances with infinitesimal
wave I mgth).  In each equation, the total differ-
entials speeify infinitesimal  differences in the
designated characteristie direction.

For any given beam, the slopes of the charae-
teristic lines are known; hence, closely spaced
networks of characteristie lines may be drawn in
the space-time plane.  Various schemes for the
approyimate step-by-step integration of equations
(50) over such networks are possible.  In general,
all require some form of interpolation since
Timoshenko's equations have two characteristie
nets.  (The particular case where the two nets
coineic e, ¢,=e¢,, has been treated in detail for
uniforri beams in ref. 6.)  One integration scheme
is briefly described in this scetion.  Attention is
restricied to a uniform beam for which the char-
acteristics are straight lines.
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TABLE

I1.—RESPONSE OF A UNIFORM TIMOSHENKO BEAM TO A GENERAL LOAD

(a) Symmetrical free-free beam with a concentrated mass

Quantity | Analytical expression
Y1) Yo (1) + s, r)+5“ éi(1)Y:(8)
Wig7) RS IPACIAC)
-
Mg M e +33 o) M8
T Tuen+2 6:(n Vi)
[’,-(r R
¢; (1) — le m J D0 sin k,(r—6)d8
1 (o o ,
e J qUET)Y (BN (1=12,...)
[)i(T) I W0
’/()J JETIE (i=0)
i | 1 o)
i m, —le l/q(]) [alﬁ (])]k:ki (121,2, PR )
| (I+mazE  (i=0)
- 1
v v L, At
_ EE (T i EE 1 2 T R v
1 o
AR NI J o=, o (5-5+5) f TEmds
— ¢ 1
| V. (E,7) —J q ET)([E+1+ n (£—1) J;l qUE,T)dE
« g'”‘! P cosh al»g—Si%’_r—o—‘f cos B¢
7/[(5) ﬁz — k2
—m, al B2 (Coqh ay+y; cos By) l:('os Bif— cosh a4+ A, (0111 B £—~ — smh a,f)]}
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TABLE IT.—RESPONSE OF A UNIFORM TIMOSHENKO BEAM TO A GENERAL LOAD—Continued

(a) Symmetrical free-free beam with a coneentrated mass—Concluded

Quantity Analytical expression
((@Z@) v % 5"2; Bi inh a E—I—Smh % sin B¢
Vi(E) S *
—m, (B’ 2‘56% ) (cosh a;+7v; cos 8;) [ (cos B:.£—cosh o) — (sm B; £+B v, sinh a E)]}
\ sin B, sinh «,
—C Bk k)< v 8, cosh af+— —— cos B¢
M) Bk e 1
477, B 2—%—6-2; (cosh a;+7v,; cos 8) I:A (sm 8; 5—{— th a; £>+(< 0s B+, (mha,g>:|}
[ 0 { 6,' 5m B: sinh a1£+blllh LT 8.t
—‘—vz(f) 2]L 2)
—m, 2+ﬂ (cosh a;+v, cos 8;) [A (( 0s 8 H—f cosh a; E) (sm B: 5——d sinh ¢ E)]}
sin Bi—& sinh «a,
A - haa _
€08 B+ — cosh ay
o+ k22
Yi 82 ]C 2 2
——]
o; /\\ [ (IL 2_|_]LR[2)+\ (kZ km +k ]
B: | k, \( LUL +k31 ‘}'\’ k2 k’m) +/:1:|
| ]
Frequeney equation:
. — ale®+E%Y T,
g'y sin g8 cosh a+cos 8 sinh a+m, a,faa§,+62- ) [)+<{3 o, sin 8 sinh a-{—('y—{— ) cos B cosh a |=
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TABLYL IT--RESPONSE OF A UNIFORM TINOSHENKO BEAM TO A GENERAL LOAD-—Continued

(b)y Cantilever beam

Quantity | Analvtical expression
pEn | Tlb 2 87T
v r)+Z i
A\[(Er ‘ M.tr +Z & (7
Vit v 5r)+7 ¢V 8
B (1) li— 1’:(0) qml —8)d8
, ] ) my o mgJy )
‘ e
| P ]LTQ‘I f](& (EWE
| , . o T )
‘ ‘ =3 2 e
" J, we- o] o o, ¥ Lok ¥ “]H,.
o “EE(ME (4 o -
Vs (E,T) ‘ [ j ] ] q(s,:, (:l.sﬁ A ZJ J q ET)(!IE)Z
SO SO JT J
. . e
sen | j [ s, ) ‘
) B o CARYARYA o
T.(.7) - f "
?&(Evr) ‘ —‘J 5, l/£
TRe) | [(()\Bg4(nsha£+ A, (““BE_BI; ; smhalf):l -
¥ (£) | (’B‘ —A 2 I:A (cos B; EA( osh o) (alll B,E—i— 'y, sinh «a; E)] |
M, (5 (32— ’/x [ (sm 8 E-I—— sl]l]l a,g)-}— (cos 65 ++, cosh a;f) -]
J— ' 2 T
Vi) ! AB. I: (u)~ B 5—}— —(()sh a; g) sm B; g—ﬂj amh al.,)]
sin 6,—6— smhai |
Ay
cos B3, + -cosh «
a,‘urlx 2A 2
Vi 6 A 2k 9 B
@ ‘ \ I:*(A kg ?) +‘ ][2 ]lmz) +/1 :|
s ks [A2+AR, +\<A k) +,L]
Frequeney equation:
ool BN .o n :
3+(-(37i¥) sin B sinh a -i—(\y—i—‘y‘) cos 8 cosh a=0 J

