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Preface

A workshop on the Satellite Networks: Architectures, Applications, and Technologies, hosted
by the Space Communication Program at NASA Lewis Research Center in Cleveland, Ohio
was held on June 2-4, 1998 at the Sheraton Airport Hotel in Cleveland, Ohio. More than 275
representatives of industry, academia and government participated in the workshop.

We decided to host this workshop because global satellite networks are moving to the forefront
in enhancing national and global information infrastructures--due to the unique networking
characteristics of communication satellites. Simultaneously, broadband data services are
emerging as the major market driver for future satellite and terrestrial networks. Convergence of
satellite and terrestrial networks is widely acknowledged as the foundation for an efficient global
information infrastructure. In the past two years, various task forces and working groups around
the globe have identified pivotal topics and key issues to address if we are to realize such
networks in a timely fashion. In response, industry, government, and academia undertook efforts
to address these topics and issues. There was a need to assess the progress made to date and
chart the future. This workshop provided a forum to assess the current state-of-the-art, identify
key issues, and highlight the emerging trends in the next-generation architectures, data protocol
development, communication interoperability, and applications.

The response to the workshop was outstanding and the results are shown in the attached papers.
In addition to several panels, workshop sessions covered a wide range of topics

• Access technology and protocols
• Architectures and network simulation
• ATM over satellite networks
• Internet over satellite networks
• Interoperability experiments and applications
• Multicasting
• NASA interoperability experiment programs
• NASA mission applications
• TCP/IP over satellite: issues, relevance, and experience

Contributions to this workshop are highly appreciated, and we hope to build on its success.

Kul Bhasin
Workshop Organizer
Chief, Satellite Networks and Architectures Branch
NASA Lewis Research Center

vii



Page intentionally left blank 



AGENDA

Tuesday, June 2, 1998
The Internet: Enhancing the Internet for Space Today

8:30 Welcoming Remark: Donald J. Campbell, Director, NASA Lewis

8:40 NASA/Industry Programs: A Response to the Satellite Industry Task Force
Challenges Ballrooms A & B
Chair: James Bagwell; Manager; Commercial Communications Program;
NASA Lewis

Samuel Venneri; Chief Technologist; NASA Headquarters
Thomas Brackey; Executive Director of Technical Operations; Hughes Space &
Communications
Prakash Chitre; Vice President Technology; COMSAT Laboratories
Ramon DePaula; Program Executive, Code S; NASA Headquarters
Charlene Gilbert; SOMO Technology Manager; NASA Johnson

Session description: This session will address the ad hoc Satellite Industry Task Force
(SITF) technical challenges and NASA's response to them.

The ad hoc SITF consisting of satellite communications industry representatives,
academia, and government observers came together in late 1994 to address the role of
satellites in the emerging national and global information infrastructure. On July 31,
1996, the SITF presented its findings to Daniel Goldin, NASA Administrator; Kaminski,
then Deputy under Secretary for Defense for acquisition; high-ranking government
executives; and industry executives.

In this opening session, Samuel Venneri, NASA Chief Technologist, and other NASA
executives will outline NASA's response to several of SITF's technical findings.
Thomas Brackey, Executive Director of Technical with Hughes Space and
Communications, and Prakash Chitre, Vice President of Technology with COMSAT
Laboratories, will provide industry's perspective on these interoperability issues.

10:20 Break

10:35 Opening the Technical Program: Kul Bhasin, Chief, Satellite Networks &
Architectures Branch; NASA Lewis

10:40 Invited Session: Internet over Satellite Networks
Ballrooms A & B
Chair: Frank Gargione; ACTS Project Manager; Lockheed Martin

Dennis Conti; Vice President; Hughes Networks Systems
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"Satellite Networks: The Next Frontier"

Burt Liebowitz; Chief Technology Officer; Orion Network Systems
"Providing Internet Access to ISP's Using Geosynchronous Satellites — A Case History
Based on Orion's Worldcast Services"

John Baras; Director; Center for Satellite and Hybrid Networks; University of Maryland
"Linking Satellites and Terrestrial Networks for Broadband Internet Services"

David Beering; Principal; Infinite Global Infrastructures
"Internet Protocols over ACTS at 622 Mbps: Implications for Future Advanced Internet
Services"

Demonstration of Internet over Bi-Directional Satellite Link
Jim Griner, Paul Mallasch, Mark Allman, and David Stewart; NASA Lewis

12:10 Lunch

1:30 Plenary Session: TCP over Satellite: Issues, Relevance, and Experience
Ballrooms A & B
Moderator: Aaron Falk; Network Systems Engineer; TRW Space & Electronics

Keynote:
Craig Partridge
Principal Scientist; BBN Technologies
"Does TCP Work over Satellite Links or Not?"

Norman Butts; Manager; Systems Engineering; Telecommunications Interactive
Technology Center; Lockheed Martin

Eric Travis; Systems Engineer; Jet Propulsion Laboratory

Lori Jeromin; Member of Technical Staff, MIT/Lincoln Laboratory

Victor Barajas; Member of Technical Staff, Hughes Spaceway

Session description: providing Internet service over satellite depends largely on
providing good Transmission Control Protocol (TCP) performance. This panel will
discuss the issues with today's TCP; solved and unsolved problems; the relevance to
commercial; NASA, and military applications; and approaches to dealing with or
avoiding TCP problems. Craig Partridge will provide an overview presentation on TCP
performance over satellite. The remaining panel members will each provide brief
presentations (about 5 minutes) on specific topics of their choosing. Following the
presentations; there will be an open question-and-answer period.

3:00 Break
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3:30 Session Breakout

Session 1— Ballroom A
TCP/IP over Satellites

Chair: Dan Glover; Team
Leader, Satellite Networks &
Architectures Branch; NASA
Lewis

Han Kruse
Ohio University
"Performance Analysis of HTTP
Protocol on Geostationary
Satellite Links"

J. Scott Stadler
NUT/Lincoln Laboratory
"Peformance Enhancements for
TCP/IP over a Satellite
Channel"

Mark Allman
NASA Lewis/Sterling
"Estimating Bottleneck
Bandwidth Using TCP"

Nihal Samaraweera
University of Aberdeen
%FN and SACK over DVB
Satellite Networks"

Session 2 — Ballroom B
NASA Mission
Applications

Chair: Dan Williams; Chief,
Communications Technology
Division; NASA Lewis

James Budinger
NASA Lewis
"NASA's Use of Commercial
Satellite Systems: Concepts and
Challenges"

Robert Lease
Stanford Telecomm/NASA
Goddard
"Commercial Support of NASA
LEO Missions"

Calvin Ramos
NASA Lewis
"OhioView: Distribution of
Remote Sensing Data Across
Geographically Distributed
Environments

Paul Baker
Global Science & Technology
"Simple Automatic File
Exchange — SAFE — to Support
Low-Cost Spacecraft Operation
via the Internet"

Fred Huegel
NASA Goddard
"Satellite Telemetry and
Command Using Big LEO
Mobile Telecommunications
Systems"

Session 3 — O'Hare Room
Architectures and

Network Simulation

Chair: Kent Price; System
Architect; Cyberstar Loral

Gary Johanson
Nortel
"Satellite System Architectural
Issues for Broadband Interactive
Multimedia Communications"

Thomas Wallen
NASA Lewis
"Simulation of a NASA LEO
Satellite Hybrid Network"

E. Geraniotis
University of Maryland
"Multimedia Traffic Modeling
and End-to-End QoS Evaluation
Tools for Satellite Networks"

Bachittar Singh Sembi
Vistar Telecommunications
"Characteristics of Internet
Traffic for Planning Satellite
Networks"

Michael K. Jones
Jet Propulsion Laboratory
"Interoperability for Space
Mission System Monitor and
Control: Applying Technologies
from Manufacturing Automation
and Process Control Industries"

5:00 Close

5:30 Bus leaves for Nautica
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Wednesday, June 3, 1998
Seamless Interoperability:

Expanding the Information Infrastructure

8:30 Invited Session: NASA Interoperability Experiment Programs
Ballrooms A & B
Chair: Pete Vrotsos; Chief, Space Communications Office; NASA Lewis

Keynote:
Al MacRae
Senior Research Scientist, Institute for Applied Space Research; George Washington
University; formerly Director, Satellite Communications; AT&T Bell Labs
"Interoperability — What Is It and Why Is It So Important?"

Robert Bauer, ACTS Project Manager; NASA Lewis
"New Opportunities with the Advanced Communications Technology Satellite (ACTS)"

Richard desJardins and Kenneth Freeman; Networking Consultants, Next Generation
Internet Project; NASA Ames
"NASA/NREN Next Generation Internet (NGI) Activities"

Ramon DePaula; Program Executive, Code S; NASA Headquarters
"Overview of G8 Global Interoperability for Broadband Networks (GIBN) Project"

10:00 Break

10:30 Plenary Session: Addressing Interoperability
Ballrooms A & B
Moderator: Burt Edelson; Director, Institute for Applied Space Research;
George Washington University

Keynote:
Raj Jain
Professor of Computer and Information Sciences
Ohio State University
"Addressing Interoperability: Issues and Challenges"

Charlene Gilbert; SOMO Technology Manager; NASA Johnson
Mark Plecity; New Business Development; Iridium
Sastri Kota; Technical Consultant; Astrolink
Jim Justiss; Director of Systems Engineering; Hughes Space and Communications

Session description: achieving interoperability among satellite, terrestrial, and cellular
network systems is the key to providing a seamless global information infrastructure.
This panel will discuss the operational, standards, market, and technical barriers that are
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being addressed by industry, government, and academia for the purpose of achieving
interoperability.

12:00 Lunch

Session 4 — Ballroom A
ATM over Satellite

Networks

Chair: Tom vonDeak; Team
Leader, Satellite Networks &
Architectures Branch; NASA
Lewis

Enrique Cuevas
AT&T
"Overview of ATM
Performance and QoS
Requirements for Satellite
Systems"

Simon Nawrot
AT&T
"ATM over Terrestrial/Satellite
Network — CTD & CVD QoS
Laboratory Measurements"

William Ivancic
NASA Lewis
"Satellite/Terrestrial Networks:
End-to-End Communication
Interoperability QoS
Experiments"

Yung Ho
Yurie Systems
"Efficient and Flexible Link
Enhancement Techniques for
Wireless ATM"

1:30 Session Breakout

Session 5 — Ballroom B
Multicasting

Chair: Paul Mallasch;
Computer Engineer, Satellite
Networks & Architectures
Branch; NASA Lewis

Keynote:
Kenneth Miller
Starburst Communications
"Reliable Multicasting over
Satellite: Issues &
Applications"

Antoine Clerget
INRIA U.R. (France)
"Organizing Data
Transmission for Reliable
Multicast over Satellite
Links"

Doug Dillon
Hughes Network Systems
"Satellite-Multicast
Enhanced Consumer Internet
Services"

Yongguang Zhang
Hughes Research Labs
"Integrating Satellite
Networks with Internet
Multicast Backbone
(Mbone)"

Daniel Friedman
University of Maryland
"Error Control for Satellite
Multicasting"

Session 6 — O'Hare Room
Interoperability Experi-
ments and Applications

Chair: Richard Gedney;
President, Advanced
Communication Technology

Mehran Shariatmadar
SpaceBridge
"Applying Heritage Inter-
Networking Solutions to ATM
Satellite Systems"

Thomas Stephenson
Milstar, USAF
"ATM over Satellite for the
Warfighter"

Dan Daly
Bellcore
"ATM Traffic Measurements
over the ACTS, OC-12c HDR
Channel with a Distributed Test
System"

Patrick Gary
NASA Goddard
"Testbed for Satellite and
Terrestrial Interoperability
(TSTI) — A FY98 Program
Product of 632-50-50
Communications - Terrestrial"

Dan Shell
CISCO
"Satellite Interoperability"
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3:00 Break

3:30 Session Breakout

Session S — Ballroom B Session 9 — O'Hare Room
Access Technology and TCP/IP over Satellites

Protocols

Chair: Ben Pontano; Chair: Patrick Gary;
President, COMSAT Network Project Leader,
Laboratories NASA Goddard

Gorry Fairhurst Jeff Semke
University of Aberdeen Pittsburgh Supercomputer
"Integrated Packet/Modem Center
Processing for Transportable "Automatic TCP Buffer Tuning"
Terminals'

Bill Shvodian Keith Scott
Lockheed Martin Jet Propulsion Laboratory
"Multiple Priority Distributed "Improving TCP Performance
Round Robin — ATM Satellite over Mobile Satellite Channels:
MAC Protocol" The ACKPrime Approach"

Leandros Tassiulas Tom Henderson
University of Maryland University of California,
"Broadcast Delivery with Berkeley
Limited Feedback" "Transport Protocols for IP —

Compatible Satellite Networks"

John Baras James Stepanek
University of Maryland The Aerospace Corporation
"Flow Control and Dynamic "Internet Services over a Direct
Bandwidth Allocation in DBS- Broadcast Satellite Network:
Based Internet" Challenges and Opportunities"

DC Palter
Mentat
"Improved Satellite Networking
Using the Mentat SkyXpress
Protocol"

Session 7 — Ballroom A
ATM over Satellite
Network Quality of

Service

Chair: Will Ivancic; Team
Leader, Satellite Networks &
Architectures Branch; NASA
Lewis

Keynote:
Louis Dellaverson
Motorola Radio Research
Lab
"Mobile ATM Networking"

Rohit Goyal
Ohio State University
"Traffic Management for
Satellite-ATM Networks"

Prakash Chitre
COMSAT Laboratories
"ATM via Satellite: Link and
Networking Technologies"

Sastri Kota
Astrolink
"Satellite ATM Networks:
Architectural Issues and
Challenges"

Pong Chu
Cleveland State University
"FPGA Based Reconfigurable
ATM Switch Testbed"
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Thursday, June 4,1998
Next-Generation Space-Based Architectures

8:30 Visionary Session — Architectures, Applications, and Technologies
Ballrooms A & B
Moderator: Kul Bhasin; Chief, Satellite Networks & Architectures Branch; NASA
Lewis

Edward W. Ashford; Vice President, Broadcast Satellites; Lockheed Martin
James Bagwell; Manager, Commercial Communications Program; NASA Lewis
William Bailey; Manager, New Markets and Technology; CISCO
John Baras; Director, Center for Satellite and Hybrid Networks; University of Maryland
Joe Bravman; Senior Vice President, Corporate Development; Orbital Science
Steve Goldstein; Program Director; National Science Foundation
Marie-Joss Montepit; Network Design Team; Teledesic

Session description: Looking back 20 years at the satellite and telecommunication
industries, it is hard to comprehend the vast changes that have occurred. Just five years
ago, the Internet was unknown to the general public. What will the next 20 years bring?
Who will be the users, and what will their requirements be? What are the next-generation
architectures (post-2005) to meet the users' requirements? What are the technology
trends to be able to implement the future architectures? This session will attempt to
answer some of these questions. Panel members will provide their vision of the
applications and architectures, including technical issues that must be resolved for
satellites to be the integral element of the 21't century telecommunication infrastructure.

10:30 Break

11:00 Open Forum: Next Step
Ballrooms A & B
Moderator: Thomas Brackey; Chair, Telecommunications Industry Association,
Satellite Communication Division

Session description: Broadband data services are emerging as the major market driver
for future satellite and terrestrial networks. The convergence of satellite and terrestrial
networks is widely acknowledged as the foundation for an efficient global information
infrastructure. Various working groups have identified pivotal topics and key issues to be
addressed for the realization of such networks in a timely fashion. In response, efforts
have been undertaken by industry, government, and academia in addressing these topics
and issues. This workshop has provided the forum to assess the current state-of-the-art,
identify key issues, and highlight the emerging trends in the next-generation architec-
tures, data protocol development, communication interoperabilty, and applications.
Thomas Brackey will lead the session attendees in discussing and summarizing the issues
that should be addressed to further realize the goal of interoperable satellite networks.
The output of this discussion process will be used in the planning processes.
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LABOPWMES

Satellite Communications
and

Interoperability

Prakash Chitre

COMSAT Labs

Clarksburg, MD 20871

Tel: 301 428-4167

Fax: 301 428 7747

e mail: prakash.chitreecomsat.com

COMSAT
b	 L48 RATORfs

Satellite Communications and
Interoperability

• Interoperability
— Terrestrial and Satellite Network Integration
— Common Air Interface Specifications for Satellite Networks

• Challenges
• Current Solutions
• Future Prospects

3



f1 ^_, COMSAT

Seamless Integration of
Satellite and Terrestrial Networks

• Satellite Link Transparent to the End User

• Service Provisioning in a Cast-Efficient Manner

j0 COMSAT
^^•:	 LABOR4TORES

Steps for Achieving Interoperability

• Modify Existing Telecommunications Standards

• Develop New Standards

• Design and Implement Satellite Interface Products

• Develop Next Generation Satellite Networks

• Conduct Tests and Demonstrations

a



I)COMSAT

Communications and
Interoperability Section and TR-34.1

• Wireless ATM
• ATM Traffic Management
• ATM Speech
• ATM QOS
• Internet Over Satellite
• Common Air Interfaces for Satellite Systems
• Interoperability Reference Models

I'.. O COMSAT

Communications and Interoperability
Section/TR-34.1

Major Accomplishments
• Established a liaison-with ATM Forum Wireless ATM Group for the

joint development of satellite ATM network architectures, protocols,
mobility standards

• Worked closely with Internet Engineering Task Force (IETF) for internet
protocols to work well over satellite

— TCPSAT Group has been established

• ATM Traffic Management (TM 4.0)
— Modifications to accommodate satellite delay were approved by ATM Forum

• ATM Speech
— Worked with ATM Forum to develop ATM speech standards to be

bandwidth efficient
• Common Air Interface for Satellite Systems

— Standardize Common Air Interfaces for a range of satellite systems from
satellite personal communications systems to broadband satellite systems

• Letter Ballots on ATM Networks and GMPCS

5
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42
 COMSAT

LABOHATOWES

Common Air Interfaces for
Satellite Systems

* GMPCS
— Letter Ballot: "High Level Requirements for Common Air

Interface for GEO Mobile (Super-GEO) Satellite
Communications Featuring Dual Mode Operation with
Terrestrial GSM"

* Satellite Link Protocol
— Requirements for the Common Air Interface for ATM Over

Satellite Links

.15 COMSAT
W^.	 LABOHAMMES

Current Solutions

* ATM Standards
- Some Evolving to be Satellite Compatible

* ATM Satellite Link and Networking
Proprietary Products for High Quality, Cost
Efficient Operation

* Internet Standards
— A number of TCP Optional Implementation for Better

Performance Over Satellite

* Satellite Internet Products with Proprietary
Solutions

6



lAB WORLIS 	 ATM Link Accelerator

Asynchronous Transfer Mode (ATM)
over Satellite

ATM designed for high speed mulll-media traffic
ATM networks expect fiber-like quality from satellite link

7
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Future Prospects

• Common Air Interface Specifications for
— GEO Mobile with Dual Mode Operations with Terrestrial

GSM
— ATM Over Satellite Links
— TCP/IP Over Satellite Links

• UMTS Compatible Satellite Common Air
Interface Protocol

• Satellite Network Protocols for Ka-band
Systems

9
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Commercialization in NASA

Space Operations

NASA/LeRC Satellite Networks Workshop
June 2, 1998

Charlene E. Gilbert
Space Operations Management Office
Technology Program Manager
NASA Johnson Space Center
charrene.e.gIIbertl@Jsc.nasa.gov

I	 Space Operations Managernent Office	 I
National Aeronautics and Space Administration

Agenda

9 NASA's Plan

Space Operations

Space Operations Technology

• Space Operations Technology Strategy

I1



Space Operations Management Office
National Aeronautics and Space Administration

NASA's Plan
Reality - NASA's budget is flat
The prospect of getting additional funds from Congress for new program
starts is faint

Where will the money come from$?
The Game Plan
— Change strategy in the relationship of technology and missions

— Technology enables the missions
— One Galileo mission vs 12 small planetary missions - $1.9

Billion dollars
— Integrate technology across the Agency
— Consolidate the management of space operations
— Implement strategies to reduce the cost of operations

— NASA spends more than $4 Billion/year on operations
— Outsource, privatize, commercialize

— Redirect the cost savings to exploration and new program starts

Space Operations Management Office
National Aeronautics and Space Administration

Space Operations
Space Operations Management Office (SOMO) is an agency-wide provider of
mission and data services. Includes the expertise and systems necessary to
support the mission preparation and flight execution phases of a program or project.

Mission: Implement Agency space operations goals while successfully
providing services which enable Enterprise mission execution

Goal 1: Meet the strategic mission needs of the NASA Enterprises while reducing
operations costs, consolidating and integrating operations across the Agency,
emphasizing the use of technology, and Increasing standardization and Interoperabllity

Goal 2: Transition the civil service and Jet Propulsion laboratory (JPL)/Cal Tech work force
from routine, day-to-day operations to science, research, and development, except for core
competencies

Goal 3: Transition all operations contracts for products and services to performance-based
contracting

Goal k Transition operations functions that generate products and services to outsourcing,
privatization, and, ultimately, commercialized services

Goal & Restructure management and operational processes using the concept of
customer/service provider

12



Space Operations Management Office
National Aeronautics and Space Administration

Space Operations Technology
SOMO has overall responsibility for communications and operations
technologies required to
— Enable and/or reduce the cost of future NASA missions, includes

space and ground elements

— Promote sustained U.S. Industry leadership in commercial
communications

— Maximize NASA's ability to acquire commercial services to meet its
communications and operations needs.

The Space Operations & Communications Technology & Advanced
Development Program
— Defines NASA's program for future communications and space

operations technology development

— Supplies new capabilities required for SOMO to meet their mission

— Is an integral part of NASA's strategy to move towards using
commercial services to cost-effectively meet the Enterprises' space
operations needs, particularly the Commercial Satellite
Communications program

Space Operations Management Office

National Aeronautics and Space Administration

Space Operations Technology Strategy

Partner with the Commercial Satellite Communications Industry to
— Enable NASA's use of commercial services and assets to reduce the

cost of operations

— Develop pre-competitive technologies to act as a catalyst to open new
markets for the U.S. SatCom Industry

Near-tern areas of collaboration
— Interoperability issues

— Critical areas of pre-competitive technology

— Trade studies and system architecture assessments

— SatCom workforce enhancement

13
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Invited Session
Internet over Satellite Networks
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HUGHES
NETWORK SYSTEMS

AHU@EE ELECTRONICS COWANY

Satellite Networks:
The Next Frontier

by

Dennis M. Conti, Ph.D.

HUGHESToday's Satellite Networks 	 = SYSTEMS

A HUGHES EIECIRONICSCOWANY

Commorelai	 DTH
Ku band	 ---	 --------------------------	 ----------------	

GEOS

MEOs

T
VSAT

TV

PC
Business:	 Consumer.	 Mobile User

data	 Intemet
- voice	 - entertainrtant

video

17



Today's Applications	
vjms

AHOOH84 EIEC7AONWSCOWANY

• Internetlintranet characteristics:
— TCP/IP based
— asymmetric bandwidth requirements

• IP Multicasting gaining in popularity

• Growing popularity of:
— third-party applications with "chatty"

characteristics

Next Generation Satellite 	 HUGHES

Characteristics	 A	
ANY

• Ka band => available spectrum

• Spot beams => frequency reuse, higher
bandwidth

• On board processing => true mesh
connectivity

• LEOs => lower latency, but no broadcast

18



HUGHES
 Comments	

111
NETWORK SYSTEMS

A HL43M EISMCN=COMPANY

• The LEO/MEO/GEO wars will only increase
the FUD factor (fear, uncertainty, and doubt)
among potential satellite network buyers

• It is in the interests of all such systems to
foster standards efforts that:

— allow TCP to operate better with higher latency
and jitter

— result in more efficient browser implementations
— support security standards at levels above IP
— advance quality of service (QoS) standards

19
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Providing Internet Access to ISPs
using Geosynchronous Satellites

A Case History Based on Loral Orion's WorldCast® Service

Presented to Satellite Networks:
Architectures, Applications and
Technologies Workshop

June 2, 1998

Cleveland, OH

4	 Burt H. Liebowitz
Chief Technical Officer

Loral Orion Inc.
Rockville, MD

The Internet Market

• Customers

— End Users in the Home

— Internet Service Providers (ISPs)

— Corporations (Multi-user Enterprises)

• Services

— File Transfers

— Mail

— Web Search

— Multicast

— Etc.
527198 I Ig:Geo62%.pjx 2
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•	 Role of eosynchronous Satellitesf,R	 IV

	

111WI iff! 	
in Internet/Intranet

Economic Provision of Services to Customer Base,
especially where:
— There is no terrestrial infrastructure
— There is an asymmetric traffic flow
— Terrestrial lines/services are congested
— >64 Kbps is expensive terrestrially
— Broadcast/multicast services are prevalent

Satellites can be used for:
— Backbone
— Trunking to POP from Internet NAP
— Direct delivery to customer premise

50-7198 IIg:Gw6298.pp1
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• -	 An Example: Loral Orion's
^^o 

WorldCast Service for ISPs

Large Earth Station Uplink in US to Europe, then Asia
and Latin America

. Low Cost Access to US Internet
• Asymmetric Data Transfer

— High bandwidth to Europe
— Low bandwidth for request and ACKs (via satellite or

terrestrial link)
• Broadcast/Multicast Services

Quality of Service Guarantees designed primarily for
Overseas ISPs and ISP-like Enterprises
— Uses frame relay CIR concept to insure bandwidth

5/27/98 IIg:Gw6298.pr4
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Orion i - Now

Bli p ®ll FRi 	 1	 Orion 2 - Early 99

Orion 3 - Late 98

WorldCast - US to Europe

hsr^
Request

i

Packet "n"

Packet ISP II Local
POP Loop

' USInterne ISP Provided ISP B Local
International Fiber POP Loop

Serve Packet "n" ^—
Could be ISP's or
is relationships

(Response) Request Europe
Packet with higher tier ISP

527/99 J1g:(;rn6298.pp1 6
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®^, t'	 WorldCast ISP

Routing/Hybrid System

PVCs
	 PVC(x) , PVC (y)

Orion J^F
I T U link

Enforces PVC VSAT

Orion Traffic CIR

Shaper

Respons

;Orion Pop ---------	 BGP-4 ^`--------- 	 Overseas	 -, C
Router Peering ISP's Royfer

_
	`- ^E"_

Local
BGP4

	Session
BGPW

R,
etwork

ouncements of Announcements W	 I
Request

US Internet	 Connecting Network -^	 . -Oversea,
^-- ----- E----------------	

Internet

Serve

* Could pad AS path to insure return over
satellite

5rz7/99 IIg:Gco6298.r4* 	 7

Geosynchronous Satellite Versus
Terrestrial or LEO

. Con-GEO SatellitePro-GEO Satellite

- Efficient for broadcast/multicast
- Can access remote locations
- More bandwidth in some locations
- Statistical multiplexing for wide

area aggregation
- Amenable to asymmetric data

transfer fto match traffic flow)
- Can bypass congestion points
- Bypass expensive national back

hauls

- For some applications, impact
of satellite delay on TCP/IP
can limit throughput of file
transfers and increase
response time for Web page
retrievals

- Unicast could be more
expensive in highly developed
countries

5127/98 IIg:Grn6299.Mr1 	 g
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Outcome

	

•	 Concerns When WeRl .;^

	

®""" ""N=	 Announced Service

• Customer

— Throughput degradation because of satellite delay
— Impact of bit error rate on satellite link "goodput"
— Ability to fi11 a channel with multiple simultaneous

file transfers
• Loral Orion

— Surge impact for overbooked ISPs
— Security Issues

• Customer Concerns
— No problem regarding throughput

. Most ISP customers limited by local modem or ISDN line

— Bit error rate not an issue
We design at BER <1 x10-7 for either 99% or 99.5%
availability (use Reed-Solomon)

— Channels can be filled
• Loral Orion Concerns

— Surges limited because most customers do not order
EIR

— Security not an issue in ISP world

5127/98 11g:Gm6298.pp1
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\ • 	 Future.-Expansion to Corporations
®t1; fIf 

for Inter and Intranet (direct to roof-top)

• Move to DVB/MPEG technology for
- Security
- Controlled access to services

- Broader range of CIRs
- Lower cost VSAT
- Saturated transponder operation (up to 54 mbps per'carrier)
- Video, voice and data service on same carrier

• Caching

o Performance Enhancement for higher end to end throughput
because Corporation is no longer modem limited
- Spoofing
- Proxy server
- IP enhancements
- Caching

5127/99 IIg:Grn6298.r4x

,^0„RIIV	 Summary

Geosynchronous satellites are extending the reach of
Internet
Could be a performance hit, but will not be noticed by
most customers and will not affect ISP's ability to fully
utilize satellite channels

• Performance enhancements are (or soon will be)
available for customers who need high data rates, and
low response times

• GEO satellites are uniquely capable of providing
multicast applications

• GEOs can overcome "last mile” problem, especially in
emerging countries

5n7/" I1g:Ge.6299.prd
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Center for Satellite and Hybrid
Communication Networks

Linking Satellite and Terrestrial Networks
for Broadband Internet Services

John S. Baras

Center for Satellite and Hybrid Communication Networks
University of Maryland College Park

Satellite Networks: Architectures, Applications and Technologies
NASA Lewis Research Center

June 2, 1998

El New Business Paradigm

® The "New Data": Internet / Intranet / Extranet
applications
Digital, compressed voice, audio and video

• Paradigm shifts:
- Data applications

require flexible
connectivity

- Applications
require much larger
capacities and
"bandwidth-on-
demand"

- Subscribers require
low-cost, high
capacity access

- Enterprise networks
require in addition
scalabi lity,dependable
performance, simple
network management,
controlled costs

27



The "Last Mile" is Key

• Local Access options
- Fiber to anywhere (FTTN, FTTC, FTTH, SDV)
- Copper twisted pair wire (ADSL, VDSL, ... HDSL)
- Cable Television (CATV), coaxial cable (HFC)
- Multichannel Multipoint Distribution Service (MMDS)
- Local Multipoint Distribution Service (LMDS)
- Broadband Satellites

• Not a technology issue

• Economic and marketing issue

• Time of deployment & market penetration

El Broadband Wireless Infrastructures:
Satellite Constellations

• DBS major success

• New remarkable satellite constellations
• FSS or Mobile, LEO or MEO
• From 8kbps to 1 Gbps and higher; on demand
• Competition to fiber ("faster than light")
• On-board processing, spot beams, hoping beams, autonomy
• Globalstar, Iridium, Teledesic, Spaceway, CyberStar,

PanAmSat, Astrolink, ...
• Newest EHF satellites: Celestri, OrbLink, Lockheed Martin,—

28
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Hybrid Networks Architectures:0	 High-Data-Rate Ka-band SatCom and
Wireless or Wire-line Terrestrial

Ving_L"

Hybrid Networks Architectures:
High-Data-Rate SatCom, Fiber and LMDS
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Efficient Broadband Sevices not
just a Bandwidth Issue

• Challenge: Exponential growth in demand workloads cannot be
met by traditional data services with scalability groth linear in
network bandwidth and server capacity

• Traditional unicast (poin-to-point) connection-oriented data
services uneconomical and wasteful

• Utilize distributed caching, smart prefetching, dynamic
bandwidth allocation, reliable multicast, adaptive hybrid data
delivery

• Need to broadacst the right set of data: highly in demand
• Balance data delivery modes to match user's request

• Broadcast the right amount of the hottest data and provide the rest on demand

"Push" Information Distribution

• Why important?
• Audio/video streaming, software distribution, message

distribution
• Give listeners up-to-date -mess guarantee
• Get network economies of scale and efficiency
• Event driven enterprises
• Individualized content need not require per-user data

streams: filtering at the desktop, integration at the desktop

• "Push" spending: 1996 $ 8 B, 2002 $19 B

• "Push" needs multicast : Intranet and Internet multicast

30



Distributed Multi-Tier
Database Architecture

El Network Operations Center (NOC)
for Hybrid Internet Service

• HGW : first NOC object that receives data ( Router)
- HGW prioritizes Hybrid Internet traffic

• SGW jobs: mixture of Internet and exogenous traffic
- Exogenous traffic: package delivery and data feed traffic

- SGW maintains four queues : two for package delivery and data feed
two for the two priority levels of Internet

• Exogenous traffic high priority: fluctuations
in bandwidth allocated to Hybrid Internet

• Self-similar traffic: Interactive users as ON-OFF processes

31



Buffer per Connection 500 packets
Total Bandwidth 15 packets/unit time
Number of Connections 5 connections
Constant Arrival Rate 10 packets/unit time
Mean of the Uniform Arrival Rate 5 packets/unit time
Delay Imposed to Queued Packets 0.1 unit time

Connl: 1.4469 1.4468 0.0
Conn2: 2.0720 2.0720 0.5298
Conn3: 1.6941 1.6689 0.204
Conn4: 2.0541 2.0524 0.0741
Conn5: 1.7182 1.7088 0.8847

EB I	 FB MDQSF

Common Input Data	 Average Delays

• All strategies: controller knows (per connection) queue status
• Three strategies investigated:

• Equal Bandwidth allocation (EB)
• Fair Bandwidth allocation (FB)
• Most Delayed Queue Served First Bandwidth allocation (MDQSF

• MDQSF is best

DBS-based Internet Access:
IP Multicast and Enhancements

• Two IETF WGs: TCP over Satellite and
Unidirectional Internet routing

• Intelligent asymmetric data transmission
• Two types of traffic (depending on threshold T bps):

- Low data-rate (or "short length") via terrestrial
- High data-rate (or "bulky") via satellite

• Terrestrial LAN extension of DBS-based Internet
• Distribute DBS services from a single receiver out to multiple

users, thus reducing cost
• Satellite hybrid hosts can redistribute data to mobile users
• "Local loop" anything: Ethernet, ATM, cable TV, wireless

32
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Number of Broadcast Items

Hybrid Data Delivery

• Objective: deliver needed data with minimum delay to very
large numbers of users

• Pure data broadcast (16push"):
- Passive users; Accessed concurrently by any number of users
- Limitation: users wait for data of interest to appear
- Access latency depends on volume of broadcast data

• Pure unicast ("pull"):
- Active users; Cannot scale beyond capacity of server and network
- Access latency depends on aggregate workload and network load

• Ammar and Wong (1985), Wong (1988); teletext, videotex
Gifford (1985, 1990); community information services (Boston)
Imielinski and Badrinath (1994), Franklin and Zdonik (1996); w ireless communications
and mobile computing

io Hybrid Data Delivery Model

• DB contains N items
of equal size S

• Demand for Ph item:
Poisson ; rate ki

X 1 >2 2 >... >XN

• Server M/M/l; mean
service time = 1/µ

• Server can broadcast at
rate B

• Broadcast n first items; On-demand N-n items;	 Ak= Ilk Xi

• Expected response time for requests: Tpup= 1/(#—(fir,—Ad); Tp„sh= nS12B

• Expected response time for hybrid: weighted average of Tpu11 and Tpush
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• Sort items by their
temperature

• Demote to liquid all
vapor data with
temperature < hottest

liquid item

• Marginal gains:

(2a) Demote vapor items in
increasing order of
temperat. while B> Bo

H

H

0
a,

a;

Adaptive Repetitive Data Broadcast

m{

• Size and content of broadcast
continuously updated; Not fixed
schedule

• Queue storing vapor data: V

• Item broadcast appended to tail of
V and its temperature reduced by
Cooling Factor

• Contents of V modified every cycle
defined by a placeholder

• Notification on to-be broadcast
items by broadcasting index:
the signature of V

Two-Phase Algorithm to
Update Broadcast Queue Contents

AV

`'A<4:5XC<4<a'E<%F<)'1:5%G:5XH
Vapor: A, B, C, D, E, F, G ; Liquid: H, I

(2b) Promote liquid items in
decreasing order of
temperat. while B < 90
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Temperature Probing

Without probing	 With probing

• Critical factor: probing interval [to, t2]

• Probing time = Probing Factor x (Ny /Ay)

• Avoid premature demotion
of a very hot item

• Temperature probing:

- After demotion at to

- Re-promote at time t2

- Creates small window
for re-evaluation:

probe the temperature
of the item

Performance Evaluation:
Static Workloads

	Hold-Cold Uniform	 Gaussian

o c	 N o	 c	 w

4	 4	 --^-

	

Pull Only —0	 Pull Only —0

m 
3	 Adaptive 4

m 3	
Adaptive

E	 E
i=	 i—

co
cc 1	 cc 1	 ?m

Q
0	 0

4
10 30	 300	 3000	 10 30	 300	 3000

	

Request Rate (reqs/sec) 	 Request Rate (reqs/sec)
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Performance Evaluation:
Simulation Experiments

• Parameters:
- Broadcast and down link rates: 12 Mbps
- Uplink rate: 28.8 kbps
- DB has 10,000 items, each 50 kB in size

- System's pull capacity p : 30 items/sec
- Vary workload from light (RR < .a) to heavy (RR = 100,u)

• Response time depends only on hot-spot size (100 items)

(not on workload intensity

• Scalability increased by two orders of magnitude

Acknowledgements
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mmunications Technology Satellite
Lewis Research Center

leveland, Ohio

Ex r'	 t 1
Where	 S T	 a TCP/IP

° ° co	 her
o-

dp 	 D	 ering
Infinite G	 tructures, LL
On co r	 o	 ding Software

630-665-1396
drbeering@sprynet.com

What is 118x?
n 118x is the latest in a series of 118" experiments,

designed to study the optimization of TCP/IP and
ATM protocols over geostationary distances across
multiple operating environments using NASA's
Advanced Communications Technology Satellite
(ACTS)

n Experiment 118j ran from August to November, 1997
using and focused on Sun's Solaris 2.6 TCP/IP
implementation

n Experiment 118x operates during May-September,
1998

n The satellite link operates at 622 Mbps (OC-12c)
between Livermore, CA and Cleveland, OH
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118x Experiment Goal

n To develop a recognized, interoperable, high-
performance TCP/IP implementation across
multiple operating platforms working in
partnership with the computer industry

n To work with the satellite industry to answer
outstanding questions regarding the use of
standards (TCP/IP and ATM) for the delivery
of advanced data services, and for use in
spacecraft architectures

118x Experiment Participants
Government Laboratories

n NASA Lewis Research Center
n NASA Johnson Space Center (SOMO)
n NASA Jet Propulsion Laboratory
n Lawrence Livermore National Laboratory

NTONC Lead
n Naval Research Laboratory
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118x Experiment Participants
Communications Industry

n Ampex Data Systems (DIS-160 Tape Systems)

n Cisco Systems (LS-1010 ATM Switches)

n FORE Systems (ASX-1000 ATM Switches)

n Sprint (Laboratory space, terrestrial network)

118x Experiment Participants
Computer Industry

e Sun Microsystems (Solaris 2.7, Ultra workstations)

n Microsoft (NT 4.0, NT 5.0)

n Digital Equipment (DEC Unix 4.3, DEC Alphas)

n Pittsburgh Supercomputing Center (Integration)

n Intel (Pentium II Development Systems)
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118x Experiment Participants
Satellite Industry

• Hughes Space & Communications
• Lockheed Martin Corporation
• Space Systems / LORAL
• Spectrum Astro

Introducing NASA's Advanced
Communications Technology

Satellite

The world's best satellite system
simulator!
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Relay Satellite Model

Return Link	
ACTS

Ka-Band
Very High
Data Rates

1 to 622 Mbps

Forward Link
Low to Moderate

Data Rates

Remote	
1 to 20 Mbps	

Hub
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Digital Broadcast Satellite (DBS) Model

ACTS
Ka-Band

I
Satellite

Return Link
1 to 622 Mbps

Remote	 Hub
Terrestrial

Forward Links
1 to 20 Mbps
Using NREN

118x Participating Sites

• NASA Lewis Research Center (LeRC) -
Cleveland, OH

• Lawrence Livermore National Laboratory
(LLNL) - Livermore, CA

• Sprint Advanced Technology Laboratory
(ATL) - Burlingame, CA
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.118x End-to-end Network Layout
NASA

Advanced Communications
Technology satellite

/622  Mbps
Lhk

ea
Oa

PASI.

	 ATM

^ 	 ^"

	

ATM	 ATM

	

SeAt^ 	 ,

	

Ampex FVADWMi SUN	
nce Livermore	 as	 SUN Fvuo scsi Ampex

DIS160	 sdens	 al Laboratory	 TMWM 	
saaris	 p,s,eo

	

DEC	 DEC

	

Una	 Unix

i

	

NT	 NT

	

BSD	 BSp

	

Ref	 Ref

Sprint Advanced	 NASA

Technology Laboratory 	 Lewis Research Center
Cleveland, Ohio
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Sprint	 NASA
Advanced Technology Lab 	 Lewis Research Center

Burlingame, CA	 Cleveland, Ohio
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End-to-end Demonstration Layout at SC97
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118x Double-Hop End-to-end Network Layout
NASA

Advanced communications
Technology Satellite
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LOOPSACx Switch 12`	 Switch

N SOW ^\
Sprint Advanced

	

Technology Laboratory	 Lawrence Livermore 	 MM
National Laboratory	 Same

NASA

Two devices at NASA LeRC	 Lewis Research Center
communicate with each other through	 Cleveland, Ohio

a physical loopback at the far end. This
has the effect of doubling the roundtrip

delay between them
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118x Double-Hop End-to-end Network Layout
NASA

Advanced Communications
TeehnokW Satellite

0
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Link

06,2	 wSONET

PWSICAL	 ATM	 ATM
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Two devices at NASA LeRC	 Lewis Research Center
communicate with each other through 	 Cleveland, Ohio
the physical loopback at Sprint. This

has the effect of doubling the roundtrip
delay between them

118x Double-Hop End-to-end Network Layout
NASA

Advanoed Communications
Tedviolopy Satellite
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LOOVSACK	 Switch	 ® 0612 `	 SYYKdI
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Sprint Advanced ,S6@2
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SUN
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NASA

	Two devices at NASA LeRC	 Lewis Research Center
communicate with each other through	 Cleveland, Ohio
the physical loopback at Sprint. This

has the effect of doubling the roundtrip
delay between them
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118x Plans

n Complete first phase workplan by end of
September, 1998

n Demonstrate - demonstrate - demonstrate
n Leverage relationships and technology base

to further the state-of-the-art in high-speed
satellite applications using standard protocols

n Apply the technology to NASA's unique data
handling problems using TDRSS

n Leverage the architecture for space
commercialization

Industry Challenges

n Incorporate error-recovery techniques (like
those found in SOPS) into TCP/IP

n Demonstrate these capabilities to broader
audiences

n Implement the technology to lower the cost of
building and delivering advanced applications

47



Page intentionally left blank 



Internet over a Bi-Directional Satellite Link

Jim Griner
Mark Allman
Paul Mallasch
David Stewart

Satellite Networks: Architectures, Applications,
and Technologies Workshop

June 2-4, 1998

Internet over a Bi-Directional Satellite Link

• Comparison of HTTP over several network channels
— 33.6k modem connection
— Satellite connection, standard TCP stack and typical application

settings
— Satellite connection, optimized for satellite networks

• larger window sizes
• larger initial congestion window
• TCP bug fixes
• new versions of the HTTP protocol

• By using appropriately tuned applications and TCP settings, we
demonstrate improved performance of HTTP when compared to
today's off-the-shelf software

Optimizations are based upon findings from experiments conducted
between satellite research networks at NASA Lewis Research Center
and Ohio University.
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Internet over a Bi-Directional Satellite Link

HTTP Comparison Pages
— 20 pages gathered from several Ohio related sites
— Pages with varying attributes

• Number of images from 1 to 27
• Image sizes from 177 bytes to 360 kilobytes

Demonstration setup in Dulles
— Three computers, one for each of the network channels
— Pages are synchronized to start at the same time
— The computers will pause for one minute, before moving on to

the next page
— The 20 pages will repeat continuously, for the duration of the

workshop
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Plenary Session
TCP over Satellite: Issues,
Relevance, and Experience
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Does TCP Work over 8Ilite
Links or Not?
Dr. Craig Partridge
BBN Technologies

The-Puzzle

• TCP was designed to work ov	 telli
— the goal of the research project that a

TCP was to link SATNET and ARPAAF

• TCP's theoretical maximum data rate
Gb/s
— faster than any satellite link

• So why do people feel TCP doesn't work
over satellites?
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The mesons

• Bad reasons
— out of date implementations
— misconfigured TCPs
— poor testing technique

• Good reasons
— high bandwidth
— TCP startup delays

Out of Dater^ementations

• TCP, as specified in 1981,
— max data rate of 1 Mb/s over GEO

— 286 Mb/s overall max

• Limitations repaired in early 1990s
— PAWS and big windows

— max data rate now 15 Gb/s over GEO

— 8 Tb/s overall max

— make sure you're up to date!
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Misconfi	 d TCPs

• An up-to-date implementation	 n't help
if you don't configure it

• Many TCPs shipped with 64KB max um
window size
— 64KB/250ms is 2 Mb/s

• Must turn on PAWS and large windows
set default window to be large!

BadTegting

• Lots of people test performanctaking
TCP, out of the box, and FTPing
megabyte of data

• That's stupid
— TCP may be misconfigured
— 1 MB is far too small for anything but a

• Configure the TCP, then transfer a
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High	 idth
• Moving from 56 Kb/s links tolkNgbit links

has implications
— more data in flight (more sender effort

the pipe)

— error rates must go down proportionately

— big transfers get most of the benefit

Big Trans	 Get Most of the
Bene

• Faster isn't really faster
— speed of light says a 1 bit pulse

time it always did

— faster really means bits are thinner on the'N

• Big transfers win; small transfers don't
— big transfers get all their bits on the line sc

• Web transfers are small...
— transfer time dominated by transmission delay
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TCP Sta^taq Delays

• On startup, TCP probes a link	 am how
much capacity is available
— goal is to avoid overloading network; a]

— fairly sharing with existing connections

• Startup time depends on delay and
bandwidth
— on a GEO at 155 Mb/s, it takes 11+ seconds

— first 20 GB are sent during this probe stage

How Do We-.o Forward?

• Recognize that terrestrial guys
	

the
same problem with startup

• So look for general solutions
— Hoes' algorithm

— pacing

• Avoid link-specific algorithms
— spoofing
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LoaWesd Martin Telseommunlestbns

TCP OVER SATELLITES

ISSUES, RELEVANCE, & EXPERIENCE

Norm Butts
Manager, ITC Systems Engineering

Lockheed Martin Telecommunications

Intmnive Technology Cemer
Norm Bom(401) 5/3 -3021

TCP Relevance
Lockheed MarWnTelseommunlostlons

(Why is Lockheed Martin Interested in

TCP over Satellite Applications: 	 TCP over Satellite)

• GEO Fixed Satellite Services
- Internet Service Providers (wholesale)
- Satellite Internet (retail)
- Private Networks (VSA7)

• GEO Mobile Telecom Satellites
- email/internet add-on services

• GEO Direct Broadcast Satellites
- DVB based Internet add--on Services

• GEO Broadband Satellites
- Astrolink
- Other Ka Band Systems

Many customers are looking for pre-integrated applications
Bottom line: applications drive satellite sales

Interactive T=ImWogy Curter
Norm 6m0 (401) 543.3021 06M2/91

0607191
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• Lmkheod Martin Teieoommunleatlons 	 Astrollnk Environment

Characteristics:
- Nine GEO satellite constellation at five locations

- Frequency: Ka Band, 20GHz (downlink) 30Ghz (uplink)

- Terminal Bandwidth: SOHO - 384 Kb/S, Med. Enterprise - 2.3 Mb/S, Large
Enterprise - 9.2 AIUS

- Format: ATM, Multi-Frequency TDMA, DAMA

- Latency (Round Trip) &500 ms (one hop) to *;1.6s (worst case three hop)

Performance of Today's TCP implementations
- Win 95 40 KbIS (3 hop) to 128 KbIS (1 hop)

- UNIX - Many are "tunable "for better satellite performance but default to similar
performance levels

Conclusion: Today's TCP implementations fall short of needed
performance

Immoi.e Technology Cenw
Norm Bale (109) 313.3021 	 06A3Ng

iookheed Martin Teleeommunieatbne 	 TCP Satellite Performance
Improvement Issues

Improved End to End TCP Implementations

- Many improved alogrithms are available or on the way

- Implementation by major OIS suppliers is the big question

- Fairness issue cannot be resolved without major changes

Transparent Gateways/Proxies (AKA Spoofing)
- Works with existing TCP implementations

- Can overcome fairness problem

- Has been used with success in unidirectional satellite w/ dial-up return channel

- Implementation is difficult and risks possible side-effects

- Lockheed Martin is working on a proof-of-concept bi-directional gateway

ATMlssues
- Further research on TCP/ATM interaction is required

Inleroctt.e Tahnology Center
N	 Butte (408) 313-3021	 06AIZAgam 
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.0 Space Mission operations Stondardr ation Program

National Aeronautics and Space Administration

Mixing TCP And Satellites: A View From Above
(Irreverent Confessions From The Standards Trenches)

NASA LeRC Workshop on Satellite Networks
Cleveland, Ohio

June 2, 1998

Eric Travis /NASA Jet Propulsion Labs (e j.travis@ieee.org )

SCPS

Spate Mission operations standardization Program

National Aeronautics and Space Administration

Why Are Open Protocol Standards Important?

• The Vision:

- Cheaper, better, faster

- Risk reduction & stability
- Interoperability
- Efficiency

• Potential Problems In Realizing The Vision:

- Broad applicability not recognized

- Flexibility contends with simplicity

- Deployment into an installed base

• Do You Get A "Big Tent" Solution Or Just A "Big Top" Oddity?

- Candor, industry participation and feedback will make the difference

• A Parable For Our Times: Should The Tail Be Wagging The Dog?

SCPS
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.or

Space Mission Operst-s 51OW-dizat- PrWom

National Aeronautics and Space Administration

Protocols Are Life Galoshes: One Size Does Not Fit All

• The Dynamic Range Of Network Environments Is Larger Than Ever
— Satellite networks mirror the full spectrum: wireless to fiber, mobile to static
— Environments are Opaque: "On the Internet, nobody knows you're In orbit"

• You Probably Own Only Part Of The Railroad
— Actions at a distance can affect your bottom line performance

• TCP Loss recovery is expensive and retransmissions are not always free
• Loss recovery is inherently unfair to long(er) paths

— Localized performance tuning keeps the trains running on-time
• Spoofing and proxies: The benefits of impedance matching

• Balancing security, transparency and the end-to-end argument

• Seamless Integration Is A Matter Of Perspective (Theory and Practice)
• Bottom line For Performance And Efficiency In The Near Term:

Tailor Your Solutions, Do So With Standardized Mechanisms Appropriate To The Environment

SCPS
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Session 1
TCP/IP over Satellites
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Performance Analysis of the
HTTP Protocol on

Geostationary Satellite 'Links
Hans Kruse

Ohio University
Mark Allman

NASA LeRC/Sterling Software
Jim Griner, Diepchi Tran

NASA LeRC

NASA Workshop June 2-4,1998:
Satellite Networks: Architectures, Applications, and

Technology

Overview

• Network Reference Points
• The HTTP 1.0 and 1.1 Mechanisms
• Experimental Setup
• TCP and HTTP Configuration
• Results and Future Work

e, Hens Kruse. J Wwren WChne Scho0101 Commun¢etion Systems Management, Ohm tlnWmky; Mtp &108w mm.ot0w.eda/ 	 2
Vr
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Why HTTP

10 The Obvious Answer:
"Millions of Web Browsers..."

• The not-so-obvious Answer:
— HTTP is a very generic multi-file transfer protocol

with content/encoding awareness
— Very well optimized HTTP servers are available
— HTTP contains intrinsic proxy support

mechanisms that allow regional caching of data

* Hens Kruse, J Warren MtClwe School of Communication Systems Management, Ohio University; Mtp:6/198W W W esm.oMou edu/ 	 3
kruse

Network Reference Points
. h .	 We are here

y^	
.

"DirecPC"

^7 Hans Kruse J Warren McC1we School of Communrestron Systems Management, Ohm Unversity; Mtp:61198WWW csm.ch—edu/ 	 4
kruse
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Reference Points cont...

