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SUMMARY

An investigation was made in the Langley 300 MPH 7- by lO-foot

tunnel to determine the development of lift on a wing during a simulated

constant-acceleration catapult take-off. The investigation included

models of a two-dimensional wing, an unswept wing having an aspect

ratio of 6, a 35 ° swept wing having an aspect ratio of 3.05, and a

60 ° delta wing having an aspect ratio of 2.31.

All the wings investigated developed at least 90 percent of their

steady-state lift in the first 7 chord lengths of travel. The develop-

ment of lift was essentially independent of the acceleration when based

on chord lengths traveled, and was in qualitative agreement with theory.

INTRODUCTION

There has been considerable interest in the effect of acceleration

on the development of lift as encountered in carrier-deck catapult take-

offs. This problem has taken on greater significance with the increase

of acceleration capabilities of catapults and with the take-off coming

at fewer chord lengths of deck run as a result of the large chords asso-

ciated with the low-aspect-ratio swept and delta wings.

Several available theoretical papers exist on the development of

lift (refs. i to 4); however, scarcely any experimental data are avail-

able in the range of accelerations obtainable with present and design-

stage catapults. Therefore, the present investigation was made to

determine to what extent the lift might be affected by accelerations

encountered in catapult take-offs for several wings of different aspect

ratios.

A two-dimensional wing, an unswept wing having an aspect ratio of 6,

a 35 ° swept wing having an aspect ratio of 3.05, and a 60v delta wing

*Supersedes recently declassified NACA RM L56H28a by Thomas R.

Turner, 1956.
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having an aspect ratio of 2.31 were investigated at several angles of
attack and several accelerations.

MODELANDAPPARATUS

Geometric characteristics of the four models used in this investiga-
tion are given in figure I. The two-dimensional and unswept-wing models
had NACA0012 airfoil sections, the delta-wing model had NACA65A003air-
foil sections, and the swept-wing model had a symmetrical lO.5-percent-
thick airfoil section with the maximumthickness at 39 percent of the
chord. The coordinates for the swept-wing section are given in
reference 5.

The investigation was madein a special test section constructed
within the regular test section of the Langley 300 MPH7- by 10-foot tun-
nel. This special test section was a rectangular tube 16 feet long with

a _i_ by 5-foot rectangular cross secfion (see fig. 2(a)). The down-
stream end of the special test section was equipped with pneumatically
operated doors (see fig. 2(b)). A schematic sketch of the test section
is presented in figure 3. This particular test section was developed as
a result of considerable preliminary testing to obtain the type of fi_
desired for this investigation.

The semispanmodels were mountedon a one-component (lift) elec-
trical strain-gage type of balance having a natural frequency of approxi-
mately 500 cycles per second. The dynamic pressure of the test section
was obtained from an electrical pressure pickup several chord lengths
ahead of the model and on the opposite wall. The output of both the
lift balance and the dynamic-pressure pickup were recorded on an
oscillograph.

TESTTECHNIQUE

!

O
ro

In operation the tunnel was brought up to a given velocity with

the doors held closed by air pressure in the cylinder. In this condition

the tunnel airstreamwould pass around the four sides of the special

test section and leave the tube filled with still air. When the doors

were opened, the air in the tube started moving and the acceleration

depended on the tunnel airstreamvelocity and the rate at which the

doors were opened. A two-way valve was used for cutting the air supply

to the door-closing piston and bleeding the piston so that the doors

could be made to open at the desired rate. Figure 4 gives the varia-

tion of velocity with time for several tests and shows that _ssentially
constant accelerations were obtained.
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The test procedure used consisted of setting the model at a given

angle of attack and making simultaneous oscillograms of model lift and

dynamic pressure for a range of constant velocities (with doors open)

and then for several rates of acceleration of the airstream. Sample

oscillograms for these two types of tests are given in figure 5, The

data are presented as the ratio of the lift in accelerated flow to the

lift at the same dynamic pressure for the steady-state condition as a

function of chord lengths traveled,

Jet-boundary corrections are believed to have a negligible effect

on the llft ratios presented and were, therefore, not applied,

RESULTS AND DISCUSSION

The results of this investigation are presented in figures 6 to lO.

The data presented in figures 6 to 9 are for angles of attack of about lO °

and are representative of data obtained for other angles of attack

below the stall.

The variation of the lift ratio with chord lengths traveled for

various constant accelerations for the unswept wing (fig. 6) indicates

that the development of lift at a constant acceleration is practically

independent of acceleration which is in agreement with theory, Since

the variation of the lift ratio with chord lengths traveled for the

unswept wing (fig. 6) is typical of the variation for the other wings

tested, only one of the higher acceleration runs is presented for the

remaining wings. Each of the different plan-formwings developed

90 percent of its steady-state lift within 7 chord lengths of travel and

I00 percent within about 14 chord lengths. (See figs. 6 and 7-)

The experimental two-dimensional data of this investigation are

compared with the theoretical two-dimensional values of references i

and 2 in figure 8. The theory of reference 2 varies from the theory

of reference i in that it includes a noneirculatory or virtual mass

term. This term is powerful in determining the value of the lift ratio

for the first few chord lengths of the accelerated test run, and gives

a starting lift-ratio value of more than 1.00; however, this term becomes

insignificant after 5 or 6 chord lengths of travel. The experimental

curve is in very good agreement with the theoretical curve of reference 2

for approximately the first three chord lengths; however, above three

chord lengths the experimental curve approaches a lift-ratio value

of 1.00 faster than the theoretical curves. Part of this discrepancy

can probably be attributed to the fact that it is almost impossible

to get an experimental two-dimensional setup because of end effects.
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The delta plan-form wing had a ratio of accelerated lift to steady-
state lift always equal to or greater than 1.O0. This fact seemsrea-
sonable considering that the theory for the constant velocity case
predicts that finite wings develop steady-state lift at fewer chord
lengths traveled as the aspect ratio is decreased (fig. 9). The
finite theoretical curves are an extension by Jones (ref. 3) of the
constant-veloclty infinite-aspect-ratlo case developed by Wagner in
reference 1.

The investigation on the unswept wing was also madeat 16° angle
of attack which was considerably above the stall angle. The data for
this condition at an acceleration of 410 feet per second per second are
presented in figure 10. The lift value for approximately the first
6 chord lengths traveled was approximately twice the steady-state-llft
value, the value obtained by extending the unstalled lift curve to an
angle of attack of 16°, and decreased to the steady-state value at
approximately 15 chord lengths. This is in qualitative agreementwith
results from a similar investigation in reference 6.

CONCLUSIONS

The results of a wind-tunnel investigation to determine the effect
of acceleration on the development of lift indicated the following
conclusions:

1. The wings investigated developed 90 percent of steady-state
lift in 7 or fewer chord lengths travel and developed steady-state lift
within 14 chord lengths of travel.

2. The results were in qualitative agreementwith theory.

3. For constant acceleration the development of llft was practically
independent of acceleration whenbased on chord lengths traveled.

Langley Aeronautical Laboratory,
National Advisory Con_nittee for Aeronautics,

Langley Field, Va., August 15, 1956.
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Figure 4.- Typical variation of velocity with time for several
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Figure 7.- Variation of ratio of accelerated lift to steady-state lift

with distance.
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Expe r imen t

- Theory (ref Iand 3)
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Figure 9.- Effect of aspect ratio on buildup of lift.
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