502023——59— -3
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TABLI 1T —RESPOXNSE OF A UNIFORM TIMOSHENKO BEAM TO A GENERAL LOAD  Coneluded

(¢) Simply supported beam

Quantity Analytical cxpression
7 T+ 3 { 16,0 s+ o) ]e } win it
i=1 : b

vien ARIRD {(1" ) e <rm,.(+(17“’ ) fo - J‘-,,‘}msfvrz

2%

_ _ SN - 2,2 »_\2})1?\ ..
Vi.r) g+ i {( 1—1“(..,"., ) [0, 4 1—'1[.?7r2 )1¢,(T,>],‘.,,,,‘} sin imt

Vien | Vo7 %—_ZU 1 {(112[¢:(T,)]ki»::i+bi2[¢r(7‘)]klvhl} s ir§

() Pk j’/’,‘o,) sin b, (r— 016
YAt

m, m

'
P /\'IQJ y (&, 7)sin iwgdE
f )
1 I R AN
m, M I:l Y T ( I— P ):]

Bk (E (NE ) e _ 3 R .
' [ I 1 gEDUH — k2 I J gl ‘ ‘ I J g, r) e’
D S OO JOJn 0 S0
[E + E:l £1) (i)
Y ﬂ a H

‘it 2 N[
it [ rena [T aenor (D[ [Fen

R *t LI A8
Mg J qE7)(dE)2H EJ J q(g,7) (dlg)?
Ju . 0

(UAR'Y

1

*E
(e - ] T det |

Jiow

't
[ T ()
]

Frequeney equations:
ki=a, or b, where

u :l‘. Al, ‘\/‘l“«l)' ] 1 'l7|'0 (A ’+ ARI ) ) [1 + l ‘2'11’#[{[2')]2““4]l“\v2k]g[2/l4ﬂ"}
K ri =
1 /1 22 ] 2 2 4g2 2 2 ";72"2' 20 24,4
b, “hk \ 5 P (ke 2k g [+ P2 (e 2 ke D 12— 4k e )2
sURT -
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The beam is divided arbitrarly
Ar (see fg. 2),

=

into segments
and the time mnterval is taken

. 1 . e . .
according to Af=— Ar.  This specifies a lattice ol

€

points in the space-time plane at the interseetion
of the I+ and 1— characteristic lines.  Consider
a general point U (fig. 2) from which character-
isties of both families have been drawn backwards
in time.  The TI+ and 1 — lines have steeper
slopes (since ;<) and terminate at points 27
and 47, Then the differentials in equations (50)
may be replaced by the appropriate finite differ-
enees and the following equations are obtained:

-}»(Jl.f;\ln_g)% (8, — V=1V =0 (51
1

1 . . "
M= My =m0y Y (1) =0 (1h)
) 2
L (Vi—=Ve—miy—ny)
¢y
+mey A (4 Q) —]—%’ (hqa)=0  (51¢)
| . . .
by (Vi—= V) miey—ey)
Af )
Fome, T (2 Q) o (r/d q.)— 08 (51d)

1t is assumed that A7, V) ¢, and Q are known
at points 2, 3, and 4. Puarabolic interpolation
formulas are substituted into equations (51¢) and
(51 to give the quantities at points 27 and 4/
in terms of their values at points 2, 3, and 4.
Then cquations (51) become four equations for
the four unknown quantities M,, 17, r, and Q,
in terms of known values of M, U, r, and Q at
ach of the lattice points 2, 3, and 4. These may
be solved to obtain a matrix recurrence formula;
however, a simplification may be introdueed based
on the fact that quantities at points 2 and 4 have
already been determined to satisfy the following

recurrence formula

FOR THE TRANSIENT RESPONSE OF BEAMS 17

%o}
Y L
X
-Girid scheme for traveling-wave numerical
proccedure,

Fravre 2

t‘quu tions:

LAy - -0+ (1'._,71..V,.,,»:n]
1

Q5 )— 11 1 =0

J

with equations (Hla)

(‘- (Mo M)+ mr2 (0 —
1

Combining equations (H2)
and (51h) leads to the result

mrt(Q—2,— @y +‘2)—* (V7—Va0=0 (53

where M has been eliminated.  Now equations
(51¢}, (51d), and (H3) constitute three equations
for the three unknowns Q, V7, and r; in terms of
known values of @, 17, and » at each of the points 2
3,4, and 5. Solution of these equations vields the

— — 7o
I sz.,l T)
= 7 .
‘H 14“ + A0 Vs (@12 (H4)
- _ q3
Iy [ 64
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. . : -0 , [m _ 0y m
where the quantities have been made dimensionless (Slzafzrilﬂ\/ﬁ] and 156;/»//\/,—4‘;[) and where
B ry O ¢y 1~ ey KT
2R ) “ K e
(\ of C1 e kn
1 P\ 6 - ¢’ ¢t 1
A (e e
1] 2 . {('12 g e e kg,
B (LKD) k(14 K7) % 01+K)
1 1 -