• Interface "a"
— Very small number of users
— Traffic is bursty, user wants good. response time,

protocols dominate performance

• Interfaces "b" and 
it

— Large and varying number of users
— Traffic is more random, performance depends on

protocols and congestion control; fairness is
desirable

* Hans Kruse. J Warren MCCIu Shod Of Commudcelwn Systems Management. Ohio Unhwsly; h.p 61198v csm.ohlou.edul
	 5

kruse

The HTTP 1.0 Mechanism

	Client
	

Server

Request

Base HTML
Additional
Requests	 ,

Additional
Responses

4+ Ham Kruse. J Warren McClwe School of Commvnieaeon Systems Merlegemem, Ohio UnNm ky; Mlp &q&ewww.csm.oNw.etlu/
kruse 6
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The HTTP 1.1 Mechanism

Client
	

Server

Request

Base HTML
Additional
Requests

Additional
Responses

91 Hem Kruse. J Warren WClwe School of Communication Systems Management. Ohio Un"mky; Mtp S/l/aaw csm ohiou edu/
kruse

The Experimental Setup

LeRC

Client
Pentium Pro

NetBSD 1.2.1

Packet
Capture

Pentium Pro
NetBSD 1.2.1

Magrathes

7!ACTS
Ohio

University

0 Hero Kruse. J Warren McClwe School of CommumaMim Systems Management, OW Unrars4y; http:&1 f9awww esm ohkM edu/	 8
kruse
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TCP Configuration

• Standard BSD "re po" stack
• Large window support (RFC 1323)

— experiment uses 8, 16, 64, and 96Kbytes

• Bug fixes in the NetBSD stack
— Initial window starts with one segment
— Acknowledgments are generated according to the

standard

-f) Hens Kruse. J Warren WCluro School of Comm meelmn Systems Menegement, Ohm UnKWsky: Mp:W19Mw .osm.ohiw.edu/ 	 9
kruse

HTTP Configuration

• Apache Server (HTTP 1.0 and 1.1)
— Persistent connections in HTTP 1.0

• Netscape browser
• Netscape allows multiple connections

— experiment uses 1, 4, 8, and 16

• Experimental HTTP 1.1 client
• increased initial TCP window support

MN Ham Kruse. J Warren McClure School of Comm rua on Systems Management, Ohm Unkrersity; MWAnNewwwMM.0tow.edu/ 	 10
kruse
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Web Page
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Elements

0 Mans Kruse, J Warren McClure School of Commirmcalion Systems Management. Ohio Unmersdy; tetp:6/l N)Bwww.csm oleou edu/ 	 , 1
kruse

Comparing HTTP 1.0 and 1.1

HTTP 1.0 and 1.1 Comparison

25.00

Window

0* Hens Kruse. J Warren McClure School of CommunieMion Systems Management. Ohio uni varsity, tM:6nM$*rww.csm.ohiou.edu/
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kruse,
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Data Flow Comparison
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13Hans Kruse. J Wanen MtClwe School of Communication Systems Management. Ohio Uni wsdy: heP:611M6 	 esm otsou.edu/
kruse

The Larger TCP Initial Window

Modified Initial Window

9.00

8.00

7.00

	

6.00	
—rene 96K

	

6 5.00	 --*—mod 96K
4.00

C
a 3.00

a 2.00

I.00

0.00 ---- 1 -- --i-
/acts	 /L.eRC	 /oufr	 !Pest

Page

IN Ham Kruse. J Warren McChae School Of Communication Systems Management, ONO Universay: MIP:d198Ww csm.ONW edu/
base

14
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What settings are important?

Comparing 1.0 multi-connection and 1.1 pipeline

12.00

10.00

8.00
—^ 1.1 64K/mod

	

FE— 6.00	 —a-1.0 4/16

—,k-1.1 64K
$ 4.00
Ya

2.00

	

0.00	 F-
acts	 /LeRC	 /oufr	 !rest

Page

£ Ham; Kruse. J Warren McClure School of Communication Systems Managemerd. Ohio UnNersky; hup:M all—t.mm.ohiomedu/ 	 15
kruee

Modeling Slowstart

• Based on Heideman, et al. (IEEE
Transactions on Networking Vol. 5, No. 5, Oct
1997.

• Slowstart creates an exponential increase in
the data flow, up to the channel bandwidth

• Delayed acknowledgements change the rate
of increase

• HTTP 1.0 requires a little extra, work, results
for HTTP 1.1 are shown here.

a Hans Kruse. J Warren McCkse School of Corrim micakon Systems Managament. Ohio Universky. Ntp:S/lfilfh w mm ohiar edu/ 	 16
kmse
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Are there unknown effects?

Experiment vs. Slow Start Model

40

COD 35 LeRC

CD
	

30- a	 LeRC Exp.
E 25

20
out

H 15 n 	 out Exp.

c. 10 .	 acts
5  •	 acts Exp.
0

8	 16	 64	 96

TCP Window (KBytes)

® Ham Kruse. J Wm" McClure School of Communication Systems Mansgemem. Ohio University: Mtp:6nWWWW c5m.014M.OW/
kruse

Maybe a few ...

Experiment vs. Model - Modified Initial Window

10

m
U) 8

m
E 6

F-
C

C

4 n

•
^•

•	 •
s

U) 2
01

It
0

8	 16	 64	 96

TCP Window (KBytes)

0 Ham Kruse. J Warren McClure School of Comtrommattarr Systems Mang~, Ohio Lk*A slfy; hl1p.8/V9a W W.csm ohiou.MUl
krwe
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Implication for the Service
Provider

Page Best Time Size Rate
(sec) (Kbytes) KB/Sec

/acts 3.79 100 26.41

/LeRC 3.00 49 16.36
/oufr 6.89 491 71.23

Nest 2.99 29 9.70

	

Utilization No. of	 Based on Ti

	

Users	 (1.536Mbps)
14%	 7.1 service
9%	 11.5

38%	 2.6
5%	 19.3

Desirable Configuration:

users
	 Proxy	 Air

r	 0f 1.

..	 .:_...	 ...,.	 ,^... :.. ; .... .....	 ......n...-,...:.:>:v.,,"m^ Hppnyp.•.p„!r.nvc.:;r..yan; n,I^; !:!i F.u.n'nx ^,.:.. rJmq:=m.
	 I ()

Conclusions and Future Work

• HTTP 1.1 pipelining outperforms HTTP 1.0.
• Performance of HTTP 1.1 can be readily

modeled.
• Pipelining will create new application level

problems.
• Examine the reference points "b” and "c" by

introducing competing background traffic with
the TCP flow under study.

	

T Hans wase. J wrmn McCAne WKNA M CoemmmtOM SyMwm Iankgw4M. Ohio Umwsky: h11p.6M Mawr« osm.vMM.9"
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Performance Enhancement for TCP/IP over a
Satellite Channel

J. S. Stadler, J. R. Gelman, L. L. Jeromin

MIT Lincoln Laboratory

NASA_N_IJ11	
MIT Lincoln Laboratory

Satellite Data Communications
Architecture

• On-board Packet Switch
EHF SATELLITE

• Packetized Uplink Multiple Access
ONBOARD

• Satellite Protocol Enhancement	 PACKET SWITCH

- Standards
- Link Layer	 PACKETIZED UPLINK
- Protocol Conversion MULTIPLE ACCESS 	 " i

fftemicn^v."

SHORT LATENCY	 LONGER'LATENCY

LOW ERROR RATE (<10-) 	 HIGHER ERROR RATE (-10+)
NASA-96-UJ-2	

MIT Lincoln Laboratory

75



	

z	 Outline

—► • Background - TCP via Satellite

• Lincoln Laboratory Link Layer Protocol

• Wireless IP Suite Enhancer

• Performance Results

• Summary

	

NASti%U1}

	 MIT Lincoln Laboratory

	

M	 TCP via Satellite

• TCP operates over a large range of environments -
sometimes at degraded levels of performance
- Communication links may not be used efficiently
- Reduced QoS as perceived by an interactive user

• In a satellite environment inefficiencies can be attributed to:
- Latency

GEO satellites have a minimum 0.52 second RTT

- Bit Errors
Satellite links can be made "error free" but a data rate penalty is
incurred

- Link Asymmetry
Mobile/Portable terminals can typically receive much more data
than they can transmit

MIT Lincoln Laboratory
Nns,l%uaa
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NGoals

• Transparency
— User should not need W know that a satellite link is used
— User should not have tD follow special procedures
— Perceived QoS should be acceptable

• Backward Compatibility
— Approach should work with the existing network

infrastructure

• Efficiency
- Approach should make efficient use of the satellite link

• Scalability
- Approach should scale W large systems/data rates

• Flexibility
— Approach should be applicable with bent-pipe or processing

satellites

	

NASA.96JJ1^	
MIT Lincoln Laboratory

	

IN	 Existing Solutions

• Internet Engineering Task Force (IETF) Standards Track

— TCP Extensions for High Performance (RFC 1323)

— TCP Selective Acknowledgement Options (RFC 2018)

— TCP Fast Retransmit/Fast Recovery (RFC 2001)

• Alternate Transport Protocols Designed for Satellite
Environments
— Satellite Transport Protocol

— SCPS

— XTP

• Special Purpose Link Layer Protocols

— Lincoln Laboratory Link Layer

— TCP Aware Link Layer

	

NA A_WJJJ.n	
MIT Lincoln Laboratory
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(	 Existing Solutions

	

Jul	 (Cont)

• TCP `Spoofing'

- TCP ACKS are manipulated to reduce flow control effects

• TCP Splitting

— TCP connection is terminated at the periphery of the satellite
network

TCP/TCP
TCP/Other

	

NAS/LW 1J1t	
MIT Lincoln Laboratory

	

N	 Outline

• Background - TCP via Satellite
_P' • Lincoln Laboratory Link Layer Protocol

• Wireless IP Suite Enhancer

• Performance Results

• Summary

NASti9L u.l-a	
MIT Lincoln Laboratory
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ZLincoln Laboratory Link Layer Protocol

• Link Layer protocol transparently conditions the satellite
channel according to the TCP needs

• Approach

— Get data flowing as quickly as possible

Enable the TCP flow control algorithm to ramp up as quickly as
possible

— Make sure data continues to flow

Prevent the TCP flow control algorithm from reducing the
transmission rate due to errors on the satellite link

Congestion on the terrestrial portion of the network will still result
in a reduction in the transmission rate

— Correct errors in as efficient a manner as possible
Efficient retransmission mechanism

Forward Error Correction

	

NAS/tgL LIl9	 MIT Lincoln Laboratory

Lincoln Laboratory Link Layer Protocol:
Implementation

• Fragmentation
— Decouples link layer packet size from the TCP segment size

— Larger TCP segments allow data flow to ramp up more quickly
without making the packets more susceptible to link errors

• Link Layer Selective Repeat ARQ
— Hides link errors from TCP and prevents errors from being

confused with congestion

— Selective Acknowledgements are sent on a periodic basis
Acknowledgements convey the entire receive buffer state

— Packets received in error are retransmitted K times

— Selective repeat ARQ results in packets being received out of
CPC order	 Baal

	

Packet reordering is necessary 	 r

	

tp	 rr,

PHV$	 SATCOM LINK	 f!NYS

MIT Lincoln Laboratory
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x	 Outline

• TCP via Satellite

• Lincoln Laboratory Link Layer Protocol

• Wireless IP Suite Enhancer

• Performance Results

• Summary

NASA • Iu	
MIT Lincoln Laboratory e

EWireless IP Suite Enhancer

• Users connect through a TCP translator at the boundary of
the satellite portion of the network

- Operates with no modifications to end user systems

- Applications are unmodified

• Translator converts incoming TCP connections to Lincoln
Laboratory Link Layer protocol

- Error correction is performed locally on the satellite segment
of the link

— Peer translator will convert satellite protocol back to TCP

• IP packets not containing TCP packets are encapsulated in
a link layer protocol (error correcting optional)

MIT Lincoln Laboratory
NMA-W 11113
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Wireless IP Suite Enhancer
(WISE)

SATELLITE

ice; • = : - •i	 i
RXEDUS87	 RaIOTE USER

WISE GATEWAY	 WISE GATEWAY	 OR NETWORK

NASA_,W_uin
MIT Lincoln Laboratory

z	 Outline

• Background -TCP via Satellite

• Lincoln Laboratory Link Layer Protocol

Wireless IP Suite Enhancer

--► • Performance Results

• Summary

NASA_ u1N	
MIT Lincoln Laboratory
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E	 EHF Networking Test-bed
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MIT Lincoln Laboratory ^®

Test Results

• Test scenario

— 100 Kbps link

— 10-5 error rate

— --2048 bit packets (nominal) over satellite link

— 1 Sec RTT delay

— WWW applications

— Configurations
TCP - optimized TCP parameters

TCPILLLL - default TCP parameters

TCPIWISE - default TCP parameters

MIT Lincoln Laboratory ®^
NASA_^_U11M1
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Transfer Time

HTTP Transfer Time Vs. File Size

	

I	 TCP

	

80 i 	 TCP/LLLL
TCP/WISE	 j

W-

I

r

	

40i	 j

woy 30=
C

~ 20^

	

^	 I

10	 20	 30	 40	 50	 8o	 70	 80	 90	 100

File Size (Kbytes)
MIT Lincoln Laboratory

NASA mjJ.L17

jam(	 Instantaneous Utilization
1l^^ll	 (1 Session)

HTTP Link Utilization vs. Time

Time in Seconds

MIT Lincoln Laboratory °®
NAStix u.^u

83



C0
RN
w

Y
C
J

A
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^^	 (5 Session)
HTTP Link Utilization vs. Time

Time in Seconds

NASA 9{J.1119	
MIT Lincoln Laboratory

Summary

• TCP/IP often operates at reduced levels of performance in a
satellite environment

• The Wireless IP Suite Enhancer was designed to substantially
reduce the impact of wireless links on the Internet protocol suite

- TCP connections are converted to LLLL for transmission over the
satellite segment

— IP packets not containing TCP packets are encapsulated in the LLLL

• Performance

- Test results show nearly optimal link utilization and significant
reductions in transfer times using commercial applications

• Planned /Ongoing enhancements

- Compression

- IPSEC

MIT Lincoln Laboratory
NASA_ UJ.20
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Estimating Bottleneck Bandwidth

using TCP

June, 1998

Mark Allman

NASA Lewis Research Center

mallman@lerc.nasa.gov
http://gigahertz.lerc. nasa.govl "' maliman

Hit our satellite with feeling
Give the people what they paid for

—The Flaming Lips

• Why do we want TCP to estimate the
bottleneck bandwidth?

- Startup more rapidly

- Avoid loss

. We will concentrate on estimating the
bottleneck bandwidth in order to set
ssthresh to an appropriate value and thus
avoid loss.

- "Satellite friendly' TCP often includes
large windows

- Large windows can allow a TCP to
overwhelm a gateway with a larger
number of segments than a small
window connection

- Therefore, estimating the bottleneck
bandwidth can help TCP limit loss by
slowing down before overwhelming the
gateway
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+ Making an estimate of the bottleneck
bandwidth has been proposed and tested
via simulation (Janey Hoe at MIT)

- used packet-pair algorithm on the first
few returning ACKs

- the time between successive ACKs is
caused by the data segments
"spreading out" based on the
bandwidth

- the bandwidth estimate combined with
the measured RTT can be combined
to give the appropriate	 . .
delay-bandwidth product of the link
and therefore, the correct window size

iliCRI
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+ However, real networks make predicting
the bottleneck bandwidth more difficult

- delayed ACKs

• getting successive ACKs requires
more segments

- network jitter

• traffic from other connections
getting between two successive
packets

- asymmetric networks
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® So, how do we get around these problems
caused by real networks?

- watch the incoming ACKs for a longer
period of time

• The larger the window grows, the more
important it is to avoid loss (due to the
possible magnitude of the loss event)

- As the window increases and we get
more segments into the network the
problem of delayed ACKs naturally
fades

- Network jitter can be averaged out if
we are able to watch the ACKs for "a
while"

- Asymmetric networks?

• Hmmm...

_	
Lt

• We collected packet-level traces from
various networks and analyzed attempted
to determine the bandwidth of the
bottleneck link based on the ACK stream

• ACKS were observed in the order in which
they arrived only, as to attempt to
simulate a TCP stack
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• We ran several FTPs over the ACTS
satellite and were able to successfully
estimate the bottleneck bandwidth (and
therefore, the appropriate window size)
within the first 40 segments (data and
ACK) observed.

• This environment was free from
competing traffic so it is mostly
uninteresting

- But, it shows that delayed ACKs do
not make the task impossible

tlCtl	 -	 . . } . ^t

• We ran several FTPs between LeRC and
OU to obtain traces from a dynamic
environment with competing traffic

• We were able to determine a "good"
window size within the first 50 segments
observed

— Our estimate is 60% higher than the
window size needed to obtain the
throughput we observed, on average

• window / RTT = bandwidth

— Our estimate is 66% lower than the
window size at which loss occurred, on
average

. Therefore, we hypothesize that a TCP
using this algorithm would perform just as
well, if not better than a TCP without
bandwidth estimation (on average)
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. But, sometimes the estimate is not all
that "good"

- If the estimate is too low, we
terminate slow start too soon and then
depend on congestion avoidance to
provide window growth

- Slow!

- Estimating too high is not as big a deal
as we can do no worse than current
implementations and possibly avoid
some loss, even when we overestimate

- Refine algorithms used to average the
inter-ACK space

- Test in a hybrid terrestrial/satellite
network

- Other mechanisms can be investigated
once we have a good estimate of the
bandwidth
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Up link
Station

Clients

N and SACK over DVB Satellite links

Nihal Samaraweera and Gorry Fairhurst
Department of Engineering

University of Aberdeen
Aberdeen

UK

email: {nihal,gorry}@erg.abdn.ac.uk
http: //www.erg.abdn.ac.uk/

D VB Networkin

HUB Server
	 HUB Router

Terrestrial
Internet / ISDN

Data

Same satellite dish receives TV and Internet traffic

High speed Internet access to home and office
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What is a Lonq Fat Network?
N Samaraweera and G Fairhurst, University

High bandwidth delay product (e.g., Satellite link)

Many terrestrial networks are more "fat" than "long"

TCP Window Limitation
N Samaraweera and G Fairhurst, University of Aberdeen

TCP unable to keep the fat pipe full
Throughput limited by maximum window size
(e.g. performance over a satellite link limited to < 1 Mbps)

Window scale option
(RFC 1072, RFC 1185, RFC 1323, IETF draft-tcp-1w)
Expands the 16 bit TCP window to 32 bits (i.e. < 1 Gbps)
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Samaraweera and G Faitlturst, University of Aberdeen.

Configuration:

Window Scaling improves Performance

800
N
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M
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0
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3
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0
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a^
c 1000

n

Buffer space required to
fully utilise the link

3rd TCP Window
N Sarnaraweera and G Fairhurst, Univers ty of Aberdeen

-- Congestion window
^-- Threshold window

TCP window
--- Bytes in transit

Configuration:
TCP MSS: 1024
TCP window size: 64KB
Satellite delay: 280ms
session bandwidth: 10Mbps
Simulation time: 50 seconds

0	 10	 20	 30 Time [sec] 50

Transmission rate is restricted by:
The TCP window size (for small windows)
The congestion window (for small file and large window)
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Congestion window (64KB window)
-- Threshold window (64KB window)

TCP window (64KB)
°—^ Bytes in transit (64KB window)

Congestion window (700KB window)
-- - Threshold window (700KB window)

TCP window (700KB)
-° bytes in transit (700KB window)

Configuration:
TCP MSS: 1024
TCP window size: 700KB
Satellite delay: 280ms
session bandwidth 10Mbps
Simulation time: 50 seconds

0

Window Scalia
N Samaraweera and G Fatrfwrst, University of Aberdeer.

Only useful when file size > 126KB (over a satellite link)
Example Applications:

WWW based distance learning (CAL), News distribution

TCP Packet Loss Reco Ve

94



Performance of SACK
40
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(A)SACK resumes the transmission after retransmission
(B)SACK selectively retransmits only packets lost

Retransmission Packet Loss Detection
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Performance of RPL
25	

N Samaraweera and G Fairhurst, University of Aberdeen

20

Oa
x
X15
as.a

W10
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a
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0

o RPLD	 O

+ SACK	 +
O

ffi	

O +0

o +
o	 +

E	 O	 +

(A) (B)	 (A)
11	 12	 13	 14	 15	 16	 Time [sec) 18

(A)Avoids Slow Start (does not wait to drain the pipe)
(B) Recovery delay is low (indicated by SACKs)

Asymmetric links
N Samaraweera and G Fairhurst, University of Aberdeen

/Acknowledgement (ACK) packets

Inexpensive low speed return links are often used

Most TCP/IP connections receive much more than send
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A CK Congestion

Return "pipe" fills with ACKs
Transmission rate controlled by received ACK rate

Therefore need to reduce volume of ACK data !!!

Configuration
N Samaraweera and G Fairhurst. University of Aberdeen

Bandwidth Asymmetry 1: 1041(9.6kbps110Mbps)
1:347 (28.8kbps110Mbps)

Satellite Link

Hub Server	 10Mbps
280ms delay	 Client

Dial-up link (e.g. 9.6 or 28.8 kbps)

Terrestrial Internet
100 ms delay

Data asymmetry 1: 22 (ACK/ SS)
Causes ACK congestion

when bandwidth asymmetry > data asymmetry
with ACK delay, bandwidth asymmetry > N * data asymmetry
avoids congestion over 9.6 kbps link when N > 47

over 28.8 kbps link when N > 16
Note: TCP MSS =1024B, TCP ACK = 40B, and Link overhead = 6B
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A CK Suppression
N Samaraweera and G Fairhurst, University of Aberde

Old ACKs may be deleted from the return interface queue
TCP ACKs are cumulative

Suppression ratio adapts
Avoids congestion

Unmodified -(A)
— — — - Using Compression - (B)
— — - Using Suppression - (C)

(C)

(B)	
(A)

7
5,2s
.o

24
a^

^^ 20
W
X16
E^

Low performance for small files
Transfer < 1.2 MB (with 9.6 kbps return link)

Low Throughput with Suppression
N Samara .. and G Fairhurst, University of Aberdeen.

Suppression looses important information
An ACK indicates:
(a) A packet has left the network (to increase cwnd)
(b) Receiver may accept more data (to slide the window)

soo
- Unmodified - (A)

— — Using Suppression - (B)

600
x
3O
400

3
0
2) 200

OU
Need to increase ACK rate
without increasing the bandwidth

Slope determined by ACK
size and link speed

I
(B)	

(A)
X	 1

5	 10	 15 Time [sec] 25	 30
o^
0
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Reduces ACK size but not rate

Issues to be resolved:

ACKs may need be spaced

Interaction with SACK option

A CK Compaction
N Samaraweera and G Fairhurst. University of AGerdeer.

j28 . s — Unmodified - (A) d- Using Compression - (B)

	

24	 Using Suppression - (Q/
20 -------- Using Compaction - 0)

if	 ^.F-

212- r (C)

0 	 (A)
4

^r^ y

	

0	 5	 10	 l 5 Time [sec] 25 	 30

Interaction with timestamps option

Interaction with security

Conclusions
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NASA Mission Applications
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NASA's Use of Commercial Satellite
Systems: Concepts & Challenges

Presented at Satellite Networks: Architectures,
Applications and Technologies Workshop

June 2, 1998
Cleveland Ohio

James M. Budinger
Phone: 216.433.3496 E-mail j.budinger@lerc.nasa.gov

Satekke Networks_Workshop.ppt J.Budkper629E

I e	 Abstract
Lewk iteaarrL Center

• Lewis Research Center's Space Communications Program has a
responsibility to investigate, plan for, and demonstrate how NASA
Enterprises can use advanced commercial communications services and
technologies to satisfy their missions' space communications needs.
This presentation looks at the features and challenges of altemative
hardware system architecture concepts for providing specific categories
of communications services.

Satekke_Networks Workshop.ppt JAW tper&WO
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I *	 Presentation Agenda
l.ewit Rer^ Cmter

• Background Regarding "Commercial Utilization"
• Potential Service Categories
• System Architecture Concepts
• Features and Challenges
• Conclusions

S9t8W_Nedmrts_N0rkstwp.ppl JAW"era/2M

1
-0 	 Commercial Utilization

I.cwis Rerevd^ Cmtrr

• 'in the conduct of these research and development programs,
NASA will seek to privatize or commercialize its space
communications operations."

• "U.S. Government agencies shall purchase commercially
available goods and services to the fullest extent feasible and
shall not conduct activities with commercial applications that
preclude or deter commercial space activities except for reasons of
national security or public safety."

- White House National Space Policy
Civil Space Guidelines
Commercial Space Guidelines
September 19, 1996

J.Bueinper81 M
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1 -0 Commercialization & Utilization
Lewis ReseetrL CmQ

Commercialization of NASA Technology & Services

NASA	 -	 Industry

**000
NASA Utilization of Commercial Technology & Services

SeteOke_NeiwOrks_WOrkshOp.ppl J.BuOinperGWB

LeRC Role
Vc^

• Lewis Research Center's Space Communications Program has a
responsibility to investigate, plan for, and demonstrate how NASA
Enterprises can use advanced commercial communications services
and technologies to satisfy missions' space communications needs.

• Identify candidate commercial SatCom systems to be leveraged
— Develop an implementation plan for aligning NASA's needs with

commercial capabilities
— Select, develop and demonstrate enabling technologies and

services to mitigate risk
— Enhance U.S. industry capabilities and competitiveness

SoleWhe_Nehrotks_rimkehop.ppt J.BudkVwdF2M
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I *	 Physical Architectures
Levis Rmeat^ Cteur

• NASA's use of commercial communications systems requires both:
— physical links and interfaces compatible with commercial space and

terrestrial network infrastructures
— compatible data communication network protocols

• This presentation focuses on alternative architectures for the physical
communications system:
— to establish the necessary framework for interoperability with

commercial space and terrestrial networks
— to effectively enable the suite of desired communications services

Setepke N6W0Fks_VJ0*M0p .ppt J.Buditer62=

Potential Service Categories
Lewis Resew C=W

Service Category	 Characteristics	 pp ica ions

Narrowband communications Low-rate data,	 , persona
communications for humans in space

Wideband tele-science Asymetrical, experiment configuration,
command, and scientific data return

Broadband tele-presence Nearly continuous, real-time interaction
with space segment

High-capacity storage and Latency-tolerant, content-rich data, file
distribution transfers to Pi's and archives

On-demand integrated services Real-time video, data, and voice,
"Spacecraft on the Internet°

Wd*e_Net—k3 workshW.ppt J.BWkper&2=
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1 -0	 Potential Service Categories
Lewis Resrrt Cmta

Communications Requirements

I

Periodic	
Coverage	

Continuous

High	 Medium	 Low	 High
Bandwidth	 Bandwidth

Medium

Saw" N&-ft_WOft"PAM J.Bwb*-8/ =

I a Responsive Architectural Concepts
Lewis Rest Curter

Communications Requirements

1
Periodic	

Coverage	
Continuous

SWeRk.NdworkajWfthop.ppt J.8udhVer6r2M
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Concept 2
Available Standard

Services

Concept 1
Direct Data

Distribution (DA)

Principal Investigators
Science / Academia Users Archival Facilities

Corporate Users

1 -0	 Architecture  Concepts
Lewis Research Cmtc

Concept 3
Commercial Tracking Relay Satellite'

Terrestrial
Netvraks

Direct Data Distribution (D3)
Lewis Research center	 Architectural Concevt 1

Near-Earth
Spacecraft

Tracking
Terminals

S&MiIa Nttworks Wmkshop.ppI J.auAkper SIM
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14V^,^ Direct Data Distribution (D3)

Features

• Onboard data storage and burst
data delivery

• 1.2 Gbps downlink in commercial
K-band

• --10 Mbps uplink if needed
• Multi-beam phased array
• Efficient digital modem / codec
• 1.8-m tracking terminals
• Located to maximize contact
• Terrestrial interoperability for

wide area distribution
• — 72 Gigabits / 1 minute contact
• No reliance on relay satellites
• Experimental capability in 2002

Challenges

• Latency tolerant applications
only

• Onboard storage sufficient for
multiple orbits

• Fast acquisition and tracking
• Limited contact:

— once per orbit at poles
— 1 or 2 per day elsewhere

• Commercially owned, licensed,
& operated on NASA
spacecraft & ground segment

• Close coordination with
commercial gateways

SeteW_NeWvorks_Wofthop.ppt J.Budkper MIRE

	

I*	 Available Standard Services
Rr

	

can	 Architectural Concevt 2

L-, Ku Ka-band
GEO /non-GEO

#V^	 comsats

Under-subscribed
Areas

Terrestrial
Networks	 NASAPi's

Fixed & Mobile Satellite Services 	 and Archives

SNeliteNetworks_WoksMp4)p J.Bud&per MIRE
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10 Available Standard Services

Features

• Capture available or unused,
unmodified commercial
L-, Ku-, and Ka-band capacity

• Global narrowband coverage
— Multiple 64-kbps circuits
— TT&C, Low-rate data, voice,

• Periodic wideband coverage
—1 to 25 Mbps Forward Link
— 10 to 155 Mbps Return Link
— Interactive telescience, video

• 33 to nearly 100% Coverage
• Narrowband demo in 1998

(STS-91 Spacehab - Inmarsat)
• Wideband demos in 2003

Challenges

• Current global coverage limited
to voice rate applications

• Wideband transponders cover
populated areas only

• Close coordination to avoid
wideband interference

• Handoffs for non-GEO coverage
• Sufficient business case to

provide capacity over
unpopulated areas

• Regulatory issue regarding S-S
use of S-E and E-S allocations

"a4Xe_Netwaks WOfthop.ppt J.Bud'oger6rM$

1 0 Commercial Tracking Relay
uwux	 c W	 Architectural Concevt 3

Ka- & O/V-band
GEO /non	 Semi-Custom Inter-orbital

ComSats	 Tracking Link Subsystem

Emerging Commercial
Broadband Services,

Terrestrial
NASA Pi's

and Archives

SHe9Ne Netwodcs_Wakshop.pq J.Bud Ver OrM

110



^>^I a Commercial Tracking Relay

Features

• Semi-custom rf or optical inter-
orbital tracking links

• Periodic to continuous
broadband coverage
— 10 to 55 Mbps forward link
—155 to 622 Mbps return link
— Interactive telepresence

• Video, Data, Voice, Multicast
• 33 to 100% Coverage
• Commercial Ka- and V-band
• "First generation commercial

transceiver" for NASA
• Service demos in 2004
• Available commercially in 2005

to 2010

Challenges

• Semi-custom modification to
planned systems

• Handoffs for non-GEO system
coverage

• Sufficient business case to
provide global coverage

• NASA / Industry development
of a common space interface

• Commercially owned,
licensed, & operated on NASA
spacecraft

S•t•Yde NMwaks Workftp.ppt J.Bud&q•r GrM8

-0
> 

Conclusions
a 

• Opportunities are present and increasing for NASA missions in near-Earth
orbit to use commercial satellite services in the future.

• No single commercial system is likely to provide the entire range of
services desired by NASA missions.

• Proposed concepts present technical, regulatory and economic challenges,
but none appear to be insurmountable.

• Commercial systems have limited windows of opportunity for modification.

• Government/Industry collaboration is required on interoperability standards
for a common space interface to commercial satellite networks.

• Communications services first provided for NASA may have potential to open
new markets for the U.S. satellite industry.

8M9K Nehwrks_WorksWp.ppt J.Bud'nper B/2=
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Satellite Networks Workshop
June 1998

ASSESSMENT OF EMERGING
NETWORKS TO SUPPORT FUTURE

NASA SPACE OPERATIONS
June1998

Badri Younes
CLASS Project Manager
Code 450/NASA GSFC

Susan Chang,
Ted Berman,
Mark Bums,

Richard LaFontaine,
Robert Lease

Stanford Telecom

Introduction

• N types of global commercial satellite systems
are currently under development and expected to
start providing service in 1998

— Global communication coverage

— Mobile communication capability

— High speed networking

• NASA GSFC is investigating the feasibility of using
emerging commercial satellite systems to support
NASA LEO missions

— Reduce mission cost

— Enhance or maintain level of service provided by TDRSS and GN
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NASA Study

• Examines technical and operational issues related
to supporting a NASA LEO satellite with
commercial satellite systems

• Four commercial satellite systems are addressed
in this presentation

— Mobile Satellite Service (MSS): IRIDIUM, ICO (1st gen)
— Fixed Satellite Service (FSS): Spaceway, Teledesic

Evaluation Approach

• Communications Coverage: Geometric coverage
time minus system acquisition and service
acquisition time.

— Accounts for time required for handoff

— Accounts for dropped calls due to handoff failure

• NASA user terminal assessment including
spacecraft G/T, EIRP and operational constraints
relating to system acquisition, service acquisition
and handoff

• Regulatory assessment
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Assumptions

• No modifications will be made to commercial
satellite systems to support NASA missions.

— NASA LEO satellite will emulate a ground-based user

• User spacecraft tracking will not be performed by
the commercial satellite systems.

— Future NASA missions will incorporate on-board GPS
equipment

• All evaluations of the commercial satellite
systems are based on public information obtained
from FCC filings

NASA LEO
Missions Overview

• NASA missions operate in a number of different
orbits that depend on the mission type

— Launch vehicles at approximate altitudes of up to 350 km
— Suborbital missions at altitudes less than 40 km
— Manned space flight at altitudes of 300 - 600 km altitude and

inclinations of 28•- 57•
— Astrophysics missions at altitudes of 400 - 600 km altitude and

inclinations of 230- 350

— Earth science missions at altitudes of 350 -1,350 km and
inclinations of 350- 990

• Considered missions scheduled through 2014
• Data requirements range from 1 kbps to 600 Mbps

— Telemetry and Command: 1 kbps to 2 Mbps
— Payload data: 1 kbps to 600 Mbps
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NASA LEO
Missions Overview

Orbital Characteristics

\	 ar^ra
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Commercial Satellite
Systems
Summary

ys am Orbit UhK berme Frectuency 151. Orbit Paraffieters
Type/ (MHz) (kbps) Fre"ancy

Service (GHz)
MM

Drava m o m s s
In
	 on

• (km)

tddium LEO 10 1815 1616. 2.4 2.4 23.18. 66 780 86.4'
MSS 1626.5 1626.5 23.38

ICO MEO 1 2,170- 1,985. 38.4 38.4 WA 10.12 10,355 45°
MSS 2,200 2,015

ToWdesic LEO 10 17.5 26.5 n°16 (n= n'16 (n= 6571 288 1350 84.7'
FSS 18.6 and 29.1 1,...,128) 1,...,128)

18.5 and
19.3 27.5

28.4
S"wwW EO IFU 17.7- 27.5- 92,000 38",000 22.55 20 35,786 0°

FSS 20.2 30.0 23.55
32-33

54.25
58.20
59.51

1. Systems use intarsotelkte Enka and onboard data prccasskrp.
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Simulation Assumptions LM
• Geometrical coverage determined through

Communications Analysis Graphical Environment
(CAGE) simulation

— Ten day orbit simulation
— Commercial satellite user antenna beam modeled as a single

conic

• Communications coverage determined through
CAGE simulation

— 30 random user satellite orbit periods
— User satellite is positioned at a randomly selected accession

angle prior to each simulation pass
— User antenna beam modeled at sub-beam level
— System acquisition time based on IS95 specification (16.3 sec)
— Service acquisition time based on IS95 specification (20.0 sec)
— Handoff time based on existing ground based cellular system

performance (12 s)

Simulation Results
• emerging commercialsatellite systems are designed for users a

or near ground level. Communications coverage at LEO altitudes
is constrained.

— Reduced communications coverage exist at LEO attitude due to the conic shape
of the radiating antenna

— Beam-to-beam handoff for a LEO spacecraft will experience a higher call drop
probability than a tefrestrial user due to user spacecraft velocity (12 knUsec)

• None of the evaluated systems is capable of supporting the real
time communications coverage requirements of manned space
flight missions and launch vehicles

• IRIDIUM and Teledesic provide the least communications coverage
— Orbits similar to NASA LEO spacecraft
— Less than 1% communications coverage for user altitudes > $00 km

• ICO provides higher communications service duration and data
throughput

— Service availability 200/6- 40•% for user altitudes > 500 km
• Spaceway (GEO) provides highest communications service

duration and data throughput
— Service availability is greater then 35% for user altitudes > 500 km
— NASA LEO satellite must support beam-to-beam handoff (not available on FSS)
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Communications  overage
IRIDIUM

1RMIUMService Availability Analysis Results
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Communications Coverage -
Teledesic

Analysis

119



User Terminal Assessment

• NASA LEO spacecraft will require a smaller
terminal than TDRSS, for MSS, systems due to
MSS LEO and MEO constellations

• FSS systems do not provide NASA LEO
spacecraft any substantial terminal size
advantage over TDRSS

— GEO systems are designed to support ground users and
require a high G/T and EIRP to support high burst rate TDMA

• Large number of satellites in commercial
constellations will increase NASA spacecraft
memory and processing burden

— Need to determine when and where data can be transmitted

• Additional processing burden for NASA satellites
— Doppler correction, power management, burst transmission

management (TDMA), and beam-to-beam handoff

Regulatory Considerations

• Services provided by commercial satellite
systems are governed by International Radio
Regulations.and U.S. statutes

• Definitions of MSS and FSS do not provide for
space-to-space links required for NASA support

• NASA service support scenarios would require
regulatory amendments

— Feasibility studies
— Marketing efforts
— 4 to 14 year estimated implementation time
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OhioView: Distribution of Remote
Sensing Data Across Geographically

Distributed Environments
June 2, 1998

Calvin T. Ramos

LeRC Project Lead
calvin.ramos@lerc.nasa.gov

11

Background	 a

Bowling Green
State University

USGS
EROS Data Center

sioos Falls, SD	 Drivers
I'

NASA Research and Education Network	 a Access to earth science products and
(NREr)	 information

r	 Kent State	 a Application of the next generation of
University	 satellite data

e EOS Am-1 and LandSat 7

/	 NASA Lewis
Research Center

Miami	 Cleveland, OH`
University	 \

University
of Cincinnati

o Unique partnership between the
Ohio state	 science and library communities in
University	 the State of Ohio

Ohio
University
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High Level Architecture, em
Technologies & Applications

Land Use & Mapping
Geology
Agriculture, Forestry, Range Resources
Water Resources
Environment

GIBN Application
(Global Interoperability
Broadband Network)

Urban Planning
LeHC	 Out-migrationNREN	 ObI.Mw Hub

Pb L ud Ib	
Environmental Mott.
Open Space Mgmt

vBNS
USGS
Eros Dais Center 	 Education/Outreach
Butt Falls, S.D. BGSU
	 KSU	 -Learning Tech Prog.

-Curriculum Develop.
(K-12/lifelong Ing)

OARnet
OSU IT Cutting Edge

-Networking
Miami U.	 f	 •Mass storage

U. Chit	 Ohio U.	 ^
	 :Web•Web Tools

•Intemet/NGI

LeRC Internal Architecture & Role a

00

OM

vBN

NREN

OhloV/ew
Pub&

Domain	 LeRC FirewaN

LeRC Role
o Network Integration And

ohiowew	 Investigation
server	 O Data Archiving and Storage(Cosmo)

o Image Processing and
Visualization
O http://gvis.l= .nasa.gov/ohioview

o Satellite-Network Connectivity
jAWM & Interoperability

^ATMBSSW
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• GIBN Experiment
Augmentation

• Processing of
ASTER Data

• Address hybrid
interoperability
issues

Potential GIBN Interconnect a

Potential Areas of Network
Investigation & Research

00

OM

vB

Mmq

OhloViaw
server

OhioView
Public

Domain

• Wide Area Multicasting
• Terrestrial
• Satellite

• Security
o Mitigate LeRC Risks
• Data Owner Protection
• Emerging Products/Schema
• Security Policies

:r Quality of Service
• Background experiment
• Potential Vendor

Collaboration
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Draft of OhioView Data Model
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Consoriturn	 Web Interface	 Data

i Orders and

	

Users 	 Standing Orden:

GLIS	 mewata

LeRC Strategy/Roadmap	 a

	

CY98 Eos	 CY99	 CYOO	 CY01"-I L&7

	

1 .	 , !	 I	 I	 I	 II	 i

2Q	 3Q	 4Q	 IQ	 2Q	 3Q	 4Q

PHASE Ia	 PHASE lb	 PHASE 

Proof of Con	
Develop and Implement Scalable	 Implement

Obioview Pilot	 Production Service

NREN Testing Network Perf. Integ/Anal.	 IARC Role - TBD
Storage Integration Storage Prototype

Visualization/ Web Server Graphics/Visualization

Proj Mgmt/Sys Integ Web Access/Development

Phase Ili prep Proj Mgmt/Sys Integ

Prep for Phase II

Consulting /Outreach
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Summary	 a

• LeRC playing a key role
• 0hioView - a potential national model
• Complex - both technically and politically
• Great value to broad community
• Wide application of the next generation of satellite data
• Unique partnership between the science, library, and

state/federal communities in the State of Ohio
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The Context of the Project

Packet telemetry is acceptable for spacecraft.

End users rely heavily on Internet IP networks for
scientific data exchange and collaborative research.

Emphasis on cost reduction characterizes all phases of
future space missions.

Distinctive Features of the Project

Simple - SAFE provides only a few basic functions.
• Simple Automatic File Exchange is only that!

Nevertheless, it is sufficient for commands and data.
• Provides a major benefit for space scientists with only

a minor investment in development.
• Aims to use commercial equipment and practices.
• Solves well known problems affecting IP in space by

avoidin¢ features that expose the problem.
Technical Features

• Pulls data files across the Internet with a read
operation (like file read operation in NFS).

• Prearranged file names - no file discovery mechanism.
UDP packets

• Congestion control at application level
• Simple solution to the Mobile IP problem
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Final Goal

Fleets of Small Satellites will report back to data
centers operated directly by the project by means of
occasional communication contact with ground
stations in a consortium of share facilities.

The ground systems are shared by the project data
centers and all are connected via an Internet. There
are no operational costs for routine command uploads
or instrument data downloads.

Operations with a Replicated File Protocol

Space-ground data operations require no manual
scheduling and supervision. Projects manage data
processing over the Internet.

Satellite w¢h on-board
data and command files

File Replication
between space and
ground during	 lntemet Access to Filesintermittent contacts. 	 via FTP etc

Q

Virtual
Satellite	 Files Replicated
Accessible	 to and from the Satellite
2417 from Intemet
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Fundamental File Exchange Operation

SAFE copies files and copies them successfully even
over intermittent connections with a high
bandwidth*delay product and high bit error rate.

The copy operation is connectionless - there is no time
lost establishing and maintaining TCP connections.

Replication	 Replication

	

client	 Server	

-*--b

(directs copy step) 	 (replies to client)

network

Secondary File	 Primary File -
Copy - Read Only	 Read and Append

Ground Station Acts As Gateway
Each connection passes through the ground station,
which acts as an intermediate connection point.

Ground
Satellite	 Station	 Project

	

RF Segment	 Internet Segment
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Multiple Ground Stations and Destinations
A satellite may connect with multiple points on the
Internet, e.g., the scientists at one location and
spacecraft bus engineers at a second.
Moreover, a satellite may use several ground stations
at different points in its orbit. Conversely, a ground
station may serve several satellites in turn.

Ground
Stations

Science
Satellite	 Z<>

RF Segment	 Internet Segment 

Engineering

Demonstration of SAFE

RF (wired serial link)
Internet

(real
.F-^^^

r^ Satellite

PI Workstation
(laptop)

Ground Stations
(SparcStation)	 (Intel PC)

The demonstration simulates a scientist accessing
instrument data and sending commands via file
replication.

• Satellite instrument writes data to onboard rile which is
automatically replicated to the scientist's workstation.

• Scientist writes instrument commands to local file which is
replicated to satellite.
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Testing SAFE

Purpose:
Run file transfers with realistic light-travel-time delays
and bit-error rate and study the effect on the data
transfer rate.

Equipment:
Provided by the IPIC project (TCP-over-satellite test
suite).

• Satellite Modems for IP are COTS but not space-
qualified.

FYI, we are using PC to play the satellite role but IPIC
runs a single-board embedded computer for better
realism during TCP tests.

Channel
simulator

PC playing	 Space	 Space
satellite role	 modem	 modem	 SparcStation

playing ground
station role

Lessons Learned from Implementation

The low-cost operational scenario is realistic and easy
to implement with the automatic file exchange system.
UDP is reasonably effective - on a par with other
alternatives.

Congestion control is essential but troublesome.
• Congestion control is built into TCP, but TCP assumes

all packet loss is due to congestion and the control
overreacts when packets are lost due to line noise and
data drop-outs.

• No congestion control built into UDP - the nodes can
saturate routers.

• Congestion control is built into the file exchange
software of SAFE and has been optimized for
connections that have line errors as well as congestion.

• Optimization for a noisy space-link connected to a
congested Internet is a difficult problem that needs
further research - or better - an avoidance mechanism.

132



Feedback

The implementation has been demonstrated for many
engineers - who had important comments:

• The key impediment is the lack of space-qualified
hardware that supports any commercial network
protocol.

Many existing satellites systems have an uplink
bandwidth that is too small to allow an error-
correcting protocol of any kind. Tradition is slow to
change.

There is an important type of mission cannot be
accommodated by an Internet connection because the
required bandwidth during a pass is too high. The
Internet bandwidth is adequate for the average data
rate but not the peak bandwidth during a pass.

Future Initiatives

Create Opportunities for Use in Space
• Need to proselytize for IP so that there are customers

for commercial, space-qualified, IP hardware.

Specification of SAFE
• leading to an acquisition of an implementation from a

commercial vendor who currently markets similar SW
(any vendor with NIPS or RPC protocols).

Small systems demonstration to show feasibility for
very small satellites.

• Current demonstrations use 486 PCs.

• Considering implementation for single-board VxWorks
computer.

Considering demonstration on palmtop computers.

Applications with high bandwidth requirements
• low priority - imaging sciences tolerate packet losses.
• no "simple" solution, see "Details"
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File Exchange for Satellite to Ground

The mission workstation
continually requests data
from the satellite. During a
pass, the request reaches the
orbiting file server, which
returns the requested file
segment.

Mission Workstation

reply Replication Data
I	 application
I

File

request File

ii

Command I
Server File

Satellite
^Command File

pli
pli

File
Server

j	 Data File

RF Link

Ground Station

reply	 Downward
request	 packet

gateway

Upward
packet

gateway

File Exchange for Ground to Satellite

Satellite
Command File

Replication
application

File
veSerr

Data File

RF Link

Ground Station
quest

reply Downward
packet

gateway

Upward
packet

gateway

The satellite continually
requests command data from
the ground. During a pass,
the request reaches the
mission workstation where
the file server returns the
requested file segment.

/	 Mission Workstation

Relication	 Data
ap^ication	 p	 I^,

!	 request	

File

File	 Command
reply	 Server	 File

^	 II'
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Basic Gateway Functions

Upward Packet Gateway:
Identify packet as intended for satellite. (Use port number and
optional security verification)

• Convert to space link format (if different) and forward.

Downward Packet Gateway:
• Convert to IP format (if different).

• Insert IP address of gateway as source address of packet.
• Forward packet to recipient's address on Internet.

Packet conversions
• None required if satellite link uses IP Modems.

• Generally need to add/remove IP headers if IP was not used on
the link to the satellite.

Mobile IP for SAFE

Problem:
• The satellite connects to the Internet at the ground station

and must use a local IP address.

The satellite's IP address changes from one ground station to
another.

Future enhancements to IP protocol have been slow to arrive.

Interim solution
• Ground station applies local address to packets from satellite.
• The file server in the Mission computer notifies the replication

application when it learns the current IP address of the
satellite.

Downward	 Replication
packet	 application

gateway	 request

Upward	 IP Address	 IP Address
packet	 Filegateway	 reply	 Server
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Satellite Telemetry & Command
Using Big LEO Mobile

Telecommunications Systems

Fred Huegel, NASA Goddard Space
Flight Center

Code 568

June 2, 1998

Objective

• Use Commercial Global Satellite Mobile
Telecommunications Systems (Big LEOs) to provide
Telemetry and Command S_ ervices to user satellites in
LEO
n The user spacecraft's transceiver would be a space qualified

version of the systems User Terminal (mobile phone)
• Globalstar, ICO and Iridium have been studied
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Targeted Capabilities

• Provide real time contact to LEO user satellites with a
simple phone call

• Provide the capability for the satellite to "phone home"
• Command and telemetry data rates of 8K bits/sec

n Higher rates with data compression
• At least one 5 minute contact per orbit
• Small, low power, low cost transceiver
• Simple omni antenna system
• Secure link

Rational - Make use of the Billions of $ of
privately funded infrastructure to provide

• Reduced Mission Communications System
Cost
• Reduces or eliminates the cost of ground stations and

associated infrastructure
• Eliminates the need for frequency assignments
• Low cost transceiver, small size, low mass and low power

• Flexibility in Science Operations
• Event monitoring and immediate reporting• Quick look data evaluation
• Several Contacts per orbit possible
• Real time access to user satellites from remote locations
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Communications Satellite
Constellations Studied

• Globalstar - LEO - operational in mid 99
• Iridium - LEO - operational mid 98
• ICO Global Communications - MEO -

operational in mid 2000

Contact Limitations

Coverage is
ConstellationConstellation dependent on

atellites user satellite
altitude relative
to constellation
altitude

User
 atelliten gaps For the case of

Globalstar and
ICO the User sat
and gateway must
both be visible to
the constellation sat
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Capabilities - Iridium

• The fairly low constellation orbit (780 KM) precludes
significant coverage of user satellites
• In general contacts are very short with large coverage gaps
• Polar orbiting user satellites are an exception - adequate coverage

is available in this case due to co-orbiting of the user sat with the
constellation satellites

• Data rates limited to 2400 bits/sec
• Possible use of crosslinks has been investigated

• Could provide excellent coverage and Mbit/sec data rates
• User Satellite would "takeover" the intersatellite link
• Technically feasible but not deemed operationally feasible by Iridium

Capabilities - ICO Global

• Excellent coverage for orbits up to 900 km
n One 10 to 30 minute contact per orbit using only one gateway
n Optimal coverage at 52 0 inclination

• Front end Doppler compensation required
• Data rates limited to 2400 bits/sec
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Capabilities - Globalstar

• Good coverage for orbits up to 600 Km with
inclinations up to 570
n The lower the orbit the better the coverage. Optimal coverage at 52°

inclination
n Better than one contact per orbit at 400 km using 4 gateways
n contacts range from 5 to 18 minutes, the average is 11 minutes at

400 Km, 52° inclination

• No front end Doppler compensation required
n Range rate between Globalstar satellite and user satellite no greater

than that experienced for a user on the Earth's surface 90% of the
time

Globalstar (Continued)

• Data rates up to 8 Kbits/sec possible
• At an orbit of 4OOkm, 52° inclination

• Total contact time per day is about 264 minutes
• Total downlink per day is 127 Mbits
• Average outage time is 56 minutes

• Initial feasibility study with Globalstar/Space Systems
Loral completed 12/96
• System issues identified
• Link analysis performed
• No show stoppers identified
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Globalstar Link Analysis

• Assumptions
• Omnidirectional coverage required
• Coverage over full Globalstar FOV (1080)
• Eb/No requirement as specified in FCC filing
• Maximum link range used for a user satellite in a 300 Km altitude
• Single Globalstar in view (no signal combining)
• Maximum transmission rate of 9.6 kbps
• On average during a pass 0 dB of additional dynamically supplied

additional power required.

• Link closes under the following conditions
• Transmit switch used rather than splitter
• Low loss cabling used (Gore — 0.2dB/Ft)
• Low noise amplifiers are located at the antennas

Globalstar Issues

• Protection of Radio Astronomy Sites (RAS)
• Sensitive in the 1610.6 MHz to 1613,8 MHz range (Globalstar return

link)
• Requires operation at the upper end of the assigned L Band

frequency range as well as the use of a transmit band reject filter
• Or restrict operations when near an active RAS site (reduces

potential contact opportunities)

• Location information required
• Normal call handling procedures require the location of the user

— This is normally determined by the Globalstar system but will not work
for Space applications

• Location can be determined by on board ephemeris or GPS and
entered into the transceiver
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Flight Transceiver

• Derivative of fixed User Terminal
n easily adaptable for position input
n Control and data interface to the spacecraft C&DH

• Size and weight are driven by the band reject filter
• Approximate size 8 by 6 by 3 inches
• Approximate weight is 7 pounds

• Power
• Standby, 1.5 watts
• Transmit, 20 watts

Security

• Gateway to User Satellite
• CDMA inherently secure (spread spectrum system)
• Encryption of traffic channels part of Globalstar baseline

• Ground segment
• Call acceptance filtering by ground system blocks unauthorized calls
• Phone numbers can be re-assigned if necessary
• Use of unlisted phone numbers
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Conclusions

• Feasibility study with Globalstar indicates that spacecraft
command and telemetry through commercial
telecommunications satellite constellations is feasible with little
or no modifications to the system architecture

• The user would connect to their spacecraft via telephone/modem
• Frequent contact opportunities would be available
• Data rates are limited but adequate for command/telemetry and

quick look science
• Further studies of the Globalstar and ICO systems are needed to

better define the capabilities, limitations, and system impacts of
the Space Mobile Service

Key Benefits

• Facilitator for low cost LEO missions such as
University Explorers (UNEX), Small Explorers (SMEX)
and others
• Could provide significant savings per mission
• Users pay only monthly access fee and per minute charges

• Provides flexibility and simplification in mission
operations
n Enhanced access to spacecraft
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Architectures and Network

Simulations
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NRTEL
NORTHERN TELECOM

Satellite System Architectural
Issues for:

Broadband Interactive
Multimedia Communications

Gary Johanson
Chief Architect

Nortel Satellite Network Solutions

June 2, 1998
	

Gary Johanson

Topics
	 NORTEL

NORTHERN TELECOM

• Driving Forces

• What is Webtone? What is Satellite Webtone?