[ k2 YK 0
€2
ot =( 17"'5) SO K i 0
L (']2 @]
| 0 0 1 K
B yoch Cy pr ey K7
v K22 =K it S
( ! ('|2,) &} ¢ krr
1 e\ ¢ ¢y® e 1
A=l —{ 24+ =) A =2 S
[ 141 2 ( +('12)('] { (']2 ('lszI
. . 2
ke (HRY k(14 ) 7 (14K
L. 1 1 -
[ LY )
(&)
= | &K R 0
(&
L0 0 0
F 0 7‘1)- k”’K2 0 ‘l)' /l‘ln[\"“‘ T
Db K 0 Dl O K
[Q}j 4] —_) BRI (—; \ 3 IHE 1
o O g - 1  Ca g - L N . ] . -
bg? - K(1-+K?) o ke - KNO+K? ( ]—( ) ket (14 A 5 Kt " K(14-K?
[ ' . WS = "1 .

. bad 1

1 ey Af
K— —-%
lf}n2 [ 2

. . ¢ k, .
Note that the more appropriate parameter ;‘(——k—‘> has been used here instead of k..
2 N RI

The response of a beam may now be obtained by the repeated application of equation (34) except that,
as is indieated in figure 2, special formulas which take into account the particular boundary and initial
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conditions of the problem, must be derived for
boundary and initial points.  In addition, it must
be remembered that the characteristie lines are
possible loei of discontinuities in the dependent
variables or their derivatives.  (Sce, for example,
ref. 6.) Such discontinuities will arise, for
example, if there are coneentrated loads (orimposed
veloeities) that have histories which are discon-
tinuous or have discontinuous derivatives. Dis-
continuities in M or @ are propagated with veloc-
ity ¢; (the locus of such a discontinuity is shown
by the dashed characteristic lines in fig. 2); discon-
tinuities in V" and » propagate with velocity .
The magnitudes of discontinuitics may be prede-
termined through the application of equations (50)
in a manner which is illustrated in reference 6.
Thus, in general, discontinuities may be added as
they are encountered in the step-by-step solution.
In the scheme which led to equation (54), it will
be noted (fig. 2) that special consideration is
necessary for points just above the locus of a dis-
continuity. Special formulas are certainly re-
quired where there is 2 jump in one of the functions
and it may be desirable to account also for dis-
continuous first derivatives.

Once 2, V, and 7 have been determined at a
point, M may be obtained at that point by in-
tegrating equation (50a) or equation (50b) along
the proper characteristic from some boundary
where M is known.

It should be mentioned that the selection of the
T+ and I— lines as the basic network is based on
(rather intuitive) considerations of the stability
of the numerical procedure with regard to propa-
gation of errors.  (See ref. 12.) It is assumed that
the domain of dependence imposed by a numerical
procedure should at least encompass the total
theoretical domain of dependence.  This would
not be the case if the steeper 1T+ and 11— char-
acteristic lines were utilized as a basic grid.

HOUBOLT'S METHOD

A cantilever beam acted upon by a series of
concentrated loads py, po, . . . pa, is shown in the
following sketch.

,0‘| P2 ""3 Co Tn
: l | i
]

- b -
0 I 2
Station

Such a beam has the deflection

Ly =1Gipl (55)

where the subseript ¢ is used here to indicate that
the deflections are cantilever deflections measured
with respect to station 0 and where [G] is a matrix
of stiffness influence coeflicients,  The inverse
equation is

Ipl=161"y.| (56)

The deflections of a free-free beam may be ex-
pressed in terms of the cantilever influence coeffi-
cients [#]. For the free-free beam the symmetric
deflection is y=1o+y. where y, is the deflection at
station zero (the center of the free-free beam);
henee, equation (56) becomes

1
1

[pi=1G"y|—wlG" (57)
1
But, on the free-free beam, there is the additional

load pe. From the condition of overall equilibrium,
Ppo 1s given by

n
po=—pi=—|11. .. 1[G] ]y
i=1
1
1
bt 1@ s
1
and equations (57) and (58) may be combined
into a single matrix equation for the loads at sta-

tions 0 to n of a free-free beam. This equation
may be written

[pl= [yl (59)
where
[ alb]
[‘“'[\bw]-‘]
1
|
=161
1

lb]=—11 1 G
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1

a=|[11 LG

1
and where the veetors [p] and |y, now contain py
and ¥, terms, respectively.

Consider the symmetrie motion of a free-free
beam subjected to the applied distributed load
q(r,t).  The equivalent concentrated loads at the
stations 0, 1, . . . n are, at any time,

pi=[WI(

where |m] is the diagonal mass matrix, and [H7] is
the weighting matrix (ref. 13):

qi—mlii) (60)

. Ar
2 20 2
2 20 2
—1 6 7

The essential feature of the Houbolt procedure
(ref. 8) is the method of expressing the second time
derivative . The acceleration at time ¢;=j7Af is
written as follows:

1 _ . o .
3!/31;‘(‘_\[)2 (21.’/1;'_”\!/‘\HTLH.’/‘rz“\.’/ufx) (61)

and is obtained by passing a third-degree curve
through the points at t==¢;, £;_,, ¢t,_», and ¢;_; at
each station r;.  Substituting equations (60) and
(61) into equation (59) (written for time t=t;)
and solving for i, leads to the recurrence equation

1

‘|y‘u:[1ﬂ!qb+m).¢ (15l —4lyl -t Yl -9)

(62)

where

2 . -
[mzﬂm+amunmﬂ W]
C)=(B]{m]

Thus, the Houbolt method simultancously deter-
mines all the deflections y(r,t;) (where 1=0, 1,

i terms of the deflections y(aut,_),
yleot;o), and ylent; 4). A concentrated load
27(t) a1 the center of the free-free beam may be
included in equation (62) by adding to the right-
hand side the term

Lld| (63)
where

¥

0

D) -1 0

E(l]z[[AH— (idf)? [H'][m]] ‘
N

b

0]

The solution of a problem by repeated applica-
tion of equation (62) requires that the initial con-
ditions of the problem at time =0 be expressed
in tern s of fietitious ordinates [y/_;.yl-, at times
t_; and f_,.