• Terrestrial and Satellite Comparison

• Network Dynamics

• Research Topics

• Planning and Tools

• Challenges

June 2, 1998
	

Gary Johanson
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Number of users on the
fM) World Wide Web
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0
1995 1996 1997 1998 1999

Source: International Data Corporation

Internet / Intranet Growth NORTEL
NORTHERN TELECOM

VITAL ISSUES I

Transport Networks
— Increasing SIGH & SONET

bandwidth

Internet
— Access network bandwidth

and throughput
— Security

Reliability
Service on demand

• Intranet servers will outsell Internet servers by more than
10 to 1 by the turn of the century

• Intranet market will grow to $20 billion by the year 2000
June 2, 1998	 Gary Johanson

The Demand for Multimedia Services N0RTE L
NORTHERN TELECOM

Internet Users (Worldwide)
Users

1996	 60
2001	 300

Source: Data Communications Sep-97 e

Computers Connected to Internet
Units M

1996	 48
1997	 82
2001	 268

Source: Computer Reseller News Sep-97

Internet Users (Worldwide)
Users

1997	 60
2001	 175
2007 1,000

Source: Washington Technol /IDC Oct-97

Fortune 1000 Companies Planning to
Implement IP Telephony

1997 12%
1998 29%
1999 42%

2000+ 69%
no plan 31%

Spending on Intranet & Extranet
Products & Comm Services

US $ Billion
1996	 19
2000	 55

Source: Beyond Compulinglona Research Oct-97

Source: Computer Industry Forecasts First Quarter 1998

June 2, 1998	 Gary Johanson
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Satellite-Terrestrial Convergence 	 NRTE L
NORTHERN TELECOM

."^	 SatelliiFibe^	 , ,FibeE	 ^.	 ,.

—	 Other
(Cable T.	 IMD

Satellite

	

k	 .

Corporate networks will require multiple
CLM^D .	 access and transport methods, often

bundled through a single telecom or IS
vendor

June 2, 1998	 Gary Johanson

Corporate Expansion Considera tions	 NORTE L
NORTHERN TELECOM

(Total 91o) Critical Decision Factors

40

	

	 Satellite advantage:
instant infrastructure to build

30	 ^^	 national economies

20

0
Politics	 Labor Telecom Technology Capital Materials Government

Cost	 Cost

SOURCE: Gallup survey for BT/MCI 1996

June 2, 1998	 Gary Johanson
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Satellite Broadband Market Forecasts N RTE L
NORTHERN TELECOM

• Broadband Satellite Systems investments in
Space and Ground Segments
— $76B over the next 10 years

• Broadband Satellite Service Revenues
— $350B over the tiext 10 years

• Broadband Satellite Data Subscribers
— 36 million over the next 10 years

• Broadband Satellites Deployed
— 505 satellites over the next 10 years

Source: Pioneer Report 1997

June 2, 1998	 Gary Johanson

Today's Networks NORTE L
NORTHERN TELECOM

TODAY
Internet Access

ACCESS	 Cumbersome
Method/Devices

CAPACITY ' 	 Not Dynamic

QUALITY	 Intermittent

SECURITY	 Intermittent

ECONOMIC EQUATION Questionable
Economics

Private Networks Service Capability to
Meet Specific Needs
and Priorities

Public Networks Early Stages

June 2, 1998	 Gary Johanson
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Internet
June 2, 1998	 Gary Johanson

Dialtone >- "Webtone" NORTEL
NORTHERN TELECOM

TODAY TOMORROW
Internet Access "Webtone"

ACCESS Cumbersome Easy Access
Method/Devices

CAPACITY Not Dynamic Dynamic/Flexible On-
Demand

QUALITY Intermittent PSTN Quality

SECURITY Intermittent Security Guaranteed

ECONOMIC EQUATION Questionable Viable Business Cases
Economics

Private Networks Service Capability to Enhanced Flexibility
Meet Specific Needs
and Priorities

Public Networks Early Stages "Webtone"

June 2, 1998	 Gary Johanson
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Supporting Webtone Demand
	

N CX RTE L
NORTHERN TELECOM

Access Media are '

• Competing andt :_ ,Y
comp) mentary

i • Evolut on ry -

• Ca italintensivel

and

o-single'.solution
will Help all users

analog modems

ISDN

Power systems

Cable TV

XDSL

LMDS/LMCS

Fiber Networks

VSAT

C/Ku terrestrial return

C/Ku - Ka return

Ka band systems

V-band systems

10k	 100k	 1 M	 110M	 100 M	 1 G	 10G

Bandwidth
June 2, 1998	 Gary Johanson

	

What is Satellite Webtone? 	 NORTEL
NORTHERN TELECOM

a!!•a,••••.••.•._.	 Network AdvantagesGEO,,4 ^ .......................................

	

	
Ubiquitous coverage

• Instant availability
• Broadcast data
• High capacity

	

1D .................. 	 1D^..........	 ....	 1Dl.......,.....,....... 4D! • Spot bean; reuse
MEO/	

! •	
• 1D! :...................::. .1p! :..................:. °'Di 	 • Global deployment

LEO	
1D:................:::. 	 ••	 ^ ::

• Low latency

Carrier / ISP	 Business	 SOHO	 Consumer C
• Network hub	 • Inter/intranet	 • Internet	 • Internet/web	 C'CD
• VPN	 • Multimedia	 • Multimedia • Entertainment
• Interconnection	 • Global networks • Wideband	 Convergence
• Unserved telecom	 --

^^•;	
®	

0°

	

LMDS	 1^	 ^" n®

June 2, 1998	 Gary Johanson
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• Capital
• Operations & Maintenance
• Advertising
• Inter-connection

• Blocking
• Post Dial Delay
• Voice Quality
• Bit Error rate

Fundamental Dynamics of Networks NRTE L
NORTHERN TELECOM

• Services
• Capability

Functionality	 • Applications
• Customer Control

Architecture

Cost^^^	 Performance

 (

Gary Johanson

Nortel' s R&D on BSN
	

NuRTEL
NORTHERN TELECOM

NCC

r-%

Terrestrial	 Ivl	 T'^ O1N nn^

Networks — 	 n

Hub/GW Architecture 	 MM Air Interface	 SAU

Gary Johanson
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Business Case
Services Planning Strategy

Market
Characterization

Revenue

Estimation
Beam Sizing and

Placement zServer/Gateway
Placement Customer

DomainSatellite Network
'	 Architecture

d-to-End
GoS/OOS

Satellite Functionality
Placement

OBP Functionality
OBP Switch Architecture

OAM Issues
Performance Metrics
CPE Characteristics

Major Network Design Considerations NORTE L
NORTHERN TELECOM

to Traffic Distribution and Load Balancing
Traffic Smoothing

r Signaling
+ Resource Management
+ Routing
+ Admission and Congestion Control 	 Satellite Network

w Performance Assessment
- Number of Gateways and Their Location
► End-to-End Quality of Service and GoS
w Hand-off Issues
- Distribution of Services
w Distribution of Control
w Interfaces to Terrestrial Networks
w Cost Analysis

Design & Architecture

j	 Re-0ee1	 '	 'eeiM,O	 j	 `j
00W

r^eee	 ..

MxU

ems,	 t	 I aww,

-,	 PS"­ W

Gary Johanson

Required Planning Capabilities	 N(:JRTEL
NORTHERN TELECOM

® Total Network Optimization
Functionality

senatesComprehensive
Oos/Gos	 Business & Residential
Statistical Model Parameters 	

Database Architecture

Cost	 Periormance

Target	 Server/GatewayPlacement
S	 Placementernce

Traffic nil
Estimator

® ; ProProjected

4M

	 rvice Traffic

^ Col	 Q
Target	 a

$erVICeS	 Network
r .in .'	 Planner

Col:Community of Interest Service
Gos:Grade of service	 A Market
Oos: Ouslity of service 	 Estimator
OBP: On-Board Processor
OAM : Operations, Admin. & Mice.
NCC : Network Control Center
NOC : Network Operations Center
OBNC : On-Board Network Control Center

Gary Johanson
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Tool Requirements
NORTHERN TELECOM

NRTEL

Examples of Nortel Tools:

• Service Planner
• Traffic Estimator

• Market & Service

• Server/Gateway Placement Tool
• Network Planner

• Tools to simulate behavior of target satellite systems

• Tools for multi-media traffic models, node models, link models, and satellite
mobility models

• Tools to assess end-to-end QoS/GoS and subscriber capacity parameters for:
— variety of Call Admission Control and Routing algorithms
— variety of medium access algorithms
— innovative combinations of integrated network architecture
— variety of transport technology (ATM, Frame Relay, TDM, IP,...)

• Tools for OA&M

Gary Johanson

Main Networking Challenges 	 NORTEL
NORTHERN TELECOM

Static Architecture Challenges:
•	 Air Interface: uplink, downlink, ISLs
• Functional Partitioning: on-board vs. on-ground
• End-to-End Resource Management: BOD, CAC, routing, policing...
• Service and Protocols Adaptation: TCP,...
• Performance: billable bandwidth, end-to-end QoS and GoS,...
• Signaling Protocol Design & Verification: message flows, timing
• NCC: number, location, connectivity...
• Dimensioning
Mobile Architecture Challenges: above +:
• Constellation Design: tear drop, coverage areas, ISLs
• Satellite Mobility Effects: path length
• Routing: optimise to decrease on-board processing and storage requirements
• Handover
Exception Handling Risk Areas:
• System Reliability and Robustness
•	 Availability: assessment, guarantees, verification
• Remote Diagnostics: protocols, satellite vs. terrestrial transport, impact
Network Management:
•	 Information Architecture: design, test and validation

Gary Johanson
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Internal Program Thrusts	 NRTE L
NORTHERN TELECOM

• Distribution of functionalities among network elements for networks including satellites.
• Architectures for LEO/MEO/GEO-based ISSN.
• Impact of inclusion of satellite in multimedia networks including QoS and performance issues

as well as signaling.
• Design of bandwidth on demand protocols, simulation and validation of their performance.
• Charging and dynamic resource control associated with bandwidth on demand.
• End-to-end resource management to provide end-to-end QoS and GoS.
• Design, optimization, simulation, and performance enhancements of routing algorithms for

multimedia traffic over satellite (LEOs and GEOs).
• ATM over satellite, IP over satellite.
• Performance assessment of OB switch architecture.
• Dimensioning.
• Network Management & Control.
• Adaptation of existing standards and methodologies to adapt to satellite segment of a global

network. Includes signaling (e.g. Q2931).
• Service adaptation.

Gary Johanson

Summary	 NORTE L
NORTHERN TELECOM

• Satellite Webtone is coming
— Webtone attributes are a necessity
— High connectivity
— Multi-application, multi-network

• Many new opportunities for operators
- old and new for new services

• Results - a large market potential on a
global basis

• Many challenges remain

June 2, 1998	 Gary Johanson
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2 JUNE 1998 I SATELLITE NETWORKS: ARCHITECTURES,' CLEVELAND
APPLICATIONS, AND TECHNOLOGIES

SIMULATION OF A NASA LEO SATELLITE HYBRID NETWORK

by

Thomas M. Wallett*, VQaya K. Konangi**, and Kul B. Bhasin*

*Satellite Networks and Architectures Branch	 -Department of Electrical and Computer Engineering
NASA Lewis Research Center, Mall Stop 645 	 Cleveland State University
Cleveland, Ohio 44135	 Cleveland, Ohio 44115
(216) 433-3673 Thomas.M.Wallett&sre nasa gov (216) 687-2688 Konangl@mvax esuohio.edu
(216) 433-3676 Kul.B.Bhasin flerc.nass gov

2 JUNE 1998 SATELLITE NETWORKS: ARCHITECTURES, I CLEVELANDAPPLICATIONS, AND TECHNOLOGIES

OBJECTIVE

Investigate the performance of TCP/IP in a hybrid network consisting

of a global terrestrial network and a LEO satellite by simulation.
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2 JUNE 1998 SATELLITE NErWORKS. ARCHITECTURES,
I APPLICATIONS, AND TECHNOLOGIES I 

CLEVELAND

Satellite LEO - circular orbit at 650 km altitude
52 degrees inclination
FTP server
Transmission and reception at 9600 bps

Houston, United States
Central node of a star topology
FTP client
Terrestrial transmission and reception at DSO (64 kb s)
Radio transmission and reception at 9600 bps

Seoul, South Korea; Canberra, Australia; Toulouse, France;
India; Saudi Arabia; Central Africa; Brazil

Above terrestrial nodes connected to Houston
Terrestrial transmission and reception at DSO (64 kbps)
Radio transmission and reception at 9600 bps
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2 JUNE 1999 SATELLITE N	 ga ARCHITECTURES, CLEVELANDAPPLICATIONS, AND TECHNOLOGIES

TCP simulation includes

® Connection establishment and closing usingthree-way handshaking

• Flow control

• End-to-end reliability

• Reordering of the data at the receiver

• low-start congestion avoidance and control

FTP simulations

• Average size of the file modeled using a normal distribution

• Generation rate for sessions modeled using a Poisson process
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2 JUNE 1998 I SATELLITE NETWORKS: ARCHITECTURES,' CLEVELAND
APPLICATIONS, AND TECHNOLOGIES

CONCLUSIONS

• The satellite transmitter average throughput saturates for large files.

(- 3500 bps)

• Houston receiver average throughput inconclusive.

(radio reception only)

• Frequent, large End-to-end delays for large files.

(small % increase for file size increase)

• Infrequent, small End-to-end delays for small files.

(large % increase for file size increase)

• Queueing delays at the terrestrial nodes are not significant.

• TCP slow-start algorithm dearades the Derformance for larae flies.
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Multi-Media Traffic Modeling and
End-to-End QoS Evaluation Tools for Satellite Networks

Evan Geraniotis

Center for Satellite and Hyrbid Commun. Networks
Institute for Systems Research

University of Maryland
College Park, MD 20742

-e-f : 301-405-3646
SAX = 34 - 314 -92 1
e-W,o Lf : eveaeZos @ ",I.umd .eJtt

,,	 Modern Network Characteristics

• Substantial network size
• Complex network architecture
• Multi-media traffic

• distinct statistical features
• different quality of service (QOS) requirements
• high data rates

• Network protocols must guarantee end-to-end QOS for all
traffic types

• Mixture of transport (switching) modes present
• circuit-switching
• packet switching/cell switching (ATM)
• hybrid switching
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Unique Features of Approach

• New Class of Accurate and Flexible Models for Multi-Media Traffic
• Markov-Modulated Rate Processes (MMRP)
• Fractal Renewal Processes (FRP)

• Characterization of End-to-End QOS via Accurate and
Time-Efficient Approximations and Confidence Intervals

• QOS for circuit-switched networks
• QOS for packet-switched and cell-switched (ATM) networks
• QOS for hybrid switched networks

• Efficient Protocol Design Based on Optimizing End-to-End QOS
• connection admission control
• dynamic bandwidth allocation
• routing/congestion control
• switching/buffer management

/
NOW -P-11_0	 High Data Rate Satellite Networks

Approach

• Apply multimedia traffic modeling tools to traffic types and data rates
of interest (images, video, data, voice) to specific HDR applications

• Use satellite orbit modeling tool to model dynamics of intersatellite
links

• Use tools for QoS fast evaluation for comparisons of alternative on-
board switching architectures

• Use tools for QoS fast evaluation for end-to-end performance measures
(delay, throughput, blocking rate, dropping (loss) rate) and
performance measures at intermediate nodes (buffer overflow rate,
queuing delay, average queue size, queue length distribution)

• Use sensitivity analysis tools for fast evaluation of variations of QoS
w.r.t. traffic loads, link capacities, buffer sizes

• Use optimization-based techniques and efficient simulation for trade-
off analysis and systems engineering.
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Tool Sets
Generic :

Circuit-switched Multi-media Networks

Virtual Circuit-switched Multi-media Networks
(connection-oriented ATM traffic)

Cell-switched Multi-media Networks
(connectionless ATM traffic)

Packet-switched Multi-media Networks
(datagram-type traffic)

Specialized by Application :

Networks of LEO, MEO and GEO Satellites

Wireless Multi-media Networks (indoor, WLANs, cellular and PCS)

Wireline Multi-media Networks (B-ISDN, ATM, FDDI, DQDB)

. Hybrid Networks

Tool Modules
Sensitivity Analysis

Popalation olstrlhution Tools
and Activity Pattern

Modeling Tools Peg-t"nd
Pate"nedlate Node

°	 QoS Evaluation
Multi-Media TraMc Tools

ModellnIt Tools Pad-taPnd
PntermediateNo& protocol Design

and Optimization
Physical and Dom Toolstint Layer.
Modeling Took Admlolon Control

Validation Tools Bmdwldlh Allocation

Asymptotic Tightneas
Routing

Monte Carlo Sammatlan
Daffw Management

OPN"
Hand-off

Maitleasting

Modes of Tool Operation:
Stand Alone

Used with Slmulellon Tools (e.g., OPNET,110NES)
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Characteristics of an On-Off Source
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Modeling of Actual Data Traces Using On-Off Sources
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Sensitivity Analysis Tool
end to-end

— intermediate node

Compile *dvmdv a of QoS wz.L	 tafrc Made
-- link cepecides
® model parameters

QCS dabs"	 app oxitaatioa	 – itarstioa

KwvoKk appma.

PaKal approx. te+clr4w

State aggregation teeltrrgre

i:;Dift dwmmn algorithm

11-m0t dais
A optins"im 1006

fan ptat000l
sensitivity analysis

hit

Tools for Protocol Design and Optimization

QoS E"IaarloaToaia Conanint Opumuti0n Roudnaa
(linty peogramtmn& nmdirmar progrannting)

Semaitivity And* Tools I ^
le	 g Rots"

(weluailnation algarhhm policy-iteration algorithm)

Lbt of PModal ApplkNfow a

r AdndWMCOWW Multicuting
r

Bandwidth Allocation Multiple Satelrte Diversity 	 ^+
Rowing Satellite Hutdoff
Buffer Manar!wvt Hierarchical Overlays and Handoffi
Switch Design Interffaace W tlLPVW Cellluula XL
Flow 	_ Parallel Muld-channel Demodulation

174



f̂ \ 	 VARAW( M 1
-r^^ Near-Optimal Bandwidth Allocation for Multi-Media

Virtual Circuit Switched Networks

bt•

.y	
.B .

-4 	 ,D	
tIs 11.1f tAw. MS.I.,.,q	

r

Avg. Voice Block. Prob. R = (5,14, 10)

DH,	 bt,•
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'	 D D	 Lee
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{eYM s	 y''	 L,.

11rew	 .sue

^oa•	
D	

D
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Oe,	 ^

•M^y.y IW RMtDtq

Avg. Video Block. Penh. R	 1,9,1(1)

Pau h r Nodett n Lialm 1 RDRIc b t+

0.6 0,1 03 Voice; Video

1,7 0,2 0,2 Voice; Video

2,8 01 0,3 Voice; Video

3,9 1.2 1,2 Voice: Video

A,10 1.7 5 Vakr: Video

5.11 2,9 1	 2.3 \'oi•e: Vid-

1

e•1.•

The Star Nrfvn)rk

Avg. Voice Normal. Procne. Loarla R = (5.1,12, 10)

Avg. Video Rate Drop. Prob. S = l, pr = 7.5

Near-Optimal -Bandwidth Allocation for Multi-Media
Virtual Circuit Switched Networks

• Voice and video calls are transported in a connection-oriented
fashion using virtual circuits.

• Packet switching is used for data traffic.

• Priorities of voice and video traffic are assumed to be higher than
that of data.

• Values of the blocking probabilities for voice and video traffic,
normalized voice processing loads, video rate dropping probabilities,
and data queueing probabilities are obtained using a time-efficient
approximation through the reduced-load method.

• The bandwidth allocated to a video call and the step size of a
voice virtual path are varied.

• The performance measures of the network can thus be controlled
and optimized.

'!able 1: Complexity Analysis

(17`1 — number of paths. )L) - nundwer of links. .11 vidro model's parameter-)

Approximations Exact Analysis Monte Carlo

Complexity O(10e21P1141) 0(2jPjr( Ar1a)Iri ) 0(N(J11 +a ) jPj2jCj)

Time 1 -2 minutes I	 Pmhibitivr 15 ab CIT hours
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Paradigm 2:
Efficient Computation of End-to-End Performance

for ATM Network with Multi-Media Traffic

.~.	 Canpleaons or ExWt and App mbnate RaWto

..r...

wt = 30, Tore - 400 ma. Torn = 600 ms, r t = 64 Kbps,
ws = 20. Tows = 386 me, Torn = 765 nu. rs :1.14 Mbps,

Padtct Sins = $12 bits, Ba1kr Site = 200 padow
E: exact	 A: approximate

A i7 iv W(-) I -PS ALM RLIM Rrs(%)
.601 E 1	 1.61 15.26 .098 .400 .053 .029 .055

A 1	 1.59 15.12 .097 .400 .051 .026 .054
.70 E 11.42 41.64 .699 .304 .565 .341 .588

A 11.32 1 41.46 .693 .J04 I	 .556 .314 .580
.80 E 34.74 68.98 2.16 .219 2.33 1.53 2.41

A 34.67 68.81 2.16 .218 2.31 1.42 2.40
.90 E 66.23 86.40 4.27 .151 5.63 3.96 5.80

A 66.16 86.27 4.27 .150 5.61 1	 3.69 5.80
95 E 82.30 91.05 5.43 .123 7.73 5.56 7.95

A 62.18 91.13 1	 5.42 1 .1231 7.70 5.20 7.95

M

O	 d Mott Dhrmwianaft and A%wkhm C *kany

Paradigm 2 (continued)

ATM Loop Network PmbWm

Tows = 40 ms. Tors = 60 ms, r t =16 Kbp,
Tows = 400 ms. Torn = 600 ms, ►s s 64 Kips,

Tows - 386 m t. Torn - 765 "w. ra =1.14 Mips,
Pabst Size = 512 bIW BeRsr Site = 80 poebow.

Lb* Cap.eity = 30 Mips for link 0.2.

Link CgWdty = 3 Mips for Link 3.17.

A: analyois	 S: simulation
Path w oy 1 rs 1 ALI Res R 2 E(wu)
31.2 6 7 5 A A371 .0386 .0766 2.65

S 054J .0468 .0692 2.94
4-1.2 4 .1050. .1711 4.73

 .0868 .1475 432
5.1-2 i 1 .0193 .04M 1.77

Al-1

 .0170 .0449 1.64
6.1-2 J 0 .0753 .1324 3.65

6 JM50 .1502 4.04
7-1.2 8 7 .1094 11771 4.74

6 .loll .1722 4.8J A Loop ATM Network

176



Traffic Pattern for Switching Networks

Tow, = 40 ma, Torri = 60 ms, ri = 16 Kbpa,

Town = 400 ms, Torn = GOD ms, r' = 64 Kbps,
70iv3 = 386 ms. Torn - 765 ms, r2 =1.14 Mbps,
Packet Sim = 512 bits, Link Capacity = 60 Mbpa.

Path v, t4 ty Rate(Mbps) Output intput
0 S 3 4 1.635 28 12
1 5 5 4 1.689 23 7

2 6 5 4 1.696 29 13
3 5 4 5 2.046 24 8
4 6 1	 4 5 2.052 25 9
5 7	 1 5 5 2.084 30 14
6 6 1	 5 5 2.091 16 0
7 5 1	 7 5 .2.123 20 4
8 T 1	 7 5 2.136 17 1

9 7 1	 8 6 2.543 22 6
10 4 1	 6 7 2.855 26 10

11 6 1	 6 7 2.866 19 3

12 7 6 7 2.875 21 5
13 3 7 7 2.875 27 11.
14 6 7 7 1	 2.894 1	 31 1	 15
15 6 7 8 1	 3.276 1	 18 1	 2

fe r to Star Swlkbk Network

N w 16 Banyan Switching Netwok with 4 n 4 Ek"wnta

. Paradigm 3:
Comparison of ATM Star and Banyan Switching

Networks under Multi-Media Traffic

Paradigm 3 (continued)
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Paradigm 4: Near-optimal Routing for Voice and

Data Traffic in Multi-hop Networks

TOW 1 . ONWOMimd OOwt Rgalyd v 4r DWwaat AMrorkmM a an/ Womb
b""

pdwrt	 1 11dwt	 2 Natwt	 7
AMraaiarWa t ^ (".1", 110.070) t ^ 16,0,1." 0 ^ 100.00.00.00.00.
ltd 60.00,W.00.10.70

.pip El E L W W W W
facet Nu"M& ire p"bitirr 70 wr. 2 tr. pmWbiti.e pralikuve

Mahe Cat" ! wia. 23 w"
Kaynat <I w. 2.S m. 2 we. 20 We. 10 me. 1 M.

rowel <I me. 2.S are.

Paradigm 4 (continued)

S" i COOPWi.na wf V I --r d AbWasOm Rwdat POW- Ow Via wban Ow
Aar Aw OMid ti 010dwimri Ha Kagawi AppowIwdiaa Ow ISM-6 to fitwa 14.
Min Aaddw rods I/(w f 0) 0 6.4 . V ewe <f Vilw ht► Owt" t. (2.2.1.1).
Opad4 6 0 (0.0.1,0). M" M of Kin OD law Lw7 r', a (1.!).

Ri Rsk
act

1
!

0.012011
OX0IM7
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O.OMIp

1
!

0.loom
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1
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0X7111
0."0012

0.102000
0X045"

1
!

!
I.f171M
0.7270"

O.OIOOM
0.0701"

!

1

0.617017
027!1.01

!

1
1.122912
0.271010

0.01"15
0.02! 071

2
1

W- 7X"1 7.265020

1 MUM 1.70#310
! !."1712 ISIMM
7 0.456n 0."2!10
• 1.60002 1.070721

T" $ G.rwie..1 fbOwaeaara wf L d ftwi t Ilwtiat PWWn hr Data OAniwe/
b ONW*Awt tra Ka Wn h Ap"mimMiw Olwa Tb Akwe" w RMObs Rdr d KM
Cwb far 140OWt V flpn l.ta
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4'peft 0 n IO.6,i.q . AMwwdiw Nadi" Oair ((1.2).0.2)).
We6w of VWw OD lair lard f', . (1.2). Valor of Dda OD Pdr LIMI a a (4.21.

K	 Rer4	 Rak Rae '	 Rob
1 Keepeet Q•(Eaeet go(Fr-
1 2,469M 0.200051 0.206220 2.201110 0.20101
2 7.45176 0.2402" 0.2710" 2.#37224 0.220150
3 2X20700 0.211022 0.212210 2.002001 0.""It
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12.137000 12.1015" 12.H2m
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Characteristics of Internet Traffic for
Planning Satellite Networks

Bachittar Singh Sembi
Brian Armbruster
VISTAR Telecommunications Inc.

Sembi, B.S., Armbruster, B
	 VI^-

Background

• The economics of a consumer satellite system heavily
depends upon the number of people sharing a fixed
amount of satellite bandwidth and the associated cost

• The bandwidth' available to each active Internet
customer determines the acceptability of the service

• Most Internet traffic numbers are available at the core
networks and not at the individual access point to the
network

• We need to improve our understanding of the
bandwidth required by an individual , user to evaluate
if a satellite offering is viable

Sembi, B.S., Armbruster, B
	 VI
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Objective

To improve our understanding of the bandwidth
requirements for potential Internet services by
the user:

— Search of the current literature

— Measure the traffic patterns of individual users

— Estimation from the consensus process of
"Experts"

Sembi, B.S., Armbruster. B
	 vI S^ArR-

Internet based Communication Services
Various Internet based communication services need to be
evaluated to determine overall capacity requirements of an
individual user, for example:

too
• Email
• WWW

• Tele-education
• Tele-banking
•

httpJ/www.nlanr.net/
NAAearn/daily.html

0

e ME IMP h^aa^^?^S"e eoae"e"x^e

nx,o:n,sror

• Need to grasp WWW traffic, which is the key indicator
with most traffic volume today

• Focus on WWW (http) as a first step

Sembi, B.S., Armbruster, B
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WWWW (http)
traffic has grown
from 0 to 70% in
about 3 years.
Internet traffic is
predominately
www
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Service
(Exclud
Termina

MByte/Customer/active hour
VI

Internet growth patterns

Growth
O	 A

300-400%	 Backbone Network

200%

Per customers traffic	 ^, J POP

pattern is unknown -a	
IIIII I II I I I II I

key requirement for
satellite

# of Customers

Prediction are subject to
uncertainty such as:

— Bandwidth prediction as
services evolves

— Technology evolution
impacts

— Role of Internet as
compared to TV, phone

— Can the cost be cheap
enough for mass market

Key Information for Access Service Providers is the bandwidth per active
subscriber (`logged on") in each direction in the busy hour

Sembi, B.S., Armbruster, B	 VI,^

Access Network Cost Model
Common	 Per Customer
Infrastructurd infrastructure

Earth	 User

Station	 Terminal
0

Useri...... i	 ......................... .........................'T..
Backb ne ..••• ""	 *:	 ;Terminal...............
Network" •'

	

	 User
Modem

Common Network to
all Technologies Access technologies

Terminal

User buys a terminal

• Satellite is a shared
medium - Cost amortised
over B/W used

• DSL has dedicated
facilities to customer

Sembi, B.S.. Armbruster. B
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Search from the Current Literature

• Most published statistics about the Internet traffic
are measured at the core of the network

• No easy way to determine an individual usage from
the core statistics

• However, the search found:

— One recent study
— Provisioning information from a Canadian ISP

service provider

— The telco provisioning guidelines for ISP service
providers

Sembi, B.S., Armbruster, B	 V I S

Model for Internet Browser Traffic°

Assumptions for a Browser model
— Active users model

— Response file of 20 Kbytes

— Mean Inter-request time of 20 secs
	 Idle User	 I	 Active User

— Request size is 400 bits

— Non-Modem access to Internet

Traffic is 20bps (w/o protocol o/h) from an active user

Traffic is 8kbps (w/o protocol o/h) to an active user

Traffic rate experienced by ISPs today. is 2 - 4 kbps

Saulnier E.T, Esposito J, et al: Ka-band Satellite communications: The issues attending provision of two-way
consumer services - 3rd Ka-band utilization conference. Sept 97

Scmbi, B.S., Armbruster, B 	 V I STAR
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Total Modems bw is 10:1
Total Backbone bw

Total Modems bw is 5:1
Total Backbone bw

ISP Service Providers
Canadian ISP	 --	 US West guidelines
provisioningBackbone	 for an ISP
(>50k Subs)

ISP
# of Customers is 16:1 —► I I I I I I I
# of Modems 0000000

Average b/w to a subscriber is 180 bps
Average b/w to an active user is 2.8 kbps

• Access limited to 50-60 Hrs/month
for fixed price (adequate for most
users)

• No busy-tone provisioning policy

Sembi, B.S., Armbruster, B

# of Customers
^— # of Modems is 10:1 to 20:1

Average b/w to a subscriber is 288 - 576 bps
Average b/w to an active user is 5.7 kbps

• Ratio of 10 : 1 recommended for
high quality ISPs

• These numbers are from a US
West' s perspective, who sell
bandwidth to ISPs

htip•//www.uswest.com/com/onthenet/
con nccl iuns/intcmcl pnrvidc r/
becomelP3 .1tmManchorratios	 vl S	 [

Vistar Measurement of ` User Traffic

• A CNA personal traffic monitor tool was used to
monitor the LAN traffic for a number of users on
Vistar's LAN

• All users are business users who may use Internet
during day time

• CNA traffic monitor is a software tool which runs
on a PC and is primarily designed to monitor the
performance of the LAN.

• No external hardware monitor was required for
tapping the LAN

Sembi. B.S., Armbruster, B
	 VI^-
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What was measured

• The number of bytes to and from a specific user
for a period of time in 10 minutes samples.

• The objective here is not to measure instantaneous
peaks, but total data over a period of time

• This data includes the Internet access and all other
activity on the local LAN, such as printing, file
server access

Sembi, B.S., Armbruster, B
	 VI^

Sample Traffic runs

Traffic for October 7, 97

I I+.UU

12.00

10.00

CL 8.00
r
x 6.00

4.00

2.00

0.00
to M M n	 to M M f	 to CI

r ,- N N N M M ^ et V

Samples

`--User 1_Rxl j
—User 1_SnI fj
!—User 2_Rx;

—User 2_Sn:
j—--User 3_Rx^
--User 3_Snj

Sembi, B.S., Armbruster, B
	 V I IAA
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Measured Statistics . for Average User

Summary of Average Statistics collected - For all the active user for each day
Including	 Downloading

21-Oct-97 20-Oct-97 7-Oct-97 2-Oct-97 Average
Average bps_Rx	 564.39 465.81 947.01 2,108.10 1,021.33
Average bps_Sn	 274.82 268.30 483.09 246.68 318.22
Total KBytes_Rx	 2,201.13 1,816.00 3,622.33 7,431.04 3,767.63
Total KBytes_Sn	 1,071.80 1,046.00 1,847.83 869.53 1,208.79

Summary of Average Statistics collected - For all the active user for each day
excluding Downloading

21-Oct-97 20-Oct-97 7-Oct-97 2-Oct-97 Average
Average bps_Rx 564.39 465.81 813.12 484.66 582.00
Average bps_Sn 274.82 268.30 436.56 190.13 292.45
Total KBytes_Rx 2,201.13 1,816.00 3,110.18 1,708.44 2,208.94
Total KBytes_Sn 1,071.80 1,046.00 1,669.86 670.20 1,114.46

Sembi, B.S., Armbruster, B
	 visl	 --

Measured Statistics , for Heaviest User

immary of Statistics collected - User with highest peak in each day including

_21- Oct 97^ 20 Pct-o -7 2-Oct-971 Average	 I
Peak kbps	 1 8.20 9.51 30.111 49.47 24.32
Average bps _Rx 738.00- 689_.001 1,348.00' 5,354.00 2,032.25f
Average bps_Sn; 187.00 331.00 622.00

11
359.00 374.75

Total KBytes Rx l
Total KBytes Snj

2 1 878 00
731 001

2 690.00 5,158 001 18,876 00 7,400.50
1 291.00 2382.00 1,268.00 1,418.00

Sum-	r	 of Statistics collected - User with highest peak in each day excluding
;Downloading

211-Oct-97 20 Oct-97^ 7-00 -97; 2-Oct-97 Average
Peak kbps 8.20 9.51

689.001
12.561 5.88 9.04

Average bps-Rx
Average bps_Sn

738.00
187.00 331.001

1,521.00!
625,001

589.00
267 00

_ 884.25
352.50

Total KBytes Rx 2,878 00 2 690.00 5,818.00; - 2_,078 00_	 - 3 366.00_
Total KBytes Sn	 731,00

I	

I

1,291.001

i

2,393.00: 941.00 1,339.00(

I

Sembi, B.S., Armbruster, B
	 viS^
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Key messages f rom Colleted Data

• The average bandwidth to user is between 0.5kbps
(no download) to lkbps (with download)

• The average data transferred to user, in one day, is
between 2.2MB (no download) to 3.7MB (with
download)

• The average bandwidth of the heaviest user for
each day is about 884 bps (no download) to 2 kbps
(with download)

NB: These numbers include all traffic (including protocol o/h) to/
from computer and hence IP traffic will be a subset of this data

Sembi, B.S., Armbruster, B
	 VIA

Estimates f tom Expert Panel

A process was designed to elicit the opinion of a number of `experts' at Vistar for
determining the user traffic characteristics

Initial Mtg to present 	 ,Experts to provide	 Second Mtg to
the process and a list	 the Requested data 	 Agree/Amended the Output
of services	 merged group view Capacity

estimates
- Initial meeting to - The Experts to - Second meeting

obtain consensus on provide data for to review the
the list of services and consolidation and group data and
the process involved analysis achieve consensus

- Handout of existing on the combined
knowledge of traffic data
characteristics

- Initial discussion of
data input

Sembi, B.S., Armbruster, B
	 VIS^-AR-
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Results from Experts Panel (Near Term)

Mins
Ave B/w

Mbytes /
Peak B/W

Qos to
Ave B/w
frm User

Mbytes /
Peak B/W
frm User

Qos frm
Services Use / M th

to User
Month

to User
User Month Usr 

Kbps Kbps Kbps Kbps

Enhanced 900 9 60.75 384 secs 1 6.75 16.00
Browsing
Enhanced 300 48 108 384 mins 1 2.25 16 sea
Multicasting
Remote 1000 64 480 384 secs 16 120 128 sea
Access

ELAN

E Infor 300 64 144 256 mins 1 2.25 16 sea
Deliver
Int. Msging 425 16 51 64 mins 2 6.375 64 mins
s stem
Online 270 32 64.8 384 sea 1 2.025 16 sets
Commerce
Tele 600 64 288 384 sea 128 576 512 secs
medicine
Multimedia
Delivery on Soo 341.33 2048 1544 min 1 6 16 sea

demand

Distance 900 85 573.75 384 sea 9.6 64.8 64 secs
Education

Sembi, B.S., Armbruster, B
	 V I 3A-

Results from Experts Panel (Longer Term)

Mins of Ave B/w
Mbytes / Peak B/W

Qos to Ave B/w
Mbytes / Peak B/W Qos frmServices

Use # to User Month to User
User

frm User Month frm User
UsrKbps Kbps Kbps Kbps

Enhanced
Browsing

900 64 432 1024 sees 9 60.75 48 secs

Enhanced
Multicasting

450 96 324 1024 1 min 2 6.75 32 sea

Remote LAN
Access

1500 256 2880 1544 secs 64 720 384 sea

E Information
Deliver

450 100 337.5 384 mins 2 6.75 64 sea

Int. Msging
s stem

475 64 228 128 mins 12 42.75 128 mins

Online
Commerce

360 50 135 512 sea 4.4 11.88 64 secs

Tele-
medicine

900 128 864 512 sea 384 2592 1544 sea

Multimedia
Download on 1000 409.60 3072 2048 mins 1 7,5 64 sea
demand

Distance 1100 256 2112 1024 sea 32 264 256 secs
Education

Sembi, B.S., Armbruster, B
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rJLtl?ZIYIaq Of the Bandwidth Requirements

Source B/W to User	 B/W tivm Data Comments
User (MB/m)

ISP Provising2 (All net 2.8 kbps 18.9 Provisioned today over
Applications) large number of business

& Res. users

Guidelines for ISPs2 (All net 5 .76 kbps 38.9 Data Telcos would like
applications) ISP to provision

Lan Measurements' 524 bps 39.6 Measured for Business
(Browswer Only) users today

Literature seareh 3 (Browswer 8 kbps	 20 bps 54 Prediction from 	 recent
Only) model

Experts Panel Near Tenn 9 kbps	 1 kbps 60 .7 Near term predictions
(E.Browsing) from the panel

Experts Panel Longer Tenn 64 kbps	 9 kbps 432 Longer term (2010)
(E.Browsing) viewfrom the panel

' Average during business hours. Users are "active" during part of the day. Data based on measured values
2 Actual/Proposed provisioning(symmetric), even though demand is asymmetric
J Does not include protocol overhead

Sembi, B.S., Armbruster, B
	 vI^-

Key Findings

• Internet traffic requirements that may be used to introduce
service in the near term are:
— The average bandwidth of 8kbps per user is reasonable

bandwidth to introduce service over the near term

— Data transferred per month to the user is in the range
between 25MB/month for residential user to 50MB/
month for business user.

• More independent results are required to get statistically
significant values and to take into account wider user
patterns

• Ongoing tracking is required to better understand the
evolving traffic characteristics of IMM services

Sembi, B.S., Armbruster, B
	 vI^-
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Interoperability for Space Mission System
Monitor and Control:

Applying Technologies from Manufacturing
Automation and Process Control Industries

Satellite Networks Workshop

6/2/98

Michael K. Jones

818-354-3918
michael.k.jones@jpl.nasa.gov

JILL

Outline

• Space Project Mission Operations Control Architecture (SuperMOCA)
Goals and Methods for Achieving Them

• Some Specifics on the Architecure
— Open Standards and Layering
— Enhancing Interoperability
— Promoting Commercialization

• An Advertisement
• Status of the Task

— Government / Industry Cooperation
— Architecture and Technology Demonstrations

• Key Features of Messaging Services and Virtual Devices

JILL
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Space Project Mission Operations
Control Architecture (SuperMOCA):

Goals and Methods
• Significantly reduce the monitor and control cost for

integration, test, operations and maintenance of ground-
based and spaceborne systems used in space missions

• Facilitate space industry and government agencies
cooperation in the execution of space missions

• Partner with industry in a consortium environment to
develop
— an architecture and operations concept that is commonly

understood by customers and suppliers
— open standards based on technologies and open standards and

from manufacturing automation and industrial process control
industries

— a lucrative commercial market for space -mission monitor and
JPL control products

Space Mission System Monitor & Control

Lforw

or*or& n Payloa

	

ath for '	 S
:i s	 Spacecraft

	

e n 	 (S/C)

ar Monitor &.®
ol Pathn
C	 n

Payload Operations
Center	 n

/r Monitor & n Path for n
43^'n^L... 	 ®^

n

n

	

'	 GroundS/C Operations	 :	 TerminalCenter	 n

	

Ops or Test Center %	 Mission System

G^).E®
	 ^ltor^ Cô TDialogue®	®	

System

	

n 	 of Dsvi
Data CommlhicatIons

JPL
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Open Standards and Layering

Top View se	 Safeguards to prevent the Standard representation
n 	 execution of directives that of eYternalt'-Visible
•	 Id damage devices aspects of the device

English-like
opermr and tester
lingua e

o19f
DNa

Commwtkafi*no
canomasa

sped Muaagi g sarvicas apace Masaylnpaarvieor
"Backplane of
information
that describes the
devices to be Mechanism aced toFn
monitored and monitor and centralist
controlled virtual devices 	 •

n

Side View
A

SpaesAloeaapiny SOrvleas 	®	 spacoMOSaapings eU_ n

Ops or Tes ' iComrrwnlcaffons&M
/stemCenter	 I

f S Y
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Enhancing Interoperability
• A definition - Monitor and Control (applications-level) Interoperability:

Once connectivity has been established based on communications
interoperability, components built by different organizations can operate
together to execute an activity by exchanging monitor and control information
(i.e., plug and run)

• Advantages for space mission monitor and control
— simplifies multiple agency cooperative missions
— shortens system integration and test and training time
— preserves customer options on component suppliers

• Advantages for commercial products
— lower customer support costs
— products are compatible with more systems

• How the architecture enhances interoperability
— makes mission-specific descriptive information available to monitor and

control applications in a standard structure (Information Architecture)
— decouples device design from monitor and ccatrol application design

JPL(messaging service and virtual device concepts)

Promoting Commercialization
If we (the customers) want to benefit soon from a commercial market, then we
need to participate in creating it. The SuperMOCA task and architecture are
intended to promote a commercial market. Specifically they will:

• Provide an understanding of the
common cost drivers'among
government and commercial
space missions

• Reduce costs for both government
and commercial operators
throughout the project life cycle

• Provide business opportunities to
a large set of companies

• Promote commerical competition

JPL

E

' C	 sultswe
oTedxrol"les
^U

Open standards E	 SpaceRetsranes ImpkuneMations
Projects Using	

Mission
Custom

Commercial Products

Path to a Commercial Market

Needs a Medwds

nmon Framework y
for Solutions	 E

s
U
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SuperIVIOCA Homepage

JPL

Status of Government / Industry Cooperation

• FY 98 and FY 99 funding from NASA's Space Operations Management
Organization (SOMO) standards program

• FY 98 work is being done at JPL and through contracts with SRI and Fieldbus,
Inc.

• Will get support from Department of Defense (DOD) in FY 99 to incorporate
any DOD-specific needs into the architectural design work

• Negotiated a preliminary Memorandum of Agreement with Fieldbus Foundation
(FF) and NASA on for a cooperative program to:
— demonstrate FF process control technology being developed to operate in

ethernet networked environments
— develop a space monitor and control industry consortium based on the FF

experience as a process control industry consortium
• Working with Fisher-Rosemount (an FF member company) in developing a

design for remote access to monitor and control systems via satellite links

JILL
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What is	 i 1Foundation?

Over 100 Companies
Major International Automation Companies

Multi -national End Users

.JPL

Fieldbus Foundation Members
• ABB Industrial Systems Inc.
• Allis Laval Automation AS
• Allen-Bradley Co., Inc.
• Allen-Bradley Japan Co., Ltd.
• Alpret (Pty) Ltd
• Apparatebau Hundahsch GmbH
• Bailey Controls Company
• Bailey Japan Co., Ltd.
• Seamex Oy, AB
• Belden Wire & Cable
• Borst Automation
• Bray International, Inc.
• Bronkhorst High-Tech B.V.
• Brooks Instruments
• Caltsx Services Corporation
• Chevron Research & Technology
• Danfose AIS
• digi table thislen GmbH
• DKK Corporation
• Dnuck Ltd
• du Pont Engineering Co.
•EMCO
• Endress + Hauser GmbH
• Enraf
• Exxon R	 & Engineering Co.

JPL

• Fleldbus International AIS (FINT)
• Fisher Controls International, Inc.
• Fisher-Rosemount Systems Inc.
• Fraunhofer Institute IITB
• The Foxboro Company
• Fuji Electric Co., Ltd.
• Furon Company, Dekoron Div.
• Glaxo Inc.
• GSC Precision Controls
• Hartmann & Braun AG
• Hitachi, Ltd.
• Honeywell Inc.
• hu
•Institute doInvestigaeiones El6chicaa
• Johnson Yokogawa Corp.
• K-Patents Oy
• K.K. Codix
• Keystone International, Inc.
• Kimray,Inc.
• Knick Elektronische MoSgerift GmbH &Co.
• Koso Service Co., Ltd.
• KROHNE Messtechnik GmbH & Co.
• Lseds+Northrup
• Magnstrol International
• Masoneilan - Dresser Industries, Inc.
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Fieldbus Foundation Members
• Measurement Technology Ltd.
• Mettler-Toledo, Inc.
• Micro Motion, Inc.
• MILLTRONICS Ltd
• Mitsubishi Electric Corporation
• Monsanto Company
• Motoyama Eng. Works, Ltd.
• Nagano Keiki Seleakusho Ltd
• National Instruments Corp.
• NEC Corporation
• NelesJamesbury Oy
• NEMA
• Niigata Masonalian Co., Ltd.

Norsk Hydro &a.
• Ohkura Electric Co., Inc.
• Oval Engineering Co., Ltd.
• Pacific Avionics Corporation
• Peppers+Fuchs
• POHTO
• Poiltecnico di Torino -Dal
• Presys Instrumentos a Sistemas Ltda.
• R. Stahl Schahgerlits GmbH
• Ramsey Technology, Inc.
• Ronan Engineering
• Rosemount Analytical, Ina

• Rosemount Inc.
• Saab Tank Control
• Schneider North America
• Servomex Company Inc.
• Shell Oil Company
• Shimadzu Corporation
• SHIP STAR Associates Inc.
• Slabs ECD
• Sisger TPA Ltd.
• Siemens Industrial Automation, Inc.
• Sunned Albatross AS
• SMAR Equipamentos Industrials Ltda.
• Sotting GrnbN
• Stonal. Corporation
• TMG War: GmbH
• Tokyo Kelso Co., Ltd
• Toshiba Corporation
• Valmet Automation Inc.
• VALTEK Intemational
• VEGA Grieshaber KG
• Vinson Supply Company
• WorldFIP Europe
• Yomatako-HoneywNi Co., Ltd.
• Yokogawa Electric Corporation
• Yokogawa Electronics Co., Ltd.

JPL
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Status of Architecture and Technology
Demonstrations

• Overview Documents Available
— Summary - Why SuperMOCA is important
— Architecture - What SuperMOCA is
— Operations Concept - How SuperMOCA is applied

• Current Focus is on messaging services and virtual devices
• Road Show Demo oP.^«

— Commercial messaging system
— ISA Show in Anaheim in Oct. 97

FWND/1T

• JPL Demo	 FNIAbu

— Commercial messaging system
— Simulated S/C

CUM VC41 canrr•

JPL

Messaging Services and Virtual Devices

• Virtual devices consist of software-implemented "objects" that represent the
externally-visible aspects of the device

• Messaging services provide the capabilities to monitor and control the device
through manipulation of the "objects"

• Fieldbus Messaging Service (FMS) is an example of an integrated architecture
with which to build a monitor and control system
— set of messaging services
— set of virtual device "function blocks"

=SoftareDrivem
Ptrysicel

Messaging Services	 Device

Operating over 
Data Connection

JPL
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Invited Session
NASA Interoperability Experiment

Program
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INTEROPERABILITY
WHAT IS IT	 t

and
WHY IS IT SO IMPORTANT ?

ALFRED U. MAC RAE
Consultant

72 Sherbrook Drive
Berkeley Heights, NJ 07922

INSTITUTE FOR APPLIED SPACE RESEARCH - GWU

INTEROPERABILITY ENABLES
COMMUNICATION AND

INTELLIGENT INTERACTION BETWEEN
SYSTEMS OF DISSIMILAR NETWORK
ARCHITECTURES AND PROTOCOLS,

USING EQUIPMENT MADE BY
DIFFERENT VENDORS AND OWNED

BY DIFFERENT SERVICE
PROVIDERS.

AUM 6/98
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Standards
Compatible Protocols
Cost
Reliability
Customer acceptance
Technical compatibility
Inter-company agreements

AUM 6/98

TRENDS ON THE GROUND (1)
Demand for bandwidth is increasing at 50% per year
Data exceeds voice transport in U.S.
Number of Internet hosts is doubling every six months
Customers are obtaining 1 Mbps to home with

cable modems
T-1 lines have been on allocation
Customers are ordering DS-3 lines
Customers are requesting OC-12 (622 Mbps)
Transport has changed from multiples of DS-3 to

multiples of OC-48 (and higher)	 AUM 6/98
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TRENDS ON THE GROUND (I^
Optical technology

DWDM is now offered at 80 channels with 400 Gbps
per fiber, increasing to 1 Tbps per fiber, with
26 Tbps possible

Optical add-drop
Optical cross-connect

Sub-cable
Japan to U.S. - by mid year 2000; SONET Ring,

80 Gbps, upgradeable to 640 Gbps
Project Oxygen - by year 2002; global, 74 countries,

DWDM, 80 channels per fiber, distance
independent charges

(Bandwidth is plentiful, but access to the home is key)
AUM 6/98

Zkb

TRENDS ON THE  GROUND (III)
The global network is becoming IP based

Convergence of data, voice, video
The network has gone from a hierarchical

to a distributed architecture
Real Time Network Routing (RTNR)
SS #7 (signaling) is the basis of call set-up,

new services, and network management
Network management is complex and is

the key to customer satisfaction
Data base management (as, customer

profile information) is key for billing,
new services

Wireless mobile is booming, esp in those
parts of the globe that use standards (GSM) AUM 6/98
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TRENDS IN SATELLITES(!)
Technical

On board switching
Multiple spot beam antennas
Larger antennas
Intersatellite links
Higher power
Multi-satellite constellations at LEO and

MEO to minimize delay problem
Software is becoming increasingly important

Business
Delivery of services to end-user*,

as DBS, mobile telephony, Internet access
and DARS	 AUM 6198
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WHAT ABOUT DISTRIBUTION of HDTV?