This is accomplished by expressing
the time derivatives 'y and ¢y in terms of a third-
degree curve passed through points at t=¢,, 0,
iy, and t_, at every station.  For the case where
the beam is initially at rest and the applied loads
increase continuously from zero initial values, the
initial conditions

lo==1#lo=171c=0 (64)
are converted by this process to
liyg==0
Yior= — Y (65)
Yi—e=—8Yh

Then, cquation (62), applied for j=1, vields

= 1BY g3 [l
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which may be solved for |y}, to obtain

e UGl IR VT

The application of equation (62) for j=2, 3, . . .
is now straightforward. All that remains is th(-
determination of the cantilever influence coefhi-
cients [G].

In this connection it should be pointed out that,
although no restrictions have been made on the
beam theory to be used, the application of the
method, as formulated, with Timoshenko’s theory
requires that the deflections y be interpreted in a
general sense and inelude also the rotations of the
cross sections . Thus, with two quantities to be
determined at each station, the order of the
matrices is 2n and the required computational la-
bor is roughly four times that required with the
use of the elementary beam theory. A compro-
mise which affords inereased accuracy over the
elementary theory, vet avoids this large increase
in computational labor, is the use of a theory
which contains transverse shear freedom but no
rotary inertia.  With no associated inertia load-
ing, the rotations ¢ need not be explieitly included
in the step-by-step dyvnamic analysis and do not
appear i the recurrence formula, equation (62).
The cantilever influence coeflicients are deter-
mined as follows on the basis of this latter theory.

The influence  function  (Green’s  function)
G(a;00) 18 the solution y of the equations

O fr W (% _ )_
or rr OJ‘JFASG(OJ' ll/( =0

o l: 1.G (aukyb:):l:— 8(r—.ury)

and the boundary conditions

S

(67)

rO=y0)= 4 =) —pry=0  (©s)

However, the deflection may be written as the
sum of ben(liuz and shear contributions, y=yp+ 5,
with 1//——

B
or and it 13 expedient to write for the

influence function

G(I’;-I'1>: Gli(x;'J‘l)ﬂl”Gs(l‘;-rl) (69)

where Gy and (7 are the solutions of the differen-
tial equations (cquivalent to eqs. (67))

o? ,

a 2 9 03:5(1'—.!'1)

A S 70)
aI‘ 4‘1 SG 6,1' GS: “6(:‘1‘_.1'])

and boundary conditions (equivalent to eqs. (68))

~
G (0= Oa(’,,( IAES OG,, (/;0))
Aa DGB
——a (l; 1)* r (71)
oG g
(G5 (0r) = a.:(/;.n):n )

For given distributions of bending and shear stiff-
nesses, equations (70) may be integrated directly
in conjunction with the boundary conditions (eqs.
(71)). For a uniform beam, the resulting total
mfluence functions are:

1 1 -2 ; n
Guin)= g (3'=F) <

2% '13
41(, /«1( ‘) (@)

In dimensionless terms, equations (72) may be
written

GlEa)=hi+s (é—i) (£<C4) ]
» L)
=k (:-5) e J

and, for a uniform beam, the recurrence formula,
equation (62), becomes

— — | = - -
Iz/!;:[BJiqlﬁ'@;)g[BJUIU)!!/\;»—#ﬂ!/\;-:*ﬁJ/u—:ﬂ

(74)
where

(B 1A+ 70| 7]

[HJ:[‘_’_'B_',_J
8]1G]
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1
i

7 6 —1
2 20 2
2 20 2

[W]—55

2 20 2
2 20 2
—1 6 7

The elements ¢4 of the matrix of influence co-
efficients [@] are seen to be

il : 2. . o
(7.,ik\71.35+5( —_{)(AQJ (?<J)

. .
—kzjacth (z~{;>(A93 (i >)
where ¢ designates the vow and j, the column,

RESULTS AND DISCUSSION
MODAL SOLUTIONS
For illustrative purposes, example computations
have been made for the case of a uniform free-free
beam, for which kr,=0.1, k£,=0.2, and ™, =0.
The beam is subjected to the applied concentrated
load

g(&m)=2f(r)8(¢)

where f(r) has each of the time variations shown in

figure 3 The given values of kg, and &, are appro-
priate to a beam having a solid rectangular cross
section and a ratio of half-length I to depth equal
to 2.867. The calculated rvesponse has been
limited to the history of transverse shear at the

. 1 . .
point ¢=;. Moment calculations are omitted

5
because they do not provide as severe a test of the
. 1 .

The point ¢=5 is chosen
arbitrarily, since the location corresponding to
maximuin transverse shear is not known in

advance.

analytical methods.

The -esponses to the step and ramp-platform
loads were obtained on the basis of elementary
theory from table 1(a) and on the basis of Timo-
shenko’s theory from table II(a). In each case,
six moides were used in the expansions. The
respons:s to the other three funetions (figs. 3(c),
3(d), ard 3(¢)) were obtained by superposition of
the step and ramp-platform results. The re-
sulting shear histories are shown in figures 4, 5,
6, 7, ard 8 up to a time corresponding approxi-
mately to the period of the first natural mode of
vibraticn of the beam.,

2r 2r
7 7
| I+
L (o) | (b
0 I 2 3 0 | 2 3
T T
2r 2
F 7
| — |
L | e (d)
0 | 2 3 0 ! 2 3
T T
2,
7
!
| le)
o] | 2 3
T

(h) Ramp-platform funetion.
(d} Triangular pulse.
(¢) Blast pulse.

(1) Step function.
(¢) Square pulse.

Friure 3.-—Some fundamental load histories,
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Frarre 4. -Shear rosponse ) (;;r of 1 uniform free-free beam to a step load eoncentrated at £ 0.

The long dashed curve in each figure is the
static portion of the response.  Thus, the largest
dynamic overshoot factor, achieved by the step
loading (fig. 4), 1s approximately 2.7.

It will be noted that the blast pulse load (fig.
3(e)) has only one-half as much impulse as that
countained in the square and triangular pulse
loads (figs. 3(c) and 3(d)).  Henee, if the responses
to the three pulse loads (sce figs. 6, 7, and 8) are
to be ecompared on the basis of equal input impulse,
the response to the blast pulse must be doubled.
On this basis, the blast pulse is seen to cause the
highest shear stress at &= .

An indication of the convergence of the modal
results in figures 4 to 8 is provided by the bar
graphs in figure 9. On cach graph, the heights of
the bars correspond to the magnitude of the statie
portion of the response (zero frequency) and to
the amplitudes of the terms in the series expansion
for the dynamic portion. (For each load, = is
sufliciently large so that the load function has

attained its constant value.) The bars, thus,
represent the maximum possible contribution of
cach term to the total.  Note that, for the loads
of long duration (the step and ramp-platform
functions), the static part and the first term con-
tribute a proportionately large share of the re-
sponse and suflicient aceuracy could be obtained
with only three modes.  On the other hand, the
adverse offect of reducing the load duration is
illustrated by the bar graphs for the responses to
to the three pulse loads. In cach case, no con-
vergence is apparent for the first few modes and,
in the cases of the square and blast pulses, there
is some doubt as to the adequacy of the even six
modes, particularly with the use of the clementary
theory.

Further evidence of the effect of load duration
on convergence and, in addition, an indication of
the effect of load distribution are given by the
following cases of the response of a uniform simply
supported beam to various loads:
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5 _ Elementary theory (6 modes)
—— —====— Timoshenko theory (6 modes)
——~—— Traveling-wave method (6 stations}
———-~ —— Houbolt method (6 stations)
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Firauvre 5. -Shear response 1 (;r of au uniform free-free beam Lo a ramp-platform load concentrated at £=0.

Care (1): For a uniformly distributed step load
qE ) =1(r),

— 2 w
Jl(fﬂ)i*% §~ 4J . % sin irf cos i2r22

1 . .
3 €08 iwE cos it

Case (2): For a step load concentrated at the

center G(E'r):ts (E—‘l)> I(T),

Men=1—(s,)1(¢-,)
i—t

2 kil 201 .. .
JE—— __.l =5 08 2.2
TQI:L;M (—1) 3 sin irt cos iy
= 1 ’ 1
| (E»T)“a—l (f—.)>
-1
2 = . z 1 . .
-5 33 (=1 ? 2 cos irf cos iirlr
Ti=13,... 2

Case (3): For a uniformly distributed impulse
load §(& 7)=06(r),

11(5,1):4— >3 1 gin in¢ sin *xlr
Ti=1,3,... 7
V=4 3 cos irtsinitrir
=03 .

Case (4): For an impulse load concentrated at

the center g(€,7)=34 (E—;l)) 6(r),

i—1
Megn=2 >3 (=1 * sin iwE sin 12
i=1.3,...
it
‘_Y(SJT):QW >3 (=D * i cos 1wt sin 12wty
i=ia. ..

These results are based on elementary beam theory.
(The last two cases are simply time derivatives of
the first two cases.) The effect of load duration is
ilustrated bv comparing cases (1) and (3) (or
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Froure 6. --Shear response \(_71 of a uniform free-free beam to a square pulse load concentrated at £=10.

cases (2) and (4)). Changing from a load of
infinite duration (the step load) to a load of zero
duration (the impulse) introduces a factor 7 and,
henee, reduces the rate of convergence (and, in
fact, produces divergent series in both case (3)
and case (4)). Similarly, the effect of spatial
distribution may be seen by comparing cases (1)
and (2) (or cases (3) and (4)). Changing from a
distributed to a concentrated load itroduces a
factor 7 and hence reduces the rate of convergence.
The apparent change in the sign of half the terms
is not significant since each series is essentially an
irregularly alternating series (except at certain
specific combinations of £ and ).