Distribution of TV to Network Affiliates and
Cable Head Ends is Big Business Today

Raw high definition video is w 1 Gbps

Contribution Quality for Editing is 160 Mbps

Delivery to home is 19.2 Mbps

(FUTURE SATELLITES WILL REQUIRE HIGHER
BANDWIDTH TRANSPONDERS)

AUM 6/98

'k
WHAT ABOUT

THE 1/2 sec. LATENCY AT GEO?

Voice
Data

Will LEO be the answer for satellites?
But, what about Doppler (Jitter)?
and traffic management?

AUM 6/98
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10	 ab

ATM over SATELLITES

While initial studies are encouraging, using

Reed-Solomon coding and the COMSAT Link

Enhancer, continued studies are needed to;

determine if satellites can deliver the QOS

demanded of present and future ATM services,

to understand resource management and

application performance.
(AT&T, KDD, Telstra AKT ;TM Technical Trial)

AUM 6/98
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STANDARDS

Enhance Customer Acceptance

Mobile telephony

DBS

DARE

Common air interface standards will be

demnded by the customers and will be good for

the entire business
AUM 6/98

TRENDS IN SATELLITES (Ip
INTEROPERABILITY

Trunkina and thin route services
Will require higher bandwidth transponders to

carry new services
Will require solution to the latency problem

to carry high bandwidth TCP/IP traffic
Broadcast TV

Will require higher bandwidth transponders to
distribute HDTV

Will require lower cost (will SONET replace
domestic distribution?) and better reliability

Data networks, low bandwidth
Probably ok - being done now

AUM 6198
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TRENDS IN SATELLITES (1111
INTEROPERABILITY

End-User based services (all need improved distribution and
service channels)

Internet access - Need to solve latency protocol
problem for high bandwidth access, need to
utilize conventional signaling and data base
management to match services provided
by terrestrial counterparts

DBS - Need standard receivers to enhance business,
need to provide local programing

Multicast - New protocols needed
Mobile telephony - Signaling, routing, standard

terminals, new services - location determination
DARS - Quality is the big issue	

AUM 6198

SUMMARY
Global communications are increasing at an

unprecidented pace
The network is "going" IP
Data transport exceeds voice
Terrestrial communications is "going" high bandwidth

To be interoperable with the terrestrial network, satellites
need;

higher bandwidth transponders, OC-3?
solution to the latency protocol issues
utilization of standard signaling, data base management

and network management
standardization of terminals

AUM 6198
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Launched September 12, 1993.

LewLt Research Center

SATELLITE NETWORKS:
ARCHITECTURES, APPLICATIONS, &

TECHNOLOGIES WORKSHOP
June 3, 1998

Cleveland, OH

"NEW OPPORTUNITIES WITH
THE ADVANCED COMMUNICATIONS
TECHNOLOGY SATELLITE (ACTS)"

Robert Bauer
ACTS Project Manager

NASA Lewis Research Center

ACTS PROGRAM OVERVIEW
Lewis Research Center

• Experiments began
December 6, 1993.

• Initial 2 year mission life
extended to 4 years (design
life).

• Fifth year now underway.
• Over 100 organizations

involved in 85 experiments;
81 demonstrations to various
audiences.
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ACTS SPACECRAFT CHARACTERISTICS

• Weight: 3250 lbs (on-orbit)
• Power: 1770 BOL
• Frequency Band: Ka (30/20

GHz)
• Space Pointing (Pitch & Roll)

O

Accuracy: ± 0.025
• Launch Date: September 12,

1993
• Stationkeeping Fuel Expended:

Projected July, 1998
• Inclined Orbit Operations (N/S

not maintained): Through
September, 2000
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KEY ACTS TECHNOLOGIES
Lewis Reseatc^ C•Mer

High Gain, Fast Hopping Spot Beams

• EIRP >64 dB

• G/T >20 dB/K

• Frequency Reuse > 4

Onboard Processing & Switching

• Baseband Switching at 64 kbps circuit
level

• Max throughput of 220 Mbps

• Full mesh, single hop connectivity

• Wdeband Switch Matrix of 3 channels
at 900 MHz each

Ka-Band

• 30/20 GHz RF spacecraft &
earth station components

• Propagation measurements
to characterize band

• Adaptive rain fade
compensation

• Only currently available
30/20 GHz satellite testbed in
U.S.

ACTS ACCOMPLISHMENTS (selected)
Lewis ReseerM Center

• Inducted into Space Technology Hall of
Fame, April 1997.

• Highest known data rates supported in a
single transponder by a non-DoD satellite
(622 Mbps).

• Experiments have been supported in 31
states and 6 foreign countries.
— Using multiple satellites, have linked to Europe

and Asia.
• Experiments and demonstrations:

— from planes, trains, automobiles, and ships
— from volcanoes, deserts, rain forests, islands,

and battlefields
— with scientists & engineers, patients & doctors,

politicians & soldiers, educators & students...
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ACTS EXPERIMENTS OPERATIONS
I Lewis Research Center

)i ^-
YMS^►rrr.
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INCLINED ORBIT OPPORTUNITY
I Lewis Research Center

WHY EXTEND THE PROGRAM??
3 Successful experiments program.

3 Sustained interest and impressive results have driven the
desire to continue ACTS as long as reasonable/possible.

3 Minimal further cost to achieve maximum benefit from
investment to NASA and Nation.
3 Program constraints define end of life at September, 2000.

./ Test viability of narrow spot beam system in 10.
3 No failure of primary systems.
3 Efficient stationkeeping

3 Calculations show sufficient fuel to operate for 30 mos. in
inclined orbit.

3 Maintain spacecraft at 1000 + 0.050 West longitude.
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1W 	 INCLINED ORBIT MISSION
Lewis Research Center

• Prepare the system for supporting inclined orbit
operations.
— Implement new spacecraft procedures to maintain attitude.
— Install and test modified ground segment.

• Continue operations with a tracking ground segment
to support program plans and experiment operations
requirements through September 2000.

Minimize impact to experiment operations

INCLINED ORBIT IMPACT
Lewis Research Center

Spacecraft
• Satellite will drift in N/S

direction increasing by —0.80
per year

• ACTS EastANest maintained
at ± 0.050 for up to 27
months.

• Last North/South maneuver
planned for July, 1998.

• About 1 month for S/C to
exceed 0.050

Ground Segment
• Tracking modifications

underway (2 axis)

Ian
..._..._..._

9A ---.....—ZI ----- .... -- — ------
.......__..._._ 	 __._ .. ............_.....am,

GAIL -	 ,,	 , i

ACTS Drift Inclination
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• Experiments
Opportunity Guide
released March, 1998.

(http://kronos. lerc. nasa.gov/
acts/eoa/g u id e. htm I)

• 4 experiments categories
defined.

MODIFICATIONS SUMMARY

1A
Lewis Resevtli Center

4 a^^:

NOTES
1.2.4 m dteh not beep rtndfied for YO.
2. Calulated veh^es.

3. No irpedtoBBPtortpto24moW dUO.
4. TDTN4networkbekVdwakpeQSANmodsw plbeavahntedwhenOpW	 .

EXPERIMENT OPPORTUNITY
Lewit ReaertlCenter

1T6N SPACECRAFT' MICiS TIVSAT NOR USAT LET
Assets 10 Reedy

1!1 1/1 19%5 613 1410 1/1
Cmtractar LIW4S Gamest Hertis BBN
Ant Diem m 3.322 510 1.2' 3.4 .6 .35,12 4.7
FPA w 46 130 10 120 1 100
Art FFIBW .1 .5 .2 1.0 1.8,0.5 .12
Tdp. Needed
(ffwft peg

r: ws.am,so — .5 3.5 1 7(13,3.5) .75
FYWMods N N Y Y Y Y
SANMbds Y Y Y Y
User Data Rates — 50.2/18.8 M6ps 1.8 Nbps l]Gi -OC12

156Ci72
4145 Nbps
^onitlna^e

220 Nbps
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LewisRes^Cmaer 	 EXPERIMENT CATEGORIES

1. Demonstrate transitioning to future commercial satellite
services in support of NASA & other government
missions.

2. Test, verify & resolve technical issues using
Asynchronous Transfer Mode (ATM), Internet Protocol
(IP), or other protocols over satellite, including
interoperability issues with terrestrial networks.

3. Characterization of the ACTS system and operations in
inclined orbit.

4. Verify new satellite Ka-band technology and hardware.

RECENT ACTIVITY
Lewis Research Center

• "Testing New Modalities of Space Communications"
— Major aerospace firm and team of several networking

hardware and software providers.
— Demonstrate network and protocols that could lead to

consolidation of NASA space operations.

• FTP, TCP/IP, HTTP testing over ACTS
— Ohio University and LeRC collaboration
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ONGOING ACTIVITY
Lewis Research Center

#118x ("High Speed Protocol Optimazation")
• Dispell myth that GEO satellites and TCP/IP are

incompatible.
— Investigate protocol performance on a multi-platform, geosync

satellite network
— OC-3 & OC-12 rates; symmetric & asymmetric links
— Optimize point-to-point transfer of data between two sites across

ACTS (HDR's at LLNL and LeRC)
— Use TCP/IP over Asynchronous Transfer Mode (ATM) among

multiple computer platforms and operating systems.
— Wide variety of partners including top names in industry:

• Computer Industry - 7 orgs.
• Communications Industry - 4 orgs
• Satellite Industry - 6 orgs
• Government Laboratories - 4 orgs

EXPERIMENT PROCESS
Lewis Research Center

• Submit Letter of Intent, or better yet...

• Submit experiment proposal.

• Review for feasibility (S/C, ground segment, schedule),
meets goals.

• Space Act or other appropriate agreement developed
with all experimenters.
— ensures requirements defined
— most agreements are reimbursable
— benefits Experimenter as well as NASA by clarifying what's

expected of both parties.
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ACTS EXPERIMENTS POINT OF CONTACT
I Lewis Research Center

• ACTS Project
NASA Lewis Research Center
21000 Brookpark Road, MS 54-6
Cleveland, OH 44135
ATTN: Michael Zemic, ACTS Experiments Manager

PH: 216.433.5286
michael.zernic@lerc.nasa.gov

• ACTS Home page

http://acts.lerc.nasa.gov
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Next Generation Internet Overview

Satellite Networks Workshop
Cleveland, Ohio

June 3, 1998

R.desJardins
NASA NREN/NGI Project Office

rdesjardins@arc.nasa.gov

NGI Overview Next Generation Intemet Architecture

Goals:
^^Promote -------

^s===-^^	 RE	 ^`\
experimentation ..^_y=

•	 nks, AKwith the next
generation of ----	 RE	 \.
network — 

_
Cornell

technologies ^^ r	 vBN NY^''

Develop a next
generation network

NGIA West	 NGD	 q 	 LeRCARC	 NCAR	 MidArinBMoffett Raid. CA	 Soidder, Co	 CIAClevelat
ew VOrlk NY

FCtestbed to connect Chicago, 11-ChampaigrPS Gr•enbett, MD
univers itiesttoS end

! °JPL	 ^^'= ^
NGix{•.+

federal research t \ Pasedens, CA	 $UpBPNet,	 PA Washington, D.C.
institutions at rates LAC

that8re Sufficient to °
Langley. VA

demonstrate new
f San Di•yo. CA

technologies and
support future
research

Demonstrate new DREN -	 Defense Research & Engineering Network
applications that NREN -	 NASA Research and Education Network
most important VBNS -	 Very High Speed Backbone Network Service (NSF)
national goals and NOTE: vBNS will support initial Internet 2 community
missions SuperNet -Terabit Research Network (DARPA)

- NREN Application Partner
0 - vBNS Partner

* - Next Generation Internet Exchange
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Advanced Networking:
NASA's Relationships

`^^^Advanced

Networking \, DARPA with Other Agencies
Science 8r	 Basic technology

NSF
(323 M)

T@Clt/iO/O9Y research; Conneotivity6

R&D tec ac NASA

t
earth universities;

u
(310 M)

at2; Applied research
lO for end-taend	 N/STresew systems	 N/H($5 M)

•stand	 Standards	 ($5 M)

a

NGI112 Comparison
Next Generation

hitecture

Next Generation Internet
• Federal funding

• Agency mission driven
• R&D in advanced networking technologies,

and demonstrations on a wide-area scalable
testbed which connects to academic
(including some Internet 2 universities) and
industry networks

• Develop general-purpose and agency-
specific applications

Internet2

• Funded by research universities and
communications and computing companies

• Education and research driven
• State-of-the-practice connectivity deployed at

universities and GigaPOPs and interconnected
using NSF's vBNS as the backbone

• Deploy networking technologies and develop a
wide range of applications (many funded by
Federal initiatives such as NGI)

Mid Atlantic GigaPOP for Interne
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Today
• "Best Effort"
• Unicast (point-to-point

networking)
• Lots of human

intervention required to
manage

• Security handled by host
• Router-to-router

performance monitoring

Tomorrow
• Differentiated services
• Intelligent network (scalability)
• End-to-end performance

management policies and tools
• Security as part of the network
• End-to-end performance

measurement
• Qualifies of service
• Multicast
• End-to-end service guarantees

Today Tomorrow
• Internet exchange points

are bottlenecks
Newer applications don't
have enough bandwidth

• Available bandwidth is
poorly utilized

• Duplicate traffic slows
growth of advanced
applications

• Robust internetworking
exchanges move the traffic

• New technologies provide wide-
open bandwidth

• Networks are unclogged by
high-speed applications running
over high-speed networks

• Multicast reduces traffic
exponentially

Capability

Capacity
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Revolutionary Applications

Today
• Electronic mail

• File transfer

• World Wide Web

• Remote login

• Travel to meetings

• Isolated design

systems

Tomorrow
• Collaboratories

• Metacomputing

• Distance learning

• Telemedicine

• Integrated design systems

• Remote operation

9M

NASA Mission Application Partners

Accelerate network	 `	 Space Exploration
technology development to
meet NASA unique mission T

Astrophysics	 requirements today.

Telemedicine, Interactive
Consultations, Remote
Protocols and Procedures

Earth Sciences:
Advanced Earth Sciences 	 Advanced Aerospace Design Information
Investigations 	 Power Grid, Wind Tunnels on-line, virtual

Astrobiology Institute 	 Flight Simulation Laboratories
Collaboratories, virtual
Aerospace Environment
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Tomorrow
• Collaborative research
• True end-to-end systems

technology integration
across heterogeneous
networks

• Partnerships allow
collaboration on large-scale
testbeds

• Technology scalable across
wide area networks	 I 1

Today
• Isolated research
• Many autonomous

systems with different
architectures and
policies

• Uncoordinated,
duplicate technology
development efforts

More Information

• National Coordination Office for	 • DOE
Computing, Information and 	 - http://www.es.net
Communications
— http://www.ccic.gov/	 • DARPA

— http://www.ito.darpa.miUR
esearchAreas.html

• Internet 2 (university consortium)
— http://www.intemet2.edu

• NASA Research and Education
Network
— http://www.nren.nasa.gov

• NSF's Connections
— http://www.vbns.net

Next Generation Internet
http://www.ngi.gov
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NASA RESEARCH AND EDUCATION NETWORK

NASA/NREN

Next Generation Internet (NGI) Activities

Richard desjardins

Ken Freeman

NASA RESEARCH AND EDUCATION NETWORK

Agenda

• NREN / NGI Architecture

• NREN Applications

• NREN Applied Research
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NGI Architecture
NASA Research and Education Network (NREN)

NASA Funded
ATM Backbone

Very High-Speed Backbone Network (vBNS)
NSF Funded
ATM Backbone

Earth Sciences Network (ESnet)
Department of Energy Research & Operational Network
ATM Backbone

Defense Research and Education Network (DREN)
ATM Backbone

SuperNet (Terabit Research Network)
DARPA Funded
Basic Research (ATM, SONET & WDM)

Abilene
Internet 2 Backbone

Tomorrow's Networking App li c atio ns Today
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NGI Architecture

DC-NGI Exchange Point (NGIX-East)

vBNS

MAE-East	 DC HUB	
0C-1

T3

ES t	 IESnet	 1

	

/	 Router	 I	 ATM	 CERN \Nf' CERN1
1	 Switch	 Router

Sprint	 OC3	 1
A	 ATM	 1 OC3

N	 Switch ®T°-- ATM	 DFN 1.T3
I	 Switch	 Router	 D NRouter	 I
1

NREN	 ATM	 I
Switch	 I

	

OC3	 1

Network	 Conn. Ave I Perryman

Virginia

NGI Architecture

Chicago-NGI Exchange Point (NGIX-Mid)

I
Sprint POP AADS NAP

ESnet STARTAP
ATM

OC-3

DREN

;it

Sprint	 OC-3  OC-3 AADS ANL
ATM Switch

- --	 --	 --	 i\

NRE

MCI

vBNS
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NGI Architecture

Ames-NGI Exchange Point (NGIX-West)

NASA ARC LAN	 FIX-West

NREN	 tr a yr

Advanced Network	 NREN	 Ames Internet
Test Lab

OC-12	 Router	 Exchange (AIX)

Ames

	

OC-12	 NIGX	 OC-12

ATM
Sprint	 Switch	 Switch

------------------------------

vBNS	 vBNS
Router	 Switch

MCI POP

vBNS
MCI
ATM

(Super Net)

Abilene

;NASA RESEARCH AND EDUCATION NETWORK

NREN Architecture

• ATM Based Backbone
•	 Sprint ATM Service
•	 OC-3 & DS-3 Circuits
• ATM & IP Routed Based Connections

Interconnections to NGIX's
• Connections to Five NASA Research Centers
• Planned Connections to Operational Centers
• Connections to Boeing
•	 Seattle
•	 Long Beach (MacDonnel Douglas)
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NASA RESEARCH AND EDUCATION NETWORK

NREN Applications	 NNEN

• Prototype revolutionary applications to support future
NASA missions.

• Focus is on end-to-end application demonstrations in
realistic network environments, pushing limits of
scalability.

• Integrate emerging technologies into NASA/NGI
Applications.

NASA RESEARCH AND EDUCATION NETWORK

____ NREN Applications

Accelerate network
technology delivery to

meet unique NASA
unique mission

requirements today.	 virtual Flight Simulation Laboratories

Telemedicine, Interactive
:M YF	 Consultations, Remote

QGD Protocols and Procedures

Advanced Science	 "	 Advanced Aerospace Design
Investigations for 	 Astrobiology Institute	 and Test Tools - Wind Tunnels
Mission to Planet Earth	 Collaboratories, Virtual	 on-line

Aerospace Environment

Tomorrow's Networking Applications Today
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NASA RESEARCH AND EDUCATION NETWORK

NREN Applied Research

QoS: investigation and potential deployment of Class Based
Queuing (CBQ) and RSVP. Development of bandwidth
broker

Securi : Pilot and deployment of a large scale decentralized
Public Key Infrastructure (PKI), Certification Authorities,
integration of Kerberos and PIG

Multicast: Pilot and deployment of a large scale native
multicast network

IPv6: Introduce IPv6 as an enabling technology for scaling QoS,
multicast and other new services

Routing-with-Switching: Experiments in high performance
core network switching and routing elements
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NASA RESEARCH AND EDUCATION NETWORK

NREN Applied Research
Congestion Control: Deploy ATM based ABR and CBR

services, Weighted Random Early Drop (WRED)
Giga/Terabit Technologies: Deployment of gigabit and terabit

networking strategies
Network Management:ment: Investigate self healing networking

strategies
Performance Benchmarks: Develop an Internet standard suite

of performance benchmarks
NGI Exchanges: Interconnect with other NGI networks and

with foreign research networks at NGI eXchanges (NGIXs)
GigaPoPs: Connect to selected gigapops for NASA

applications requiring high performance connections to
universitv sites.

Tomorrow's Ne l working Applications Today
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G-8 "Global Information Society"
Proiects

1. Global Inventory
2. Global Interoperability of Broadband Networks (GIBN)
3. Cross-Cultural Education and Training
4. Electronic Libraries
5. Electronic Museums and Galleries
6. Environment and Natural Resources Management
7. Global Emergency Management
8. Global Healthcare Applications
9. Government On-line
10.Global Marketplace for Small and Medium Enterprises
11.Maritime Information Systems

Global Interoperability for Broadband
Networks (GIBN) Mission

US Perspective:

• Establish strong Government, industry and
academia partnerships.

• Formulate clear objectives for experimentation.
• Emphasis that US Industry is an important partner.
• Foster International cooperation with non-US

government agencies, universities and industry
partners
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Global Interoperability for Broadband
Networks (GIBN): "Principles"

• To establish experimental intercontinental communications links
among the three main geographic areas of the G-8 countries: North
America, Europe and Japan.

• To provide a common testbed for the promotion of joint
Satcom/Terrestrial Interoperable R&D, demonstrations and pre-
commercial trials of advanced high data rate (>45 MBPS) services
and applications.

• To encourage research initiatives promoting science, education and
commerce, as well as, social and cultural development.

• To develop advanced interoperable communications & information
systems and networks that support emerging G8 information society
applications

• The GIBN will be the interoperable testbed for the other 10
information society projects.

Global Interoperability for Broadband
Networks: 'M 

Objectives and Goals"

• To promote the role of satellites in the Global
Information Infrastructure (Gil).

• To analyze the barriers of seamless interoperability
between satellite and terrestrial communications
systems; promote networks and system modifications
to software or hardware to overcome such barriers.

• To integrate US industry products and services as an
essential part of applications/demonstrations..

• Recommend changes in standards, where
appropriate, to overcome barriers of interoperability
between satellites and terrestrial systems.
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Global Interoperability for Broadband
Networks: "Background"

• The White House National Economic Council, invited NASA to
formally participate in planning and co-coordinate jointly with
NSF the U.S. contribution to the G7 GIBN project.

"...the series of Trans-Pacific experiments, and others planned for the Atlantic
and Asia-Europe regions, will make a very significant contribution to the G-7
Global Interoperability for Broadband Networks project."

• NASA tasked to undertake planning to support and promote
additional Trans-Pacific and Trans-Atlantic GIBN experiments
which provide satellite connectivity to NREN and STAR TAP.

• Applications, such as, digital libraries, telemedicine, tele-
education, and electronic commerce; that contribute to NGI
design and implementation were considered solid candidates
for future GIBN contributions.

* Thomas A. Kalil, Senior Director, National Economic Council, The White House

Global Interoperability for Broadband
Networks: /I NASA Status"

• NASA LeRC Space Communications Program assigned to lead GIBN
projects. Participation by JPL, GSFC, and ARC.

• Successfully completed the first Trans-pacific satellite post-production
video experiment and demonstration (March /April 1997, JPL - CRL)

• Assessment of the "Science, Technology and Research-Transit Access
Point" (STAR TAP) site (at Univ. of III.—Chicago) for installation of
satellite ground terminal.

• LeRC will host Intelsat compatible Ku-band satellite terminal; scheduled
for completion in September 1998.

• Three GIBN project applications currently in works; they are: Radio-
Astronomy (Trans-Pacific) [JPL]; Digital Libraries (Trans-Pacific)
[GSFC]; and Operation Smile (Trans-Atlantic) [GWU].

• European Commission (EC) interested to establish connectivity with US
via satellite. Several other candidate for Trans-Atlantic experiment
under review.
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Transpacific High Definition
Video Ex-Deriment

Intelsat

Satellite

^f

_.

45 Mbps // 45 Mbps	 45 Mbps // 45 Mbps

y J11:
Intelsat Intelsat ACTS High y^ ACTS High
Earth Earth Data ^ Daft Rate

Station StationU Terminal at
JPL

45 Mbps 45 Mbps GTE 45 Mbps
Through Fiber Optic Through
NTT Fiber Link in Hawaii Pacificc

Optic Bell Fiber
Network Optic

MMMIM Network

Global Interoperability for Broadband
Networks: "Experiment Selection Criteria"

• Information exchange with Trans-Atlantic or Pacific
partners; not just NASA's demonstration.

• Opportunity for U.S. Industry to contribute hardware,
software, intellectual resources and learn about
interoperability issues.

• Develop and demonstrate state-of-the-art, unique
communications systems, networks and applications.

• Foster ground-breaking use of communications
activities in particular wireless.

• Encourage/seek-out NASA mission tie-in.
• Promote connectivity to non G-8 countries via Satellite
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Global Interoperability for Broadband
Networks: ®' Satellite Industry Involvement"

• SITF Requirements are:
Seamless interoperability between terrestrial and
satellite networks which is a major problem in
providing emerging broadband services to the
end users
In-Space Technology demonstrations are
required for timely utilization of advance
technologies in future communications satellite
systems and applications.

o In systems ... A series of interoperability demonstrations
are needed to achieve integration of satellite and
terrestrial networks.

Global Interoperability for Broadband
Networks: // Current Experiments"

Trans-Pacific Radio-Astronomy [JPL, CRUMPT]
• Justification:

» Science and Education: Interactive image transmission
from telescopes in the U.S. and Japan.

» builds on the successful Trans-Pacific HDTV demonstration;
» potential to demonstrate OC-3 [155Mbps] data rates over

commercial satellite.

• Schedule:
» Demonstration planned for 4th Quarter FY98;

» Virtual Internet Testbed simulations and Final Report, 1st & 2nd
Quarters FY99
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Global Interoperability for Broadband
Networks Current Experiments [continued]

Operation Smile--Telemedicine [GWU]
o Justification:

— Trans-Atlantic experiment;
— Global Multicast Internet Distribution
— High level of G-8 telemedicine involvement; positive exposure.

» Schedule:
» 3rd or 4th Quarter FY98

Trans-Pacific Digital Library Experiment [GSFC/JPL]
Justification:

— builds on the successful Trans-Pacific HDTV demonstration;

— demonstrates one of the G-7 project theme of Electronic Libraries;

Schedule (tentative):

Global Interoperability for Broadband
Networks: `Current Experiments" [continued]

Trans Atlantic GIBN Experiment over PanAmSat:
» Networking Trade-Show, 22-25 June 1998, at Birmingham, England
» ATM Forum sponsoring booth to present ATM related technologies
» Offered to highlight NASA ATM over Satellite and ATM Forum work

» ATM over Satellite Technologies / Quality of Service Video presentation
MPEG2

» During LeRC Conference, several short (5 mins) lectures by Industry
leaders will be recorded; then presented at the trade show via the
broadband network.

» Voice over I  over ATM

» PanAmSat, MetroData and NASA have partnered to present ATM
Technologies Demonstrations over PanAmSat link.
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Challenge for GIBN Project

ntial partners• We must view each other as
Vision

•	 V, 

u 00craf
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critical issues

ons that
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Plenary Session
Addressing Interoperability
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ddressing Interoperability
Issues and Challenges

Raj Jain
The Ohio State University

Columbus, OH 43210
Jain@CIS.Ohio-State.Edu

h=://www.cis.ohio-state.ec^u/-j ain/
The Ohio State

Overview

q Life Cycle of Technologies
q Interoperability and Standards Issues
q ATM Traffic Management

Jain
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Life Cycles of
Technologies

Number of
Problems
Solved

Phase 1 Phase 2 Phase 3 Time
q Phase 1: Research

Phase 2: Productization
q Phase 3: Transition to the next technology
The Ohio State University

Internet Technology
40M

30M--
Host
Count 20M

l OM

Jan91	 Jan97	 Jan06

The Ohio State University	 Rai Jain
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Life Cycle:

Satellite Networking

Number of
Problems	 Satellite
Solved	 Networking

Time
1998

• Phase 1: Research Proprietary/competing solutions
• Phase 2: Standard based interoperable solutions
The Ohio State University	 Rai Jain

Networking:

Failures vs Successes

q 1980: Broadband Ethernet (vs baseband)

q 1984: ISDN (vs Moderns)

q 1986: MAP/TOP (vs Ethernet)

q 1988: OSI (vs TCP/IP)

q 1991: DQDB

q 1992: XTP (vs TCP)

q 1994: CMIP (vs SNMP)

The Ohio state
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Requirements for Success
q Low Cost
q High Performance
q Killer Applications

(Remote areas, Distance Insensitive;
Multicast)

• Timely completion
• Manageability
q Interoperability
q Coexistence with legacy

(terrestrial) networks

Interoperability:
Example

lop
FEE!c.	

0.,

Ameritech	 AT&T	 PTT

q Phone System: Any phone, any carrier(s), any place

250



F----------- ---.

--- -----------
f------------.
4------------

t ------------♦

Application
Transport
Network
Datalink
Physical

Application
Transport
Network
Datalink
Physical

PTT

q Satellite Network: Any dish, any satellite system, any
place

The Ohio State

Layers of Interoperability

q Physical: Spectrum Management,
Common Air Interface

q Datalink: DAMA/MAC
q Network: Mobility, Handoff
q Transport: Satellite/Terrestrial TCP/ATM
q Application: Paging, Data, Messaging
The Ohio State University Jain
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Standards: A Partial List
q Telecommunication Industries Association (TIA)

o Common Air Interface
o Spectrum Management

q International Telecommunications Union (ITU)
o QoS

q ATM Forum
o Wireless ATM
o Traffic Management

Swe
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Our Goal
q Ensure satellite/terrestrial interoperability in ATM TM

o Ensure that the new ATM Forum
TM 4.0/5.0 specs are "Satellite-friendly"

o There are no parameters or requirement that will
perform badly in a long-delay satellite environment

o Users can use paths going through satellite links
without requiring special equipment

o Develop optimal solutions for satellite networks

This work is sponsored by
NASA Lewis Research Center

State

Issues
q Binary vs Explicit Rate Feedback
q ABR vs UBR: Available bit rate vs Unspecified bit rate
q Improving performance over ABR: VS/VD
q Improving Performance over UBR: Guaranteed Rate
Note: The alternative that is best for satellite networks

may or may not be so for terrestrial networks.

Satellite	 Terrestrial

The Ohio State Univeni	 Rai Jain
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Binary vs Explicit Rate
EFCI

Current Cell Rate JEalicit Rate

o Binary: Explicit forward congestion indication (EFCI)
bit in the cell header set by congested switches.
Based on DECbit scheme.

® Explicit Rate: Sources send one RM cell every n cells.
The switches adjust the explicit rate field down.

Binary vs Explicit
Feedback

30 km East
35 km South	 Go left

The Ohio State
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Why Explicit Rate
Indication?

q Longer-distance, networks
=* Can't afford too many round-trips
=> More information is better

q Rate-based control
=> Queue length = ORate x OTime
=> Time is more critical than with windows

The Ohio State

VSND
q Without Virtual Source/Virtual Destination:

q With VS/VD:
Bottleneck

Satellite	 Workgroup
Link	 Switch

q With VSVD, the buffering is proportional to the
delay-bandwidth of the previous loop
=> Good for satellite networks
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ABR or UBR?

® Intelligent transport or not?

ABR vs UBR

Source----^^ AT --^ Dest.

Router	 Dest.

ABR	 UBR
Queue in the source	 Queue in the network

Network Qs = k RTT	 Network Qs = E Windows
Pushes congestion to edges No backpressure
Good iff end-to-end ABR Good iff TCP.
Fair	 Generally unfair
7 he Ohio State Universi	 Rai Jain
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Ways to Improve
UBR over Satellites

1.Reserve a small fraction of bandwidth for UBR class
in the switches => Guaranteed Rate Service.

j o For WANs, the effect of reserving 10%
bandwidth for UBR is more than that obtained by
EPD, SD, or FBA

o For LANs, guaranteed rate is not so helpful. Drop
policies are more important.

2. Implement "Selective Acknowledgement" in end-
l systems. Disable "Fast retransmit and recovery" in

end-systems.
The Ohio State University	 Raj Jain

Summary

VMO n
• Interoperability is the key to success of a technology
• Layers of interoperability: Air interface to

applications
• ER better for satellites than Binary feedback.
q ABR better than UBR for long-delay paths
q VS/VD can help reduce the impact of satellite delays
q Reserving a small capacity helps UBR
The Ohio State University 	 Rai JE
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Guaranteed Rate Service

q Guaranteed Rate (GR): Reserve a small
fraction of bandwidth for UBR class.

j GR !GFR
Iper-class reservation per-VC reservation
per-class scheduling 1 per-VC accounting/scheduling
No new signaling
1 Can be done now

I Need new signaling
! In TM4+	 I

Ohio State
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Our Publications
All our ATM Forum contributions and

papers are available on-line at
http: //www. cis. ohio-state. edu/  ; 'Lain/

q Specially see "Recent Hot Papers"
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Transitioning NASA

Space Operations to Commercial
Services

NASA/LeRC Satellite Networks Workshop
June 2- 4, 1998

Charlene E. Gilbert
Space Operations Management Office
Techrology Program Manager
NASA Johnson Space Center
charione.e.glibertl@dsc.nasa.gov

Space Operations Management Office
National Aeronautics and Space Administration

Major Considerations in Transitioning NASA to
Commercial Services

• Government use of commercial frequencies vs commercial use of
commercial frequencies for Government use

• Commercial use of Government frequencies
• Government vs commercial

— Access techniques
— Data formats
— Modulation & coding

• Govemment need for multiple sources
— Backup
— Competition

• Government in perceived competition with commercial service
providers if TDRSS is used for commercial purposes

• Coordination required among plans for CSOC, NSCP, and Satellite
Industry

SOMO Commmclal Memati"s Study
LeRC
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International
System

Govemment
System B

Space Operations Management Office
National Aeronautics and Space Administration

Interoperability
Means Different Things Between Different Systems

US Commercial	 US Commercial	 US Government
System A	 System B	 System A

3	 4

Interfaces
1 Satellite / Terrestrial

3	
2 US/ International
3 Multi-mode Commerciat
4 Commercial Utilization
5 International Space

5

Challenges
• Protocols & Standards
• Regulatory & Legal
• Research & Simulation
• Technology & Demos
• Economic & Operational
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IRIDIUM

Satellite Networks Workshop `98
Interoperability Issues
Mark Plecity

June 22, 1998

ea
s
° e
°e

Interoperability Issues	 IRIDIUM

Technology Issues being faced today

• Voice interoperability issues

— PSTN

— Wireless

— Supplementary services

• Data interoperability issues

— Data rates

— Fax

June 22, 1998

263



•
• •

Interoperability Issues 	 IRIDIUM

Fundamental Issues

• Development of common interfaces

— Eliminate proprietary systems

— International acceptance and development

— Incorporates advanced features

— Meets growing data networks
— ATM
— TCP

• Evaluate network as a hybrid

• Flexibility and growth

June 22, 1998

a•
• • •

s •

Interoperability Issues	 IRIDIUM

Example

• Integration of wireless network

— System designed as a single solution domestic

— Four network types converging to two
— DMX
— GSM	 - GSM
—IS-41	 -IS-41
— PDC

— Satellite integration has raised issues

• Interoperability of data networks

— ATM implementation

— Frame relay implementation
June 22, 1998
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Interoperability Issues	 IRIDIUM

Resolution and lessons learned

• Integrate networks at the lower levels and incorporate mediation
devices

— Special development is required

— Performance and functionality is decreased

— Network flexibility is reduced

' Develop defined specifications that support seamless use

— International participation is required

— Backwards compatibility is required

— Market drives applications and usage

June 22, 1998

••• • •
ar

Interoperability Recommendations 	 IRIDIUM

Focus areas

• Standards committees

— U.S. entities need to be proactive

— International development is important

— Design for hybrid networks and flexibility

• Strategic planning of technical effort is crucial

— Enhancement of "basic' areas
— Hardware
— Network Intelligence

— Industry involvement and coalescence

• Address all markets -(DoD and Private)

June 22, 1998
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IRIDIUM

Satellite Networks Workshop `98
Iridium Services
Mark Plecity

June 22, 1998

w ^

Flexible Service Offering	 IRIDIUM

Based on his communications needs, the customer chooses:

• A home network

— Satellite Network

— Wireless Network

• The appropriate subscriber equipment

— Satellite subscriber equipment

— Wireless telephone

— Pager

These choices then determine which components of the
IRIDIUM Service the customer has access to.

June 22, 1998
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Subscriber Equipment Choices 	 IRIDIUM

- Satellite Phone

• Used to access IRIDIUM satellite network

Kyocera	 Motorola

	

Satellite-Only Phone	 IRIDIUM Phone without
Terrestrial Radio Cassettes

June 22, 1998

a••
e•

Equipment Choices (cont' d)	 IRIDIUM

• Dual-Mode Cellular/Satellite Phone

Used to access both IRIDIUM satellite network and cellular
ne orks via a •single phone

Kyocera	 Motorola

	

Cellular Phone * 	IRIDIUM Phone
with	 with

Cassettes"
rP

IRMIUM	 Terrestrial Radio Cassettes
•7 Typo Available at r.-.e

e
^

,^9

'R^ation:	 ••2 Types Available at Cotonercial Activation:
GSM900	 GSM900
CDMA800	 AMPSMAMPSIMMASM
PDC	 DCS1800 available in the fume

AMPS available Oaobc'98
TDMA available in the fuave

June 22, 1998
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Equipment Choices (cont'd) 	 IRIDIUM

• Cellular Phones

• Used to access cellular networks

• TDMA
June 22, 1998
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Interoperability
Sastri Kota

Technical Consultant
Interactive Technology Center

Lockheed Martin Telecommunications
408-543-3140

sastrikota@lmco.com

NASA Lewis Research Center Workshop on Satellite Networks:
Architectures, Applications and Technologies

Cleveland, Ohio
June 2-4, 1998

Lockheed Martin Telecommunications
Cu11y1111N V1W8 L/NJ IK. W MWINI C.1-WNNI

Interoperability for Global Area	 -^
Network Systems

• Goal: To develop standards, protocols and interoperable network
architecture framework for seamless and transparent networking of
emerging satellite network system ► with terrestrial networks

• Satellite industry task force (SITF): SITF was formed in January
1995 to articulate the roles of satellites in the Nil & Gil and to
identify the barriers to achieving those goals

• Primary recommendation was to form a standards and
interoperability subworking group under TIA

^.,s.	 Lockheed Martin Telecommunications
Ugryll^lll GI'JW l.tn:N111rN1 MJIINI (:ulylNWNn1
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Interoperability Classification

• Internetworking of stand alone system with legacy networks
of the ground systems

• Interoperability of emerging multimedia satellite systems
e.g. satellite ATM with non ATM networks

• Interoperabilty of multiple Ka-band systems for multimedia
services with "intelligent gateways"

® Interoperability of commercial systems with military
systems of multiple frequency bands, multiple data rates
and multiple waveforms

wuowa
	 Lockheedl Martin Teleconuttunic•ations

(:u1ry11 od IDIOM I.0dd wdA :NIN1 (ANINMYINNI

Interconnectivity with Legacy Networks

4satellite Modem	 Satellite Moslem

SIU

TIU	 FIU	 EIU ^JMfIU

Rig	 FDDI	 u( MA

SIU

	

TIU	 FIU	 EIU	 MIU

	

Rl^ng	 FDDI	 1`(^MAN

Ethhernet

SIU = Satellite Interface Unit
TIU = Token Ring Interlace Unit (IEEE802.5)
FIU = FDDI Interlace Unit (ANSlx310.5)
EIU = Ethernet interlace Unit (IEEE802.3)
MIU = MAN Interlace Unit (IEEE802.6)

Lockheed Martin Telecommunications
(allrylkJlA IBiUUB I.u(.i111NU(1 IIIiM INI (iU111 W tlIkN1
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Satellite ATM Interconnectivity with
L.ANSs and MANs

Satellite ATM

*Satellite Modem

Mux I DemuxI 	 Mux I Demux)	 I	 I I MTuxx I Demux	 Mux I Demu

Nelwork
—) (TRing ^(fDDI) I	 NIf'	 ( Me k ` p .q)(fDDq 11('MAN

Ethernet	 Eithernet

AIU = ATM Network Interlace Unit

Lockheed Marlin Telecontinunicaliont•
^ •^y^ruyld a gU'Jtl Lax#6uud M.ulm twxl^alxx^

-7+Satellite ATM Interoperabiity Issues
• Encoding Technologies
• Signaling protocols modifications

- Q.2931, UN/ 4.o, Q.931
• Media access protocol design

- Shared1random
- DAMA

• Traffic Management
- CAC,
- Traffic shaping
- Buffering/scheduling
- Frame discard

• Quality of service
- ITU.TT.356 versus ATM forum definition
- Frame based QoS definition

• Voice over ATM over satellite
- VTOA (ATM forum spec)

• TCP/lP over ATM over satellite
- SAC protocol
- ABR, UBR service
- Spoofing

• Video over ATM
- MPEG 2

Lockheed Marlin Telecommunicalions
Cw4ry1NJ111 V1998 ux*lww wmw CultwnYlaul

1

Satellite Modem
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Global Multimedia Satellite Network
(GLOMS)

No-

ubu satemte

/4	 LEO Satellite

Lockheed Murky ^crJcco►►uuta► ic cNru►t^
L:u1.yuNIN	 C-pN rlm.

Network Controlf
Center
and

Management

• Fixed and mobile services
• Internet services
• Legacy services for public calk

networks, ISDN, PSTN
• Broadband services from corps
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HUGHES
COMMUNICATIONS^

GEO Satellite Applications for Ka-Band

Jim Justiss, Director of Systems Engineering
SPACEWAYTm Program

June 3, 1998

S PAC iWAY'

Topics	
HUGHES
COMMUNICATIONS

Satellite system constraints
When to use satellite ?
SPACEWAY TM system concept
Satellite services — video clips
SPACEWAYM business model

SPACiWAY'
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1 System
^yg r	 7 YY ^v	

HUGHES

	

Satellite System Constraints 	 COMMUNICATIONS

1. Modest data rate with respect to terrestrial
alternatives
• E.g., OC-12, OC-48, OC-192 fiber (622 Mbps, 2.4, 9.6 Gbps)
• Constrained by spectrum, power, weight, terminal cost

2. Not uninterruptable
• Due to rain fade, sun outage, etc.
• Highly reliable links (better than 99 .8 %) require backup technology

3. Modest system capacity
• Constrained by RF spectrum

SPACEWAf'

GEO Advantages to Users	 HUGHES
COhIl1tUNICATTONS
^' vw

Cost of service advantage
• Point-to-point from anywhere in the US
• Especially for broadcast / multicast applications

—i.e., 'push' multimedia, data, video

Terminal cost advantage
• Fixed-pointing, stationary beam
• Small power amplifier
• Low-end receive-only terminal

5FACENil'
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HUGHES
COMMUNICATIONSGEO Advantages to Business

Operator

Capacity goes where return is greatest
• Deploy regionally as markets develop

Quick deployment to start business
• Technology leaps not required
• Design, rather than new technology development

One satellite to start operation
• Expand to multiple satellites per orbit slot

Few gateway sites required
Simple network management

• Simple routing — single node
• Broadcast tenninal / interface software updates

0. SPi(IWA1'

No Technology is Best for 	 COMMUNICATIONS

Every Application
No single technology is best for every application

• Not GEO
—Expensive for dedicated, full-time, point-to-point leased line
—Data rates limited by spectrum

• Not LEO
— Expensive for broadcast / multicast
—Data rates limited by spectrum

• Not fiber
— Expensive for broadcast / multicast
— Expensive for sites in low-density regions

Choose technology appropriate for application

SPMWAY'
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When To Use Satellite HUGHES
COMMUNICATIONS
l .M^

Prefer satellite vs. terrestrial point-to-point when
• Cost of terrestrial link is high
• Quick deployment needed
• Application has multicast / broadcast nature
• Occasional or intermittent use, different
destinations

0
5 PACENlr•
...--... _._

SPACEWAYTM System Concept 	 HUGHES
COMWNICATIONS

Terminals
• Low cost, easy to install USAT • Collocated satellites

00%00terminals
• 66 cm, 384 kbps uplink

* 

Spot beams enable small, low-
• 1.2 m, 1.5 Mbps uplink cost terminals
•2.5 m, 6 Mbps uplink

- Spot beams give high capacity-1001 bps downlink

• Standard interfaces via frequency reuse

• Bursty and constant bit rate
applications

q De's	43

• On-board routing
between beams

R
Footpint

v s^.x

—0 SPi(EW^1'
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Satellite Experiment Configuration HUGHESCOMMUNICATIONS
^Itlr•

ACTS Tl 
	
ACTS

	

/	 uplink teruunil
teP®in

video
source

Hughes Research Labs 	 NASA
Malibu, CA	 Lewis Research Center

	

TI link	 Internet	 Cleveland, OH

Simultaneous feed on satellite and terrestrial paths
Unknown nodes along terrestrial path

• Lower received rate due to packet losses
• Larger delay due to routinglpath effects

SPACIWA ►'

Satellite Services —Video Clips 
HUGHES
COMMUNICATIONS

Compare satellite path vs terrestrial Internet:

1. TCP/IP on ATM via ACTS —1.5 Mbps video
• Compare satellite vsxerrestrial (observe packet losses)

2. Videoconference via ACTS —1.5 Mbps
• VIC / VAT (MBONE codes)

3. Internet web browsing via ACTS —1.5 Mbps
• HTTP 1.1 via ACTS vs terrestrial HTTP 1.0 at 50 ms RTT
• HTTP 1.1 via ACTS vs terrestrial HTTP 1.0 at 100 ms RTT
• HTTP 1.1 via ACTS vs terrestrial HTTP 1.0 with 4 connections at 100 ms RTT

4. TCP/IP on DirecPC with cache layer
• Cache hit vs retrieval with satellite-optimised protocol at 400 kbps

5. MBONE via DirecPC vs terrestrial MBONE
• DirecPC — 128 kbps, 0 % errors
• Terrestrial < 100 kbps, 30 % errors

6. MPEG video on IP multicast via DirecPC Enterprise Edition

S?AIIWAT'AD
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SPACEWAY Tm Business Model HUGHESCOMMUNICATIONS
ONNOMW >w

SPACEWAY TMI delivers personal broadband service
• Ubiquitous access, quick installation
• Low-cost for part-time service
• 'Push' distribution of multimedia, cache refresh
• Compressed video delivery capability - in real time

Service Goals
• Applications flexibility

- Support existing and future applications
• Seamless interoperability

— Application doesn't know or care about satellite path
• Complement other technologies - e.g., 'push' for point-to-point fiber

— Bulk of traffic will be terrestrial

Strateay
• Standards-based, using standard protocol interfaces

— For example, IP, ATM, MPEG, etc.
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Overview of ATM Performance and QoS
Requirements for Satellite Systems

Presented by:

Dr. Enrique G. Cuevas
Technology Consultant

Satellite Communications
AT&T - Laboratories

Tel. (732)-949-1130
Fax (732) -949-3468
email: cuevas@atLcom

AME.G. C-	 Go5_NASA1.pi4

OUTLINE

1-Performance Abjectives for ATM satellite connections
2-Impact of satellite characteristics on ATM performance
3-QoS requirements of ATM services and applications
4-Techniques to enhance ATM performance over satellite
5-ATM Availability considerations
6-Pending issues and future work.

E.G. Cum-	 Oo5 NASA2ppt
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ATioT

Organizations Involved in the Development of
ATM Performance Standards for Satellites

• ATM Forum: Traffic Management Specification (TM 4.0)
• ITU Telecommunications Sector: Study Group 13

- Rec. 1.356 "B-ISDN ATM Layer Cell Transfer Performance" (Q14/13)
Draft Rec. 1.357 "B-ISDN Semi-Permanent Connection Availability"
(1015/13)

• ITU Radiocommunications Sector: Working Party- 4B
- Draft Rec. S.atm "Performance for B-ISDN ATM via Satellite"
- Draft Rec. S.atm-av "Availability Objectives for ATM via Satellite"

• United States Standards Groups:
- T1A1.3 (Network Performance Aspects)
- US WP-4B (Satellite Performance, Availability, Network aspects)
- TR34.1 Communications and Interoperability Section of Satellite

Communications Division of TIA.
s^
E.G. Cu

GoS_HA8111ppt

PUS

Reference Model for an ATM Satellite Path
Satellite
system

	

r	 r

	

. i	 rrA[M
a

	

emitllt ` ' i	 ^;	 r r^'Iistlliinitl

	

^
i	

^^nr^A'rat

	

r	 r

International Inter-operator section (1112)

NOTES-
-The satellite system may wnsist of GSO or Non-GSO satellites and may include
Inter-Satellite links and on-board processing and/or switching.

-The earth station includes: RFIIF equipment, modulator/demodulator, error
correction, buffer, multiplex equipment and appropriate terrestrial network
interfaces. It may also include any satellite-specific ATM processing equipment.

srm•e
EG. Cw	 W_NASM.W

284



QAW

ITU-T Rec. 1.356
QoS Glass Definitions and

Network Performance Objectives

Default Objectives:	 no default no default no default no default 4.10' 1/day 10,

Oo$ Classes:

400 cosec 3 msee 3'10' none default default default

defaultU u 104 none default default

U u u 10' default default default

U u u u u u u

All values are provisional and they need not be mat by networks until they are revised (up or down) based on
real operational experience.

Moss
EG. Cu.wa. Co5_nA8A5.ppt
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Performance Impacts of Satellite Systems

Satellite Systems present special challenges:

• Occasional burst errors could adversely affect the facility
performance and service quality.

*Transmission delay (propagation and processing) could,
under some circumstances, impact the following:
— QOS of videoconference services
— Efficiency of data protocols
— Traffic Management and congestion control algorithms

a
E.G. C- q°5_NMA7.ppt

-- ATILT

Translation between ATM Layer and Physical
Layer Performance Parameters

• Mathematical expressions for the
probability of CLR and CER due to^
burst errors has been derived.

• Computer simulations and
laboratory test results were	 '°	 , wt „	 ,•
performed to find relationship 	 1°'
between BER and CLR and CER. +°{ 	 ,

	

,°	 +°	 +0

• SECBR can be computed from	 ,°'=	 W`"""'"°

CER information.
+°

• CMR is difficult to simulate or
measure. However, a
mathematical expression that 	 ,° a
relates BER to CMR is feasible.

u 10;

SrAm	
10,7	

J
E.G. Cum•	 WEmrRab([iER) 	

_	 ._	
QQ4_ NA5M.ppt
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The Impact of CTD and CDV

• The overall CTD results from various sources:
—Propagation delay
—Coding and decoding
—ATM node processing (queuing, switching, routing, etc.)

• CDV depends on several aspects such as:
—Traffic load structure (number of VPls, VCls)
—Switch buffering capacity and mechanism
—The number of ATM nodes
—The amount of internal switch operations.

• ITU-R WP-413 needs contributions that describe the behavior of CTD and
CDV on typical satellite networks.

s^
E.G. C­	 OoS_ NASAO.ppt
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Equipment Set-up for QoS Measurements of
ATM services and applications

DS3 IDR
Satellite

EMNH	
Comm niquE	 Channel it

^^ FORE E3

	

OC'3	 ASY-200
ATM

Switch
El GDC

PBX	 APEX
DS3

Submarine Fiber Cable

Globe View 2000

LG. C
E.G. taMn.

Go5_NA81111.ppt

WAW

QoS Requirements of Some ATM Applications
CLR Measurements over an IDR Satellite Link

3sue ^ ^.z

iL M
J	

t E^liti

V

	

o ' 'i a-0r=	
1.356

..,=`

Objective
>a

0

	

`:	 I .̂. ETts 	" <EMMI	 t:omarunlga^	 +lx ici3) ^toicti (P,CY

SOM
E.G. Cu

Go5_NASAl2{pt
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Techniques to Enhance the Performance
of ATM over Satellites

• Forward Error Correction (e.g. Reed-Solomon)
•Selective Interleaving (bit or byte interleaving)
*Adaptive Power control
• Site diversity
• Other

EG. Cp	
OoS—NASAUW

N&T

Availability Considerations for ATM over Satellite

A Total =A Propagation x A Earth Station x A Spacecraft X A Congestion

1E-04
V 1E-05

J 1E46 -	 ........ Class-1 CER Objective
t) 1E-07 _	 ^^ ,- _ _ _ _ _ _ _ _ _ -Class-1 CLR Objective

W 1E-W
m 1E•09 — ._ ^
o tE-10

_
BER

W tE-11
— _ _

y	 CLR
rAva#abNftty Threshold	 CERC 1E-12 ......

W
1E-13

0.01%	 0.10% 1.00%	 10.00%	 100.00°

Percent of Time (Any month)

&7M	 The availability due to propagation (AP) is 99.960/6 of the year.
EG. Cw	 GDS—NABAU.ppt
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Pending Issues

Rec. S .atm (ATM Performance)
• Need to specify performance measurement criteria.
• Describe available performance enhancement techniques.
• Describe impact on CTD and CDV of satellite specific ATM
equipment used at the earth stations.

Rec. S.atm av (ATM Availability)
*Evaluate the impact on performance from short interruptions
due to equipment failures (including ATM-satellite equipment).