THE NEED FOR TIMOSHENKO’'S THEORY

The question of which theory should be used to
determine the response of a beam to a transient
load is intimately related to the convergence of
the result. This is because the secondary effects
of transverse shear and rotarv inertia become
increasingly important for the higher modes.

Note in figure 9, for example, the growing disparity
between the natural frequencies of a uniform free-
free beam ealeulated on the basis of the elementary
and Timoshenko theories. Thus, if 1t is deter-
mined that, for a given beam subjected to a certain
load, modes strongly affected by transverse shear
and rotary inertia contribute a large share of the
response, 1t is unlikely that elementary theory will
vield correct results. In case the given beam is
a complicated nonuniform structure, a rational
procedure for determining the proper theory would
be to consider a uniform approximation to the
given beam, quickly obtain the response of the
uniform beam to the given load by elementary
theory (table I) and investigate the convergence of
the response, and at the same time to consider the
influence of rotary inertia and transverse shear on
the modes (as manifested by the differences in
natural frequencies obtained with the elementary
and Timoshenko theories).
This reasoning is generally, though not conclu-
sively, confirmed by the results in figures 4 to 9.

14
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Static response

Elementary theory (6 modes)
--------- Timoshenko theory (6 modes)
~—— = —— Traveling-wave method (& stations)
Houbolt method {6 stations)

-1.0 1 1 | | | J
O .2 4 6 .8 1.0 1.2
T

\ - =/ 1 . .
Frsvre 7. Shear response (;2~7 of a uniform free-free beam to a triangular pulse load concentrated at £ 0.

Only the first mode of the free-free beam shows
good agreement between the frequencies as given
by the elementary and Timoshenko theories.  (See
fig. 9.)  Thus, the responses to the step and ramp-
platform loads (figs. 4 and 5), which depend
heavily on the first mode and the static contribu-
tion, also show good agreement between the two
theories.  The responses to the pulse Joads (figs.
6, 7, and 8), obtammed with the two different
theories, bear little or no resemblance to cach other
since they depend heavily on the higher modes.
However, except for the response to the square
pulse load (fig. 6), the two theories do yield about
(It is felt that the positive
peak achieved in the first half period should be
given more weight than the negative peak achieved
later, since the latter would be considerably di-
minished by material damping which has not been
included in this analysis.)

Boundary conditions also influence the need for
a more refined theory.  For example, although the

the same peak stress,

elementary theory is adequate for obtaining the
shear ¢ ue to a step load on the free-free beam of
ficure <, it cannot be used to obtain the shear at
the certer of the same beam where the input is a
preseried “step-velocity” of the point £=0 (the
so-callcd problem of the “instantancous arrest of
the roct of a moving cantilever beam'). In the
latter case, elementary theory vields a divergent
series (ref. 14), whereas Timoshenko's theory vields
a mods1 solution which converges to finite values
(ref. 6).

NUMERICAL SOLUTIONS

The two nwmerical procedures, the traveling-
wave nethod and Houbolt’s method, have also
been used to caleulate the transient response of
the un:form free-free beam considered in the pre-
vious sections to an applied ramp-platform load.
In the caleulations by both procedures, the beam
was divided into six segments (Af=0.1667). Re-
sults are shown in figure 5.
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Static response

Elementary theory (6 modes)
———————— Timoshenko theory (6 modes)
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Fiaure 8.---Shear response 1 (;!T of a uniform free-free heam to a blast pulre load coneentrated at & -0,

For the traveling-wave method, the time inter-
val is

Ar =k AE—=0.01667

Relatively simple boundary formulas (based on
linear interpolation) were used in this case and
discontinuities in the derivatives of 1 and », arising
from the discontinuities in the slope of the ramp-
platform function, were ignored.

In contrast with the traveling-wave method, the
Houbolt method imposes no inherent restriction
on the selection of the time interval Az in relation
to the space interval Az, The time interval may
be taken as large as is consistent with the desived
accuracy. This freedom has been utilized in that
the calculations by the Houbolt method have been
made with the time interval Ar=0.03333, which is
twice the time interval used with the traveling-
wave method,  In addition, the computations by
the Houbolt method do not include the effects of
rotary inertin and were stopped at a point just
beyond the peak load.

Tt will be noted that the numerieal results in
figure 5 approximate the (essentially converged)
Timoshenko modal solution fairly well.  Both
numerical methods underestimate the peak stress,
the traveling-wave method by 14 percent and the
Houbolt method by 9 percent.

The greater aceuraey of the Houbolt result is
particularly significant since it was obtained with
less computational labor due to the use of the
larger time interval. It must he kept in mind.
however, that cconomical use of the Houbolt
method requirves that it be applied in connection
with the elementary theory or with the addition
ol transverse shear alone.  If both rotary inertia
and transverse shear must be ineluded, the labor
required in applying the Houbolt method is quad-
rupled.  Fortunately, rotary inertia is neghgible
in many problems. (See, for example, ref. 15.)

It should be mentioned that the traveling-wave
procedure, as so far conceived, has proved some-
what sensitive to minor changes in the scheme
used to obtain recurrence formulas.  For example,
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Timoshenko theory

k= 0O 5.59 302 746 139 223 326 0 503 199 36.3 50.6 588 686
H [1 H N H - ! ﬂ
Step function
— ’__‘ ) - —
Ramp-platform function
[ 0 S b
Square pulse
o | fam | M — — —/ —
Triangular pulse
. :F‘
ﬂ ﬂ [ H In ﬂ H P ﬂ
Blast pulse

- . . . . =71
Fraure 9. - Relative amplitudes of terms in expressions for V(;»r .
2



ON SOLUTIONS FOR THE TRANSIENT RESPONSE OF BEAMS 29

the simplest and most obvious scheme (in which
the II+ and II— characteristics are extended
backward from the point 1 (fig. 2) to intermediate
points on the T— and I+ characteristics connect-
ing points 5 and 2 and points 5 and 4 and lincar
interpolation is used to determine the unknowns
at these intermediate points) has been found to
yield significantly less accurate results. A pos-
sible reason for this sensitivity stems from the fact
that the slope of the basic network of characteristic
lines is dependent on rotary inertia. In fact,
rotary inertia is necessary to give the beam equa-
tions the wave character essential in the concep-
tion of a traveling-wave method. Thus, in view
of the relative negligibility of rotary inertia for
many practical problems, this sensitivity is per-
haps not surprising. In general, it must be con-
cluded that a traveling-wave numerical method of
analysis which is superior to the Houbolt method
has not yet been devised.

Numerical results have also been obtained for
the response to the triangular pulse load by super-
position of the ramp-platform results. These
results are shown in figure 7. The results indicate
that more degrees of freedom must be taken with
both procedures to predict adequately the response
of the beam to the given triangular pulse load, and
from this example it appears that the modal
method of solution is to be preferred. However,
the simple problems discussed herein do not por-
tray the main advantages of numerical methods.
For example, numerical methods are readily ex-
tended to apply to nonuniform beams and con-
veniently adapted to the use of modern high-speed
computers. A fundamental characteristic of nu-
merical methods is the replacement of professional
engineering time by routine computing time.

Hence, numerical procedures are not to be con-
demned on the basis of the results in figure 7.
The selection of the best method requires the con-
sideration of all these factors in relation to the
specific problem.

CONCLUDING REMARKS

Williams type modal solutions, based on both
the clementary and Timoshenko beam theories,
have been given for the response of several uni-
form beams to a general transient load. The
response to any specific load may be obtained
from these solutions by performing a series of
indicated direct integrations of the load funetion.
Typical computed results have been shown for
the shear response of a free-free beam to various
concentrated loads.

The convergence of modal solutions is shown to
depend both on the history and distribution of the
load. Decreasing either the duration of the load-
ing or the region over which the load is applied
reduces the rate of convergence and may produce
divergence.

The need for a more refined theory, as compared
to clementary theory, is intimately related to the
rate of convergence of the modal solution. If
modes which are strongly dependent on trans-
verse shear and rotary inertia contribute a large
portion of the response, Timoshenko’s theory must
be used.

Comparison of the Houbolt and traveling-wave
numerical methods indicates that the Houbolt
procedure has many advantages over the traveling-
wave procedure as so far conceived.

LaxcrLey ReskarcH CENTER,
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
LancrLey Fieup, Va., February 6, 1958.



APPENDIX

SYMMETRICAL NATURAL VIBRATION OF A UNIFORM FREE-FREE
TIMOSHENKO BEAM WITH A CONCENTRATED MASS

NATURAL MODES AND FREQUENCIES

The differential equations and boundary condi-
tions governing symmetrical natural vibration of
a free-free beam with a concentrated mass at its
center may be written in the following dimension-
less forms:

|

2 ]‘-1‘2'(?—/,*@ +khep =0
’ (A1)

T 0 kg

Y(0)—0 (A2a)
Y (1)=0 (A2D)
Y= (1)=0 (A2¢)
2 7O TR0 =0 (A2d)

where F(E):4(8) is the natural mode and £ is pro-
portional to the circular frequencey of vibration.
Each of the solutions of equations (A1) has the
form

() == e
Y(E) = [eM

where .1 and B are arbitrary constants.  Substi-
tuting this form into equations (A1) leads to the
biquadratic equation

)\"+ ]\‘”A(’} A‘ng)}\2" A.-z(‘]\v."!]\,lell.m?_l‘y)f() (\'A:;)

and to the following relationship between {4 and
B3

- A2 fe2h 2 7

B N . {A4)

Squation (A3) has the four solutions A=+« and
30

A= 1418 where

aikJ 13 [— k2 -kr?) "‘f\/ (ikxz‘“le?)2+I§2]
ﬂ:k\/ 5 [:(/\'cHIfmz)+\/(A‘s2“kkl2)2+k2:| J
(A5)

The general solution of equations (A1) may be
written in the form

Y (E)=0" coshat+ (,sinh a5 cos BE4 (7 sin B¢

¢(E) :,a2 i‘lelif (( '2 cosh a};-'j"(yl sinh O.’E)
2 2. 2
-+ 5 : k. (('y cos BE— (' sin BE)

(A6)
where €, %, (4 and (7 are arbitrary functions of
k which must be determined in order to satisfy
the boundary conditions (egs. (A2)),

Subst tuting  equations  (A6)  into  equations
(A2) yiclds four homogeneous algebraie equations
for ¢, ¢y, 4, and .
trivial solutions of these equations requires the
vanishir g of the determinant of coeflicients. This
eriterior vields the frequeney equation