• Evaluate the Mean Time Between Outages (MTBO)
characteristics of satellite links.

*Seek (from ITU-T) a better definition of "availability due to
congestion" parameter.

E.G. Cum.	 ^ RMA1S.W

CONCLUSIONS

* ITU-R WP4B plans to complete by October '98 the text of new
Recommendations S.atm and S.atm ay.

*These recommendations may be updated in the future as
more information about application requirements becomes
available to WP-4B.

*Some Geo-stationary transparent satellite systems are now
carrying ATM traffic. Designers, operators, and users of ATM
satellite services will benefit from new ITU-R standards.

E.G. Cu .	 OwS_NASA78.ppt

290



Future Work

*Study the impact of satellite systems with OBP and ISL on all
ATM performance parameters.

•Study the availability characteristics of Ka-Band satellites
that are intended to cant' ATM traffic.

*Develop a recommendation on Traffic Management for ATM
networks that include satellite connections.

• Update S.atm and S.atm_av as new ATM satellite
technologies, applications and services emerge.

E.G. Cum	 GOSJNSA17.W
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ATM Over Terrestrial /Satellite Network -
CTD &CDV QoS Laboratory

Measurements*

S. Nawrot, T. Saadawi, E. Cuevas

° 71ds work was supported in put by grant from the U.S Army Research Lbtmtmry under cooperative agreement DAAI.OI-9f 2.ODM (A7RM

05/98 - Simon Nawrot

OAF&	 10^1	 CM
ATM QoS - Our Research

• Scope:
- Transparent Satellites (no OBP or ISL considered)

• Goals:
- Quantify and Characterize CTD, and CDV for CBR Traffic
- Compare Published Simulation and Field Results, for the CBR

Traffic Case, with Our Empirical Results
- Modeling" CTD and CDV

• Why:
- Latency and Jitter as well as CLR and BER are the Major

Impairments Affecting Guaranteed Performance of All ATM
Networks

- Relatively Few Studies Examined CTD and CDV Over Hybrid
Terrestrial/Satellite Networks

- in piwmss

05/98 - Simon Nawrot
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ATM Service Categories - Overview

05/98 - Simon Nawrot

E—AN^
6AW	 am

WWRA

Relevant ATM Concepts - Overview

• Quality of Service (QoS) Parameters

— Cell Transfer Delay (CTD) the end-to-end delay a cell experiences
traveling a computer network from source to destination.

CTD,r= tAI- tD!

— Cell Delay Variation (CDV) or Jitter
the variance of CTD, or the variation in the end-to-end delay of two
successive cells of the same stream, caused by queuing (buffering)
and switching, etc.

.1/ = ('tA/ - tAl--d - ODI - tDl-I

service	 Applications	 Network	 Cell Delay and	 Burst
Category	 (Examples)	 Priority	 Delay Variation	 Coll Loss	 Tolerance

VW. M•0. ^•'F•sl.CBR	 ^sM+a^	 1	 Low	 LOW	 None
ac

VBR-RT	 carp ..^dveb.	 2	 Low	 Medium	 Some
wlln awK.
aggwbn, as
ob AyyNCatlan.

VBR-NRT	 tiatiwraa
r^	 3	 High	 Medium	 Some201-9 a wras

o.0	 .
ABR	 '•Nww ^^a'r.wa

.`„^	 4	 High	 Low	 High
mMrM arwwe

aG

UBR	 'Oi1	 5	 High	 High High

05/98 - Simon Nawrot
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Relevant ATM Concepts - Overview

CBR Traffic Model

T	 T	 T	 T

T)c

t

Kx:I	 —I
I'l	Lt— 

Lmn	
t

• CTA: ................. r.UT,.W.Ddy :1—: .................... f.0 A.W.1 T—
•aT­V .............. CcUinw-arrival'n— • GDV ................. r u Dday Vadatim (J%W=)

— :....................Cell  lkp	 Time	 lar— 71

05/98 - Simon Nawrot
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Testbed

Hvbrid Network - Laboratory Setuo

05/98 - Simon Nawrot

QPA

Testbed

Hybrid Network - Laboratory Setup "ATM Laver

Aar«. AMW
ATM	 snsdw

x	 Tat So ►^	
v

ATM Switehn &
Satellite link

mswzz m&	
M-	

MOObl

T^	 O^tlri BOVCY

pW:
GFi

lgle Vflr (FA-)

►G: Fo-p-bdTMk pnik VCI

BG: B,&VmW Tdic (,Ukk k VCk)

05/98 - Simon Nawrot
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Testbed

• Parameters

f T̂ '^	 CBR Case, PVC Connection
oc)a<	 Benno, vcl
OE•)	 wk Cob

	

r.^.m.	 vr^^i•
t Wig FoW mmW/4EG)miWi p4)nY rmW emr

iNIbr CBRAI)Iteaml
3 FG- iYkVCI
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' keamm 0.1000 VC4

MG •BmlymiW	 1	 2	 p
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05/98 - Simon Nawrot
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O^	 0

®
—^-Testbed

• CBR Traffic
Calibration

e.g.,:

,a

LL

05198 - Simon Nawrot

Testbed

• CBR Traffic
Examples:

FG=4 Mbps
(3% of OC-3
or 10% of
DS-3)

►O GT:11M., ^i^ Vp.. M%M TM {iM1 Optlq

m

iao

m
tm

>o
0
zaxsctasaagRng^aagBdQp

-aq^l

roOr.Zfbdit "NO Vft ~IM W.C. ,

m

ims
^ o

s

0
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Results:

•	 Impact of the Channel Unit on CTD & CDV
m - Mean, a - Standard Deviation

05/98 - Simon Nawrot

CTD -Latencv

• m-CTD f (FG bandwidth), 	 m-CIT f (FG bandwidth),
• 6-CTD f (FG bandwidth),

h	 F

q n^^ ` s-^. a fn

• m-CTD + RS Codec = + 0.2 ms*

• a-CTD #  f (RS Codec)

*at DS-3 rate

CDV -Jitter (6-CIT)

•	 =
• a-CIT 	 f (1/FG bandwidth),

• m-CTT f (RS Codec)
• is-CIT ^ f (RS Codec)

OAW

Results:

• Non-Homogenous Path (DS-3 & OC-3)

"NH-Path" _ (non-homogenous) link comprised of different transmission rates, e.g., DS -3 & OC-3

	CTD -Latencv
	

CDV - (a-CM Jitter

	• m-CTD = f (NH-Path),	 • m-CIT = f (NH-Path),

	

• is-CTD = f (NH-Path)
	

• 6-CIT = f (NH-Path

05/98 -Simon Nawrot
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Results: Non-Homogenous Path (DS-3 & OC -3)
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Results: Non-Homogenous Path (DS-3 & OC-3)
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Summary and Conclusion

• CTD - The Channel Unit contribution is negligible compared to the free -space propagation delay; buffer size
is the dominant factor (50 usec < C7Dhd dee 3Bgfjer12 < 16 ms' vs. —270 ms for GEO)

• CTD St. Dev. - The Channel Unit contribution is only a fraction of that introduced by ATM Switches (e.g.,
0.7 usec vs. 3 usec)

Jitter

• CDV - The Channel Unit does NOT contribute to Jitter. The "Jitter-in" a the `Jitter-out" for every modem
configuration and feature used.

• CDV St. Dev. - The Channel Unit does NOT change the Jitter "spread" either.

Asymmetry

• CDV & CTD -impacted by ATM cells transferred from one type of framing structure to another (e.g., OC-3
to DS-3 or vice versa). The impact is NOT "symmetrical' as it depends on the mapping direction.

Su¢¢estion•
• The material presented here may be useful for the development of ATM Standards.

• Similar Studies should be conducted for every satellite -specific ATM equipment intended for use at the
satellite earth stations.

• Further work is required to evaluate the impact on CTD and CDV of Satellites with ATM-OBP and ISL
capabilities (e.g., L1 Os & MEOs).

s A—wirmodema with 32mamaimum buffo depth.

05/98 - Simon Nawrot

Number of ATM Nodes and Traffic Load vs. Jitter and Delay
- Terrestrial ATM Network Analysis
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Satellite/Terrestrial Networks:

End-to-End Communication
Interoperability

Quality-Of-Service Experiments

William D. Ivancic
Phone 216-433-3494
FAX 216-433-8705
Email wivancic®lerc.nasa.gov

i

Quality of Service	 MI

2
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Goals

• Determine Quality-of-Service Parameters that
Satellites must provide to remain competitive in
the Global Information Infrastructure.

• Evaluate the effect of transmission link quality
and characteristics on overall QoS for various
applications and protocols.

sa	 3	 elna

I*	 Strategy	 M^
• Evaluate ATM over noisy link.

— ATM was designed for "near" error free channels such
as fiber. We need to understand the effect that various
error characteristics have on the ATM QoS.

• Evaluate Digital Video over Satellites
— Digital Video (particularly compressed video such as

MPEG41) is expected to require stringent QoS.

• Evaluate effect of layer protocols
— Errors that occur in the lower layer of the protocol

stacks tend to get magnified as one propagate through
the upper layers.

4	 slue
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ATM Performance Characteristics

• CER Cell Error Ratio
— One or more errors in the payload

• CLR Cell Loss Ratio
— Generally 2 or more errors in the header

• SECBR Severely Errored Cell Block Ratio

• CN1R Cell Misinsertion Rate

• CTD Cell Transfer Delay

• CDV Cell Delay Variation

Payload

40 bits	 384 bits

	

Vw1k"P"	 5	 Bye

IW
MPEG-2 Transport Stream Mapping to AAL-5

188 Bytes	 188 Bytes	 8 Bytes

Transport Stream 1 	 Transport Stream 1	 Trailer

	

s	 48

s	 48	
j	 N/A	 Length	 CRC-32

12 Bytes 2 ^ytes	 ' 4 Bytes
s	 a8	 i	 j

s	 48	 1

I	 ^	 j

s	 48

i
s	 a8	 j

s	 48

	

VbMnP Oe	 5	 llDe
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V

iEi^

Tektronix MST 100
RS422 MPEG-2 Analyzer

MPEG-2 ENCODER MPEG-2 DECODERATM / MUX MONITOR

GC3c
OR	 VCWPI 000

P-Ds3MC5	 0/101	 SCRAMBLm ATM-TO-MPEG-2 VIDEO
SCRAMBL®	 1/237 VCLIM DMUX MPEG-2DECODER	 MONITOR.

0/10]

FORE ATM DS3
SWITCH HCS

MPEG-2 DECODER M^TORVCYM
W57

VCINR	 VCUVPI
01107	 0/101 70 70

VCUM MHz
HP-3708A

MHz	 DS3
DS3 0/101 QPSK	 IF QPSK	 HE

PLCP DS3 MODULATOR NOISE DEMODULATOR
HCS TEST SET

ADTECH

AX4000
HCS HP-BSTS ATMATM TEST EQ Hcs	 kDTECH SX/l4

MOD	 I^—	 CHANNEL SIM	
F

Compressed Video Tests Over ATM

• MPEG-2 Transport Stream With Errors
— Baseline without ATM

• MPEG-2 Over ATM With Binomial Errors
— Digital Errors

• MPEG-2 Over ATM Over Emulated Satellite
— Analog Errors

• Dual Decoder Test
— Variations due to decoder implementation

• MPEG-2 over ATM Channel Characteristics
— QoS dependence independently on CER and CLR

vv.k"P Be	 a	 ese
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Observations and Discussion

• MPEG-2 requires a link quality of 10- 10 BER or better
regardless of underlying protocol.

• Block errors are far easier to tolerate than decoder
resynchronization

• Higher encoding rates require slightly higher quality
links

• Further study is necessary in order to determine the
relationship between the video quality and the ATM QoS
parameters - in particular between the visible errors per
second and the CLR and CER as well as the affect
different CER and CLR distributions have on the video

9
	

a•e

10	 Status Digital Video over Satellites	 M1
• Work was completed in September 1997 and

reported to ITU-R Working Party 4B and T 1 A 1.3
— Paper is available via anonymous FTP

• Site: ftp.tl.org
• Directory: /pub/tlal/tlal.3
• T1BBS FILE: 7a130840.doc

N
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Proposal

• ITU-T Rec. I.356 Class I, stringent class,
objectives for CLR, CER should be at least 1.0E-8
and 1.0E-7 respectively in order to acceptably
carry such services as MPEG-2 compressed video
and may require even better performance
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Test Results
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NOTES

BitBit Error Ratio measured by the satellite modem.

CLR is the Uncorrected or Discarded Cell Ration (DCR) i.e. all cells with two or more errors in the header.
Notice that at low BERs there is not enough statistical confidence on the CLR measurement.

SATELLITE LINK CONFIGURATIONS
--------------------	 ----	 ------------------•

ADTECH

EF-DATA	 =14 Data

SDM-9000	 CMnnel
Simulator

IF 70 MHz	
(Delay ONLY)

HP 3708A
Nobe Test

set

--------------------- -----i	 ---------------------------

ADTECH	 HP E4219
SXH4 Data	 Network	 ;—Y

Channel	 Mm" mtent
Sknuletor	 Emulator

i

t----------------------------------------------^

C

El	 ATA

SDM-9000

wennrop as 14 am
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MPEG-2 Over ATM With Binomial Errors

MP ATM '
ENCODER 

Ds,	 CHANNEL SIM D53 MPEG-2 DECODERER	 MONITOR

ATM

• Purpose
— Determine dependance on CLR and CER
— Determine dependence on encode rate

• Conclusions
— BER of 1.0E-8 or higher is definitely unacceptable
— Higher encode rates are slightly less susceptible to errors

vwnirwP D6	 15	 E98

MPEG-2 over ATM Channel Characteristics

DECODER DHLjNITOR

ATM	 00

MFEG-2 ENCODER D53 HP BSTS ATM
DS3

 FORE SYSTEMS
ATM / MUX	 IMPAMMENT	 ATM SWITCH

MODULE

D5J

• PUrpOSe	
S D CODER	 MONITOR

— Determine video
degradation relative to CLR only and CER only

• Conclusion
— CLR has far more affect on the video than CER

y^pp y9	 16	 d98
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MPEG-2 Over ATM Over Emulated Satellit

ATM

WEG-2 ENCODER DS3' EFData SDM 9000 
n53	

ATM/DMUX	 VIDEO
ATM / MUX	 QPSK MODEM	 MPEG-2/DECODER	 MONfIOR

7o MHz
ff

FiP-3708A
NOISE

TEST SET

• Purpose
— Evaluate video quality when errors are inserted at the

RF link (different CLR and CER distribution)

• Conclusion
— Unacceptable link quality at BER 1 AE-8, CLR 1 AE-7

and CER 1.0E-6

rwaa

	

17	 dae

MPEG-2 Transport Stream With Errors

MPEG-2 ENCODER RS42s CDHANNHEL SII^ MPEG-2 DECODER	 MONITOR

• Purpose
— Baseline MPEG-2 Video
— Determine dependence on encode rate (compression)

• Conclusions:
— BER of 1.0E-8 or higher is definitely unacceptable
— Higher encode rates are slightly less susceptible to errors

renonop oe	 18	 doe
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Dual Decoder Test

	

NUKO VFIWOD	 VIDEO

	

DECODER	 MONITOR

ATM	 T 
00

MPEG-2 ENCODER D5̂  EFData SDM 9000 DS3 :ATMRE SYSTEMS
ATM / MUX	 QPSK MODEM 	 SWITCH

70 Ngh	 DS3
IF

HP-3708A	 STELLAR 1000	 VIDEO
NOISE	 DECODER	 MONITOR

TEST SET

• Purpose
— Determine if different decoder react similarly to errors

• Conclusion
— The two decoders tested degrade at the same point

MbMahoO YE	 19	 ygp
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Efficient and Flexible Link
Enhancement Techniques for

Wireless ATM

Ycing-Lung Ho

yho@yurie.com
Yurie Systems Inc.

Ian F. Akyildiz & Inwhee Joe

ian@ee.gatech.edu , inwhee@ee.gatech.edu
Broadband & Wireless Networking Laboratory,
School of Electrical & Computer Engineering,

Georgia Tech

Issues

• Bandwidth efficiency

• Performence
- Delay, Burst Error, Random Error

• Flexibility
- Configuration
- Range of application
- Adaptability to link condition
- Future application

• Cost

• Manageability
- Integration with switch or workstation
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Summary 

Per 
and 

VC FEC maximizes 
flexibility. 

efficiency, performence, 

8 Yurie FEC illustrates feasibility of per VC FEC 

- Separate handling of VBR versus CBR (no FEC 
on CBR presently) traffic. 

- Independent per VC FEC rate adaption depending 
on link condition. 

- TCPIIP operation down to loA-3 BER 

- Trades some performence for low cost implementation utilizing 
exiting switch functions where feasible. 

- Integrated in the LDRPOO multi-service switch platform. 

Per VC FEC Enhances Efficiency 
Expect 50% overhead to protect ATM header above 
loA-5 BER with reasonable block error tolerance. 

Comparison of Likely Header FEC Schemes 
(3 Reed Solomon; 1 standard ATM HEC) 

I -----' m 

lo6 
CLR 

10" 

lo-l2 
1 o* lo-= 1 o4 1u3 10" 

BER 

* Same protection too expensive for some applications 
- Voice, Video, Internet surfing 



One Size Doesn't Fit All Below T1

• Random error performence cc overhead AP

• Burst error performence a overhead AP * delay
- 6.6 ms per cell delay at 64 kbit/sec

• FEC scheme optimized for high speed links may
exceed delay requirement at low speed for some
ATM applications.

Per VC FEC Maximizes Flexbility
• Application specific FEC

- Tie FEC to compression technique and loss tolerance
- Postpone obsolescence

• Separate header versus payload FEC increases
implementation flexibility

Payload 1
FEC

	

Payload 2	 Header
FEC	 FEC	

Modem

ATM

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
ATM switch

Header FEC
Modem

	

ATM	 FEC Server

Standard UO
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Yurie FEC's Multi-Layered Structure
® Reduces cost and maximizes flexibility by adapting

a layered structure and utilizing switch resources
- Switch architecture and existing ATM standards part of design

considerations

Per VC Payload FEC
-------------------------

osi	 Header Address Protection
Layer 2	 (Adress FEC or Redundant Addressing)

Cell Scrambling

Cell Delineation
OSI	 (ATM Standard or LANET)

Layer 1
(physical)	 - - - - - - - -

ConvolutionalNiterbi CODEC
(Recommend 7/8 or 3/4 rate in modem)

Payload FEC for VBR traffic
a) Per VC, accumulate cells for form group

(i) 1/2 rate: 1 cell / group
(ii) 3/4 rate: 3 cells / group
(iii) 7/8 rate: 7 cells / group

b) Extract payload and segment into 6 blocks.

c) Add one piggyback byte per block for signaling (adaption) and
PTI/CLP.

d) Reed-Solomon encode each block (3 byte correcting).

(1) 1/2 rate: 9 bytes -> 15 bytes.
(ii) 3/4 rate: 25 bytes -> 31 bytes.
(iii) 7/8 rate: 57 bytes -> 63 bytes.

e) Interleave (6 way -> 18 byte burst tolerance) and reassemble
payload for output.

f) Load delineation byte to separate group.
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Address FEC
• 4 configuration based on shortened 1 nibble correcting

Reed-Solomon(15,11) or 2 nibble correcting
Reed-Solomon(15,13) coding over address field.
(a) Hi-Noise UNI (2 nibble correcting, 255 VC)

+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
GFC	 Parity	 VCI	 PTI	 HEC

over 1 byte VCI	 CLP
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

(b) Hi-Noise NNI (2 nibble correcting, 4K VC)
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
VPI	 Parity over 3	 VCI	 PTI	 HEC

3 nibble VPI, VCI	 CLP
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

(c) Lo-Noise UNI (1 nibble correcting, 64K VC)
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
GFC VPI	 Parity	 VCI	 PTI	 HEC

CLP
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

(d) Lo-Noise NNI (1 nibble correcting 1 Meg VC)
+-----+-----+-----+-----i-----+-----------+-----+-----------+

VPI	 Parity	 VCI	 : PTI	 HEC
CLP

+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

Low Cost Redundant Addressing Option
• Compatible with Header FEC
• No special hardware needed for switch implementation
• For Hi-Noise UNI, costs 385 redundant address to

tolerate 2 random bit or 4 bit burst errors.
Standard Address Translantion

Redundant Ai
Ingress cell with
errored VPI, VCI

Output VP-1, vci 
Egress cell

vci
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Cell Scrambling
o 3 byte swaps followed by 3 nibble swaps.

* Increases header burst error tolerance
- 121 bits for Hi-Noise UNI and NNI, 57 bits for Lo-Noise UNI and NNI.

(1) Byte
+-------------------------------------+

(2) Byte
------------------------------------------------

(3) Byte
+--------------------------------------------------------------+

v v v	 v	 v	 v

/ 0 / 1 / 2 / 3 / 4 [ 5 / -- /12	 -- /20	 -- /28	 -- /36 ( -- /44	 - /52 ]
--- --- --- --- --- --- 	 ----	 ----	 ----	 °---	 ----	 ----

A	 A	 A	 A	 A	 A

I
I

+--------------------------+
(4) LSN

+--------------------------+
(5) LSN

+------------------------+
(6) LSN

Optional LANET Framing
• Extends cell delineation capability down to 10"-2 BER.
• Firmware implementable.
• Speed insensitive.

+-+-+-+-+-+-+-+--------+--------+--------+--------+--------+
IFISIDIDITIBIBI Cell 1 1 Cell 2 1 Cell 3 1 Cell 4 1 Cell 5
+-+-+-+-+-+-+-+--°-----+--------+-------°+--------+--------+

I 3 1	 11	 t	 1	 1	 1
+-+--------+--------+--------+--------+-°------+
I S I	 I	 I	 I	 I	 I
+-+--°-----+--------+-°--°---+--------+--------+
I s l	 I	 I	 I	 1	 I
+-+-------°+--------+-------°+--------+--------+
I S I	 I	 I	 I	 I	 I

°---+--------+----°---+---°----+--------+
I s l	 I	 I	 I	 I	 I
+-+--------+-°------+--------+--------+--------+
I S I	 I	 I	 I	 I	 I
+-+--------+--°-----+°-------+--------+-°------+
I S 1	 I	 I	 I	 I	 I
+-+--------+°-------+--------+--------+--------+
I S I	 I	 I	 I	 I Cell 451
+-+----°- °+°-------+--------+--°- 	 +-°-----°+

F: One byte Frame Header - 0x96
8: One byte BiP-8 computed over the previous frame except F
DD: Two bytes Data Communications Channel (DCC)
T: One byte Transport Layer Control Channel
S: One byte Sub-Frame Header - OxES
BB: Byte Stuffing Control (default OxF628)
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Recommended Implementation

+----------------+
Sit Stream --+-----> 1 Cell Extractor I -----> Cells

+----------------+

ILOS 
A 

Frame/Sub-Frame Alignment
V	 I+----------------+

+-->I	 Framer
+----------------+

A

+------------------------------------+
+-->I 5 Cell History Buffer

+------------------------------------+

• Declare LOS on 2 consecutive frame or sub-frame
header plus 5 HEC errors.

LANET Cell Delineation State Machine
(LOS)

V

	

+-------------+	 +------------+	 +-------------+

	

Pre Frame I	 I Bit by bit I	 jPre Sub-Frame)

	

Sync	 I 0x96 I hunt for	 I OxE8	 I	 Sync
(set bit< ------- I frame or	 I------->1 (set bit

	

alignment) I	 ( sub-frame	 ( alignment)
	+-------------+	 I headers	 +--------------

+------------+	 I

	

V	 A	 V

	

+-------------+	 I	 +-------------•-
Check 5 HEC	 3 bad HEC	 1 3 bad HEC	 Check 5 HEC
in History (---------------x-------------- in History
Buffer
	 Buffer

	

+-------------+
	

+-------------+
3 good HEC
	

3 good HEC

	

V	 V

	

+-------------+
	 +-------------+

Frame Sync
	 Sub-Frame

Sync

	

+-------------+	 +-------------+

• Easy to find OxE8 or 0x96 provides initial cell
alignment (no need for bit by bit HEC check)
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Source
ir14-DOPSK
Modulator ,+)--.- r(t)

Derived LANET Performence
• 2 orders of magnitude improvement in mean time

between noise induced LOS

• Can acquire sync quickly @ BER 10^-2

Mean time between induced LOS
1018	 @128kbit/s

1017

1015

Cells 1013

1011

109

107

105

103
0.0001

Simulation Model

ATM	 ATM

	

Yurie FEC	 Yurie FEC
Wireless Channel

	

Physical	 Physical

Wireless Channel Model	 Gaussian

100

Cells
10

9 hrs

6 min.	 1

3 sec.	
0.0001

0.001	 0.01

BER

Sync Acquisition Time

0.001	 0.01
BER

r(t)--o- IDemodu Differential
Detector

Phase	 SinkDecision

• Can model mobile station via Doppler shift
in each path
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Simulation Result

Stationary Wirless Terminal

0.001	 0.01	 0.1
Channel BER

• Without Doppler effect, result. close to pure
random BER performence derived and tested

Conclusion

• Per VC FEC maximizes efficiency, performence,
flexibility and can be implemented cost effectively

Future Work

• Extend simulation to include mobile terminals and
other wireless channels.

0.1

0.01

BER
After 0.001
FEC

0.0001

10-5

10-6
0.0001
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Session 5
Multicasting
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StarBurst Communications
Unsurpassed in Information Delivery ---

fast, efficient, and guaranteed

Reliable Multicasting over
Satellite: Issues & Applications
Satellite Networks:Architectures, Applications, &

Technologies Workshop, June 2-4, 1998
Ken Miller, CTO

www.starburstcom.com

Satellite is an Ideal Transport for
Multicast Applications

• Landline networks can have complex trees
NASA Shuttle Video Distribution Tree

aim

k
_olr

__ }Ml4

_gym

f

®^	 !	
444000000bbbbbb

StarBurst
Sat. Workshop 2	 COMMUNICATIONS
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Multicast Applications Come in
Many Flavors

• Thus, multicast does NOT mean multimedia
Real-time Non-real-time

Multimedia

Data-on

Sat. Workshop 3 COMMUNICATIONS

Reliable Multicast Requirements

App. Type Latency Req. Reliability Scalability

Collaborative Low Semi/strict <100

Message Str. Low /medium Semi/strict to millions

Bulk Data Not real time Strict to millions

Sat. Workshop 4
StarBurst

COMMUNICATIONS

• Replication:
• Video server

 Video b web servers
Video• Video coMereneing

. Kiosks
• Internet audio

. Content delivery
• Multimedia Events

• Intranet d Internet

• Data delivery
• Stock quotes

. Server-server
feeds

. Server-desktop
• Whits boarding

. DB replication
• Interactive gaming

. SW distribution
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Specialized Protocols Needed to
Handle Multicast Applications

• TCP is unicast only; thus, multicast operates
over UDP

• UDP provides only minimal transport layer
services
- Error detection

- UDP port multiplexing

• Solution: specialized transports needed to
be added at application layer to support
multicast application	 StuBurst

Sat. Workshop 5	 COMMUNICATIONS

Reliable Multicast Protocols are
not yet Standardized

• Being studied by Reliable Multicast
Research Group in IRTF
- IRTF recommends technique(s) for a working

group in IETF to use in standards

• Problems considered hard -- especially,
methods to provide congestion control and
"fairness" to TCP

• Scaling and coping with different network
infrastructures also important 	 StarBurst

Sat. Workshop 6	 COMMUNICATIONS
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Most Available Reliable Multicast
Protocols do not Scale Over Satellite

• Focused on terrestrial routed networks
- Today's mainstream Internet

• Many depend on "local repair" and
hierarchy for scaling
- Do not have a place in satellite (except when

there are terrestrial network extensions)

. Others depend on routed infrastructure for
scaling

StarBurst
Sat Workshop 7	 COMMUNICATIONS

Current Prominent Reliable
Multicast Protocols
• Scalable Reliable Multicast (SRM)

- Favorite of researchers; used in wb tool on Mbone

• Reliable Multicast Transport Protocol (RMTP)
- Developed by Bell Labs/Lucent offered in toolkit

by Globalcast

• Pretty Good Multicast (PGM)
- Recently proposed by Cisco

• Multicast File Transfer Protocol (MFTP)
- Developed by StarBurst -- most widely use^tarBurst

Sat. Workshop 8	 COMMUNICATIONS
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SRM

• Developed for data conferencing (wb tool)
• I st protocol to use "local" repair

• All members in same group

net	 M
Hi

H2

CalV^^
111Z 	 H3Gne jaI ^

MeNg/

Cal

tenet

H4	

....... Congested Link	

H5	 StarBUrSt

Sat Workshop 9	 COMMUNICATIONS

RMTP

• Uses hierarchy (Designated Receivers) to
gain scaling

Rowm

Rwty -7: ftuw

0	 •	 ........ 	 StarBurst
Sat. Workshop 10	

Recdva	 Dmgnawd rec w Ad	 COMMUNICATIONS
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SRM, RMTP, PGM Focused on
Terrestrial Infrastructures

• SRM
- Does not work in any asymmetric network

• RMTP
- Depends on hierarchy for scaling which often

does not exist with satellite networks

• PGM
- Requires router assist in infrastructure to gain

scaling, which does not exist over satellite -- a
flat network architecture

StarBurst
Sat. Workshop 12
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M FT

• Trades off latency for time aggregation of
NAKs for scaling

StarBurst
Sat. Workshop 13	 COMMUNICATIONS

MFTP Disadvantages

• Targeted to file transfer applications
- No strict latency requirement

However, operates with scaling in ALL
network environments including satellite

StarBurst
Sat. Workshop 14	 COMMUNICATIONS
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Protocols Need to Cope with
Different Network Infrastructures

• Traditional land line routed networks
- Internet model, highly meshed routers
- Symmetric links

• Asymmetric land line networks, e.g. cable
• Satellite networks

- Asymmetric and high latency
- Inherently multicast ready

• Hybrids of the above	
StarBurst

Sat. Workshop 15	 COMMUNICATIONS

The Reliable Multicast Situation

• For non-real time delivery applications,
MFTP is superior other reliable multicast
protocols
- Most scalable without relays or requirement of

retransmission from nearest neighbor
MFTP only one that works well with satellite
Scalable to > 10,000 without relays or network assist

• MFTP also includes a group management
protocol

StarBurst
Sat. Workshop 16
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Content
Gu

Content Content & Group
Mgmt. Server

"Channels" vs® StarBurst Closed
Group Model

Receivers
Broadcast TV like Model:
Receivers "tune" to content

Sat. Workshop 17

Receivers
E-mail like Model:
Sendar
determines gr^puBurst

O	 CATIONS

How do These Models Fit to
Applications?

Broadcast TV Model

(Push)

• Non-critical content

• Sender does not need
to know content was
delivered

StarBurst Closed Group

model

• Critical Content
• Sender needs to

guarantee delivery

StarBurst
Sat. Workshop 18
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Customer Examples

• GM-US - 8500 dealers - car locator program, software updates
• Toys `R Us - 900+ stores - business data, kiosks, software updates
• Ford - 6000 dealers - software updates, business data
• Promus Hotels - 650+ hotels - reservations, front desk apps
• Wal-Mart - 2500 stores - video distribution application
• Ohio Companies - 200 clients - stock and bond inventories
• Dow Jones - remote printing of Wall Street Journal
• The Box - distribution of 10 GB MPEG files to 100 remotes
• The GAP -1800 stores - delivery of business data

StwBurst
Sat. Workshop 19
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Conclusions

• Reliable multicast over IP multicast enabled
networks provides ROIs that are no-brainers

• Satellite is ideal for offering multicast
services

• Reliable multicast enables new business
processes to improve competitiveness

• Closed Group model essential for critical
information delivery

StarBurst
Sat. Workshop 20
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Organizing Data Transmission for Reliable
Multicast over Satellite Links

Antoine CLERGET, Walid DABBOUS
I.N.R.I.A. U.R. de Sophia Antipolis,

2004 route des Lucioles - BP 93,
06902 Sophia Antipolis Cedex (France)

1 Introduction
Intrinsically broadcast communication channels, satellite links offer a natural way
of multicasting data over a large geographical region. Using such links, one can
benefit from an environment where adding thousands of new recipients does not cost
anything in terms of network resources. There are a lot of potential applications
such as software distribution, database updates, information broadcast (weather
forecast, financial data,...). However, some constraints are associated with satellite
links : first, for geosynchronous satellites, transport protocols must be able to cope
with very important delays. Important delays lead to a poor system reactivity and
combined with link's asymmetry, or even unidirectionality, feedback from receivers
may be quite difficult to implement efficiently. Second, satellite links, as all other
wireless links, undergo an important Bit Error Rate (BER). To lower that error rate
to levels comparable to that of wired-links, one must add an important link-level
bit redundancy, reducing the useful throughput of the link. This could be avoided
if the transport layer supported corruption losses. The problem is therefore to deal
with congestion in an environment where feedback is quite inefficient and losses are
not all due to congestion.

Having a very large number of recipients, some receiving the data directly from
the satellite link, others receiving it relayed by an antenna through the M-Bone (the
best is for each receiver to receive the data from the satellite through the closest
antenna available), we will suppose that we have an important heterogeneity of
paths leading to them in terms of bandwidth and error rate. Our aim is to ensure
reliable data transmission and to minimize for each receiver its transmission time.

To match the constraints mentioned earlier, as well as scalability considerar
tions, we study feedback-free mechanisms, which means that the recipients do not
acknowledge the data received. To ensure reliability, we must therefore adopt a
Forward Error Correction (FEC) technique, where lost data can be recovered with
redundancy packets. Using this high-level FEC - i.e. packet redundancy - we hope
to be able to reduce the low-level FEC - i.e. bit redundancy - on the satellite link
and to increase the overall useful throughput. Even without feedback, we can bring
the failure probability as low as we want by transmitting for a long enough time.
We can make sure that introducing so much redundancy has no impact nor on the
receivers, since they end the reception as soon as they have enough information,
nor on the network, which thanks to pruning, will not relay the surplus of packets.
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2 Related Work
The issue of reliable multicast over satellite links has already been studied, giving
birth to protocols such as MFTP [?]. In MFTP, the file is transmitted entirely on the
first pass, and missing pieces on subsequent passes. However, it considers that all
recipients receive the file directly through the satellite link, and therefore does not
deal with problems such as rate and congestion control, or receiver's heterogeneity.
A number of other reliable multicast protocols using feedback deal with congestion
control, by adapting the sender's rate to the worse or to a given proportion of the
receivers in reply to "congestion reports".

As outlined in Receiver-driven Layered Multicast (RLM) [?] (which does not
raise the issue of reliability) it is interesting to use multiple multicast groups to deal
with receiver's heterogeneity. The transmission rate is receiver-driven since it is the
receiver that adjusts it to avoid congestion by joining or leaving one of the multicast
groups called "layer". In [?], Lorenzo Vicisano, Luigi Rizzo and Jon Crowcroft
present a protocol based on FEC and layered multicast that uses little or no feedback
for congestion control and error correction. However, our work is focused on a
context where we experience corruption losses, as observed on the satellite link,
and therefore we do not make the assumption that losses are due to congestion.
Moreover, we propose another way of organizing data within layers that does not
impose an exponential distribution of rates. To mimic the behavior of TCP, some
protocols that deal with congestion adopt a strategy of multiplicative decrease in
rate when congestion is detected, and additive increase otherwise. Others estimate
the "equivalent' throughput, using the relation between throughput and loss rate
for a TCP connection : Throughput N 1/ Loss rate. These protocols are said
to be `TCP-friendly", because they should behave like TCP when confronted to a
congested network. For such protocols, an exponential distribution of rates leads to
a slow and imprecise reaction to congestion.

3 Data Organization
To correct errors without acknowledging sent data, we introduce redundancy within
sent packets : k packets of data are encoded into n packets in such a way that
receiving any k among these n is sufficient to rebuild the original k packets. Forward
Error Correction gets more and more efficient compared to retransmit queries as
the number of recipients grows since they can all correct n — k errors, eventhough
these errors are different. It is interesting to use large values of k and n, (ideally, k
is the number of packets in the file to be transmitted, and n >> k). Unfortunately,
known FEC techniques for large values of k and n are slow to compute. The file to
be transmitted is therefore split into B "blocks" of k packets. Each block is then
"fec-encoded" into a block of n packets. The end-user ends the reception when he
receives k different packets from each of the B blocks.

In a totally feedback-free environment, and even in general, it is interesting
to manage receivers' late arrival. In an application transmitting informations day
long, we would like to be able to have users join at any time and receive the data
in minimum time. Given a reception window of B.k packets, we should then have
k (different) packets of each block (Characteristic C l ). To ensure quick recovery of
lost data, we must also have a good block interleaving, which means that given any
reception window of k packets, we should have a packet of each block (Characteristic
C2).

We send packets through "channels" at the same rate aid group these channels
within the different layers, defining their respective rates. The sending rate of a
layer is therefore proportional to the number of channels sent on it. The following
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Figure 1: Block numbers of packets transmitted on the channels over time

data organization tries to meet the characteristics defined above for the B.k and k
packets reception windows (Cl and C2), no matter how many channels the receiver
is listening to.

The packet sent at date t on channel number c is defined by the pair
([block number b1], [packet number p.]) (fig. 1) :

• bl. = [B`I(c)j^+t [nod B] and I: x = F,'o bi .2i H I(x) _ Es_' o bi,.2—i
offset

• 14 is the index the first non-sent packet in block bl..

The idea behind layered multicast is to reduce congestion by leaving some of
the multicast groups ("higher" layers), pruning preventing their packets from being
forwarded through the bottleneck. But for pruning to work, receivers behind a same
bottleneck must unsubscribe to the same layer. Recipients must then follow this
rule : To subscribe to layer L i , a recipient must first subscribe to layer Li-1 .

Whatever the data organization, meeting characteristics Cl and C2 for all re-
ceivers, or, in other words, for all receivers to finish in minimum time when there
is no loss (i.e. File size = B.kl•E Subscribed layers` rate), and to recover from
losses as quick as possible (without feedback), layer's i rate must be a multiple of
the sum of layer's 1 thru i —1 rate :

i-1
3p E lit, ri = P. E rj

j-1

This means that the layers' rate distribution must be exponential.

With our data organization, a receiver (possibly arriving late) will finish in min-
imum time if it listens to 2 7n channels, m >= 0. Since we do not want to have an
exponential rate distribution, we must accept a slight overhead (between 0% and
12% ) when listening to n channels, n. :i6 21,Vm, and will have an optimal receiving
time otherwise.

We have therefore proposed a data organization that :
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• Is optimal for all receivers, whatever the number of layers they are listening
to, if we accept to have an exponential distribution of rates.

Is optimal for the receivers that listen to a number of layers that, grouped,
contain 2' channels, m > 0 and slightly suboptimal (overhead between 0%
and 12% ) for others if we wish to be able to set arbitrary layer rates.

3.1 Detecting and avoiding congestion
In standard transport protocols used on the Internet, detecting congestion consists
in detecting lost packets. On a satellite link, we have bursty losses, due to external
factors such as bad weather conditions. When such errors occur, there is no need
to reduce the transmission rate. This is why it is useful to be able to distinguish
corruption losses from congestion losses. Moreover, we would like this mechanism
to work without modifying the routers on the M-Bone, which means that it should
be an end to end mechanism.

Packet loss is not a good congestion signal. If we consider that the traffic
generated by the source is negligible in regard with the total traffic induced by all
the other users, variations of the Round Trip Time (RTT) is not a good congestion
signal either [?]. Using an approach similar to that of packet pair rate control [?],
we propose to send the data as a series of bursts and try to detect the "flattening
of the burst" as a sign of congestion. But we work here in open loop and there are
no acknowledgments for the sender to measure delays. It's up to the receiver to
measure congestion. Moreover, with packet pairs, no measurement is possible when
one of the two packets gets lost. Since the loss is not in i' self a congestion signal, we
lose information and therefore reactivity when corruption losses are frequent. This
is why we do not send pairs of packets but bursts of b = 8 packets.

The position of the packet within the burst is included in the packet's header.
Let D(p) be the inter-packet delay preceding packet p, HB be the group of packets
that are at the head of a burst (i.e. position within the burst = 0). We evaluate
the ratio :

__ EQEHB D(p)
Q Total Time

and use the test Q < threshold, where threshold < 1, as a congestion signal.
We then use a multiplicative decrease - additive increase scheme to join and

leave layers. When the receiver has subscribed to layers 1 thru i, he tests for a
congestion signal

• after log fNl r, packets received and leaves layer i if congestion was detected.

. after *'+Nr, packets received and joins layer 41 if no congestion was detected.

N is chosen large enough to take into account join and leave delays, and not too
large to have enough reactivity.

4 Conclusion
When trying to reliably send data to a large number of receivers using a satellite
link and the M-Bone, we face a certain number of difficulties, due to the long delay,
asymmetry, and high bit error rate of the satellite link, and the heterogeneity of the
M-Bone. To solve the problem of asymmetry, we chose an a feedback-free approach,
replacing retransmission requests with Forward Error Correction, and proposed a
mechanism that enables receivers to detect congestion and then adapt their own
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Figure 2: Experimental framework

receiving rate. In a heterogeneous environment, the data organization proposed here
enables them to receive the data in an almost optimal time, taking into account
late arrivals, and is still adapted to a good reactivity to congestion signals. To
experiment these mechanisms, we have setup an experimental framework as shown
on figure (2).
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Satellite-Multicast Enhanced
Consumer Internet Services

Doug Dillon

June 3, 1998

1 P=	 H.0- P.1pft.n II

d11s

Direct Broadcast Satellite To
The Personal Computer

New Media with great potential:
• True Broadband, e.g. —30 Mbps pipe

324 GB/day
• Conditional access supports subscription

services
• Low-cost receiver
• Nationwide access
• Installed base of 7M antennas in USA today

2P000O
	 a k4 . PmpNbry 11

anww
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Critical Requirements	 --^ --

• Compelling Content
• Ease Of Installation
• Minimal Impact On PC's Normal Use

V.P..n.n. "•,W

New Medium Chicken And Egg
Content Problems

Can't get:
• subscribers without content
• content without subscribers

You need about -1 M subscribers to
interest content providers in creating
custom content.

4P=	 MO.. w.PW" 11

anaue
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HUO- ftW*tBry It

Solution: Repurposing Existing
Content

Broadcast
Medium

Content
Repurposed Custom

Radio Music, Newpa_p_e_r7PTa_ys Series: Gunsmoke, Sports...
Television Radio series, Sports, Mini-series, Sit-com,

Movies talk-show...
Cable TV TV, Movies, TV-reruns CNN, Weather Channel
PBS Satellite Cable TV Pay-Per-View Movies

Repurposable Content For
DBS PC

ontent ype ood Initial Candidate?—
    - -- - - - -

........... . .... 	 ... . ........ 	 .	 .....	 .... ....	 . . ... . ............... 	 . . .. . ........ .......... . .. . .... ..... .. .... ....... . .............................. . ................. . .. . ................ . . 	 .
ssues

OBSVideo/Audio -Hardware Cost/Installation/Value Add
Data Enhanced-Video: ;Hardware Cost/Installation/Content
Web Sites q'Advertising, Dynamic Content
Usenet News GB/day.................
Software- Downloads

..... . .............. 	 ........... .. 	 . . ....	 ..........
'Selecting/Licensing

IP Video/Audio ?:Content availability/licensing

I_"II_IM

	 HUOW. Pmprwwy 11
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DBS PC Initial Service Package —
Service Package Which Supplements

Dialup Internet
• WebCast - subscribe to name-brand

web-sites.
• Usenet NewsCast - access to the entire

usenet newsfeed.
• Software Downloads - shareware, etc.
• Email Alert - notification when email

has been received
Many different opportunities for

package/bundling with other services.
H.pM. Pnpbb7 11

d,wae

Critical Building Blocks	 ^A -

• Conditional Access Protected IP Multicast
• Conditional Access Integrated Multicast File

Transfer Protocol
• Efficient hardware filtering

WOO	 H.pa. Pmpl.b711

6NfY..

344



WebCast Value Proposition

• Value Proposition To Web-Site
Operators:
— "Sign here and you'll get more hits" OR
— "Sign here and turn your site into a true

broadband experience"

• Value Proposition To Users:
— "No hassle web-content at hard-disk

speed without tieing up your phone line"
— seamless transition between cached and

interactive content

9POM
	

NUOM Pmgr"ry 11

N19M

WebCast Critical Requirements

• Content Integrity - user is given a
consistent snapshot of a channel

• Usability - must not interfere with normal
PC use

• Usage Reporting - to sustain an
advertising based business model

• Electronic Program Guide - to promote
content, allow easy access to all services

10POM	
HaktM PmpWtry 11

QM am
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Channels, Packages Architecture — 1

• Channel - typically a web site. Set of frequently
updated content. User subscribes to a channel

• Package - a subset of a channel's content.
Contains a header, hash table and the URLs.

• Base Package - contains a complete snapshot
of a channel. Typically broadcast overnight with
occasional rebroadcasts throughout the day

• Delta Package - contains just what has
changed/been added since the previous Base
Package

„PM
Maw

Channels, Packages Benefits

• Operates over any multicast file
transfer transport

• Always presents user with a
consistent, complete channel

• Minimizes impact on webcast receiver
resources

• Minimizes satellite bandwidth - some
really great things you can do with
compression

• Allows a receiver to be brought quickly
back up-to-date

t2P=
	 KO-F.rMwnu .

en"G
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Channels, Package Architecture
Minimizes Receiver Impact

• Uses multicast file-transfer, very efficient
(no bulk filtering in the PC)

• No preparation prior to accessing content
(breaking it into individual URLs)

• Individual Compression:
— uses less disk space
— decompression happens when user is

accessing content
— only URLs accessed are decompressed

7 JP0
	 IkO PmpM ly II

me=

Base/Delta Packages Minimizes
Receiver Impact

• Base packages can be scheduled for
when the PC is idle (overnight)

• Delta packages are much smaller,
inherently less impact

• User can turn off multicast file transfer
receiver (for games) and quickly be
brought back up-to-date via delta
packages

14P=
	 H.O.. PmglYbry 11
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1lP0000
-lw

K*Ms ftlh"ry 11

Electronic Program Guide

• A channel everyone is subscribed to
• HTMUCGI Based -content changes

with no programming
• For all services, supports:

— promotion,
— subscription,
— launching of the service.

WebCast Receiver Functions -—
• HTTP Proxy
• Web-Server For Local Processing
• Automatic browser configuration
• Phone-line control on cache-miss
• Disk space management - each channel has a

budget. Total budget is never exceeded
• Channel subscriptions - conditional access

transaction for "premium" channels
• Usage reporting - piggybacks Internet access,

middle-of-night as fall-back
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Newscast Overview
Usenet News consumes 40% of DirecPC traffic.
30% of DirecPC users are "heavy" Usenet

users.
Traffic categories:
• Music
• Software
• Images
• Discussion groups
Usenet News -10 to 15 GB/day, 1.4 Mbps
No retransmissions

17POWD
	 Hu,M. PmpiYUry II

QH •â!

Personal News Server
• interacts with user to define newsgroups of

interest
• efficiently stores only articles of interest
• expires articles based on age and/or disk space
• operates as a news server to an unmodified

news client
• relays postings through dialup to news server

1;q
d1W98

	 Hu*.. P.Pftt.ry II
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Software Downloads

• Integrate with WebCast by offering
download channel - with a few different
shareware offerings on a daily basis

• Software vendors will pay for premium
placement with sufficient subscribers

• Overnight multicast file transfer of
other software downloads

• For non-shareware software, send
encrypted software which is decrypted
via Internet E-Commerce transaction

IWO=
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Email Alert 	 --.-

Requirements:
• Notification within a few minutes of

email receipt
• Must recover from PC outages
• Anonymity
• Low bit-rate (< 1 bps/mail account)
One solution:
• Periodic multicast of cryptographically

protected timestamp

20P0000	 Huo.. Pmpbf.ry II
df0.9E
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Installation Issues
Low monthly service charge requires

low equipment cost, easy installation,
low support costs

"PIugNPlay" PCI adapters are not easy
enough for the low-end consumer

Target retail price should be similar to
.previous high-end modems (< $200)

21 PD=
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Universal Serial Bus Receiver — --
• Available with all recent (1997 or newer)

desktop PCs.
• Available with many current laptop PCs.
• PIugNPlay without opening the PC.
• Adequate throughput for data applications (up

to 4 to 5 Mbps).
• Supported by Win95 OSR 2.1 (1997 or new PCs)
• Fully supported by Win98
• Not supported by WinNT until NT5.0

22P=

	
Hu$w. P.pri 1 ry II
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Conclusion: The Time Is Ripe .

Each of the critical requiresments can be
satisfied:

• Content - repurposed Internet content
initially

• East Of Installation - use existing
dishes + USB receiver
Minimal Impact On Receiver PC - w/2nd
generation applications
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Integrating Satellite Networks with
Internet Multicast Backbone (MBone)

Yongguang Zhang and Son K Dao
HRL Labs. (formerly Hughes Research Labs.)

emai1:ygz@hr1.com

http://www.wins.hri.com/people/yaz

What is MBONE?

A (virtual) backbone network that
provides datagram routing services for

multicast applications over Internet
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GEO Satellite Makes the Best Internet
Multicast Backbone (MBONE)

Lower cost

Fewer router states

Uniform performance among members

Purpose of the Experiments

• Feasibility of Mbone over DB S
• Performance comparison with current

Mbone (over terrestrial Internet)
• How DBS may change the way we do

— multicast routing

— reliable multicast
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HUGHES MBONE over D irecPC Satellite
NWMRK 3Y11rr tas	 (I,: IT-40, Dec 8 -11,1 997 )	 1 1T F
A!A[iESHl:CtI^MtXOfStMBlr

(UDLR WG)

aim	 VPIV'k

Benefits:
- truly physical IP multicast

offload congestion in Internet
- QoS guarantee

Challenges:
- Unidirectional link routing
- Integration into Mbone
infrastructure

How to view IETP over DirecPC:
- make sure you have DirecPC
Window95 software V1.4 or later
use any H.261 Internet video/audio
conferencing software (e.g., vic+vat)

- receive multicast at 224.0.1.12/22222
(video) and 224.0.1.12/22224 (audio)

- enjoy the much better quality than
today's terrestrial Mbone!

- Regional
multicast

IETF-40
(Washington, D.C.)

video/audio
Multicastjzl,yf211jqp

Source

RTP

Receiver ®--_ -®
RTCP

(Receiver Report)

_R_T_P
Observer

RTCP

loss-rate

jitter
bandwidth
frame-rate

DirecP1

HRl

Observe
(HRL)

Setup

Observer

(Colombia)

i
t MAL• -

;/	 Internet/Mbone
L.A.Observer	 Receiver

(UCLA)

Receiver

reflected back to
terrestrial Internet

ldress translation
and rate control

(128Kbps)

direcpc.com

Gernian Town
MD

'^

^tWulticast Source
DS3

dc.ietf.org

Omni Hotel,
downtown D.C.

(UCB)
PReceiver
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Data Collection

• 6 data set collected at observer sites:
— over Mbone: HRL, UCB, UCLA, Columbia

— over DirecPC: HRL

— over DirecPC+Mbone: UCB

• Sampling the Mbone:
— periodic Receiver Reports from each receiver

— over 30 core samples (> 20 min, RR freq < 10s)

— sample may be skewed
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db Center for Satellite and Hybrid
MW.	 Communication Networks

Error Control for Satellite Multicasting

Daniel Friedman and Anthony Ephremides

University of Maryland, College Park
{danielf,tonyl@isr.umd.edu
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Presentation Outline
148W

1. Multicasting in Satellite and Hybrid Networks

2. Analysis: Point-to-Point Communication

3. Analysis; Point-to-Multipoint Communication

4. Numerical Example

5. Additional Considerations
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data

transmitter

^î 	 Multicasting in a Satellite Network
Now

jir satellite

Each multicasted transmission may reach some of the receivers in error.

Problem: Each multicasted retransmission typically benefits few receivers;
more receivers =;^ less throughput

^r	 ARQ Multicasting in a Hybrid Network

J satellite

data

receivers

^ transmitter

terrestrial links

E—	 —3►
acknowledgements	 retransmissions

Retransmissions are directed only to appropriate receivers;
greater throughput possible than in a satellite network.
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Initial Analysis Assumptions
and Definitions

1. Unlimited buffer size, unlimited window size; ideal selective-repeat ARQ protocol.

2. All acknowledgements are delivered without errors.

3. Satellite channel frame error rate = p,.
Terrestrial channel frame error rate = pi.

4. ARQ information frame = { h header (overhead) bits ; f information bits }.
(Same composition for satellite and terrestrial transmission.)