The existence of non-

Fiby=

C . .
/ v &in 3 cosh a+cos 8 sinh «

+0i, ar(a® 4 k%.1) I:iH (;—g) sin #sinh a

ol 3

' 1 .
+('y—{——7) cos 3 cosh a]:() (A7)
where
CK?'ILk?k.\‘?
- B2 k2fe 2
The solations of equation (A7) are the natural
frequencies of vibration k,, where ¢=0, 1, 2

R I
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For k=Fk, the homogeneous algebraic equations may be solved for the relative magnitudes of the

quantities (', (%, (%, and (',
written in the form

.
For i=1, 2,

., the

resulting vibration mode shapes may be

(=0 S“;é cosh a;f— sinh o cos BiE—m, Bi— “rﬁ N (( osh a;+7v; cos 6)[( 0s B,£—cosh a;¢ )
+A, (sm B, .E—-~ — th a1£>:|} (1=1,2, D
- (AS‘)
_ o BERSRS 6, sin B; sinh & — BA—kME
Y (E)=( 8, o Y. 3, sinh a6+ sin B;¢—m, Ry (cosh «;
+v;: cos B,.)I:Ai((-os B:£—cosh afj)——(sin B,—E—i—% v, sinh a,»g):l} (i=12, ..
¢ P

where

sin 6i—§5 sinh a;
o

A=

i

cos B3; +A (osh a;
Y

The rigid body mode, corresponding to k=0,
has the components ,(8) = (" and ¢,(§) =0.
ORTHOGONALITY OF THE NATURAL MODES

The differential equations (A1) are satisfied by

any of the infinite number of natural modes and

corresponding frequencies. Thus, for the ith mode,

r; 1 -
'+ ke W' i) +k:kri=0
L "4 k%, =0
76’:2(?/1' —y¢) kY=
Liet the first of these equations be multiplied by
the rotational component ¢; of the jth mode and
the second by the translational component %, [If

the resulting equations are added and integrated
over the beam length, there results

]LiZJO (17f.?7j+knr%¢;)'1$:_f ﬁ(yi/—%)’gﬂg
[ Cw e [ @ e

Integrating by parts the first two integrals on the
right-hand side of the preceding equation yields:

*1 . 1 _ , 1
kizjo (Y ;+k ey dE= —[];,"2(?/1 —¥) Y+ %:In

> 1 1
[l @ e @ e | wowsde a9

H

This process is \nh(l ulso if tlw roles ()f the 1th
and jth modes are reversed.  Interchanging ¢ and

7 in equation (A9) and subtracting the result from

equation (A9) leads to
o 1 - —
—kj2)Jo (?/i?/ﬂr]fmglh%)dz:_|:7tfz W =¥,

1 - ‘ :
Tk @,/ =¥ ?/z+¢i,¢i_¢7,\bi]n (A10)

1f now the boundary conditions (eqs. (A2)) are
imposed, equation (A10) is found to reduce to

1
(/fi2*]i";2)J (Y thely b )dE
0
= —(k&—k MY (0)y,;(0)

or
j { LT SO OF®)
I (w,(s)}dz 0 G=h) (A

since

J WSO (DT, (OdE= T (0)F,(0)

Equation (A1l1) is the orthogonality condition
satisfied by the natural vibration modes of & uni-
form free-free Timoshenko beam with a concen-
trated mass at the center.
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DETERMINATION OF THE GENERALIZED MASS

The determination of the generalized mass
|

m=| {[1+m,a<s);z73<5)+km2¢,-2<s)}ds
0

by direct integration is a somewhat laborious
process for is20. Fortunately, m; can be ex-
pressed in terms of certain boundary values of the
mode shapes by the application of a limiting
process to equation (A10) in which the functions
Y. and ¢, are considered as continuous functions
of k. Thus, if
b=k, +dk

and

W =T AT=T L dk

b= =y O dk

equation (A10) becomes, in the limit as dk ap-
proaches zero,

. Lrr El
.’n [!/l.-+k.kl?1pi2]({£::2ﬂﬂf [Z\E (]/1 _l//I) 51::)":"1‘
L0 o, X\ - |, (O
_/:2 (611 Y Olt'>kﬁkiyi+‘l/i (al‘ k=ky

_‘//"(b%",/)kw :|:) (i=1,2,..)
o (A12)

This equation is applicable to uniform beams and
may be extended, if desired, to nonuniform beams.

On substitution of the boundary conditions (cqs
(A2)), equation (A12) reduces to

L [T+ ks dg = — 7.5 2(0)
1 9 ,,
3k, v, (1) [ﬁﬂ (U]}Fh

Henee, “he generalized mass is given by

m,:—éigi wi(1) [g,—c v’ (”l:k.

(i=1,2,..)

(A13)

Note that only the second boundary condition
(eq. (A2b)) is altered by differentiation with re-
speet to k. This arises from the fact that only
this boundary condition depends for its satisfac-
tion on the frequency equation (A7); that is, the
mode shapes (eqs. (A8)) satisfy the other boundary
conditions for any value of & but satisfy equation
(A2b) only for b=k, since

v =1 (k)

where F(k) is defined by equation (A7), It is
only by virtue of this dependence of one or more
boundary conditions on the frequency equation
that equations (A12) vield a value of m,. Hence,
it must be concluded that, for a beam for which
none of the boundary conditions depend for their
satisfaction on the frequency equation (as, for
example a simply supported beam), equations
(A12) are not appheable. For such a beam, m,
is determined by direet integration.
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