5. Bandwidth consideration:
Satellite channel transmission rate = r, > rt = terrestrial channel transmission bit rate.

6. In the hybrid network, all retransmissions are sent terrestrially.

7. Acknowledgements are sent only for frames-received without errors.

8. Performance measure:

throughput, v = E [# information bits transmitted successfully/s)

Related quantity (primarily for pure-satellite networks):

# frames senUs
/j = E	

I
=measure of "inefficiency"

I # frames delivered/s

,=	 Analysis for Point-to-Point
^	 Communication

Satellite System:

00
inefficienc	 3 
	

= 1
8-1	 1 — Pa

throughput = vaaleuiie _ (e + !e ) , = (p + h 1 — Pa) T.,

Hybrid System
—assuming terrestrial link can accommodate all retransmissions:
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Terrestrial Link Bandwidth Requirementsi
Acknowledgement traffic rate:

rt > K.^k 
(f+r

 h) (1 — Ps) + I(Q.k (f+hr-, ) P.,

K.ck G is 
h)

where Ka,k = average acknowledgement length in bits (hybrid network).

Retransmission traffic rate:
00

rt > (P + h)t (P {-sh)sps (1 — pt)	 ipti-1

= r,. ( P-'
1 — pt )

r,)=
Average Acknowledgement Length

 (Hybrid Network)

Acknowledgement =

{ hcRc error-detection bits ; h9eq bits per sequence number; [ haeq • • • ; J }

hcRC+haegil+ P" [!L+—"+Ts+Tt+pt(e^+2Tt) (i P' t)J}

Kack = 	 l	 r. p. 1_pem
1 — h8eg rt(f+h) ( 1—p: )

where:

Ta = one-way propagation delay through satellite channel

Tt = one-way propagation delay through terrestrial channel

w = maximum possible number of transmission attempts possible for a frame

without exhausting ARQ window (w E 11, 2, ... })

Also: The ARQ window size, N, is given by:

— I ( ra ) L \f 

+ /t	 K.ck	 1	 ( P + /t	 Ka.k	

/ 1 I
N—	 +Ta+	 +Tt +(W -1) l	 +Tt+	 +Tt

P + It	 7'8	 7't	 7't	 7'1
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d)=	 Point-to-Multipoint Communication:^,	 Additional Assumptions

1. M > 1 receivers.

2. Noise processes on the satellite link are independent and identical for all receivers.

3. Noise processes on the terrestrial link are independent and identical for all receivers.

4. No competition for accessing the acknowledgment channel.

5. Both terrestrial and satellite propagation delays are common to all receivers.

6. The transmitter maintains a history of which stations have acknowledged which frames.

,h	 Analysis for Point-to-Multipoint
^	 Communication

Satellite Network:

ry(j) = Pr{A frame is delivered to M receivers with < j transmissions}

(1 — (PX)M

CO
inefficiency =,3M = E j[y(j) --y(j — 1)]

j_i

throughput = vM,aatetlite = Q + 
jt ) 

T'
AM

2 

Hybrid Network:

VM,hybrid = Vhybrid = 
CQ 

+ h) Ts

363



Numerical Example: Assumptions

1. r, = 1536000 b/s; rt = 33600 b/s.

2. h = 32, e = 2176 for all ARQ information frames (hCRC = 16, h9,Q = 16).

3. Satellite and terrestrial channels modeled as binary symmetric channels (BSCs) with crossover
probabilities (BERs) q, and qt , respectively.

4.
4, = [10-7 ,10-3)	 ; p,=1—(l—q, )f+h = [2.2 x 10-7 , 8.9 x 10-1]

qt = (discussed below) ; pt =
1—(1—qt)r+h

5. w = 3. (Note: require w > 2 for efficient SR-ARQ operation.)

6. -r, = 300 ms; Tt = 125 ms (includes 95 ms modem processing delay').

7. Infinite sum for flm,,atettite approximated by truncating at the minimum j such that y(j) > 1-10-7.

'Result from an ACTS experiment.

Numerical Example: Results

Throughput in Multicast Networks
1.6

1.4

1.2

y
1.0

a+

o,	 0.8
.0
00

0.6

0.4

0.2

Hybrid Network ^--
Satellite Network (M=1) -+--
Satellite Network (M=2) -^ --
Satellite Network (M=5) - -

Satellite Network (M=10) -^
Satellite Network (M=20) --
Satellite Network (M=50)

Satellite NetworkNetwork (M=100) -i- -

0.0 '-
1e-07
	

1e-06	 1e-05	 le-04	 le-03

Satellite Channel BER

364



, 	 Applicability of Hybrid Network

Acknowledgement traffic rate:
Kaik < (P + h) 1-t = 48.3

r,

(with formula for &,,L.) ==* p, < 2 x 10-2

(Also: N ^ 740 frames)

Retransmission traffic rate:
pt<1—r,p,;--1-45.7 p,

rt

gyp, <2x10-2

Note: P. = 2 x 10-2 ==* q, ;z:^ 10-5.

==* Hybrid network applicable for qs < 10-5

Additional Considerations

• Refinements to allow operation at higher BERs

• Packet length (throughput efficiency sensitivity; fixed vs. variable)

• Other network topologies (in particular, tree topology)

• Wireless terrestrial network

• Hybrid ARQ
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Applying Heritage Internetworking Solutions to ATM Satellite Systems

Dr. Mehran Shariatmadar
Senior Manager

SpaceBridge Network Corporation
115 rue Champlain

Hull, Quebec
J8X 3R1

Tel: (819) 776-2848
Fax: (819) 776-4179

Mail: mshariatmadar(&,,spacebridge.com

Submitted to
The Workshop Sponsored by NASA Lewis Research Center

On Satellite Networks
(Architectures, Applications, and Technology)

June 2-4, 1998
Cleveland, Ohio

Summary
This paper discusses the internetworking of IP over ATM satellite systems as part of
SpaceBridge's focus on the development of terrestrial interfaces and adaptation functions
for broadband satellite systems. It gives an overview of our heritage internetworking
solutions and their potential for being applied to ATM satellite systems.

Introduction
The unique networking characteristics of satellites enjoy the strategic advantage of
allowing widespread delivery of services independent of geographical locations and
population density. They have the advantage of jumping some of the technological and
regulatory hurdles that have so far been preventing cost-effective delivery of interactive
broadband services, by terrestrial means, to rural, small urban, and even some densely
populated areas of the world.

The spectrum of satellite services can be viewed in the context of traditional, new, and
emerging services, as shown in Figure 1. High capacity trunking and broadcast of TV
programming to cable head-ends and radio distribution are among the so-called
traditional services that started in the early 70's. Although trunking is gradually being
replaced by fiber, broadcast still remains the main source of revenue for the satellite
industry. The so-called new services include interactive 'data service for enterprises
(VSATs), direct-to-home TV broadcast, business television (BTV), Internet access, rural
telephony, and mobile voice and data services. These services were conceived in the
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early 80's and are now reaching the stage of widespread service offering in the market
place. Broadband interactive multimedia service to consumers and enterprises is among
the emerging services, and one that has been key in providing the impetus for
development of on-board processing satellites, the use of frequency allocation at Ka-
band, and increased inter-operability with terrestrial systems. These services started their
development phase in the early 90's and are now being pursued at a very fast pace by the
satellite industry with the expectation to reach the market in the early years of the next
century.

Traditional Services	 New Services	 Emerging Services
Conceived in the 70's	 Conceived in the 80's 	 Conceived in the 90's

1970's	 1980's	 1990's

Residential Two way
Enterprise OBP
Branch Office LEDs

Remote MEOs
Business ISL

Ka-band

Figure 1: Evolution of Satellite Services

As part of these emerging services and to take advantage of the fundamental principles of
satellite communications, multimedia satellite systems, some carrying on-board ATM
functionality, are emerging to complement the terrestrial networks in meeting the
increasing demand for broadband services. These systems plan to offer enterprise and
consumer-affordable multimedia communications services to regions beyond the
economic reach of terrestrial systems at user-perceived performance levels comparable to
those offered by terrestrial systems (ATM or data services in general).

Convergence of satellite and terrestrial networks is now becoming a key factor in forming
the foundation for an efficient Global Information Infrastructure (GII) that is going to be
supported by a wealth of information sources offered by content providers. This
infrastructure has to accommodate new applications with expanded communications
requirements that are creating an environment with a whole new set of networking
challenges. One of the key challenges of addressing the fundamental tenants of this
global information infrastructure is the ability to internetwork efficiently across all
domains. This inter-operability requires dynamic and transparent connectivity to join
local and wide area, public and private networks which are characterized by a diverse
mix of topologies, physical media, transmission speeds, carrier services, geographical
coverage, interfaces, etc.
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ATM offers multimedia services directly under a single framework and has isochronous
support built in, and allows quality-of-service guarantees. However, until native ATM
applications are fully developed, a significant percentage of end-user devices continue to
be directly connected to legacy media such as Ethernet and Token Ring. In addition,
because of the unprecedented variety of legacy applications and the vast installed base of
related networks these devices will continue to use legacy network layer protocols, of
which IP is a prominent example. This means that the key to the success in the short to
medium term lies in ensuring the availability of efficient methods to operate internetwork
layer protocols over heterogeneous networks that include an ATM infrastructure.

The industry, including the working groups of the ATM Forum and the Internet
Engineering Task Force (IETF), has spent an enormous amount of effort in addressing
the internetworking of IP over ATM. Also, a significant level of effort has been spent by
the industry on optimization of TCP traffic for large bandwidth and long latency
applications over satellite networks. This paper considers IP, ATM, and satellites in a
single context and discusses intemetworking of IP applications over ATM satellite
systems as part of SpaceBridge's focus on the development of terrestrial interfaces and
adaptation functions for broadband satellites.

One example of this corporate heritage is the Carrier Scale Internetworking (CSI)
platform, which is an assortment of technology solutions for adding intemetworking
services to the ATM multi-services switching fabric. CSI is a carrier class solution that
consolidates service, accounting, and performance management for IP-based services and
has many similarities in its intended functionality to those of the ATM satellite systems
that have to intemetwork with terrestrial systems.

A number of topics will be addressed during the course of this paper. These topics
include requirements and criteria for internetworking over satellite, routing of IP over
ATM in a satellite environment, choices of standards for carrying IP over ATM, and the
potential of CSI solutions for application to ATM satellite systems.

2.0	 The Satellite Advantage
Before we begin the topic of internetworking over satellite, it is important to highlight, as
shown in Figure 2, where the satellite advantage lies in order to keep those features that
contribute to the competitive advantage of satellite in the foreground. Awareness of these
features would help ensure that they are not compromised as alternative internetworking
solutions are investigated. The key to increasing the satellite advantage lies in full
utilization of such features as shared access, implementation of large numbers of nodes,
dynamic resource allocation, fast response, wide area coverage, and, of course, extension
of terrestrial networks to rural and geographically unsaved areas. These are the features
that bring down the cost per unit of capacity and competitively position satellite solutions
in the market place. Cost-effective realization of these features, particularly given the
scarcity of bandwidth and space segment resources in a satellite environment, require that
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the overhead and signaling traffic be kept as low as possible. Intemetworking solutions
have to be very conscious of minimization of overhead traffic as functionality is
partitioned between the MAC, ATM, and IP layers.

Figure 2: The Satellite Advantage

	

3.0	 Inter-networking Solutions

	

3.1	 Requirements and Design Criteria

Internetworking within the scope of this paper refers to transport of network layer
protocol (IP as an example) and its related applications over ATM. The basic
internetworking requirements include exploiting quality of service (QoS) offered by
ATM, internetworking with legacy equipment, efficient transport, and expandability to
larger networks.

In order to optimize design criteria specific to internetworking over satellite, it is essential
to incorporate an end-to-end system approach that takes into account the unique
networking characteristics of satellite as well as terrestrial systems. Characterization of
realistic internetworking applications, how they are routed to the terminal, terminal
interfaces, media access control (MAC) options in conjunction with demand assigned
multiple access (DAMA), space segment characteristics, interconnects to terrestrial
networks, and the network management entities are among the elements to be considered.
The need to have an end-to-end system perspective becomes even more critical when one
is considering regenerative satellites where terminals, gateways, network management
entities, and the on-board switch are closely interwoven in their functionality.

Insight into the overall system is required in order to allow optimum partitioning of
functionality across the network. How functionality is partitioned among the various
network elements has a major bearing on the choices that are made with respect to
standards for carrying IP over ATM, address resolution mechanisms, QoS, etc. These
elements include clients and edge devices at the satellite terminals and gateways, and
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servers at the network control centers and network operations center. In a satellite
environment, the golden rule is to minimize the ratio of over-the-air routing traffic to data
traffic in order to economize the scarce space segment resources and therefore bring
down the service cost per unit of capacity. The trade-offs in functionality partitioning to
meet the internetworking requirements and at the same time achieve an efficient
utilization of space segment resources is very complex and has to take into account,
among other things, the functional entities in a satellite system.

User Terminals
(Level 3 control)
UT's mapping of higher
level applications & response	 Network Operation
to NCC and NOC Commands Center ( Level l control)

NOC Control of NCCs

A'
^o

i	 t

r	

\  

Figure 3: Functional Entities in an Advanced Satellite System

For example, as shown in Figure 3, the internetworking server functionality at the
network control center (NCC), can be mapped to that of the network operation center
(NOC, also known as master control center) to reduce certain inter-subnet routing traffic
associated with address resolution enquiry. However, it would be at the expense of larger
server functionality at the NOC. Partitioning of layer-3 and layer-2 functionality between
the edge devices and the network is another important factor. For example, layer-3
routing capability can be given to the edge devices to query the route servers and thus
ensure QoS guarantees. But this could lead to unnecessary routing traffic that can be
dealt with differently in a satellite environment. Within the satellite network, as shown in
Figure 4, inter-subnet address resolution does not necessarily require layer three routers
and can be done at the ATM and MAC levels. Satellite inherent broadcast capability
makes certain functions, such as multicast, much easier. This unique characteristic of
satellites lends itself to modified internetworking server functionality at the NCCs.
DAMA is the system arbitrator that deals with physical network resources that the MAC
layer would use. How much functionality is given to the network and how much to the
terminal through the MAC layer is an important trade-off consideration that does impact
internetworking requirements.
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Figure 4: Comparing a Layer 2 Versus Layer 3 Functionality in an ATM Cloud
(a Satellite Model Versus a Terrestrial Model)

Consideration of functionality partitioning between the satellite and terrestrial networks is
also a critical element of an end-to-end system approach to internetworking solutions. As
it stands today, TCP latency performance requirements necessitate segmentation of
satellite and terrestrial networks at layer 4. This current reality, driven by the limitations
of a legacy layer 4 protocol, lends itself to partitioning of functionality between the
satellite and terrestrial networks at the gateways. Of course, there is the possibility that
future TCP modifications would remove the need for separate treatment of satellite and
terrestrial links, and if we further assume ubiquitous deployment of ATM, then there is
no need to make a distinction between the satellite and terrestrial networks. Nonetheless,
irrespective of the latter happening in the near future or not, it is evident that optimum
functionality partitioning is a two dimensional process, one involving the physical entities
including edge devices/terminals, gateways, terrestrial interconnects, NCCs, and NOC,
and the other involving the layer protocols.

Figure 5 depicts the concept of distribution of functionality across protocol layers as a
function of physical entities. The challenge is to determine how to glue all pieces
together and achieve optimum partitioning such that the internetworking requirements are
met with a minimum utilization of space segment resources.

3.2	 Quality of Service (QoS)

There are a number of dimensions to the QoS guarantees when it comes to
internetworking of IP over ATM satellites. One is to support QoS flows which refers to
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the ability to establish a cut-through connection in an ATM cloud between sub-networks
and therefore position IP traffic to take advantage of quality of services offered by an
ATM network. It is worth noting here that the QoS that is often referred to in the
literature in comparing various IP over ATM standards is this particular aspect of QoS.

At the gateways and terminals, layer 4
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Layer 4 TCP latency performance requirement
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Figure 5: Optimum Functionality Partitioning

The other dimension is the flexibility to have various QoS options available once the cut-
through is established. The latter translates into the issue of mapping classes of IP traffic
(best effort, guaranteed, and predictive delay) to that of ATM (CBR, VBR-RT, VBR-
NRT, UBR, and ABR). The information for the desired IP class of traffic can be
obtained from the RSVP (Resource reservation protocol) which acts as the IP level
signaling protocol for QoS. In an ATM internetworking environment, QoS management
would be limited to the utilization of RSVP as an indicator of IP QoS requirements that
can be mapped onto ATM QoS. In such cases, RSVP is not required to manifest its full
capability as it does in a non-ATM environment and has to be de-coupled from its IP
network implications.

However, in a heterogeneous environment, the issue becomes more complex and has to
be looked at in the context of how the partitioning of functionality is achieved. In a
heterogeneous environment we have to . reconcile the fact that in ATM, resource
reservation is made at the connection setup time using signaling protocols, and thus is
sender-driven and relies on hard-state in switches to maintain connections. Whereas, in
the connectionless world of IP, resource reservation is not permanent, but times out after
some period and can be changed at any time.
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In satellite networks, QoS has another dimension and that is the efficient utilization of
network resources when various flows above IP are mapped into connections below the
IP layer. For example, when one looks at the classes of application one sees quite a
variety. We can have short duration UDP (for example DNS applications), short duration
TCP, file transfer, and real time audio/video applications._ It may be advantageous to use
a separate ATM VC for certain applications that are not of short duration. There are
other IP services such as DNS that are ill suited for connection oriented delivery due to
their normally very short duration. ATM with basic AAL 5 service is connection
oriented whereas the IP layer above ATM is connectionless. At layer 4 on top of IP, the
traffic is supported by TCP, which is a connection-oriented protocol. This raises the
question as to what degree it is beneficial to map different flows above IP into separate
connections below IP. This means that a mechanism should be in place to ensure that
different ATM classes of services are utilized in such a way as to lead to an efficient
utilization of network resources. In the context of efficient satellite network resource
utilization, one should, at least, be open to also examining encapsulation methods other
than "VC Multiplexing" and "LLC/SNAP". For example, there are some proposals for
an encapsulation referred to "TCP and UDP over Lightweight IP" (TULIP) which
assumes single hop reachability between the IP entities and largely eliminates IP header
overhead.

3.3	 Address Resolution
From an internetworking perspective, a satellite network can be regarded as a single large
IP network. This single network view is realizable for two reasons, one is the inherent
satellite physical architecture, and the other is that a satellite network is an autonomous
entity governed by one system of network management. In a satellite IP network (SIPN),
by the virtue of the features of a single autonomous network, there is no need for next
hop servers (NHS), next hop resolution protocols (NHRP), or layer 3 routers associated
with internetwork communications. In addition, routing within the SIPN can be achieved
using purely ATM traffic directly to minimize overhead traffic. With these principles in
mind, a satellite implementation of IP address resolution can be envisaged as indicated in
the following:

1) Terminal looks into its IP routing table to see if the destination address is within
the SIPN, as shown in Figure 6. If the destination address is not within the SIPN,
the terminal searches the IP routing table within its local database for the
appropriate gateway (this might just be a default gateway for destinations not on
the SIPN).

2) If the destination address is within the SIPN, the satellite address resolution
process kicks in. If no response is received, the host is considered unreachable
(either an unassigned IP address or disconnected).

3) As part of the satellite address resolution process, an IP ARP (MAC & ATM) is
sent to the NCC server which contains its own IP routing table. Note that, on
registration, the terminals have already registered their ATM addresses and all
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layer 3 and MAC addresses reachable through them with the NCC server. The
NCC responds with the destination address and then a direct VCC is established.
If the destination address is outside of the NCC domain, the NCC could initiate
request for this information from the regional NOC.

Other variations of this concept can be thought of as well. Any possible enhancement to
the IP routing table' within the terminal that can reduce or eliminate the routing traffic
between the terminal and the NCC and NOC should be considered. As can be seen, this
satellite implementation of the address resolution process is simpler compared to standard
terrestrial implementations that will be further explored in sections 3.4.1 and 3.4.2.

3.4 Choices of IP over ATM Standards

There are 3 main standards that can be considered for carrying IP over ATM. These are
classical IP over ATM (CLIP), LAN emulation (LANE), and multi protocol over ATM
(MPOA). LANE and MPOA have been proposed by the ATM Forum and CLIP by the
IETF. There are also related protocols and servers such as next hop resolution protocol
(NHRP) which is used in MPOA (also in CLIP for inter-subnet communications) to
provide cut-through connections as well as ATM ARP queries, and multicast address
resolution server (MARS) which is needed with MPOA for mapping multicast function.
From the point of view of terrestrial networks the following attributes apply consistently
with what appears in most relevant literature:

• Classical IP over ATM (CLIP): simple, limited to IP, limited to smaller networks,
not scaleable, requires very large and fast routers, no QoS guarantees for inter-subnet
communications without NHRP.

• LAN Emulation: layer 2 bridging solution, allows any layer 3 protocol to be
supported, requires very large and fast routers for inter-subnet communications, no
QoS guarantees for inter-subnet communications.

• Multiprotocol over ATM (MPOA): includes LANE for subnets, but allows inter-
subnet communication, distributed functionality to edge devices, QoS guarantee.

However, some of these attributes may change their merits/emphasis, lead to duplication
of certain connection set-ups, or not fully apply in a satellite environment. A satellite IP
network can be regarded as a single network capable of providing ATM VCCs anywhere
within the network including smaller sub-nets within it. Therefore, LANE and CLIP that
are conventionally referred to as not being able to support QoS guarantees for inter-
subnet communications can, in fact, be implemented in an ATM satellite system with
QoS guarantees even without NHRP.

A modified implementation of LANE or CLIP within the satellite IP network and perhaps
MPOA at the gateway for interface to the terrestrial ATM network is a near-to-mid term
solution that should be considered. However, MPOA, or a modified version of it, should
also be further examined for implementation within the satellite network as long as its
control and data flows do not lead to increased over-the-air traffic in the satellite network.

377



Routing algorithm	 10 SON

IP destination address	 within the terminal
(NETMASK, etc.)	 Gateway

Stage 1: Terminal looks into its IP routing table

Source	 NCC	 NOC	 Destination
Server Server

Register End Station Register End Station

IP ARP (MAC & ATM)

_ARP Response (MAC & ATM))

Direct VCC Connection 	 I
Stage 2: The destination is within the NCC domain

Source	 NCC	 NOC	 Destination
Server Server

Register End Station
Register End Station

IP ARP (MAC & ATM)

_ARP Response (MAC & ATM)

Direct VCC Connection

Stage 3: The destination is outside of the NCC domain

Figure 6: A Satellite Implementation of Address Resolution Mechanism
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The higher software implementation complexity is something that can be acceptable if it
is widely used in the terrestrial environment and mitigated by the economies of scale.
Further examination of MPOA for the satellite network is warranted because of two
important factors. One is that it does offer additional advanced performance features and
the other is the fact that it is the future inter-networking protocol that is likely to be used
by carriers. The latter attribute offers an advantage of strategic dimension that can not be
ignored. SpaceBridge, as part of its in-house R&D and drawing on its extensive heritage
in this area, is currently looking at this very issue.

3.4.1 LANE

LANE offers transparent emulation of LAN protocols (currently Ethernet and Token
Ring are defined) over ATM and as such is a layer 2 forwarding solution. LANE
emulates a bridged LAN on top of an ATM network by offering a service interface to
layer 3 that is similar to existing LANs. LANE allows all network layer protocols (layer
3) and applications to be supported without any modifications. It is particularly
appropriate for Enterprise or Small Office /Home Office (SOHO) type terminals that
usually feed into a local area network of workstations. It requires fast routers for inter-
subnet communications in the terrestrial environment. QoS guarantees are limited to the
subnet for terrestrial networks. However it is important to note that within the satellite
network QoS guarantees, in so far as establishment of direct ATM connections between
satellite smaller subnets are concerned, are achievable.

A satellite implementation of LANE, as shown in Figure 7, can be envisaged where on
one end LANE is implemented on ATM hosts (for example on the ATM NIC card)
forming an emulated LAN (ELAN) or on LAN switches (layer 2 LAN bridge). The
satellite ATM terminal will include a LANE emulation client (LEC) where LEC would
run the LANE protocol stack that performs encapsulation, address resolution, and data
forwarding. For the LAN section, the terminal LEC's user network interface (LUNI) at
the data link layer can be attached to a bridge (layer 2) with an RJ 45 interface for
external connection to the LAN. ` The function of the bridge is to avoid unnecessary
forwarding of packets that are not destined for satellite routing. For the emulated LAN
section representing the ATM hosts, the satellite terminal will have an ATM interface
(such as ATM 25). Therefore, LANE can be used in two ways. One way is as an
interface to the LAN through a bridge, and the other way would be to run LEC directly
on the workstation as part of an emulated LAN where LEC provides a direct interface to
the upper layers.

LANE servers for address resolution would be located at the NCCs and NOC. All
routing traffic between the terminal and the NCC, and between the NCC and NOC is
purely ATM and therefore no LEC client is required. However, at the gateway a LEC
client is required because there is IP traffic involved heading for or arriving from the
terrestrial network.
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Figure 7: A Satellite Implementaiton of LANE

With respect to address resolution, MAC and ATM address resolutions are separate
processes as shown in Figure 8. The LEC transmits MAC broadcast frames to the BUS
(Broadcast Unknown Server) which in turn transmits IP ARP to all its multicast nodes.
The destination MAC address responding to the BUS enquiry is sent to the source S'LEC
which now sends an LE_ARP request to the LES (LAN emulation sever) for MAC to
ATM mapping. The LES responds with an LE_ARP response with the destination's
ATM address leading to the establishment of an ATM VCC to the target. It is evident
that the LANE address resolution process needs to be modified to fit into a satellite IP
network, particularly with respect to the broadcast mechanism used for the IP to MAC
address resolution.
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Figure 8: LANE Address Resolution Within a Subnet

3.4.2 MPOA

MPOA in effect integrates LANE, NHRP, and MARS to preserve the benefits of LAN
emulation while overcoming the shortcomings of LANE (i.e. router hops are required for
inter-subnet, and inter-network layer protocol communication over ATM VCCs). In
other words, it provides end-to-end layer 3 connectivity between the hosts attached to the
ATM fabric. An MPOA solution in the terrestrial ATM environment, facilitated by
NHRP, would lead to lower latency compared with LANE and CLIP, by allowing direct
cut-through across subnet boundaries.

Switching functionality is distributed in edge devices in so far as they query the route
server for layer 3 information and the routing function is more centralized. MPOA lends
itself to QoS guarantees as it allows mapping of specific traffic flows (i.e. layer 3 packet
headers in RSVP) to ATM connections with the appropriate QoS. It supports multiple
clients and protocols such as a legacy Ethernet host running IP and an ATM attached host
running IPX or SNA.

In addition, MPOA supports an efficient forwarding function where it overcomes the
connection set-up latency. It consists of flow detection, temporary (virtual) circuit use,
and cut-through connection. For data transfers of short-duration, a cut-through
connection is not efficient because of the increased inter-nodal effort involved in the
address resolution process. Instead, MPOA offers what is referred to as the Default
Forwarding function that provides layer 3 forwarding through a MARS-based multicast
server. In MPOA, a cut-through connection is established only when a certain flow
exceeds a pre-defined threshold, such as the number of packet counts. MPOA is a very
promising technology providing a universal approach to layer 3 protocol over ATM
including multicast and broadcast and has many advanced features.
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A satellite implementation of MPOA is possible, as shown in Figure 9. The terminal
connected to a LAN will have an MPOA client that includes the edge device capable of
forwarding packets between LAN and ATM interfaces. The terminal connected to ATM
workstations will only need an MPOA host without the edge device. The NCC and NOC
will have MPOA servers and the gateway will have an MPOA client.
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Figure 9: A Satellite Implementation of MPOA

With respect to applicability to a satellite network, an examination of control and data
flows in MPOA would show that there are some functions that are not needed or would
have to be modified for a better fit into the satellite network. In a wireless satellite
network, the path to the destination is identified as part of layer 1 and 2 resource
allocation and its appropriate utilization by the MAC layer. For example, MAC layer
solutions for satellite networks include secondary access schemes that provide for virtual
circuits for short duration data traffic, a feature that is also provided in MPOA. In
NTOA, traffic between an edge device and an ATM host uses LANE as the mode of
transmission to the default forwarder (DFFG) and from there uses an ATM connection.
The DFFG is responsible for forwarding traffic within a subnet if no client to client
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connection exists and performs the multicast server function within the subnet. The edge
device, after detecting that the flow qualifies to have a short cut support can initiate an
NHRP request to the ICFG. The ICFG is the IASG coordination functional group, which
is responsible for coordination of layer 3 addresses within the subnet. IASG itself refers
to an internetwork address sub-group.

Whether these functions would lead to significant increase in over-the-air traffic is an
area that needs to be further explored. The MPOA address resolution process is shown in
Figure 10 where NHRP is used as a cut-through technique even within a subnet. Similar
to the case of LANE, the address resolution process would have to be modified to fit into
a satellite IP network.

MPOA Servers
DFFG

S	 ICFG
	

D
Edge Device
	 ATM Host

Data L`^
	

data forward

Routing

VCC

Figure 10: MPOA Address Resolution Within a Subnet

3.4.3 CLIP

CLIP's original definition is limited to only IP and does not intrinsically offer multicast
and inter-subnet communications support without MARS and NHRP. Its address
resolution mechanism may require minor modification of the IP protocol stack, which is
not an issue if implemented within the satellite terminal. QoS guarantees can be
supported within the satellite network because the satellite network is in reality a large
single network that can utilize the functionality of the NCCs and NOC for address
resolution.

In one of the CLIP options we can avoid the unnecessary Ethernet encapsulation by
simply specifying the IP protocol layer as the VCs endpoint and place IP packets into
AAL-SDUs for transmission. This method is referred to as "VC Multiplexing" because it
involves terminating a VC on a layer 3 endpoint. In this case, of course, the traffic is
limited to a single protocol per VC. From a technical standpoint, LANE and CLIP are
very close, with both being overlay models that use ATM as a fast packet transmission
system. In fact CLIP can, through LLC/SNAP encapsulation allow any set of protocols
that may be uniquely identified by the LLC/SNAP header to be multiplexed into a single
VC. In this sense, CLIP can be extended to carry non-IP traffic as well. A satellite
implementation of CLIP is shown in Figure 11. In addition, Figure 12 shows the address

383



The classical model refersto the
deployment of the ATM Nosts as a

RN

R
^ t

resolution process for CLIP within a subnet. CLIP lends itself well to modification for a
satellite IP network because it is a simpler concept and does not carry the sophistication
of other protocols such as the MPOA that is designed to meet all the internetworking
requirements in a terrestrial environment. The question, that needs more research, is
whether we take a simple standard and build on that to develop a version for satellite IP
networks, or a take a more sophisticated model such as the MPOA and modify it to fit in
for satellite applications.
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Figure 11: A Satellite Implementation of CLIP
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4.0

	

	 Applying Carrier Scale Inter-networking (CSI) Concepts to Satellite
Systems

CSI is an integrated system solution, leveraged for satellite applications by SpaceBridge,
which meets all the internetworking requirements in the terrestrial environment. It is a
next generation, high performance, managed IP services infrastructure that can be used
by service providers to differentiate their service portfolio with options such as QoS,
managed virtual private network services, and other new value-added services. The CSI
architecture consolidates service, accounting, and performance management for IP-based
services by accomplishing the addition of IP services over an ATM multi-services core.
It interworks with the existing router based IP networks using standard routing protocols.
In addition, its architecture is very scalable because the data transfer, routing, and
management functions are separated. It also uses open standards that allow for value-
added applications.

CSI is of significant interest when it comes to internetworking over ATM satellite
systems because it is, at a functional level, a terrestrial version of internetworking over
ATM satellite systems. Consolidation of service, accounting, and performance
management for IP-based services, scalability in terms of separation of data transfer,
routing, and management are features that are also required for satellite systems.
Whether certain services and design aspects within the CSI architecture are used directly
or somehow modified for implementation over the satellite, the overall heritage
experience and the know-how associated with CSI is of significant advantage in shaping
optimized end-to-end solutions involving satellite networks. The CSI network consists of
four entities as shown in Figure 13:

•	 ATM network: corresponds to the ATM satellite system.

•

	

	 Service points (SPs): access terminations with separate or integrated edge
forwarding. This is analogous to some of the satellite terminal functionality.
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® Routing services control points (RSCPs): forward policy information and support
routing protocols. This is analogous to some of the NCC's level 2 jurisdictional
functions.

• NMS: element, network, and service management, similar to some of the NOC's
level 1 jurisdictional functions.

CSI user interfaces and related functions which include standards for carrying IP over
ATM can be leveraged for satellite applications. Of course, proprietary adaptation and
air interface functions including provision of layer 1 synchronous access as well as MAC
layer satellite related functionality has to be added to replace the terrestrial network
interface portion of the CSI products.

The services provided by CSI include both virtual private networks (VPN) and public
Internet. There are multiple instances of these services over a variety of interfaces.
Frame Relay, ATM, PPP links, Ethernet, and FDDI LANs are examples of service
interfaces that are supported by CSI, most of which are also candidates for satellite
terminals. For the VPN traffic, the service point (SP) will forward traffic using short-cut

Focus provider on
customers, services and
policies, not on boxes

Determine and distribute
reachability

Make effective use of bandwidth 	 Provide bandwidth where needed

CSI Framework Solution

Operations
Interfaces

- provide forwarding and
policy Info to RSCPs

NAAS • provide network, VPN
maps

3	
s	 :.

^It« ' S

cOaVOi Pollft -'^
k	 Into

Customer A @4j	 ^k a	 CustomerA
Location One	 Pint' d	 -^t Location Two

Service Point Routing Services
• determine destination Control Point
and applicable policies ATM Fabric - Provide forwarding and 
- select appropriate • provide beat L2 path Pointy Info to Service 
Layer 2 path given L1 topology, Points
• provide packet level current bad and status

•exchange raachability
support for Cos with extemal & Internal

systems

Figure 13: CSI System Architecture
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SVCs between the source and destination SPs. The ATM fabric provides data path
interconnection of the CSI components. The connection-oriented nature of ATM allows
for cut-through connections to be established on demand by the internetworking layer and
the QoS features of ATM. An MPOA client is run in the SPs to perform address
resolution for shortcuts via RSCPs. RSCPs run NHRP to support SP-to-SP short cuts.
SPs maintain a cache of most frequent connections to minimize SP-to-RSCP activity.
For public Internet traffic, the SPs will use pre-provisioned virtual connections to forward
traffic.

5.0	 Conclusions
In this paper we discussed the inter-networking of IP over ATM satellite systems
addressing issues such as QoS, address resolution and routing, and standards for carrying
IP over ATM. It was highlighted that an end-to-end perspective is required to arrive at
optimum partitioning of functionality. The satellite broadcast nature lends itself to
optimized solutions and therefore those inherent features must be fully utilized in order to
maintain the satellite competitive advantage in the market place. When applied to
satellite networks, terrestrial standards for carrying IP over ATM would need to be
modified/optimized in their server functionality and address resolution mechanism. More
research is required to identify other areas for modifications. CSI is a related heritage of
significant advantage for internetworking over ATM satellites, whether certain design
aspects within its architecture are used directly or somehow modified for implementation
over the satellite.
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ATM Over Satellite
For The Warfighter

Lieutenant Tom Stephenson
4th Space Operations Squadron

Air Force Space Command

Overview

• The Need For ATM Over Satellite

• SHF and EHF

• Crosslinking

• Military/Government Initiatives

• Proposed Solution

n Further Research Required
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The Need For ATM Over Satellite

• Mixed Traffic Types

• Heterogeneous Platforms

• Global Connectivity

♦ DISN Mandate

*DOD Space Architect "Objective Architecture"

n Joint Vision 2010

SHF and EHF

n Low Probability of Intercept/Detect (LPI/D)

n Smaller Antenna Size

n Less Contention for Spectrum

♦ Though greater commercial interest in Ka-Band

n Atmospheric Attenuation
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Crosslinks

n Avoids Ground/Sea Entry Points in Hostile
Territory

n Provides Worldwide Connectivity

n Proven Success on Milstar

Military/Government
Initiatives

n JWID Demonstrations
♦ ATM Over DSCS (JWID 95)

♦ Airborne Phased Array Antennas (JWID 95, 96, 97)

n UAV EHF Uplinks and Crosslinks
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Military/Government
Initiatives

n US Army Mobile Subscriber Equipment

n NASA ACTS

n DISA CSCI
♦ COMSAT's ATM Link Accelerator

Proposed Solution

n 4-6 Geosynchronous Satellites

n EHF/SHF Uplink/Downlink

n EHF Crosslink

n On-Board Switching Matrix

♦ Dynamic Bandwidth Allocation

♦ Large Buffer Space
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Proposed Solution

n Command and Control
by Air Force Space
Command

n Experience in
EHF/SHF Crosslinked
Satellites

Further Research Required

• Crosslink Latency

• Encryption Over ATM (FASTLANE)

• ATM and EHF

• ATM and Low-Data-Rate Ground Mobile
Radios

• Laser Crosslinks
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Conclusion

• The Need For ATM Over Satellite

• SIIF and EHF

• Crosslinking

• Military / Government Initiatives

• Proposed Solution

• Further Research Required
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Bellcore
ATM Traffic Measurements

over the ACTS OC-12c HDR Channel
with a Distributed Test System

Daniel F. Daly, Shikhar Bajaj,
Thomas J. Robe, Faramak Vakil

Bellcore Contact: D. F. Daly
(973)829-4339

daly@belicore.com

June 3,1998
NASA Workshop
Satellite Networks

Co, ftm 0ISM Bekm. Jul Pj" hMlw1

ATM Traffic Measurements
Interoperability and Impact on Satellite Network Performance

• Network traffic management must be interoperable
between terrestrial and satellite legs of the network.

• Unique satellite delay characteristics impact terminal
equipment requirements

• Cell Delay, Cell Loss and Cell Error impact QoS
• Statistical distribution of cell stream affects terminal

multiplexing
• Detailed traffic data with absolute time stamps can

help to identify the cause of performance problems

• Combined traffic measurements and signaling
message data enable analyst to correlate network
performance with demands placed by the signaling
system

CopydpM01 MB k—ulWyhaM11wLL	 NASA WmMMip: SNS11Wftt .	 z	 BB/^COfC
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Experimental Configuration

To/From ACTS

Sprint	 NASA

Kansas City	 Lewis R C
Cleveland

o

D

Internet	
B

	

CgWft MO ISIS !Repo. All MSlb FM.—.M.	 NASA Mbrbhop: SM.IRW 140- 6	 5	 AwkOre

Traffic Measurements

• ATM Cell Statistics
— interarrival time
— transport delaye
— burst length
— silence length

• AAL5 Protocol Data Unit Statistics
— PDU length
— PDU interarrival time
— cell dispersion

	

"Vllg tOION 8.1—. All Oil" PA—.&	 NASA Workshop: SMMUW N*Maks	 6	 BdIcore
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Cell Interarrival Histogram
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Range: 0 - 24 cell slots

Bin Size: 1 cell slot

Source: Sequence of CSR
traffic at:
50.24 Mb/s, 75.05Mb/s,
154.97 Mb/s, 310.79 Mb/s

Source IAT only in bins
2, 4, 8, 12
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Cell Transfer Delay Histogram
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Range: 0.2 - 0.4 sec.

Bin Size: 20 msec.

Mean CTD: 0.267 sec

Source: Sequence of
- VBR traffic w. PCR

150 Mb/s
- CBR traffic at:

150 Mb/s
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Cell Transfer Delay Histogram
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Range: 266,930 - 267,180 Nsec.

Bin Size: 10 Nsec.

Mean CTD = 267,063 Nsec.

Source: 15 Mb/s CBR for
35000 sec.
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Cell Burst Length

Range: 0 - 1000 cells

Bin Size: 20 cells

a..o	

Source: Uniform distribution
of burst lengths between
1 and 1000 cells.
PCR = 622 Mb/s
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AAL5 PDU Length

Range: 0 - 300 cells

Bin Size: 10 cells

Source: Sequence of PDUs with
fixed length of 250 cells
followed by PDUs with a

121.!.1.
	 fixed length of 150 cells
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C.p2MSMO/SM MNO—. AN Al" NeMn.N.	 NASA Wofth . Ss1.IM NsaMrls	 12	 f,cae

400



PDU Interarrival Histogram - VBR

Range: 0 - 500 cell slots

Bin Size: 5 cell slots

Source: VBR
with mean PDU length of 50 cells
PCR = 622 Mb/s
Average = 70 Mb/s
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Range: 0 - 500 cell slots.

Bin Size: 5 cell slots

Source: VBR
with fixed PDU length of 125 cells
PCR = 310 Mb/s
Average = 103 Mb/s
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PDU Cell Dispersion - CBR

Range: 0 - 100 cells

Bin Size: 1 cell

Source: sequence of
• 75 Mb/s CBR stream
• 20 Mb/s CBR stream
both transmitted via fixed size
50 cell long PDUs
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Range: 0 - 50 cells

Bin Size: 1 cell

Source: VBR stream with
PCR = 100 Mb/s

sequence of
ON/OFF with a mean ofi slots on and 10 slots off

rGCRA with SCR = 25 Mb/s
•MBS = 20 cells
•MBS = 5 cells
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Cell Transfer Delay - Metrics
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Conclusions

In these experiments (which only had one
session on the link):

• ACTS satellite link introduces less than 3 cell
slot jitter in transmitted traffic

• cell traffic tends to clump during transit
through the satellite terminals and on-board
processor

• cell transport delay dominated by path length

cw"N .01... ft—. M M" ft—..c	 NAU, M(aMMV: SN^I,.INMMIY. 	 1s	 Bellcore

404



Testbed for Satellite and Terrestrial Interoperability (TSTI)
A FY98 Program Product of 632-50-50 Communications - Terrestrial

J. Patrick Gary
Network Projects Leader

Earth and Space Data Computing Division/Code 930
NASA Goddard Space Flight Center

pat.gary@gsfc.nasa.gov
301-286-9539

June 5, 1998

Presentation at
Satellite Networks: Archectitures, Applications, and Technologies

Workshop

Testbed for Satellite and Terrestrial Interoperability
(TSTI)

Objective
Develop and demonstrate high degree of interoperability

between satellite- and terrestrial-based networks
- Develop Lind evaluate enhancements to protocols such as ATM

and TCP/IP

- Test and demonstrate new interface equipment hardware and
software

- Utilize and showcase ACTS performance, especially its high
data rate capabilities

- Extend HPCC network research program in Large Scale
Networks

- Open to U.S. satellite and terrestrial communications
carriers, equipment suppliers, and network providers
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Testbed for Satellite and Terrestrial Interoperability
(TSTI)

Specific Technical Objectives

Facilitate and conduct research and evaluations-of new
computer networking protocols and related
technologies which improve the interoperability of
satellite and terrestrial networks, e.g.,
» TCP: large windows (RFC 1323), SACK (RFC 2018), XTP

(RFC 1453)
» IP: TAG (cisco), flow (lpsilon), multi-protocol label switch

(IETF), RSVP, multicasting, IPv6
>> ATM: MPOA, PNNI, available bit rate traffic management
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ACTS Experiment #118
622 Mbps Network Tests Between ATDNet and MAGIC Via ACTS

PI's: J. Patrick Gary/NASA GSFC & Gary Minden/DARPA

2.0 Network Test Suites for the ATDNet-ACTS-MAGIC Network (AAMnet)
• 2.1 Assessment of Satellite Links on ATM Signaling (Co -1: Rich VeginskuFore ® NRL)
• 2.2 Tuning TCP over High Speed Satellite Links (Co-I: Pat Gary/GSFC)
w 2.3 Evaluation of ATM Flow Control and Traffic Monitoring Techniques in a 622 Mbps Hybrid

Satellite/Terrestrial Network (Co-[: victor Frost/KU)
• 2.4 Demonstration and Evaluation of Everyday Internet Applications across the AAMnet at 622

Mbps (co - [: Pat Gary/GSFC)
• 2.5 Demonstration and Evaluation of TerraVisioNlSS Operating over the AAMnet (Co- I: Jay

Feuquay/HSTX @ EDC)
• 2.6 Multimedia Telemedicine Applications Operating over the AAMnet (Co-I: Kenneth KempnedNlH)
• 2.7 Telemedicine-enabling R&D Testbed Experiments Operating over the AAMnet (Co -I: Mike Gilu

NLM)

• 2.8 Testbedding of New Applications at 622 Mbps (Co- I: Pat Gary/GSFC)
• 2.9 Native ATM Application Programmer Interface Testbed for Cluster-based Computing (Patrick

Dowd/NSA & UMD)
• 2.10 ARIES / ACTS 622 Mbps Experiment (David R. Beering/Amoco)
• 2.11 Multiplatform Evaluation of TCP/IP over ATM Interoperability Issues in a Hybrid Satellite

Environment (Dave Brooks/Steding @ LeRC)
• 2.12 Assessment of Effects of Hybrid Satellite/Terrestrial Networks on ATM Signalling (Tom von

Deak/LeRC)
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one OC-3c drop to extension sites
and
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ATDNet with Multiwavelength Optical Network (MONET)- the system of the future
Department of Defense:

ATDnet++ ... A fully switched Wavelength Division Networking Testhed

Proposed lute 1 999-2000: Mixture of wavelength	 WUN (u x 10.0 Gbps) 	 BA- Bell Atlantic
interchange & wavelength select devices	 Anio"mous Nd•-wk,	 SS - Silver Spring

11C - Barcroll
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Collaborations /End Sites with GSFC / 930
In TSTI-based Evaluations - Present

Academia Federal 

UCLA GSFC/910, JPL

[SFU] NLM
[WashU] NIH

EDC, LeRC

UHI, GUMC [TAMC]

UMD(Balti.County) LOC
LOC, NLM,
[Smithsonian,]
National Library of
Japan

Applications
	

Sat./Terr. Carriers

DGCM
	

ACTS Exp. #92

Telemedicine	 AAMnet/#118g
Teleradiology	 AAMnet/# 118f
TerraVision	 AAMnet1#118e

Teleradiology	 ATDNet-ACTS/#110

GLIN
	

ATDNet, Comsat/Intelsat
Trans-Pacific DL ATDNet, Comsat/Intelsat,

ACTS/NREN, MPT/CRL
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Collaborations /End Sites with GSFC / 930
In TSTI-based Evaluations - Present

Technology I do ustry Academia Federal

TCP LFN (RFC 1323) KU LeRC, JPL
TCP SACK (RFC 2018) PSC UCLA GSFC/505 & 540
XTP (RFC 1453) Mentat Concordia U. Sandia N.L.

(Quebec)

IP/TAG Switching Ipsilon, Cisco GSFC/505, ARC
(IETF MPLS WG)

IPv6/RSVP GSFC/505

ATM Transport Drivers UMD(College Park) NSA
ATM OC-3c Firewall STK/NSC, SPOCK NSA
ATM OC-12c Encryption SECANT, SPOCK NSA

M; 07/O7PA

Testbed for Satellite and Terrestrial Interoperability (TSTI)
A FY98 Program Product of 632-50-50 Communications - Terrestrial

• Recent Major Accomplishments
» Enabled first use of ACTS high data rate capabilities by GUMC,

KU, NIH, and NLM
7> Monthly highlights online at http://everest.gsfc.nasa.gov/

month.html
» Charalambos, C., et al., "Experimental and Simulation

Performance Results of TCP/IP over High-Speed ATM over
ACTS", http://www.ittc.ukans.edu/-ccharalalresearch.html

» LeRC set ACTS highwater throughput performance
— 520 Mbps memory-to-memory
— 320 Mbps aggregate (3 streams) tape-to-tape

» Protocol performance baselining by GSFC
— TCP, TCP-SACK, XTP
— BER: 0, 10E-11, 10E-10, 10E-9, 10E-8, 10E-7, 10E-6, 10E-5
— Delay: 0, 5, 71, 540 ms
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PNNI Architecture

ATDnet k

Secondary Sites

Trans-Pacific Digital Library
Experiment

Objectives
• Demonstrate and evaluate use of high performance satellite

communications and advanced data communications protocols to
enable interactive digital library data access between the U.S. Library
of Congress, the National Library of Japan, and other digital library
sites at 155 Mbps

The satellite links demonstrate effective use of geostationary satellite-
based communications in the Global Information Infrastructure
The data communications protocols will include both standard protocols
with recently specified options for performance enhancements and
experimental protocols designed for improved performance
Access will include interactive searches and retrievals of new on-line
digital library data, and will promote an understanding of the need for
ready access to these data
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Client/ Client/ Client/
Server Server Server

Sappora Japanese ASTER
Medical Diet Ground
Center Library Data System

Client/ ClienU
Server Server

National Library of Ccd"d
Library of Congress Space Flight
Medicine Center	 LPG

05/10/98

• Law Library of the Library of Congress
» Global Legal Information Network

• NASA Goddard Space Flight Center
» Trans-Pacific Access to GLOBE Visualizations in Real Time

• NIH National Library of Medicine
» Multi-Lingual Digital Anatomical Data Base

• USDA National Agricultural Laboratory
» Plant Genome Databases

Configuration of Networks for
Trans-Pacific Digital Library Experiment

N-STAR	 INTELSAT	 ACTS

0 -3 ATM\	 /0C -3  ATM\	 /OC-3112 ATM

IF/IF	 Ka RF/IF	 u RF/IF	 u RF/IF	 CTS	 S

ATM-SW	 ATM-SW
LLNL	 LeRC
-NTON-
AFlC	

WEN

Center
Transportable ES
for N-STAR

TBD	 ) t` TBD	 ) (	 TBD

A 1 M	 TBD	 )
us westt coast Client/

(e.g., Salt Creek, CA; Server
Omack, WA)
or Vancouver EDC

ATDNet
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Testbed for Satellite and Terrestrial Interoperability (TSTI)
A FY98 Program Product of 632-50-50 Communications - Terrestrial

• Major Milestones
FY98: TSTI development and instrumentation;

Support for PI & Co-I's at GSFC, KU, LeRC, NIH, and
NLM in 622 Mbps Network Tests between ATDNet and
MAGIC via ACTS (Exp. #118) and for others (e.g., GUMC
and GIBN Trans-Pacific Digital Library Experiment)

» FY99: Complete evaluations of IP switching and ATM traffic
management 4.0 explicit rate control in ABR;
Enable/expand testbed for use by other GIBN projects and
Satellite Alliance USA

» FY00: Initiate evaluations of IP RSVP and ATM QoS parameters
FY01: Complete evaluations of IP RSVP and ATM QoS

parameters

ESDCD On-Going Network Projects
More Info

• AAMNet: ADTNet-ACTS-MAGIC Network (622 Mbps)
• http://everest.gsfc.nasa.gov/SCTB/AAMNET_plan.html

• ATDNet:	 Advanced Technology Demonstration Network
• http://www.atd.net/

• GIBN DLE: Global Information Broadband Network Dig. Lib. Exp.
• http://dlt.gsfc.nasa.gov/gibn/

• GLIN:	 Global Legal Information System
• httpJ/Icweb2.loc.gov/law/GLINvl/GLIN.htmi

• HECN:	 High End Computer Networking (for HPCC/ESS)
• http://everest.gsfc.nasa.gov/

• TSTI:	 Testbed for Satellite and Terrestrial Interoperability
• httpJ/everest.gsfc.nasa.govfrSTI/TSTI.html
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Dan Shell
CISCO Systems Federal

dshell@cisco.com

• TCP/IP congestion controls with ATM
congestion controls over high data
rate/high delay links.
— Bandwidth * Delay = Buffer

— Random Early Detection
— Weighted Fair Queue

— ABR EFCI, RR

— RSVP (Resource Reservation Protocol)

— IP Precedence
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• PNNi using SVC links over high delay
links.
— Cell routing
— Convergence

• Classical IP /LANE
— Call setup
— ARP server placement, LEC/LES/BUS
— Congestion controls

— Generates high volumes of data.
— Uses TCP/IP as its transport.
— High speed data links needed.
— Standard enables communication between

various medical sources and users
(computer workstations, MR imagers, film
digitizers, archives, etc.)
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Satellite Interoperability
Questions

• Does TCP/IP congestion control work
effectively in a High Data Rate/ High
Delay network ?

• Does ATM congestion control work
effectively with TCP/IP congestion
controls in a High Data Rate / High
Delay Network ?

Satellite Interoperability
Questions (continued)

• Does PNNI work effectively over a High
Data Rate / High Delay Network ?

• Does Classical IP have any problems ?
• Does LANE work over satellites ?
• Does DICOM need some modifications

to work effectively over satelliltes?
• BW*D=Buffer, How much is enough?
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Satellite Interoperability
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j► Satellite Interoperability
Research Lab

ATMATM	 OC 3155 Mbps

or

OC-3155 Mbps
or

w'OC-12 622 Mbps	 ® N I	 OC-12622 Mbps

ATM	 ATM	 II u^+^

OC-3155 Mbps	 OC-3155 Mbps

LS 1010 OC-12 622 Mbps LS 1010 OC-12 622 Mbps LS 1010

Satellite Interoperability
Standards

"SATAMrotocol  Reference Model for Network Access

ATM Switch	 ATM Switch
Gateway ES	 Gateway ES

NYNNI	 UNVNNI
ly.	

Mpmt.	 MgmL	
Sip.

8ML	 SAAL

Satellite
ATM	 ATM	 ATM	 ATM

PNY	 PHY S	 a*-
	 57-1 PNy	 pHy

To Network Control Center (NCC)
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Satellite I nteroperability
Expectations

• TCP/IP congestion controls will work a
High Data Rate/ High Delay network but
may need to be adjusted.

• SVC's using Classical IP and LANE will
be useable but possible some timing
parameters may need to be adjusted.

• BW*D will be a combination of
congestion controls, timers, and buffers.

Satellite Interoperability
Expectations

• ATM congestion control and IP
congestion control interaction in this
environment is an unknown.

• PNNI parameters will probably need to
be adjusted for the high delay network.

• DICOM applications will need
adjustments for this network.
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Satellite Interoperability
Team

• Members of the Team
• Dan Glover	 NASA SAA3-131 Technical Manager
• Dan Shell	 CISCO SAA3-131 Technical Manager
• Dave Pleva	 SAA Network Engineer
• Greg Kubat	 LANE PI
• Tom Von Deak PNNI PI
• Mark Allman RED PI
• Cindy Tran	 TCP Over ABR PI
• Jim Griner	 High Speed TCP PI
• Paul Mallasch DICOM PI
• Bob Dimond	 Network Engineering Support
• Mike Zemic	 ACTS HDR Coordinator
• Will Ivancic	 NASA Technical Coordination

Satellite Interoperability

Thank You
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Session 7
ATM over Satellite Network

Quality of Service
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Traffic Management for
Satellite-ATM Networks
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Goals
. Traffic management

issues for TCP/IP based
data services over
satellite-ATM networks
. Discuss design issues for

TCP/IP over ATM
. Optimize the performance

of TCP/IP over ATM for
long delay networks
Evaluate ATM service

I 
- 

categories for TCP/IP
2" {	 traffic

Rohit Goyal. The Ohio State University 	 NASA Workshop'99

ATM Service Categories for Data
• Unspecified Bit Rate (UBR): User sends whenever it

wants. No guarantees made by network
• Guaranteed Frame- Rate (GFR): User sends whenever it

wants. Network guarantees a minimum frame rate, and fair
usage of excess capacity. Needs frame delineation info

• Available Bit Rate (ABR): User follows network feedback.
Network guarantees a minimum cell rate, and fair usage of
excess capacity. Network guarantees cell loss ratio

• Non-Real Time Variable Bit Rate (nrt-VBR): User
declares peak and average rates. Network guarantees cell
loss ratio

Designed for best effort and non-real time traffic
I Rohit Goyal. The Ohio State University	 NASA Workshop'99
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ATM Service Categories (contd.)

• Real Time Variable Bit Rate (VBR): User declares peak and
average rates. Network guarantees cell delay, cell delay variation
and cell loss ratio

• Constant Bit Rate (CBR): User declares peak rate. Network
guarantees cell delay, cell delay variation and cell loss ratio

Designed for real time traffic

Rohit Goyal. The Ohio State University 	 NASA Workshop'98
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CP over A

Rohit Goyal. The Ohio State
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Unspecified Bit Rate (UBR)

• Queuing: Single UBR queue

• Buffer Management
• Tail Drop: Low efficiency, low fairness
• Early Packet Discard. Low fairness
• Per-VC accounting: High efficiency, high fairness

• End-system Policies
• Vanilla TCP: Poor performance
• Fast Retrans. & Recov.: Bad for long latency
• Selective Ack: Good performance for long latency

• No control over sources => Potentially Large queues in
network

Rohit Goyal. The Ohio State University 	 NASA Workshop'98

UBR with Guaranteed Rate (G".R..)

• Queuing:
. Single queue with guaranteed minimum service rate

• Buffer management: Same as UBR

• End system policies: Same as UBR

• Improved performance of TCP due to guaranteed rate

• Cannot isolate traffic from different organizations
• Will not work for backbone networks
• May be OK for access networks

Rohit Goyal. The Ohio State University 	 NASA Workshop'98
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Guaranteed Frame Rate (GFR)

• Minimum rate guarantee for frames

• Complete frames are accepted or discarded in the switch

• Traffic policing is frame based

• Traffic conforming to MCR is served with low cell loss

• Traffic above MCR is served as best effort

• CLP=O frames given higher priority than CLP=1 frames

• Network can optionally tag frames exceeding MCR
(GFR.2)

• Good for backbone as well as access networks

Rob: Goya]. The Ohio State University 	 NASA Workshop'98

GFR (contd.)

• Equal MCR allocation
. Can do with FIFO and per-VC thresholds

• Unequal MCR allocation
. Difficult to provide per-VC MCR with FIFO for TCP/IP traffic

with high MCR allocation
. Easy to provide per-VC MCR with per-VC queuing

Rohit Goya]. The Ohio State University NASA Workshop'98

Queuing Per-VC FIFO

Buffer Management Per-VC
Thresholds

Global
Threshold

Tag-sensitive Buffer Mgmt 2 Thresholds 1 Threshold
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Available Bit Rate (ABR)

• Queuing: Single ABR queue or per-VC queues

• Feedback Control:
• Bit Based: Slow control, bad for long latency networks
• Explicit Rate: Fast control, bounded buffer requirements
• Virtual Source/Virtual Destination: Allows hop-by-hop control

& isolates terrestrial switches from effects of satellite latency

• Buffer Management:
• Less important with a good explicit rate scheme like ERICA+
• Bounded buffer requirements (Constant x round trip delay x

bandwidth) for zero loss for TCP/IP over ABR
. UBR-like buffer requirements at the edges of the ABR network

Rohit Goyal. The Ohio State University 	 NASA Workshop'98

UBR vs GFR vs ABR

UBR	 GFR	 ABR

No guarantee, Minimum rate +fair excess

Unfair	 Fair

Queue in network	 Queue at

network edges

Simple for user 	 Good for

provider

Same end-to-end or backbone Good if end-

to-end ATM

Rohit Goyal. The Ohio State University 	 SA Workshop'98
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Summary
• Design issues for TCP over ATM

• End system policies: Vanilla TCP, Fast Retr. Recov., SACK
• Feedback control: Explicit rate, binary, end-to-end, V SND
• Buffer management: tail drop, EPD, per-VC acc., tag sensitive
• Queuing: Per-Class, per-VC

• UBR: No guarantees, poor performance
• UBR w/ per-VC accounting: Good efficiency+fairness
• GR: Cannot isolate different VCs
• GFR: Per-VC minimum rate guarantees
• ABR: Congestion shifted to edge of network
• VS/VD: Isolate terrestrial segments from satellite

The Ohio State

Thank You
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Rohit Goyai. The Ohio State University 	 NASA Workshop'99
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Anil Agarwal and Prakash Chitre

COMSAT Laboratories, Clarksburg, MD 20871

(301) 428-4655	 (301) 428-4167

Anil.Agarwal@comsat.com Prakash.Chitre@comsaLcom
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ATM Via Satellite:
Link and Networking Technologies

• ATM Via Satellite: Key Challenges

• ATM Over (point-to-point) Satellite Links

• ATM Satellite Petworks

• Conclusions
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ATM Via Satellite: Key Challenges

Providing Fiber-like Quality (Cell Loss Ratio and Cell Error Ratio)
Time-varying bit error rates and bit error distribution

Effect on throughput Performance due to geosynchronous satellite delay
ATM Traffic Management, Congestion Control
End-to-end protocols, e.g,, TCP

Efficient Bandwidth Use
ATM and other ATM related protocols (such as ATM speech) are not
bandwidth efficient
Satellite resources are relatively expensive
Dynamic Bandwidth-on-Demand Concepts

Meeting Cell Delay Variation QoS Requirements
Satellite TDMA framing can result in unacceptable cell delay variation

3
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COMSAT ATM Link Accelerator - CLA-2000/ATM

Au
SMAWW" Part

S-"9, ft 3.4a WN.

ATM P- Port
DS-3, E3, RS-449,
(TI. E1.)

Provides fiber-like quality over satellite links for ATM
traffic

Improved DER (10.9 or better), low Cell Loss/Error Ratio
Calls protected using powerlui Reed Solomon coding
Intedaving to combat burst errors

Can correct 640 bit burst error
lrrored calls not delivered

Bandwidth Expansion
Adaptive Coding band on Measured Error rate
RsedSolomon coding overhead 0% - 7%
Idle calls not transmitted
Hader compression option (4% savings)

Traffic management
High priority, Low jitter for CBRNBR traffic (e.g., video)
Low priority, Large buffers for UDRIABR traffic (e.g.,
LAN data)

Lossiess Data Compression for traffic on selected VCs
2:1 compression ratio typical
Up to T7 fink rate

D53, E3, RS-449, (rf, El) ATM Interface

Satellite Interface, RS449, up to 8.448 Mbit/s

4
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Additional CLA-2000/ATM Features

Unique Framing, Acquisition and
Synchronization scheme

Low overhead
Fast Acquisition

Cell buffering
User configurable queue sizes for
different traffic types

Header compression
Compresses ATM header
Loss-less, adaptive
4% bandwidth savings

Transparent Mods Option
Turns off Reed-Solomon coding,
Interleaving and Compression

Support for Simplex links
Support for Asymmetric RatelDelay Links

Support for Low Speed Links
Configunbie

 me size
Interteaysr depth and

Reed Solomon fra 

Support for KG Encryption units

Support for RS-S30 and V25 interfaces

1:1 Redundancy option with automatic switchover

Plug and Play
ceDefauk nfiguretion useable across wide

range of link conditions
Management using local console or remotely over IP

Automatic "it-test on start-up

Diagnostics, Loopback capabilities

Performance statistics, link quality monitoring
Configuration Parameters

Saved in Hash memory
Console commands for editing
Factory configured defaults

Front panel LCD display

Flash memory for software storage
Software updates can be done In the field

Sun workstation based tools for software upgrade
over ethernet

Can also be ours using PC over console port

t:

ATM Via Satellite: Link and Networking Technologies
t.lecvt MFWr

CLA-2000/ATM Performance v/s BER

s M-02

a lE•a
IE-06

t: IE-08
IE•10

lE•12

tE•u
IE-18

Y IE•18

1E-20

IE-01 1E-02 1E-W IE44 IE-08 IE48 1E-07 IE-M 1E-06 1E•10

Oft Error Rata (bwary)

6
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CLA-2000/ATM Performance
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Example Operational Network

s
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National Network
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Internet
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Customer Promise
PBX
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COMSAT Link Accelerator / IP - CLA-2000/1P

IPtA
SWW WWAN Pad

j G	 I Rsrw,uPto3MW.

Eadw Wr son
108eurr

IP Routing over satellite and winless links
Provides fiber-like quality over satellite links for IP
traffic

Improved BER (10.9 or better)
Packets protected using powerful Reed-
Solomon coding
Interleaving to combat burst errors

Can correct 040 bit bunt error
Bandwidth Expansion

Adaptive Coding based on Measured Error fate
Reed-Solomon coding overhead 0%- 7%

Losslsss Data Contpnssion Option
2:1 compression =on typical
Up to T1 link fate

Satellite Interface, RS449, up to 3 Mb Ws

Support for asymmetric rata links, low-speed links

RED Queue Management
e.e.,l— aN.ect --

e

COMSAT	 ATM Via Satellite: Link and Networking Technologies

Linkway 2000 Service Overview

BarAvI h on Dwawle

AM Mash, Single "op conr=W*	
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Up to 2 Malwtor MM tensineb

Up to 22 WMh for Wye teemknl 	 National Network
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Linkway 2000 Service Features

ATM Service	 Packet Service
DS3, E3 Interface	 Frame Relay interface
Up to 6 MbWs of user data per Interface	 Serial Synchronous Interface, 64 Kbps - 2 Mbps
Support for CSR, VSR, ABR and USA traffic 	 PVC* Initially; SVCs later
PVCs initialy; SVCs law	 LAN Support using external Routers

Diaaal Circuit Service	 Future Services
ISDN PRI interfw% 230tD fn 308+D (Et)	 ISDN over SRI 2S+D Interface
Switched on-ft..w d nx64 Kbltls circuits 	 Direct LAN (TCPAP) connection
FWI ISDN signs ing support	 Analog 2W14W telephone Interface with
SS7 Signaling support for carrier Interconnect 	 compressed voice

TI/E1 interfaces using external converters

AN Interfaces and services concurrently supported In ati termbsi*I
Bandwidth on Demand for all services

11

@4'I COM	 T	 ATM Via Satellite: Link and Networking Technologies

Linkway 2000 Key Product Features
Network Capabilities

Mufti-carrier, TDMA

Mesh, Single hop connectivity

Carrier Rate: 2.5 Mbps

Demand assigned switched services

Concurrent Volco Video/Packet Services

Global and Spotbeam operation

Ku and C Band Operation

Compact, low-cost hardware

Support for 1OWS of terminals

Fault Tolerance

Redundant terminal option

Backup Reference Stations

Scaleable Terminal Sizes

Customer Premise Terminals

Low cost unit

Small Antenna (2.4 m)

Up to 2 interfaces

Optional Redundancy

Gateway Terminals

Up to 32 interfaces

Full redundancy

Uses "stack" of small terminal units

Intermediate Size Terminals

2 to 32 interfaces in increments of 2

Field Upgradeable

Optional Redundancy

12
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Linkway 2000 Bandwidth Management Features

Dynamic, Real-Time, Bandwidth on Demand

Bandwidth Management done centrally by NCC

NCC is a Sun workstation, connected to the Reference Terminal

Handles SVCs and PVCs

Handles ATM classes of services - UBR, VBR, CBR (ABR future)

Adaptive bandwidth allocation for UBR ATM circuits and for frame relay
Based on actual traffic measurements and network state
Fairness algorithms

Traffic Policing

Traffic aggregation

Multi-carrier, TDMA bandwidth management Algorithm
Variable sized bursts
Modem pooling for mufti-modem terminals
Fast execution algorithms

10
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Linkway 2000 Key Technical Challenges

TDMA Architecture to support multiple
services with BoD

Modulation/CodingMterleavjng
Adaptive Modulation/Coding
Acquisition and Synchronization
Stable Clock Generation using low cost

oscillators
Frequency Offset Management
Doppler Management
Power Control
Adaptation of Different Protocols

ATM, Frame Relay, ISDN, (IP)
Guaranteed GOS, Priorities
ATM Cell Delay Variation Control
Inverse muxing
Bandwidth Management Algorithms
Congestion Control Algorithms
Standards, Inter-operability
Network Management
Redundancy
Software Architecture - size, cost, complexity
Hardware - size, cost, complexity, modularity

On-GoiL
ATM
IP ov
IP M
Addting
Diresupport
TCPce Issues
Secu

16
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Linkway 2000 ATM Service Architecture

Customer Promise Terminal

V inEae Ari
rM.ak

Customer Premise Terminal

nouer

osa^Ea

Ari
area

vaeo

DS3 or E3 Terrestrial Interfaces
ATM Forum UN PVC Servicos
CBR, MAT, VBR-NRT, and UBR Classes of Service
Multiple concurrent VCs among terminal
Reserved and Dynarnle Bandwidth Management
ATM CoS
"Inverse Musing" o.sr muNgse modems and carriers she

is
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INTEROP 697 Demonstration
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Ka Band Operation

Network Capabilfties

COMSAT responding to NASA RFO for TDMAIFDMA Network System
Will initially supply 4 units with ATM, FR and ISDN interfaces

Additional features for operation over ACTS:
— Lower carrier rate option (0.5 to 1 Mbps)
— Asymmetric rate option (2.5 Mbps->, 0.5 Mbps <-)
— Support for On-Board Microwave Switch Matrix

TDMA synchronization
Dynamic Bandwidth Management

Linkway modem has been tested over ACTS satellite using USAT .
terminal

17
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Conclusions

New generation of satellite link and networking
products -

Provide High Ouality ATM Service over satellite
links

Provide Efficient use of satellite bandwidth

Meet Customer remands

is
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Satellite ATM Networks:
Architectural Issues and Challenges

Sastri Kota
Technical Consultant

Interactive Technology Center
Lockheed Martin Telecommunications

408-543-3140
sastri.kota@Imco.com

NASA Lewis Research Center Workshop on Satellite Networks:
Architectures, Applications and Technologies

Cleveland, Ohio
June 2-4, 1998

Lockheed Martin Telecommunications
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Satellite ATM Networks: Architectural Issues-and ......
Challenges

Sastri Kota
Lockheed Martin Telecommunications

Abstract

In this paper we present an overview of the Ka-Band satellite systems and broadband services and
applications which drive the broadband network architectures. We describe a Sate//he ATM Network
model and discuss various architectural options Including onboard versus ground switching and
processing, and GSO versus NGSO. For an Integrated Satellite ATM network model design issues such
as traffic management qualtty- of -Service (QoS) and media access protocols are discussed. The current
standard development activities for satellite networks is presented. We then Illustrate structure of the
TCP protocol stack, as an example of a popular and system protocol, over the ATM Unspecified Bit Rate
(UBR) category. We present simulation results for end -to-end delay performance of GEO and LEO
systems for a sample connection from New York to Paris and concluded that while GEO systems have a
large propagation delay, buffering delay can be significant in LEO networks.

Subsequently, we present an overview of Lockheed Martin's Astrolink System as a Satellite ATM
network example. Astrolink system is cumendy under active development Astrolink will provide global
bandwidth -an - demand utilizing a constellation of nine Ka-Band geosynchronous satellites deployed in
five orbital locations. The Astrolink will employ intersatelfite links, high gain spot beams, adaptive
coding in response to rain, and on-board ATM switching. Astrolink will enable global broadband
communication services at an affordable price.

..	 Lockheed Martin Telecommunications
QMrDM CtM laWMed Ma tC POMt
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Outline

• Broadband services

• Broadband applications
• Satellite ATM network architectures	 4
• Satellite ATM - issues and challenges
• Astrolink"m
• Conclusion

w•^••	 Lockheed Martin Telecommunications
cepnlme DIM L•WwW M.ron Corporstim

Broadband Services and Applications
What Interactive Broadband Services do Users Want? - an Asia Pacific Survey*

— Size Asia-Pacific market potential for select interactive services:
Entertainment	 Business	 Transactions	 Data / Communications
Broadcastirtg(DTH)	 •relewofk	 Teleshopping	 Internet Access
Video on Demand (VOD)	 Telemedicine	 Home Banking	 Electronic Massaging
Now VOD	 Video Conferendng Electrorc Commerce News on Demand
TV Co-Transmissions	 Interactive Ads 	 virtual CD-ROM
Karaoke on Demand	 Home Security	 Distance Learning
Games	 Willy Monitoring
Gambling

— Gauge consumer acceptance in 15 Asia-Pacific countries at 4 price points
(10 to 70 $USD per mo) over short term (3 yrs) and long term (7-10 yrs)

— Conclusions - Top Tier of Desired Applications
Distance Lemming 	 video Conhrancing
Gowmment and cultural support businus ens (MD)	 atrwy business tlsmand; saw al services cueaaly offwW

Internet Access	 Ho__... ms.Banldng
M$ZrM_W=_MTY gov, busMess and consumers 	 b1mg busaurss, clorrmut sewtel s•rvioss currently ofrsrad

Elearonie Msssmging 	 Talemedidne
Samew I-nr meta suv̂'^Irppo oTcarael boapinh to wrw tluparsW oomnwMdas

DTH Broadcasting
Perri pop —m—nndlmmulltMsnnsl TV, minimal cbN TV infr sWcb re

° Conducted during the period Jan to Mar 1997
»•rte	 Lockheed Martin Telecommunications

CoVpVM Otaee LsWrW Moron Corporation
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Interoperability Requirements

Informatlon Sarvbq
Bwinai Swvkss

k ^ Tnnrwcetlona

E Enuytalnmant

CC

_yo

3
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0
aZ<

1 to 5	 5 to 10	 10 to 15	 15 to 25	 25 to 35	 35 to 55	 55 to 55

Countries with population range (Millions) able to soand 25 SUSD par month

».na• Lockheed Martin Telecommunications
CopyrlW 0100E Loddmd M*rUn Co"mthn

Broadband System Applications

«.	 Lockheed Martin Telecommunications
CopynOM 0100E Lotldwd Mont CapomV n

445



Satellite Integration Lab
Provides the ability and expertise to rapidly simulate satellite network
architectures and Interfaces, to integrate and test terrestrial and satellite
optimized applications in both simulated and real end-to-end satellite
networks, and to research and compensate GEO satellite effects on data
communication protocols

Video

Voiee

Data
Li

• Interface and emulate antell is and hybrid ten•striallsatellits networks
Including GEO latency and random and burstAype bit errors

• Interface Etlromet, ATM, and telephony over satellhe
• Set up live *&Wlke links using comnuxclai Ku., Ka-band transponders
• Send video and data over live satellite links
• Set up satellite video confautcing.
• Integrate, test, and analyze performance of various network protocols

and applications over emulated and real satellite links
• Test performance of satellite and hybrid networks under traffic loading
• Development of TCPAP and TCPAP-ATM satellite g-sways

Lockheed Martin Telecommunications
•rase ^deduw

Ka-Band Satellite Systems

• High data rate services
— More bandwidth available —I GHz set aside for GSO primary use in U.S., 2.5

GHz available worldwide
• High capacity

— Multiple beam antenna technology and dual polarization
• Efficient routing

— Onboard processing and switching provide ability to route calls efficiently
• Dynamic resource allocation

— Satellite capacity can be allocated to the region depending on peak demands
• Small terminals

— Allows smaller but higher gain antennas
• 14 frequency filings, some of them are:

— Astrolink rm (Lockheed Martin)
— Cyberstar (Loral)
— GE' Star (GE American Comm)
— M-Star (Motorola)
— Speceway (Hughes)
— Teledesic (Teledesic)

••	 Lockheed Martin Telecommunications
rapyrgM CIM Loddrod Mahn CW"raWn

446



Satellite ATM Network Model

Inter-Satellite Link
!!!!!!!l^^^^^' 	 /

Space
/ Segment

Satellite ATM

	

Interface	 Satellite ATM
Intertace

A
ch	 Network Control Center

7ATM

Performance management	 ATM Switch
Configuration management

	

 Network	 Resource planning
Billing 	 Ground

Bridge Segment

Wireless	 ^\
LAN

wm, Ka.. R e.rr, WW F4 Jain, 48t at. 11TM 40-h '.hK ..1 C.n.tdrt.0.n.nd TCPAP ►: I.--
Poe. 1A•d K.a.nd Magian Co ft—, *"tw*.r 1911. MT, S—onto. K.h

^•	 Lockheed Martin Telecommunications
CMrMM 0,90► ,oWp d Madh Co"M on

Architectural Options and Issues

Options
• GSO vs NGSO (e.g., LEOs, MEOs)
• No onboard processing or switching
• Onboard processing with ground ATM switching
• Onboard processing and ATM switching
• Applications
• Services

Issues
• Media access control protocol
• Traffic management
• Interoperability with legacy networks
• QoS management

Lockheed Martin Telecommunications
C.pyrpM 0,009 t.eddw.d M.^
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Satellite ATM Versus
Terrestrial ATM

Attributes Terrestrial ATM Satellite ATM
• Encoding for HEC only Lank encoding powerful
error performing

-Signaling Standards Q.2931 Requires modifications
• DAMA No For efficient resource

utilization
• Traffic Standard ATMF V.4.0 Requires modifications
management

• User protocol UNI, NNI, etc. ST and Gateway
interface standards implementation

-Switching VP and VPIIVCI VPWCI
• Propagation Less impact, but number IETF developing efficient
delays of hops during the path algorithms (IPOS)

• Standards Have progressed well ITU 4B draft
Due October 98

»	 Lockheed Martin Telecommunications
CapyffgM W 	 Mm^Ce"^•

Onboard Processing and Switching

• Improved performance for error rates
- Separation of uplink and downlink
- Effective encoding techniques

• System efficiency
- Efficiency can improve from 37% to nearly 99.5% with packet

or cell switching
• Delay improvements

- Routing decisions onboard or via intersatellite links
- No end-to-end retransmissions

• Capacity improvements
- Multiple beams with dual polarization

I
"70% of the Ka-band programs forsee an onboard switch, 53% use fast

packet switch" — Proc. Third Ka-band utilization conference, pp. 281-285

-•n«=	 Lockheed Martin Telecommunications
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TCP/IP Over Satellite ATM Example

Host	 Host

Application	 Application

TCP/UDP	 TCP/UDP

IP	 IP

AAL	 Switch	 AAL

ATM	 ATM	 ATM	 ATM

SONET	 SONET	 MAC	 MAC	 SONET	 SONET

Physical	 Physical FPPhv Phv	 Fp'hv Phv	 Physical	 Physical

How does the TCP/IP protocol stack work with satellite ATM?

Lockheed Martin Telecommunications
Cppy 61M L*dMW MoNn Capomton

Satellite ATM Services Classes
• CBR (constant bit rate)

— User declares required rate. Throughput, delay, and delay
variation guaranteed. Circuit emulation

• VBR (variable bit rate)
— Declare average and maximum rate

• rt-VBR (real time): Conferencing. Max delay guaranteed
• nrt-VBR (non-real time): Stored video

• ABR (available bit rate)
— Source follows network feedback

• UBR (unspecified bit rate)
— User sends whenever it wants. No feedback. No guarantee.

Cells may be dropped during congestion

Most important benefit

Flexibility of ATM to allocate resources appropriate to each application's
needs while allowing sharing where possible to lower networking costs

Lockheed Martin Telecommunications
CopyMM01M LocW.W M.B C-pmWn
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Traffic Management Functions

• Connection Admission Control (CAC): Verify that the requested
bandwidth and quality of service (QoS) can be supported

• Traffic shaping: Limit burst length. Space-out cells
• Usage Parameter Control (UPC): Monitor and control traffic at the

network entrance
• Network resource management: Scheduling, queuing, resource

reservation
• Priority control. Cell Loss Priority (CLP)
• Selective cell discarding: Frame discard
• Feedback controls: Network tells the source to increase or decrease

its load

Traffic management version 4.0, requires
modifications to reflect Satell ,*e ATM

M	 Lockheed Martin Telecommunications
C•py'IpM61M Umkhr d M.d'n Capm Wn

Satellite ATM Attributes on QoS
Attribute Max CTD Peak-to-Peak CDV CLR CMR SECBR CER

Propagation delay on X
transmission media
Error characteristics X X X X
of transmission media
Switch architecture X X X
Processor and buffer X X X
capacity
Traffic load X X X X
Maximum nodes X X X X X X
allowed in a route
Resource allocation X X X
strategy
Network failure and X X X
restoration strategy

CLR: Call loss radio	 CMR: Cell misinsarfion raft
CM: Coll transfer Mlay 	 SECBR: Severely erred call block ratio
CDV: Beak-to-peak all delay variation 	 CER: GII error ratio

IS. ATM attributes consistent with terrestrial ATM

••• m	 Lockheed Martin Telecommunications
C.pyreM 01on I..am.w wm, C.-".
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TCP Issues

• Basic TCP: Slow start and congestion
avoidance
— Large retransmission timer granularity

b slow recovery from packet loss
• Reno TCP: Fast retransmit and recovery

— Fast recovery from single packet loss
— Very inefficient with multiple packet loss

• SACK TCP: Selective acknowledgments
— Fast recovery from multiple packet loss

For satellite networks, SACK TCP has the best performance

Lockheed Martin Telecommunications
em NO CIM LodM d Mntln Ceq..ftn

End-to-End Delay Peformance

• End-to-End Delay = Packet Transmission Delay
+ Propagation Delay
+ Buffering Delay
+ Switching and Processing

Satellite
Network

• Delay Variation:
— Handovers
— Satellite Motion
— Buffering and

processing
— Adaptive routing

Source 1	 /	 Destination 1

o	 Switch Switch	 o

Source N	 Destination N

5 ms	 5150/275 ms	 5 ms

Lockheed Martin Telecommunications
CWO" 01M LOWMd Meft Cw ffifiM
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New York to Paris: Delay Analysis*

Delay GEO (ms)
1 Satellite

6x11 (ms)
5 Satellites

124 (ms)
1

2x
0 Satellites

Transmission Negligible Negligible Negligible

Propagation (up+down+ISL) 250 60 77

Switching and Processing Negligible Negligible Negligible

Buffering (N queuing points) 0 to N*250 0 to N*60 0 to N*77

Total Delay 250 to 500 60 to 420 77 to 924

Simulation results indicate that a buffer size of about 0.5 RTT to 1 RTT is
sufficient to provide over 98% throughput to the SACK TCP traffic for long
latency networks and a larger number of sources**

R. Goyal, S. Kota and R. Join et al.. -Ana"Is end eMwMloe et d*W and buffer MfnenNnb of SaWk. ATM networks 1orTCP/
IP traSle eummMM to IEEE Journal of eeled[ed.In catnmunlealion

•• S. Kota, R. Ooyal, and R. Join, -SateMte ATM Network Arehkwb in l CensiderNMne and TCP/IP" psrbmMnes, Third Ka4ymd
utk4ekon conference. Sorrento. Unity, S•ptamOer 1997. pp. 4614U

«•	 Lockheed Martin Telecommunications
Capyrpht SIM Latldred Martin Corpara0an

Satellite ATM: Standards Activities

• ITU-R WP 4B — Developed draft new recommendation on S. ATM
and S. ATM availability (to be approved by October 1998)

• ITU-R WP 4B — Initiated draft new recommendation on Ka-band
performance, March 1998

• TIA/EIA released "Satellite ATM Networks: Architectures and
Guidelines"

• ATM forum: Wireless ATM Working Group initiated a Mobile
Switching Subworking Group in ATM forum meeting, April 19-24,
1998, Berlin

• IETF: Internet protocol over satellite (IPOS) has released a draft
specification

A good coordination requires to be established via liaison

• ^•	 Lockheed Martin Telecommunications
Copyripht 01999 Lodiho" Martin Cmporetbn
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AstrolinkTM is ...

... a Global Satellite Network

Employing
• Up to 9 GSO satellites
• Satellite onboard processing
• Ka-band (20/30 GHz) frequencies
• 3 Classes of user terminals
• Gateway earth stations
• Intersatellke links

Based On

• ATM Protocol

Providing
• Interactive 2-way services - data, voice, video

,and multimedia
• Bandwidth-on-demand - 18 kbps to 10.4
Mbps

• Quality of service options tailored to
applications

• Secure private virtual circuits
• Interoperability with terrestrial networks
• Connectivity to and from external users via

gateways

..	 Lockheed Martin Telecommunications
CepynpM GIM Lodtliosd Menln Corporation

Astrolink*rm Services

Medical

eowmtnant

Trawl and
Tranapautbn	 A ^i^

software
Distribution

Tsu on

mw	 i)
Fax

Email
EFT (1 u 1)
arnunetric eraak,

LAN te_DU-
Intemet Access
Intranet
Games
ECommercelED1
MulGast
Trunked Telephony
symmNric tra ft, data

___.^, .._____..._. _.._...•
..	 Rwm1/Weacenferondng
.. 

Inge Tramter
yid-Tnnsur

uteratUw CAD/CAM
nu	 wt	 Business	 CADICAM Work Electronic Product Distnb.

(syw, video, runic, books)
and Education	

Distance Learninga	 duce	

symmetric traffic.
Aay"UndrictrOft

vWeo and data MtwsHe trnapa Intsasive

Astrolink Tm will provide wideband global
connectivity for enterprise applications

Lockheed Martin Telecommunications
CopynW 01998 L.Mw•d Msrtin Corporation
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str link TM Satellite

Lockheed Martin Telecommunications
DING L.M." Manln Cerpontbn

strolinkTm 9 Satellite Constellation

ATLANTIC • +^ `EUROPE, AFRICA, AND WESY

	

2f• W -a 27.6• W	 `^	 A31A
37®E -r 36° E - r E

	

IMera Wflte link	 New orbital locations are result of coordination process

Lockheed Martin Telecommunications
Madan Corpomtbn
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Typical Beam Coverage*
Americas

Atlantic

Euro

Asia

Nun6w vW locabon of b° IsundeWingopft Won	 Lockheed Martin Telecommunications
CapyVR DI ON Loddwad Maft Corpmhon

User Terminal Access Concept
B A

G F
Downlink

D TDM

C
B

	

FITS	 A
Uplink FDMAITDMA

Pulsed Signals 	 Ftt4
(Bursts)

F1T3 F2T3

F1T1	 F2T1 F3T1	
. F4T2

A	 B	 C	 D	 E	 F	 G

Lockheed Martin Telecommunications
CapyngM OWN LOW—d Made Caq—Wn
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Network Architecture
r
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User Networking
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Lockheed Martin Telecommunications
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Ground Operations

• Regional Network Control Center (NCC)
-Manages and allocates satellite resources

as required
- Controls all satellite payload operations
- Controls all traffic within a given satellite
-Validates users
-Provides call setup and tear-down, data

rate, frequency, and time slot (DAMA)
assignments

-Collects billing information
-Provides billing and system utilization

data to local ASP and Master Network
Control Center

mm

• Spacecraft Operations Canter
- Performs satellite housekeeping

functions
• Attitude control, thermal and

power managemant
• Monitors and evaluates

spacecraft health
- Plans and executes

stationkeeping maneuvers
- Plans for contingencies

• Implements backup
redundancy recovery

• Master Network Control Center
-Performs overall network

resource management
-Collects usage statistics
-Operates as clearing house

between regional NCCs

Lockheed Martin Telecommunications
CepynpM of ON L•ckh ed Marlin

Conclusions

• Satellite ATM architectural options exist in terms of onboard
processing and switching

• Trade-off analyses for performance, complexity, and cost dictate
the selection of the system architecture

• Standards organizations are progressing well with
recommendations and baseline documents

• Astrollnk TN1 is an example of such a satellite ATM network for
broadband services

Lockheed Martin Telecommunications
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FPGA Based Reconf gurable
ATM Switch Test Bed

Pong P. Chu
Electrical and Computer Engineering Dept

Cleveland State University

Robert E. Jones
NASA Lewis Research Ceitter

Network Performance Evaluation

• Seeking optimal configuration
• Difficult in general:

— performance effected by switch architecture,
network topology, protocols, incoming traffic
patterns etc.

— system characterized by many stochastic
processes
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Traditional ADDroach

♦ Theoretical model with closed-form solution
— extremely simple model; e.g., M/M/1 queue

♦ Theoretical model without closed-form solution
— with an analytical procedure to obtain solution

— more realistic, but still with lots of assumptions and
approximations

♦ Prototyping physical system
— expensive, inflexible

— technology may not exist yet

♦ Software simulation
— can model at any level of abstraction

— require several orders of magnitude of CPU clocks to
simulate 1 real-time clock

— e.g., experience from an earlier ATM switch project
» it takes 0.1 to 1 m sec to simulate the operation of one cell

(using BoNES Designer Software in Sun Sparc II)
it will require more than 100 days to measure a buffer with
a cell loss probability of 10-7
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Hardware Emulation

• Use hardware to accelerate simulation
• Construct customized circuit to model various

network components
• Recent advances in FPGA (Field Programmable

Gate Array) technology make this possible
— FPGA: "generic logic" that can be configured to

different functions by loading different files

— a chip can accommodate circuit with 100,000 gates

— synthesis CAD software simplifies implementation

Test Bed Highlights
• Model the operation of an ATM-like switch

based network in an FPGA board
• Model data-link level functionality (such as

buffer management, congestion control etc,)
• Use a host PC to control and monitor the

operation of the FPGA board
• Most design, synthesis, and simulation are

based on industrial standard VHDL language
• Design goal: modular, scalable, reconfigurable
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Design Environment
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Abstract Sheared-Memory Switch

♦ Model after a shared-memory ATM switch
• Process only the cell header
• Perform only data-link level functionality
• Include control circuit, FIFO buffer and status

circuit.
♦ Incorporate three buffer management schemes:

complete sharing, complete partition, and
sharing with maximal queue length

Detailed Switch Diagram
--^..
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Traffic Generator

♦ Cell format:
— header only (destination port etc.)

♦ Traffic generator
— Cell trigger generator

deterministic arrival
Poisson arrival

» Markov modulated Poisson arrival

— Cell destination port generator
» uniformly distributed

unbalanced

Data Collection Circuit and
User Interface

♦ Data collection circuit
— gather statistics on total cell arrival, cell loss due to

global buffer overflow, and cell loss due to FIFO
overflow

♦ User interface
— Hardware: PC ISA bus interface in FPGA board; all

registers of test bed can be accesses as PC's memory

— Software: C routines to download configuration file
to the FPGA board, to set up the test bed, to monitor
the board operation and to retrieve collected data
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Initial Results
• Test bed was designed to study cell loss probability

of various memory management schemes

• It was fitted into one 100,000-gate FPGA board

• Performance
— max clock about 15 MHz

— can emulate about 3 M cell arrivals per sec
(1.2 G bits per sec)

— 5.5 min to emulate 10 9 cell arrivals

• Emulation increases speed by a factor of 103 to 105

Example: System Load vs Cell Loss Probability
w/ Different Buffer Sizes in an 8x8 Switch
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Conclusions

• Advances in FPGA make hardware emulation
feasible for performance evaluation

• Hardware emulation can provide several orders
of magnitude speed-up over software
simulation

• Due to the complexity of hardware synthesis
process, development in emulation is much
more difficult than simulation and requires
knowledge in both networks and digital design
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Access Technology and Protocols
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User
(TCP)

Router

ModemModem

I

Integrated Packet/ Modem
Processing
for Transportable Terminals

Gorry Fairhurst
Department of Engineering
University of Aberdeen

Who needs to know this?
G. Fairhurst

People designing modems

Mobile terminals
Transportable / rapid deployed terminals
Terminals suffering interference
High availability systems

People refining TCP
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"Normal" Satellite Links
G. Fairhurst

Router
	

Router
^^	 s

User	 'War	 User
(TCP)
	

(TCP)

Modem
	

Modem

TCP, routers and modems operate independently

TCP Link Performance
G. Fairhurst

Observation

Packet loss due to link errors
significantly reduces performance

TCP Issues

Optimised for congestion loss

Can be improved by
Modifying TCP

Improving modem
Link layer ARQ

100
0

v 80

60

W 40
CL
a, 20

.tee 
0 -1 	 I

I-	 10-7 10-61 0-5 10-410-3
Bit Error Rate

Simulation results using a 64kbps link
with 280ms propagation delay
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Solution l: FEC
G. Fairhurst

May achieve any BER
Need to identify worst case Eb/No

Issues
Overhead
Outages

How Much FEC?
G. Fairhurst

1.0
0.9
0.8
0.7

jE 0.6
W 0.5

Co  0.4

rn 0.3
o 0.2

Fes.. 0.1
0.0

10-5	 10-4	 10-3	 10-2	 10-1 BER
9.6 dB	 8.7	 6.7	 4.1	 Eb/No (dB)

Use as much FEC as you like,
- but still pay for it when you don't need it.

For 99.9% of time little may be needed

471



Solution 2.• Link AR
G. Fairhurst

Link ARQ may provide reliability
Issues

Packet overhead
Variable delay
Utilisation

HDLC Link ARQ
G. Fairhurst

1.0

Protocol -

SREJ

0.6 _.._._. _...__ _.	 _.._:^	 _ ._......__.....__._.._ —0-- SREJ

MREJa
.c 0.4 MSREJ

BREJ+PCR
° 0,2 SREJ+PCR

17 -MREJ+PCR -
0.0	

510 1	
4

-i-- MSREJ+PCR
10 ^ 3

Bit Error Rate (BER)
.

Large selection of known ARQ techniques
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Strictly Reliable Link Protocol
G. Fairhurst

Observation

Performance not much improved

Strict reliability guarantees

No loss (i.e. error recovery)
No duplication
Sequence delivery

010...

80	

u_

m
60

W

= 40
CL
t
"m 2Q o TCP/HDLC
2	 o Theoretical M mum

- 10-710'6 10`5 10'4 10-3
Bit Error Rate

Simulation results using a 64kbps link
with 280ms propagation delay

Issue

Delay due to link protocol sequencing and recovery

Sequencing and Reco very Delay
G. Fairhurst

Packets from different applications

Receiver
sequencing buffer

Delay due to error recovery

Delay due to sequencing
Interaction between different applications
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C TCP/RDLP
20 a TCP/RDLP/RDLA

C Theoretical Maximu

0 10-7 10-6 10-5 104 10-3
Bit Error Rate

Simulation results using a 64kbps link
with 280ms propagation delay

TCP / Link Interaction
G. Fairhurst

TCP retransmits packet one

CP Retransmission Time Out14------T 	 ----.I-

Forwards all buffered TCP packefs
after recovery of packet 1

End-to-end (e.g. TCP) and link (e.g. HDLC) error recovery interac

A Robust Data Link
G. Fairhurst

TCP doesn't need strict reliability

Needs timely delivery

Efficient error recovery (RDLP)

Limit number of
retransmission requests

Provides out of order delivery

Segmentation (RDLA)

Transparent segmentation
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Solution 3 • Integrated Modern
G. Fairhurst

2
O
V
Q

Options
Modulator may pick from range of options (Eb/No)
Demodulator knows much about channel state
There is a great deal of synchenisation

Adaptive FEC: Smart Codec

10-5	10-4	 10-3	 10-2

9.6 dB	 8.7	 6.7	 4.1	 Eb/No (dB)
May adapt modem waveform to channel state

For 99% time the channel may be benign
Issues

Channel state estimation
Best effort service (also needs FEC/ARQ)
Capacity of link varies

475



04	 Time (s)
10 0	 1000 2020 30
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Link Throughput
1 r ----

Adaptive FE

Typical Rain Fade

G. Fairhurst

00	 Adaptive FEC:
Improves clear sky performance
Varies path capacity
Accepts some loss

Q. 0.4 Smart
CD 0.3 Performance bf	 Codec

Codec
tracks

_fixed 1/2 rate code standard U2	 selects upward0 0.2 codec	 1/2 movement
urtcoded channel ~ 0 1 coded " of channel

channel state
Smart Codec 0

0 500 1000	 1500	 2000	 2500	 3000	 3500
time (s)

Where Next?
G. Fairhurst

Link Adaption (with partial reliability)

Modulation
FEC
ARQ

Link Indication to TCP
Explicit loss
Path change indication
Congestion indication

TCP Modifications

SACK
RTO calculation
Loss differentiation
Start-up behaviour
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Conclusions
G. Fairhurst

Satellite links may be made error4ree
FEC
Strict Reliability
Outages may still be possible

Performance tradeoffs exist at various layers

Link must complement TCP behaviour
TCP doesn't need strict reliability
Delay variation should be limited
Interaction between applications minimised

It would be nice if TCP were smarter:-)
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Multiple Priority Distributed Round Robin
ATM Satellite MAC Protocol

Bill Shvodian
Lockheed Martin Federal Systems

Building 1101012
9500 Godwin Drive

Manassas, VA 20110
bill.shvodian@lmco.com

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS

Multiple Priority Distributed Round Robin
Introduction

• ATM Processing Satellite Description
• Traffic Types
• Satellite ATM MAC Challenges
• Proposed MAC Protocols for Satellite ATM
• MPDRR Description
• MPDRR OPNETTM Simulation Results

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS
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T,

♦ Voice
♦ Video
• LAN Interconnection
• Telemedicine
• Internet Access
• Telecommuting 40

Multiple Priority Distributed Round Robin
Processing Satellite Technology

• Multiple Spot Beams
• Digital On Board
Processing

♦ On Board Fast Packet
Switch

♦ MF-TDMA Uplinks, TDM
Downlinks

♦ Many Terminals Sharing
the Uplink Bandwidth

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS

Multiple Priority Distributed Round Robin
Examples of Services

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS
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Multiple Priority Distributed Round Robin
ATM Traffic Classes

• Constant Bit Rate (CBR)
• Variable Bit Rate - real time (VBR-rt)
• Variable Bit Rate - non real time (VBR-nrt)
• Available Bit Rate (ABR)

— Higher Priority for Minimum Cell Rate (MCR)
• Unspecified Bit Rate (UBR)

- Higher Priority for UBR+ Guaranteed Rate
• ATM Signaling

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS

Multiple Priority Distributed Round Robin
Satellite ATM MAC Protocol Challenges

♦ Satellite Terminals Need to
Share Uplink Bandwidth

♦ Bursty Data Traffic Requires
Flexible Bandwidth Allocation
(Bandwidth-on-Demand)

♦ Random Access Protocols
Perform Poorly During High
Utilization and Cannot Provide
QoS Guarantees

♦ MF-TDMA Uplinks Increase
MAC complexity compared to
TDMA

0*0

IL
	

44
k 4

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS
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Multiple Priority Distributed Round Robin
Satellite ATM MAC Protocol Challenges (cont.) ,_. ,

♦ MF-TDMA Frame Structure 	 FREQUENCIES

o Terminals Can Only Transmit 	 n rz n 
f4	

iF

on One Frequency at a time, 	 slot l
Slot z

i.e., Slot Assignments Must Not Slot 
Slot 4	 FOverlap in Time	 Slots	 R

♦ Each Terminal Can Be	 Slot ;	 M
As signed Up to N Slots 	 Slote	 E

Slot,

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS

Multiple Priority Distributed Round Robin
Satellite ATM MAC Protocol Challenges (cost.)

♦ Satellite Mass and Power
Restrictions Limit On-Board
Complexity

♦ Terminals Complexity is
Limited by Cost Constraints

♦ The Propagation Delay of
Geostationary Satellites
Impacts MAC Performance

00

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS
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Multiple Priority Distributed Round Robin
Proposed ATM Satellite MAC Protocols

♦ Protocols
— CFDAMA1
— Distributed Access Protocol2
— Hierarchical Round Robin3
— Round Robin Reservation DAMA4

♦ Areas for Improvement
— Most Protocols Designed for TDMA Uplinks
— MF-TDMA Slot Assignments Not Addressed in the Literature
— Only Round Robin Reservation Designed for Distributed Control

[1]J. I. Mohammed, T. Le-Ngoc, "Performance Analysis of Combined Free/Demand Assignment Multiple Access (CFDAMA) Protocol for
Packet Satellite Communications," ICCC'94, pp. 869-873
[2]F. D. Priscoli, M. Listanti, A. Roveri, A. Vemucci, "A Distributed Access Protocol for an ATM User-Oriented Satellite System,"
Proceedings of the ICC '89, June 1989, paper 22.1.
[3]A. Hung, M.-J. Montpetit, G. Kesidis, "ATM via Satellite: A Framework and Implementation," Wireless Networks, Vol. IV, No. 2, 1998
[4]S. L. Kota, J. D. Kallaus, "Reservation Access Protocol for Multiplanar ATM Switched atellite Ne work (MASSNet)," A9LCOM '94

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS

Multiple Priority Distributed Round Robin
MPDRR Overview

♦ Multiple Priority Distributed Round Robin (MPDRR)
Protocol Developed

♦ Designed for (But Not Limited To) Use in ATM Over
Geostationary Satellites With MF-TDMA Uplinks

♦ Designed for Distributed Control, but Will Also
Work With Centralized Control

♦ OPNET Model Built for MPDRR Simulation

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS
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Multiple Priority Distributed Round Robin
MPDRR Superframe Structure

• F Frequencies
• N Slots per Frame
• M Data Frames per Superframe
• One Overhead Frame (Request Slots) per Superframe
• NxF Total Data Slots per Frame
• NxFxM Total Data Slots per Superframe

Superframe
Overhead Frame	 Frame 1	 Frame M

f1

f2

W11

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS

Multiple Priority Distributed Round Robin
MPDRR Slot Allocation and Assignment

♦ MPDRR Performs Slot Allocation First, Then Slot
Assignment. All Slots Are Re-allocated and Assigned
Every Superframe to Simplify Assignment Processing.

♦ Slot Allocation: Calculate the Number of Slots to be
Assigned to Each Terminal

— Terminals Assigned up to N Slots
— Slots Allocated Based on Request Priority

♦ Slot Assignment: Slot Frame Position (Time) and
Frequency for Each Terminal Is Calculated

♦ Slot Assignments Are the Same for Every Frame in the
Superframe

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS
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Multiple Priority Distributed Round Robin
Sequential Slot Assignment

Sequential Slot Assignment Guarantees No Frequency
Overlap

♦ No Wasted Slots Because All Slots Re-assigned Every
Superframe

• Simplicity Enables Distributed Control
• Terminals Must Change Frequencies Within a Frame

F1 T1 T1 T1 T1 T1 T1 T1 T1 T2 T2

F2 T2 T2 T2 T2 T2 T2 T3 T3 T3 T3

F3 T3 T3 T3 T3 T4 T4 T4 T4 T4 T4

F4 T4 T4 TS T5 T5 T5 TS T5 T5 T5

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS

Multiple Priority Distributed Round Robin
MPDRR Overview

♦ Terminals Calculate the Number of Slots to Request for Each
Priority

♦ Terminals Transmit Request Messages in Assigned Overhead
Slots

♦ The Satellite Receives Request Messages and Transmits Them on
the Proper Downlink

♦ Terminals Receive and Sort Request Message From All Terminals
in Their Group

♦ Terminals Calculate the Slot Allocation for Each Terminal, for
Each Level of Priority Using a Round Robin Algorithm

♦ Terminals Calculate the Slot Assignment for Each Terminal (Time
and Frequency) Using the Sequential Assignment Algorithm

♦ Terminals Transmit on Their Assigned Slots Starting With the
Next Superframe

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS
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Multiple Priority Distributed Round Robin
MPDRR OPNET Preliminary Simulation Results

• One, Two, Four and Eight 384 kbps Uplink Channels
• Markov Modulated Poisson Process (MMPP) Used as

Bursty Traffic Sources
— Peak Bit Rate = 128 kbps
— Mean Burst Length =16250 bytes
— Activity Factor= 0.1

♦ Uplink Delays Only on Charts

LOCKHEED MAR71N FEDERAL SYSTEMS MANASSAS

Multiple Priority Distributed Round Robin
Extra Slots Allocated Fairly to all Terminals

3

	

2.5	 I	 I

I	 2	 —s-1 channel

	

1.5	 I	 I	 I	 -a— 2 channel
p	 I 14 channel

8 channel
0.5

	

0	 I
0	 0.5	 1

Utilization
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Multiple Priority Distributed Round Robin
Extra Slots Allocated to Active* Terminals First l

3

2.5

	

2	 t 1 channel

	

1.5	
-a— 2 channel

®	 —r-4 channel

1	 —>E— 8 channel

	

0.5	 I

	

0
	 LID

0	 0.5	 1

Utilization i

• Terminals with pending slot requests
LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS

Multiple Priority Distributed Round Robin
Conclusions

♦ ATM Processing Satellites with MF-TDMA Uplinks
Require a New MAC Protocol

• MPDRR Is a Candidate MAC for Satellite ATM
• Preliminary Simulation Results Demonstrate the

Benefit of Sharing Uplink Channels
♦ Further Analysis and Simulation Planned

LOCKHEED MARTIN FEDERAL SYSTEMS MANASSAS
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Center for Satellite and Hybrid
Communication Networks

Flow Control and Dynamic Bandwidth
Allocation in DBS-Based Internet

John S. Baras	 Gabriel Olariu
Center for Satellite and Hybrid 	 and	 Hughes Network Systems

Communication Networks

University Of Maryland

College Park

Satellite Networks: Architectures, Applications and Technologies
NASA Lewis Research Center

June 3, 1998

ioDBS - based Hybrid Internet Service

• Conventional Internet access either too slow or too
expensive

• DirecPC Turbo InternetTM
• conceived and designed by the University of Maryland
• productized and marketed by Hughes Network Systems

• Awards
• 1994 Outstanding Invention of the Year, Univ. of Maryland
• ComNet `96 New Product Achievement Award (wireless)
• 1996 "Hot Product", network services, Data Comm. Magazine
• 1996 Technical Excellence Award (Net. Hardware), PC Mgzine
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using IP- within -IP
encapsulation

• Hybrid Gateway
- Decapsulates traffic
- Performs tasks on
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better throughput
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El DBS-based Hybrid Internet Service:
Performance Bottlenecks

The Internet
(Conventional TCP/IP network)

wppliution	 &r[fa
Server	

space,.
........... Data
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A partially observed control problem

DireePC network
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2	 Hybrid Internet Service:
Extensions

• Two IETF WGs: TCP over Satellite and Unidirectional routing

• Intelligent asymmetric data transmission
• Low data-rate (or "short length") via terrestrial
• High data-rate (or "bulky") via satellite

• Terrestrial LAN extension of DBS-based Internet
• Distribute DBS services from a single receiver to multiple users
• Satellite hybrid hosts can redistribute data to mobile users
• "Local loop" anything: Ethernet, ATM, cable TV, wireless

• Reliable multicast over hybrid networks

• Hybrid Internet service over other hybrid network architectures

io	

Architecture of the Hybrid
Internet Service Network

•HH: Hybrid Host

•IH: Internet Host
(Server)

•ISP: Internet
Service Provider

•HGW: Hybrid
Gateway

•SGW: Satellite
Gateway

•NOC: Network
Operations Center
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Network Operations Center (NOC)
for Hybrid Internet Service

• Congestion control : TCP and TCP Spoofmg
Satellite channel bandwidth allocation

• HGW : first NOC object that receives data ( Router)
- HGW prioritizes Hybrid Internet traffic

• SGW jobs : mixture of Internet and exogenous traffic
- Exogenous traffic: package delivery and data feed traffic

- SGW maintains four queues : two for package delivery and data feed
two for the two priority levels of Internet

• Exogenous traffic high priority: fluctuations
in bandwidth allocated to Hybrid Internet

• Self-similar traffic: Interactive users as ON-OFF processes

Flow Control Analysis Model

(1) Data connection:
IS sends data to
corresponding HH

(2) Acknowledgments:
From HGW to IS

(3) Acknowledgments:
From HH to HGW

SGW has two queues:
High priority
Low priority

SGW policy: if the number of un-acknowledged bytes for a connection is less
than a configurable, but fixed, threshold value, then these packets are hi	 rioril
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E

Source Traffic Model

Problem:

• Independent sources ISO), M, 2, ..., M, send data to IHIs via NOC
• Find maximum M allowed without producing overflow in the NOC

'(1)	 a)	
) = Bk( ' ) + 

(i)
k	 k+1	

Ok(i	 I

B	 Pareto ,
fin. mean, inf. variance

k	 k+1	 W

Arrival epochs : ak

1A B 0)	 a	 Packet generation rate
k	 k k	 k+1	 t	

0) p1s , if IS busy
"k	 0, if IS fiddle

The Aggregate Process
in the Limit of Many Sources

k` ) = Ps• Averagerate	 E A )" B
I . I	 A1B + PI

• Aggregate arrival traffic: integer valued random point process

a(M)=jak(M)jkEZj

• Marked point process (Mark = duration of busy period)

(a(M),B(M))=fak(M),Bk(M)jkE=- ZI
• Likhanov et al (1995): Take limit as M --> oo, so that

M I(E[B] + E[I]) = const. '	 E[B] = const. 
and 

E[1]	 )oo

^JM)= No of busy periods arriving at a generic queue at time k
^k M tends to a Poisson with rate

In (a, B,,), B., is independent from a. and
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The Service Facility (NOC)

a
• Each arrival has

a

kIRH

k	 service requirement Yk

• Aggregate traffic
a6} 	 k	 shares buffer spacek

Source level analysis

• For individual source we have a G/D/1 queue (constant packet size)

• Aggregate traffic is Poisson for large M: So we have a M/G/1 queue
- Solve for the stationary state-occupancy probabilities
- State X= f xk I k E Z = No of sources in the queue at time k;
- Arrival process : the aggregate process ^k with rate Z
- Service process, heavy tailed, Pareto; Stationarity if P = AP B < 1

El The Service Facility (NOC)

• Probability that 1 new sources will enter queue during one busy period;
Used in network dimensioning: An estimate for the No of connections that
can be busy during a typical ON period

P; — i!
i=1

• Balance equati s
q,=P[X k =i] 	 q0=1—APB

1	 jRi+i = —[q j – 	P: q j-;+l – Pj qo
Po	 i=i

• Packet level analysis: loss probability in finite capacity queue (Likhanov)
C	 a^B )1+a I-a

Pions – a (a + 1) ( 
R	 L
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2	 NOC Simulation Results

0
x

Probability that a large number of
sources will joint the queue
during a busy period
Prob. of No of sources in queue
decreases algebraically fast

	

-	 -	 -	 --

-

	

m	-- ---+---^--

b

	

0	 NO L] itl OG b0 {0 ]OD YO mD 1U0n+W^rl

100 sources aggregated.
Each source: 1 packet / simulation clock
No of sources in busy state at any moment

NOC:
Bandwidth Allocation Strategies

• All strategies: controller knows (per connection) queue status
• Demand at time t : No of packets in queue not sent and unACK,

and No of packets that have just arrived
• Queue length used to determine buffer availability for newly arrived packets

• Three strategies investigated:
• Equal Bandwidth allocation (EB)
• Fair Bandwidth allocation (FB)
• Most Delayed Queue Served First Bandwidth allocation (MDQSF)

• In EB demands may be zero for many instants: waste of BW

• FB better for connection requests and min, waste of BW

• MDQSF is best
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NOC:
Bandwidth Allocation Strategies

• Equal Bandwidth Allocation (EB)
• Step 1: Find the number of connections with non-zero demand
• Step 2: Allocate the whole bandwidth equally to connections in

the set generated at Step 1
• Steps 1, 2 performed on-line. Necessitates large computing

resources for simulation and for real-world implementation
• Demands may be zero for a large set of clock instants
• Positive impact on delay, but significant waste of bandwidth

NOC:
Bandwidth Allocation Strategies

^ FairBandwidth Allocation ^(TB)
• Step 1: Find number of connections with non-zero demand

• Step 2.1: If sum of individual demands < total bandwidth, allocate as
requested; END

• Step 2.2: If sum of individual demands > the resource capacity, go to Step 3

• Step 3: Divide the total bandwidth to the number of connections in the set
generated at Step 1: This generates the Fair Share

• Step 4.1: For all connections with individual demand < Fair Share,
allocate bandwidth to cover the entire individual demand

• Step 4.2: If cannot perform 4. 1, allocate the Fair Share to all connections

• Step 5: Find remaining bandwidth after allocating in Step 4. 1, go to Step 6

• Step 6: Re-start from Step 3 with non-zero demand connections for which
bandwidth not allocated yet, and the total bandwidth as calculated at Step 5

• Better than EB in satisfying connection requests and in
minimizing the waste of bandwidth
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NOC:
Bandwidth Allocation Strategies

• Most Delayed Queue Served First Bandwidth
Allocation (MDQSF)

• Step 1: Sort connections in the decreasing order of the delay
encountered by the packet in the head of the queue

• Step 2: Allocate bandwidth starting with the first queue in the
ranking generated at Step 1

• Step 3: Repeat Step 2 until either the entire bandwidth is
allocated or, all connections have received service

0	 NOC Simulation Experiments

• C++ and Matlab environment
• Queue model accuracy:

• Addition of packets to the queue
• Keeping copies of unACK messages
• De-queueing packets
• Packet delay monitoring
• Queue length monitoring

• State: queue length at the
service facility

• Testing the three strategies:
• Common input data to all

strategies
• Test with the same buffer

space
• Same total bandwidth
• Same number of sources

having
— Same succession of

ON-OFF periods
— Same const. arrival rate

• Service facility has 5 queues, l for each connection
— Allocation of buffer space to each connection the same

• Packet received service is sent over the satellite channel;
a copy is maintained for acknowledgment
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2	 NOC Simulation Experiments

• Following quantities computed, stored and shown graphically
• Connection State: Busy (1) or Iddle (0); All connections use the

same constant rate
• Queue Length (per connection)
• Demand: No of packets admitted in the queue; either new packets

or ones that have not received yet service
• Bandwidth: No of packets that a queue is allowed to output at a

time; It depends on the bandwidth allocation policy; Packets sent to
satellite link not deleted from queue until ACKed

• Delay: Delay by a packet sent out and not yet ACKed
• ACKed: No of packets sent and acknowledged
• UnACKed: No of packets sent and un-acknowledged

NOC Simulation Results

• Comparison of Bandwidth allocation strategies
Buffer per Connection 	 500 packets

Common Input Data	 Average Delays

• Analytical models and simulation can be used
for Network Dimensioning:

Estimate No. of sources that can be in the system
at the same time

Mean of the Uniform Arrival Rate 5 packets/unit time
unit time

Connl: 1.4469 1.4468 0.0
Total Bandwidth	 15 packets/unit time Conn2: 2.0720 _2.0720 0.5298
Number of Connections	 5 connections Conn3: 1.6941 1.6689 0.204
Constant Arrival Rate 	 10 packets/unit time Conn4: 2.0541 2.0524 0.0741

Conn5: 1.7182 1.7088 0.8847
Delay Imposed to Queued Packets 	 0.1 EB FR MDQSF
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. ..........,._`,Au tomatic TCP Buffer Tuning

Jeffiwv Semke

Pittsburgh SuperL91k&uting Center

June 3,

http://www.psc.edu/netw

...............
...........

Motivatlon/Goals

• Conventional Tuning is not a(
— System-wide tuning by System

— Hand-tuning of individual connections

• Want each TCP connection to get the b^

possible performance without any mane

configuration

• No need to modify existing applications
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Illustration
Memory ool for TCP sender s et buffers

= Actual allocation	 = Desired allocation
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Basic Fun i- "n, lity Test
PbahapdreMaknomy

—Ab
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Basic Fun&tion,.ality Test
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Conblu

• Better performance
• More concurrent conne
• Great for servers that h;

connections over very c
bandwidth*delay paths
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Improving TCP Performance Over Mobile Satellite Channels:
The ACKPrime Approach

Keith Scott and Stephen Czetty
Jet Propulsion Laboratory, California Institute of Technology

httt)://eis.inl.nasa.gov/—kscott

NASA Lewis Satellite Networks Workshop
June 1998

NASA Lewis Satellite Networks Workshop 6198	 KLS 1

Outline

• TCP Over Mobile Satellite Links
— Target Application: Once a packet crosses the satellite link it's gone forever.
— Control Loop Includes Satellite Delay

• Ways of Breaking the Control Loop at the Groundstation
— Proxy
— I-TCP
— Spoofing
-::> ACK'

• ACK' Implementation
— Doesn't Break TCP End-2-End Semantics
— Requires Few Resources at the Groundstation
— Requires Minimal Changes to Sending TCP
— ACK' Can Provide Corruption Notification at Little Extra Cost
— IPSec Breaks ACK' Too

• Ack' Performance
— Not as good as Proxying
— Most Gain During Slow-Start
— Increased ACK Traffic
— Be Careful To Not Violate Congestrion Control

NASA Lewis Satellite Networks Workshop 6/98	 US 2
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TCP

• TCP is responsible for reliable, in-order, end-2-end delivery of information without
duplications.

— Number every byte; transmit bytes along with numbers, get acknowledgments from
the receiver.

• Window-Based Flow Control & Congestion Control
— Receiver's Offered Window	 ( Flow Control )
— Sender's Congestion Window 	 ( Congestion Control )
— Sender can have at most MIN(cwnd, awnd) unacknowledged packets outstanding

at any one time.
• Slow-Start

— To keep a pair with a large awnd from injecting huge bursts of traffic into the
network. cwnd starts at 1 and opens by 1 packet for every ACK received.

• Sender sends 1 packet, waits for ACK, sends 2 packets, waits for ACKs, ...
• Congestion Avoidance

— When a loss is detected, halve the sending raze and open cwnd by 1 packet for
every window of data.

• Assumptions:
— All losses are due to congestion within the network (i.e. overflows in router

queues).
— Delay * Bandwidth product is < 64k bytes ( Can be circumvented )
— Delay is small

NASA Lewis Satellite Networks Workshop 6/98	 US 3

TCP Slow-Start

Sequence #

	

1000	 Reno TCP
420ms RTT
I Mbps Bottleneck Link

800

600
cwnd limits transmission
rate for the first part of the
connection.

400

200

awnd = 110 ackets

0	 011011 -

	0 	 1	 2	 3	 4	 Time

NASA Lewis Satellite Networks Workshop 6/98	 KLS 4
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Congestion Avoidance

160	 Fast Retransmit: Set
ssdimsh and cwnd to 1/2
of current window &
retransmit lost packet.

140 ^T
120

When cwnd is
ssthresh, cwnd can grow
by at most 1 packet per RTT.

100

0.18	 02	 0.22	 0.24	 0.26

	

NASA Lewis Satellite Networks Workshop 6198 	 KLS 5

TCP Over Mobile Satellite Links

• Large BW * Delay Product

— Use RFC 1323
• Higher BER

— Use FEC
— Depending on f, can have drop-outs of 10s to 100s of ms.

4 Large Delays
— Slow-Start is really slow.
— Short transfers may never get out of slow-start.
— The pipe refills at a rate of 1 packet per RTT during congestion avoidance. It can

take 30s or more to recover from a loss when the session is using a geosynchronous
satellite.

	

NASA Lewis Satellite Networks workshop 6198 	 KLS 6
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Target Application: End Users Of Satellite Links

(4-- 250 ms (one-way) ---*^ — 120 ms (one-way) ^-- ►^

Ak Satellite

Network
Groundstation

Mobile	 Router	 Server

Satellite RTT	 Terrestrial RTT

Regular TCP RTT

NASA Lewis Satellite Networks Workshop 6198 	 KLS 7

Target Application Properties

• Once a TCP packet is forwarded towards the mobile, it has left the terrestrial network.
— ACK' is not designed for backhaul satellite links.

• Satellite channel contains most of the delay.
• Satellite channel has higher BER than terrestrial.

NASA Lewis Satellite Networks Workshop 6198	 KLS 8
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Ways of Breaking The TCP Connection
At The Groundstation

• Proxy
— The mobile places a request with the proxy, the proxy executes the request and

retrieves the information, the proxy passes the information back to the user.
• Indirect-TCP (I-TCP)

— Similar to proxying; source sets up connection with intermediate node which
terminates the connection and opens a new one to communicate with the
destination.

• Spoofing
— The groundstation / gateway actually acknowledges data flowing towards the

mobile and suppresses acknowledgments from the mobile towards the server. The
groundstation really should take responsibility for delivering packets it has
acknowledged.

• ACK'
— The groundstation / gateway provides extra information to the sender, in the form

of ACKPrime's.
• Sender treats ACK' like a regular acknowledgment for the purposes of

increasing cwnd.
• Mobile is still responsible for acknowledging data receipt.

NASA Lewis Satellite Networks Workshop 6/98	 KLS 9

ACK' Implementation

Simulated aversion of ACK' in Ibl's network simulator (ns).
— Modified snoop and NewReno elements to be an ACK' gateway and an ACK'-

capable sender.
— Gateway keeps no state, it simply generates ACK' packets whenever it forwards a

TCP packet across the satellite link.
— Topology includes I OMbps terrestrial network with IOms delay and 2Mbps satellite

network with 200ms delay.
• No contention for the terrestrial network or buffer space yet.
• Assumes properly tuned windows & socket buffers

(h"://www.psc.edu/networkinglauto.htmi

Planned Improvements
— Don't violate congestion control!
— Use ACK' information along with regular acknowledgments to get (expensive)

corruption notification.
— Modified ACK' scheme to reduce acknowledgment traffic
— Ways around IPSec...

Plan a kernel implementation on JPL's mobile satellite protocol testhed later this
summer.

NASA Lewis Satellite Networks Workshop 6/99 	 KLS 10
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Source

ps

> delay 	 ACK' sty
Agent

v	 I	 Y Time

Plain NewReno
	

ACK' NewReno
Sequence #
	

Sequence #

NASA Lewis Satellite Networks Workshop 6198
	

US 12

ns implementation

NASA Lewis Satellite Networks Workshop 6/98	 US 11

Performance During Slow-Start
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Performance During Congestion Avoidance

Sequence #	 Plain NewReno	 Sequence u	
ACK' NewReno	 5286

5126

	

5000	 5000

	

4000	 4000

	

3000	 3000

Packet Loss	 Packet Loss

	

2000	 2000

	

1000	 1000

	

0	 0

	

0	 5	 10	 IS	 20	 25	 Ti a	 0	 5	 10	 15	 20	 25	 Time

	

25.5s to refill pipe..	 i	 14.57s to refill pipe.

NASA Lewis Satellite Networks 	 Workshop 6/98	 KLS 13

JPL Mobile Satellite Protocol Testbed

Cer
i	 The

Simulated Mobile User With:
J SACK
3 Window Scaling
If SCPS-TP
O TCP Vegas

Channel Emulator Simulated Groundstation
(Server or Gateway)

tcpdump / tcptrace
showing TCP
behavior.

Keith Scow, JPL
818.354.9250
KeOh .Scoa&pl a go

KLS 14

trna.q.^.^rs^r
i.... l

1 r..

NASA Lewis Satellite Networks Workshop 6198
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Transport Protocols for I®
Compatible Satellite Networks

Tom Henderson
(tomh@cs.berkeley.edu ; www.cs.berkeley.edu/-tomh)

and
Randy Katz (randy@cs.berkeley.edu )

NASA Lewis Satellite Workshop: June 2-4, 1998

Dept. of Electrical Engineering and Computer Science
University of California aL Berkeley

Future broadband satellite systems
Last-hop IP access is our service focus
• Hybrid GEO/LEO systems are envisioned
• Potentially highly asymmetric access
• GEO assumptions

- Low BER (improved coding, higher power),
high availability, but high RTTs

• LEO assumptions:
- Lower average RTTs (< 200ms), but higher

RTT variance (due to handoffs), higher BER
and lower availability (fading links)
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TCP tradeoffs
• Two basic strategies for improving satellite
TCP performance®

End-to-end changes
• Preserves end-to-end

semantics

but
• deployment is a major

problem
• some RTT-related problems

cannot easily be solved for
heterogeneous networks

TCPag_tewa_
• Minimizes host changes

• Reduces RTT problems

but
• adds complexity to satellite

networks
• may be hindered by IP

security protocols

Outline

• End-to-end TCP performance
— implementation performance of SACK

— TCP congestion avoidance problems

• Satellite Transport Protocol (STP)
— design goals

— file transfer performance

— HTTP 1.0 performance
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Experiment methodoloory
• 'Pests conducted on active (lightly utilized) networks

• All machines running BSD/OS 3.0 with large windows
• Routers do not send source quench

Router/gateway Sink

Link emulator
(1.3 Mb/s,
variable delay)

Source

FIFO ranter

size=50
FIFO router

size--.'SO

100 Mb/s	 10 Mb/s	 10 Mb/s
Ethernet	 Ethernet	 Ethernet

519



Source

FIFO router
size=50

t•• t••r

Background
Bottlenecksource 

FIFO router
size=50

Experiment methodology
• Ran single persistent file transfer (20 ms RTT) with large

windows across the same two queues

Router/gateway Sink

Link emulator
(1.3 Mb/s,
variable delay)

100 Mb/s	 10 Mb/s	 10 Mb/s	 Background
Ethernet	 Ethernet	 Ethernet	 sink

Effect of short-delay flows
• A single short-RTT (20ms), large window flow can

significantly degrade satellite connection's performance
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Summary

• For GEO links, small variations in TCP
implementations can have major effects

• Even light congestion in wide area network
can significantly degrade satellite TCP
— well-known fairness problem of TCP congestion

avoidance

— multiple (slow-starting) short flows have an even
worse effect

• Short (HTTP) satellite connections perform
even worse than file transfers due to slow-start

Alternative transport solutions

• What type of protocol is best for split
connections or internal satellite traffic?

Satellite-optimized
transport protocol

Ic'

TCP	 -----	 TP	 ,	 TP	 -----	 TCP

IP	 -----	 IP	 ,-' =	 IP	 -----	 IP

MAC	 ----- MAC	 ,,-'	 MAC	 ----- MAC

Physical -----	 Physical	 Physical -----	 Physical

Satellite host	 Satellite gateway	 Satellite gateway Internet host
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Satellite protocol requirements

• High efficiency in forward direction
— selective acknowledgments (very few unnecessary

retransmissions)

• Minimize bandwidth in reverse direction
- better for asymmetric environments

• Minimize protocol handshaking latency
• Allow for rate controls in addition to window

controls
• Compatible with TCP (intcrworking and API)

Satellite Transport Protocol (STP)

• An ATM link layer protocol known as
SSCOP already has many of these attributes

TCP (transport layer).
- "fast retransmit"

SSCOP (link layer)	 Further modifications- error recovery	 - congestion control
mechanism	 mechanism

- connection control

Satellite Transport Protocol (STP)
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Basic STP operation
Transmitter

Time 0 ----

2 --
3 --..
4 ---._

POLL
5

0 through 4 — _ 7
are acknowledged	 g
by STAT 9 ---_

Transmitter —
POLL ^-_

retransmits #7 10
11 --

Receiver

STAT

USTAT (Receiver
detects loss of #7)
STAT (again reports
#7 missing)

Full, periodic state exchange is the
basic design philosophy

STP improvements over SSCOP
• STP handles data misordering by network

• For congestion control, STP implements
traditional TCP-like window control, rate
control, or hybrid approaches
— no congestion control for SSCOP

• Fast connection setup (like T/TCP) is the
default behavior

• Concatenation of PDUs (e.g., piggybacked
POLLs) performs better in Internet

• STP supports full TCP API
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Source TCP/STP gateway
(split connection)

FIFO router
size=50

Sink

Link emulator
(1.3 Mb/s,
variable delay)

FIFO router

	

.	 size=50

Background

	

source	 Bottleneck

Experiment methodology
• Split end-to-end connection at user level at gateway
• For fair comparison, STP implemented TCP slow-start,

congestion avoidance, and exponential backoff

100 Mb/s	 10 Mb/s	 10 Mb/s	 Background
Ethernet	 Ethernet	 Ethernet	 sink

STP performance: bulk transfers
• Both TCP SACK and STP can reduce fairness problems by

splitting the connection
1.4
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STP performance: bulk transfers
• However, STP uses much less of the reverse channel

20

Y

C 
15

N

w
10

N
a.
O1

d¢ 5

25

0
0 100	 200	 300	 400	 500	 600

F{rT (m s)

STP performance: transactions
• Average of 1000 simulated HTTP transfers over 600

ms channel

• Traffic generated based on empirical distributions
derived from HTTP traces

• STP performance approaches that of T/TCP
— Traffic smoothing accounts for larger latency
— To speed window buildup, every packet had a piggybacked

POLL if the congestion window <- 10 segments

Avg. latenc	 (s) Avg.	 ackets
TCP 2.0 12.3

T/TCP 1.4 7.3
STP 1.7 8.9
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Internet Services Over A Direct
Broadcast Satellite Network:

Challenges And Opportunities

Cheryl DeMatteis, Michael O'Brien, James
Stepanek, Scott Michel, Cauligi

Raghavendra and Michael Campbell
The Aerospace Corporation

Robert Lindell and Joseph Bannister
USC Information Sciences Institute

An Opportunity

• High Bandwidth
• Small Low Cost Reception Devices
• Internet Connectivity and Interoperability
• Large Base of Application Software
• USAF Global Broadcast Service (GBS) Program
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Direct Broadcast Satellite
Characteristics

• High Power Transponders
• Small Antenna With Fixed Orientation
• Wide Geographic Range
• Unidirectional Broadcast Bandwidth

Consumer DBS Equipment

• 18" Dish, Set-Top Box, Smartcard
• Reed Solomon and Viterbi Convolution

Codes for Forward Error Correction (FEC)
• 40 Mb/ sec Without FEC
• 20 - 30 Mb/ s With FEC (10e-8 BER)
• High Speed Serial Port Interface
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Battlefield Awareness and
Data Dissemination (BADD

. DARPA/ ISO Advanced Concept Technology
Demonstration (ACID)

• 6 Months of Development,1 Year to
Deployment for Each Phase

• Our Focus is on the Advanced Data
Dissemination Methods

• DBS Links are Part of a Larger Internet
• Exploit Multicast Capabilities

Basic Architecture
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The Problem

. IP depends on a bi-directional link
• Routing Protocols depend on a symmetric link
• Long delays affect TCP/IP performance
• Reliable Multicast Transport
. QoS

Other Approaches
. BC2A: "Spray and Pray"
. UDLR: change all routing protocols
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Our Approach

• Provide the illusion of a bi-directional link
• use TCP-lfn to increase the window size

Proposed Solutions
• Split-]EP
• VIPRe
• Pit-Vipre
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• Add route on downlink
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Pit-Vipre
ADDlication

IP
T	 t

- Pit-Vivre

D/L	 R/B

Muiticast
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Qos Issues
. Per flow basis
. ATM limitations
. Contractor solution

Current Work

. RSVP

. CBQ

. TCP-SACK

. Heterogeneous Networks
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Mentat

Improved Satellite
Networking Using the

Mentat SkyXpress Protocol

DC Palter

Mentat Inc.

do@mentat.com
http://www.mentat.com

NASA Lewis Workshop June 1998
Satellite Networks: Architectures, Applications, and Technologies

i
^ Mentat

,SkyX Presentation Outline

• Mentat Background
• Satellite Conditions
• SkyX Design
• SkyX vs. TCP Performance Testing

A, By NASA Goddard

By Mentat

• SkyX to TCP Integration
•Q&A
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Mentat

X K Mentat Background

• Leading supplier of TCP/IP and other
networking source code to computer and
embedded operating system vendors since 1987

• The native TCP/IP in the following operating
systems is based on Mentat TCP:

Hewlett-Packard HP-UX
• Sun Solaris
• Apple MacOS
• Sony NEWS
• Motorola SVR4 Unix, VMExec
• Concurrent PowerMaxOS
• Others

_	 Mentat
GEO Satellite Conditions

• Large Latency
Satellite hop round trip time of —0.5 seconds

• High Error Rates .
A Bit Error Rates of 1 x 10-10 to 1 x 10-6

• Asymmetric Bandwidth
A Back channel bandwidth generally a fraction of the forward

channel bandwidth

• Point-to-Point Connection
♦ Satellite link generally point-to-point connection with no routing

nn► Causes Poor Performance of TCP over Satellites
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Mentat	 Mentat S'kyXpress

Protocol Design

• Selective Retransmission Algorithm
A Lost or corrupted data triggers immediate NACK and retransmit.
A Sender periodically polls receiver for data acknowledgment.

• Large Windows
A 64 bits used to specify window size.

• Appropriate Start-Up Strategy
A No start-up ramp for point-to-point hop over satellite.

• Rate and Burst Control
A Maximum allowable bandwidth can be set on per-connection basis.
A Avoid overrunning known bandwidth bottleneck.

	

/Mentat	 Mentat AyXpress
Protocol Design (Con't)

• Efficient Design
A Streamlined handshake reduces connection overhead.
A 64-bit design.

• Reliable Multicast
A, Transport level reliable multicast for efficient point-to-multipoint

communications.

• Runs over IP or Link Layer
A Runs over IP when routing required.
A Runs over link layer for maximum efficiency on point-to-point link.
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\ Mentat 
SkyX Performance Testing\	 J'	 .f	 g

NASA GSFC
SkyX vs. TCP Performance Comparison

• Compared SkyX to TCP and TCP-SACK
Testing by NASA Goddard Space Flight Center
High Performance Computing and Communications Group
Testbed for Satellite and Terrestrial Interoperability Project
http://everest.gsfc.nasa.gov/

• Simulated large file transfer over satellite link

• 50 test runs for each BER and latency data point

• Data normalized by max. measured throughput of 128 Mbps

/Mentat SkyX Performance Testing

NASA GSFC
,SkvX vs. TCP Test Network

Sun Workstation	 Switch	 Adtecn NA/14	 Switch	 Sun Workstation

CPU ...................................................Sun U1traSparc
Operating System ..............................Solaris 2.6
TCP Implementations .......................TCP new-Reno, TCP-SACK
Network .............................................FORE NICs, ATM switching
Line Speed .........................................00-3 (155 Mbps)
Satellite Link Simulator ....................Adtech SX/14
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Mentat	 Additional SkyX Testing
Performed at Mentat

Test Conditions
SkyX and TCP Throughput vs. BER

Max. Link Seed:
4 MbpS

Round Trip Time:
540 ms

Window Size:
540 KB

Network:
Ethernet

TCP I=1ementation:
Mentat TCP

Operating System:

1E-10	 1E-9	 1E-8	 '1E-7	 IE-6	 tE-5	 Windows NT 3.51

Bit Error Rate	 Sat. Link Simulator:

Mentat HAVOC
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/Mentat SkyX to TCP Inte ration,-	 y	 g

SkyX Gateway System Design

• Transparent
A No changes to end client and server TCP stacks.

• Available
♦ Does not require wide-spread roll out of modified TCP.

• Safe
A Maintains TCP connection reliability and end-to-end semantics.

• Internet Friendly
- Maintains congestion control, slow start, etc., over terrestrial links.

• Supports All Data Traffic
- Provides bridging for UDP, IPX, SNA, all other protocols.

,K-Plentat

	
SkyX to TCP Integration

SkyX Gateway Architecture

Client SkyX Gateway ' ' SkyX Gateway Server
I Browser 1	 1 Web Server)

TCP

IP

Driver

To Gateway

TCP PEP Module

TCP
SkyX

IP

Driver Driver

To Client To Satellite

TCP PEP Module

SkyX
TCP TCP

IP IP

Driver Driver Driver

To Satellite . To Server To Cateway
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mentat
/K- 

SkyX Gateway System Testing

Test Conditions
Max. Link Speed:

forward: 400 kbps
reverse: 128 kbps

Round Trip Time
540 ms

TCP Window Size:

48 KB
Test Network:

Ethernet
TCP Implementation:

Mentat TCP

Operating System:
UNIX

Sat. Link Simulator:

SkyX Gateway and End-to-End TCP
Throughput vs. BER

400
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_,K—Mentat 	
Conclusion

Mentat SkyXpress Protocol
provides a transparent,

high-performance solution for
Internet access over satellite links.

SkyX is available now from Mentat.

more i0formation available at:
http://www.mentat.com/Documentation/white—papers/skyx.html
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Visionary Session
Architectures, Applications and

Technologies
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Future Applications, Technology
and Architectures

Edward W. Ashford

Lockheed Martin

June 4, 1998

FUTURE APPLICATIONS, TECHNOLOGY
AND ARCHITECTURES

n "IT 1S EASIER TO PREDICT THE PAST THAN THE FUTURE"
(AND EVEN THEN, SOME GET IT WRONG!)

n "THOSE WHO DO NOT KNOW HISTORY ARE CONDEMNED TO
REPEAT IT" (AND THOSE THAT DO ... SOMETIME REPEAT IT
AS WELL!)

n THEY SAID TO CHEER UP, SINCE THINGS COULD BE
WORSE. SO I DID, AND SURE ENOUGH, THEY WERE
RIGHT ... THINGS GOT WORSE.
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FUTURE APPLICATIONS, TECHNOLOGY
AND ARCHITECTURES

n "THROUGH A CRYSTAL BALL DARKLY", OR "THE PITFALLS
OF TREND PROJECTIONS'°
► THESE ARE SUBJECT TO SEVERAL (OFTEN

INTER-RELATED) EFFECTS WHICH CAN MAKE A
PREDICTION COMPLETELY WRONG, INCLUDING:
-LACK OF UNDERSTANDING OF THE DETAILS OF THE

SYSTEM CONCERNED
-INADEQUATE DATA
-OGIVE TENDENCY
-BUBBLE BURST EFFECT

FUTURE APPLICATIONS, TECHNOLOGY
AND ARCHITECTURES

n GIVEN THE ABOVE EXCUSES FOR MAKING INACCURATE
PREDICTIONS, AND WITH APOLOGIES FOR THE
"NOSTRODAMUS OUT"..........
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FUTURE APPLICATIONS, TECHNOLOGY
AND ARCHITECTURES

n THE ARCHITECTURES OF THE FUTURE WILL BE THOSE
THAT SUPPORT:
► ANYWHERE TO ANYWHERE CONNECTIVITY
► SATELLITE SYSTEM TO SATELLITE SYSTEM

INTEROPERABILITY
► SEAMLESS INTEGRATION WITH TERRESTRIAL SYSTEMS

(INCLUDING SEAMLESS PRICING!)

FUTURE APPLICATIONS, TECHNOLOGY
AND ARCHITECTURES

n WHAT IS THE "KILLER APPLICATION" OF THE FUTURE FOR
SATELLITE COMMUNICATIONS?

n ANSWER:

► AN INTERNET ROUTER IN THE SKY, COMBINED WITH...
► REAL TIME LANGUAGE TRANSLATION FROM AND TO ANY

LANGUAGE
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FUTURE APPLICATIONS, TECHNOLOGY
AND ARCHITECTURES

n WHAT TECHNOLOGIES WILL BE NEEDED?

n THE FIRST WILL BE A CHANGE OF MIND-SET IN THE
REGULATIONS, TO RECOGNIZE THAT, IN A DIGITAL WORLD,
THERE IS NO DIFFERENCE BETWEEN BITS THAT CARRY
FIXED, MOBILE, BROADCASTING, NAVIGATION OR DATA
RELAY SERVICES INFORMATION. FOLLOWING THAT:

FUTURE APPLICATIONS, TECHNOLOGY
AND ARCHITECTURES

n TECHNOLOGY NEEDED:
n ON-BOARD:

► OPTICAL SIGNAL PROCESSING AND BEAM FORMING
► GREATLY IMPROVED ON-BOARD TRANSMITTER

EFFICIENCIES AT Ka-BAND AND ABOVE
► PROTOCOL/STANDARDS CONVERSION
► DYNAMIC BANDWIDTH ON DEMAND ALLOCATIONS OF

RESOURCES
n ON-GROUND:

► CHEAP AND EFFICIENT MULTI-BAND TERMINALS
► FAST AND ACCURATE LANGUAGE TRANSLATION

ALGORITHMS
► (IMPROVED) MULTI-SYSTEM TERMINALS
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NASA's Commercial Communications
Technology Program

Presented to:

The Workshop on Satellite Networks:

Architectures, Applications, and
Technologies
Cleveland, Ohio

June 2-4, 1998

by

James W. Bagwell

Lewis Research Center

ARM Vision

"Changing the way
NASA and the Nation

communicate through space"
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Commercial Satellite Communications Program

• Mission
— Enable NASA's Use of Commercial Satellites for All

Its Operational Needs In and From Space
• Ensure Availability of Commercial Assets
• Reduce NASA Operations Costs

— Promote Communications Satellites for the
Maximum Benefit to Society through:

• Increased Economic Security
• Cost Effective Services
• Universal Availability
• Capable, Reliable Communications for All Government Users

LeRC Space Communications Program

ACTS
O F.zperimen

Commercial LEO/MEO/GEO	
.

Satellite Networks

° Advance S. J
Commercial	 Support

:Support	 Capability	 Space Science
ASTT	 EnterpriseEnterprise	 support

Earth Science
Enterprises 3'SOM	 DSN Upgrade

Transition to
^^	 ^?z	 Cemmsrr{sl
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NASA Transition to Commercial Assets 	 a1R.-bc-,

Vision for Tomorrow....

NASA	 Commercial
p	 GEO

® rAtrastructure
LS pt mmercial

T Transponder	 / I	 Commercially Owned
1 instrument	 %	 and operated services

and frequencies

NASA
LEO SIC	 j

Co^
INTe" 6-n .ce

I

White Sands

NA OM Net

i

omCm
Commercial

ercial

LEO Comsat	 T	 ►L„t
I
1

NASArI

4nT Cs

Commercial Infrastructure 	
Cha %96 / WhvNof2.cd r

AMPA	
NASA Industry Relationship .^^

Enterprise Missions

Transition
1=s	 toa^

	 New & improved	Comm & Ops Services Commercial	 eG	 Services for
^,^ F	 Assets	 Commercial &

Government Users

Soho

Enterprises LeRC^Ipdtt

^^^t^ll!11f'.tGt^1
Pre-Competitive	 fsfomers r

Technology

553



AOIPA Components of Strategic Plan

Enabling

World Global	 SATCpM	 Technology
Environment Comm	 Architecture	 Hardware

in future Network	 Post TDRS	 Network
Environmen	 2010	 StdalProtocol

NGI	 Spectrum
Etc. Implementation

Plan

h^tY@t	 1<R -7,
^7+lve.

sion
q	 .^y.^.
^

^IAissions

Implementation 
DOD Do D Plan

Space Space
Arehlte Mission

Vision in
InF

Government Led Programs Elements and Objectives for
Satellites in Global Information Infrastructure40 WC—

A. Coordinate/Integrate Government Program
(NASA, DoD, etc.)

• Use government "Space Technology Alliance" -
AF Research Lab, NASA, NRO, DDR&E,
BMDO, ONR

• Coordinate with "Satellite Alliance" for
industry/academic/government interaction and
program development.

• Government led workshops
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Government Led Programs Elements and Objectives for
Satellites in Global Information Infrastructure

B. Achieve Seamless Interoperable
Satellite & Terrestrial Networks

• Implement via architectures, standards, &
protocols.

• Develop and adopt commercial standards in close
cooperation with industry (e.g.
Telecommunications Industry Association)

• Perform experiments & validation testing (GIBN,
ACTS, etc.)

• Develop next generation architectures with goal of
global interoperability.

Government Led Programs Elements and Objectives for
Satellites in Global Information Infrastructure

C. Establish Program to Enhance
Satcom Professional, Technical Workforce

• Meet needs of Communications Satellite Industry.

• Involve Universities, Govt. Research Labs, and
Industry.

• Integrate with Precompetitive Technology
Program

Program Development Discussion - Tue. June 2
O'Hare Room, 3:30pm

Ms. Joanne Poe, Moderator
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Government Led Programs Elements and Objectives for
AMC	

Satellites in Global Information Infrastructure
v... w...a cw.

D. Precompetitive Technology Development

• Vision - Global Information Infrastructure

• Target - Next generation space-based networks.

• Integrated commercial and government customers

• Goal - Prioritized program plan

• Participants - Academia/Government/Industry

Program Development Discussion - Wed. June 3
O'Hare Room, 3:30pm

Dr. Charles Raquet, Moderator

Government Led Programs Elements and Objectives for
Satellites in Global Information Infrastructure

Ieru Ratud Cmmr

E. Effective Utilization of
Spectrum & Orbit Assets

• Create commercial satellite conducive
national/international regulatory environment.

• Advance government/non-government shared
spectrum

• Share satellite/wireless terrestrial communications
services
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1

1010gy

Satellite Networks:
Applications, Architectures,
and Technologies Session,
June 4, 1998

William Bailey
Business Development,
New Markets & Technologies

CISCO SYSTEMS

we.e.y-awwar.,.u,ar..+.wbur. ,
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Cisco Systems

EConveraence -it's allv
ones and zeros!

z

CISCO SYSTEMS

VW8NWMinuteuWT4cnrob"S 3

Waves of I P Traffic Growth
Rol. Bit Volume

250

• Web Access, E-mail	 200 Data
• Business to business (IP)

Ecommerce	 150.
• Voice Over IP/ATM/Frame	 Voice

Relay	 100

• Business Video	 5o
• Consumer Ecommerce
• Entertainment

1997	 1998	 1999	 2000	 2001
- Digital Video, gaming	 Traffic Projections for Voice and Data

"From 2000 on, 80% of service provider profits will be 	
CISCO SYSTEMS

derived from IP-based services. — CIMI Corp.	
^.

Cisco systems	 vie M.Nm, Ma T.nx•bp.s ,
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.Growth Enabling Technologies
DSp + processor cores

Driven by wireless handset market

Enables low cost voice/video/data gateways

Faster packet engines/architectures
Complex, high performance ASICs

Parallel computing architectures

• Optical technologies

® Network Techniques	 CISCO SYSTEMS

Cis=SYstwns	 %EB New Mzrkft WC T*Mmbsbs 5
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. LAN Performance Directions
Speed and intelligence

• Low cost switching
• Routing @ line rate
• QoS @ line rate
• Multicast @ line rate
-Security @ line rate

• Policy-Based Networks
-Application awareness
• Increased availability is

'mast EtherChanne'r
Technology

20 Mbps	 200 Mbps	 800 Mbps	 2000 Mbps

Increasing Speed at Full Duplex

Cisco sysams

b(p̂s8000
CISCO

M

 JYSTEMS

MIEB Nm MarWt. uW TWV*io bS 7

WAN Enhancements

• Terabit speed Hybrid Switch/Routers
Packet over SONET OC192 Interfaces in the near future...
High-speed architectures allow IP QOS, multicasting, etc

• Direct WDM Optical Internetworking
Replaces TDM, lowers costs by at least 2/3, increases
"fiber gain" capacity in the order of 8-32x
Will eventually extend to customer premises
Optical technology will be integrated into core of hybrid
switch/routers

CISCO SYSTEMS

Cisco SysUms	 WEB Nm MarMt a W Tadm.b"s e
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inNetwork Techniques
• Quality of Service (QOS)

Tagging, Coloring, Labeling
ToS precedence bits allows traffic classes
Congestion Management (WRED, WFQ)

• Policy Networking
Priority/00S Enforcement
GUI Applications

• Multicasting

• Web and Application Caching	 CISCO SYSTEMS

Cisco 8y9tM19	 NEB New Lftdnft etl Tmhw"be 9

The Leaves on the Tree
• Local loop is a potential gold mine

Small business are waiting
Positive consumer spending indications
Applications & content are waiting

• Someone PLEASE fix the local loop!

• Regulation, a potential dark cloud over
growth

CISCO SYSTEMS

Cism 3yst ms	 NEB N&W Aft %WW T4dMbpbe 10

561



0 Closing Opinions
® Terrestrial networking is booming

Technology is advancing rapidly

Satellite system designers and terrestrial
network vendors need to engage and partner

Too long of a delay from state-of-the-art terrestrial
networking to the "top of the rocket"
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Next Generation Space-Based Architectures

Architectures, Applications, and
Technologies

NASA Lewis Research Center
June 49 1999

Dr. Joseph Braman
Orbital Sciences Corporation

Dr. Joseph Braman 	 June 4, 1998	 NASA Lewis Research Center

Data Is the Driver
	 irb'-a/

Source: ITU, Pioneer Consulting

Dr. Joseph Braman	 June 4, 1998	 NASA Lewis Research Center
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Future Trends
	 9rh0`a/

• All Digital Format

• Massive Growth in BW

• Moore's Law Lives (Computing Power,
Storage, Transmission)

• Ubiquitous Connectivity
• Convergence of Services
• Merger of Technology & Life

	

Dr. Joseph Braman	 June 4, 1998	 NASA Lewis Research Center

	

Applications
	 O

• Telepresencre (Virtual Office,
Telemedicine, Exploration)

• Bulk Transfers / Backhaul
• Entertainment
• Commerce
• Remote Sensing
• Remote Monitoring (Multipoint to Point;

Traffic, Environment)

	

Dr. Joseph Braman	 June 4, 1998	 NASA Lewis Research Center
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Future Trends Continued	 Orb *tea®
• Applications Dominate
• Capital Markets Are Available
• Massive Satellite Population in Space
• Rationalization Between Fiber/

Terrestrial Microwave / LMDS, Satcom,
Etc.
Giga-Internet Creation

• Evolution of Standards
Dr. Joseph Braman 	 June 4, 1998	 NASA Lewis Research Center

Satellite Advantages 	 Orb
• Supports Global Mobility
• `Instant Infrastructure' - Solves `Last

Mile' Problem
• Cost-Effective Over Large Areas
• Flexible Distribution
• Flexible Capacity -'Bandwidth On

Demand'
• Reliable Once On Orbit
Dr. Joseph Braman	 June 4, 1998	 NASA Lewis Research Center
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Technologies
	 Orb '.,al

• LEO & MEO Systems
• Hybrid Network Architectures
• Digital Compression, Encryption
• Chips Reduce Size & Cost of Portables
• On-Board Processing
• Ka & Higher Band Components
• Inter-Satellite Links: RF and Optical
• Narrow Spot Beams & Phased Arrays

	

Dr. Joseph Braman	 June 4, 1998	 NASA Lewis Research Center

	

Trade Space	 PrPital
• LEO / MEO / GEO / Other
• ISL or Not
• Number of Planes-Coverage / Augmentation
• Match to LV Size
• Technology Drivers and Enablers
• Choice of Spectrum
• Choice of Standards
• Symmetric?, Real-time?
• On Board Complexity

	

Dr. Joseph Braman	 June 4, 1998	 NASA Lewis Research Center
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Satellite Services Market girb,jea-,

Source: Pioneer Consulting

Dr. Joseph Braman 	 June 4, 1998	 NASA Lewis Research Center
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Satellite Two-Way Communications Llrb'^a®
Narrowband	 Wideband	 Broadband

	Large Fixed	 Public
Antenna	 Backbone

—Business
Commercial

Small Fixed
Antenna

esi en is
Consumer

Handheld / Persona l

	

Mobile Ant.	 Mobile

everal	 I 00S of	 evera	 s o
KBps	 KBps	 MBps	 MBps

Source: Ali Grami & Ken Gordon, Telesat Canada

	

Dr. Joseph Bravman	 June 4, 1998	 NASA Lewis Research Center

Access Technologies Compared
	

Orb'..air

Standard Line ISDN Line ADSLIT-1	 Cable Modem Ka Satellite CIV Satellii^2

Simple Still Image 1.2 min. 35.7 sec. j	 1.3 sec. 0.5 sec. .25 sec. 2 ms
(2 Megabits)

Complex Still Image 18.5 min. 4.8 min. 10.7 sec. 4 sec. f	 2 sec. 1	 13 ms
(16 Megabits)

Short Animation / Video 1.4 hrs. 21.5 min. 48 sec.	 1 18 sec. I	 9 sec. ;	 60 ms
(72 Megabits)

s
I

Long Animation /Video 3.5 days 21.4 hrs. !	 48 min.	 i 18 min. 9 min.
i
;	 4 sec.

(4.3 Gigabits)
i	 Î i

Source: Forrester Research, PanArnSat
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Orbl-ink Baseline: Architecture	 Grhb

7 satellite constellation in a 9000 km equatorial orbit (plus one spare)
Latency of -1/16 s
Achieves coverage of 93% of population at min. elevation of 10 deg.
Leverages system power over GEO's for better capacity to cost ratio
Avoids LEO complexity and size

System capacity of 150 to 250 Gbps (limited by system cost)

IOC in 2003
End-to-end ability
Simplicity

Bent pipe

Dr. Joseph Braman	 June 4, 1998	 NASA Lewis Research Center
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TELEDESIC LEO NETWORK
ARCHITECTURE

Dr Marie-Josh Montpetit
Network Design Team

^esic

Future Network Requirements
NASA Lewis Workshop -June 4 1998

• Broadband Capacity
• Ubiquitous Access

— Enable capacity everywhere
.:Quality of Service

— Allow for service differentiation in quality and pricing
Seamless integration into existing protocols and
infrastructures

%esic
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Satellite Networks
NASA Lewis Workshop - June 4 199

• Regional/Global coverage
• Wireless Interfaces

— No need to install "wired" infrastructure
• Onboard Switching

— Reduces delay for BOD
— Allows multiple beams (smaller terminals)

• Can be deployed faster than most terrestrial infrastructures into
regions with little or no existing infrastructure

• Can bypass clogged terrestrial networks and is oblivious to
terrestrial, disasters

• Increase existing network reliability

%CSIC

LEO Satellite Networks Features
NASA Lewis Workshop -June 4 1998

• Fiber-like delays
• Global coverage
• Integration in the Network of Networks
• Advanced communication services almost everywhere, all the time
• Low implementation cost per site
• Can grow naturally as markets develops
• Support both symmetrical and asymmetrical applications
• Flexibility while keeping a manageable complexity

%esic
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The Tele esic Network Architecture
NASA Lewis Workshop - June 4 1888

• High Capacity' .
— High frequency re =use added to

-bandwidth on demand_.(BoD)
— SmaN.cells/footprints
— High level of statistical multiplexing in the

air interface
— Low delay allows very resource efficient

BoD

• Reliability
— Engineer reliability
— Implements connectionless protocols
— Keep state information at the edges

Low delay
— Autonomous nodes
— No need for changing terrestrial

protocols
• Impacts on congestion control
• Impacts on IPsec
• Impacts on client server applications

— Interactive/real time applications
® Seamless interworking

— IP

— ATM
— SNA
— New protocols

e Global access with high availability
— High mask angle
— Dense meshed Network ft. a^^,
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Low Latency is Essential to the Internet
NASA Lewis Workshop - June 4 1999

• GEO latency can significantly.degrade performance on client/server applications such as
Oracle and Exchange Server resulting in slow downs of 10 times or more

— Small transaction-oriented queries get queued up by GEOs' highdetay

• Companies on the Internet today are guaranteeing maximum allowable latency:
— ANX guarantees < 125 msec end-to-end for service provider certification
— UUNET guarantees < 150 msec and-to-end latency for two sites on its network
— AT&T Worldnet guarantees < 100 msec latency on its backbone
— Sprint guarantees < 140 msec latency on its backbone

• GEOs do not work well with fundamental Internet protocols like TCP/IP
— Most implementations of TCP today provide unacceptable performance (e.g., wasting 93% of bandwidth on

a 2 Mbps connection) because they lack 'large window' support
— TCP's essential congestion control mechanisms degrade performance over GEOs. These mechanisms

cannot be removed without potentially causing the "congestive collapse" of the Internet.
— One proposed solution, ACK spoofing, is incompatible with Internet Protocol security (IPsec) and will not

work at all with the next generation protocol, IPv6.
• Transaction-oriented Internet protocols also suffer from GEO delays because signaling

exchange is necessarily sequential
HTTP11.0 and HTTP/1.1, POP3, IMAP4

— Hand-shaking portions of real-time protocols such as H.323 also suffer

%CSIC

Low Latency and High Bandwidth are
Necessary for Fiber-Like QOS

NASA Lewis Workshop • June 4 1998

. Voice is still one of the most.important network applications and
customers will not acdept GEO latency on voice calls

a GEO latency makes efficient scheduling of'Bandwidth-on-Demand
much more difficult

• Latency also adversely affects legacy protocols like DEC LAT and
SNA

• By contrast, Teledesic's LEO Network will be seamlessly
compatible with the Internet and other terrestrial networks

%CSIC
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LEG vs. GE® Comparisons
NASA Lewis Workshop - June 4 1998

Category	 Reference	 GEO	 Teledesic
(fiber-optics)

Comparable characteristics
High channel bandwidth	 yes	 yes	 yes
Bandwidth-on-demand	 no	 yes	 yes

Teledesic Advantages
Optimized for high- 	 yes	 no	 yes
perforrnance'Intemet access
Supports high^-quality voice yes	 no	 yes
Ubiquitous global coverage no 	 no	 yes

%es:c
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Components m e Core
Network

NASA Leafs Workshop • June 4 1998

e Satellite Payload
— Uplink and Downlink Services
— Table Driven QoS Routing
— Network Management

e UE - Core functions

— Conceptual Division in UE between
Core component and Service Layer
Component.

— The UE core element manages low-
level access levels to the Teledesic
Network.

• Uplink and BoD management
Downlink

• Network Management
Security

%CSIC

Components in Service
Layer.	

NASA Lewis Workshop • June 4 199

• UE - Service layer functions

— Provides adaptation of axtemal protocols
for transport across Core network and
initiate 86D requests as needed.

• Network Management

— Teledesic Management System and
Constellation Operation and Control
Center.

— Teledesic controlled services that are
used to program the Core.

• Customer

— Reseller of Teledesic services.

%esic
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Addressable Elements
NASA Lewis Workshop - June 4 1998

a Nodes in the Network
— Satellites
— Terminals and gateways 	

GMW Routing

— Interfaces

Regional I

^estc

Interworking and Access
NASA Lewis Workshop - June 4 1998
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Fuhue Directions
NASA Lewis Workshop • June 4 7998

• Integrated multi-tiered Networks
• LEOs essential part of integrated service offerings

— Other networks used in the context of their optimal performance
• Network of Networks

— Access independent of the platform
— Emphasis on global network management

• Environment of integrated broadband network services.

^eS1C

isit 4.►,s at www.teledesic.com
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