//\/-— é/
Foe 557

Interfacing with Legacy Librarics using Remote Mcthod Invocation
Scott M. Howard
Scott. Howard@msfc.nasa.gov
Home: (205)353-0110 Work: (205)461-4307 Fax: (205)461-4999

The assignment described was enough to make a neophyte Java developer bolt for the door: provide a
remote mcthod for use by an applet which invokes a native method that wraps a function in an existing
legacy library. Mentally calculating the odds of making it to the parking lot, I discarded that option and
indicated my willingness to assume responsibility for this task with an air of cautious confidence. The
purpose of the remote method is to return an instance of a class object whose contents reflect the data
structure returned by the legacy function. Little did I know what I was getting myself into. ..

Perhaps the most significant hurtle I had to overcome while working on this task was the lack of useful
documentation to help direct me in my efforts. While embroiled in implementation, I spent an entire day
poring through the RMI use group archive on Sun’s web site searching for guidance to no avail. T would
have spent the time wading through their JNT use group archive as well, but I couldn’t seem to locate one.
Subsequently, I made the decision to try to document my findings in order to assist others.

Before we start on the class design, let’s look at what the existing legacy code does. The C function to be
called, Get_Legacy_Data, consists of two steps: an ASCII file is read from the local disk and its
contents are parsed into a Legacy_Type structure whose address is passed as an argument by the caller.
Not much to it, really. The legacy code was compiled into a shared object library, 1egacy. so, using
the IRIX 6.2 compiler and then loaded onto the Web server, a Silicon Graphics Indy station loaded with
the IRIX 6.4 operating system.

As far as the class design is concerned, the first thing required is a class to act as a template for the data
structure returned by the legacy function. This class, JLegacy, declares a series of public instance
variables which correspond to the members of Legacy_Type and provides a parameterless constructor.
This constructor is never called, not even by the native method which allocates the object for return to the
remote method.

Next, the remote interface declaration for the remote object must be defined. A remote interface is a Java
interface that extends the interface java.rmi.Remote, which is used exclusively to identify remote
objects. The remote method defined by JLegacyIF, getJLegacy, returns a JLegacy instance and
throws java.rmi.RemoteException which provides a mechanism to handle any failures.

Now that the remote interface has been defined, let’s look at the design of the remote object,
JLegacyRO. In order for JLegacyRO to implement get JLegacy, JLegacyRO must interface with
the existing legacy code through a native method, getN. getN is declared in the JLegacyRO class but
implemented in C, just like the legacy code. getN returns a JLegacy instance and is declared static
since its implementation is the same for all instances of the JLegacyRO class.

getN is implemented in a native shared object library, 1ibJLEG. so, that is loaded into the Java virtual
machine at run time. 1ibJLEG. so is loaded using a stat ic initializer in the JLegacyRO class.
Static initializers are executed once by the Java virtual machine when the class is first loaded. If
JLegacyRO doesn’t load the native library, an UnsatisifiedLinkError exception is thrown when
getN is called. Failure to load 1ibJLEG. so is established only by catching one of the exceptions
thrown by System. loadLibrary. The library name provided is qualified by the Java virtual machine
which prepends 1ib and appends the library extension . so for UNIX and .d11 for Microsoft Windows.

JLegacyRO implcments the method defined by JLegacyIF by calling getN and rcturning the
JLegacy object returned by it. Nothing to it, right? Well... let’s finish the JLegacyRO class before
we call this one a wrap.

The JLegacyRO class exports itsclf by extending UnicastRemoteObject and calling the constructor
of its superclass in its own constructor. In addition, UnicastRemoteObject redefincs the equals,
hashCode, and toString mecthods inhcrited from java.lang.0Object for remote objects.

The first thing that the main mcthod provided by the JLegacyRO class does is install
RMISecurityManager to protect its resources from remote clicnt stubs, during transactions. The
RMISecurityManager provides the equivalent function of the applet security manager for remote
object applications.

Next, the main method creates an instance of the JLegacyRO class and a remote object registry
listening on a port number which is declared static final. The JLegacyRO class is the only
application that will use this registry.

Finally, the main method binds the instance of the JLegacyRO class to a unique name in the remote
object registry, making the object available to clients on other virtual machines. The name bound to the
object is formed using the port number, the name of the remote object’s host which is passed to the
application as a command-line argument, and the String “JLegacyRO”.

Before delving into the details of the native method, let’s look at the last class: the client-side class which
invokes the method on the remote object, JLegacyC. JLegacyC provides a parameterless constructor
which is never intended to be called and a static method, get, which looks up the remote object in the
registry created by JLegacyRO and retrieves a reference to JLegacyIF through which the remote
method, getJLegacy, is invoked. The get method returns the JLegacy object returned by the remote
method invocation. ;

These three classes and the interface were compiled into the same package. All classes, including the
stub and skeleton created from the JLegacyRO class using the rmic compiler, were served from the
Indy Web server. The environment settings are explained at the conclusion of this article.

The native method to be implemented is relatively straightforward. However, before we can discuss its
details, we must establish its C prototype. The C header file which defines the prototype for the native
method is generated using the javah tool with the —3jni option on the compiled JLegacyRO class.
Since the JLegacyRO class has been compiled into a package, the package name must be appended to
the class name when javah is executed (e.g., javah -jni my.jlegacy.classes.JLegacyRO).
The resulting header file will be prefixed with the package name (e.g.,

my_3jlegacy classes JLegacyRO.h).

If you have read the Java Native Interface specification, you are already familiar with the method used by
javah in composing native method names. If you haven’t, I must warn you: it is not pretty. A native
method name has the following signature: Java_<mangled fully-qualified class
name>_<mangled method name>. I might add that the term “mangled” is actually used in the JNI
specification. If the native method were an overloaded method, the name is further concatenated with
__<mangled argument signature>. There’s that mangled word, again. For further information
on the Java virtual machine’s type signatures, I recommend reading the JNI specification.

The JNI interface (or JNIEnv) pointer is always the first argument to a native method. The interface
pointer points to a table of function pointers, each of which is a JNI function. In standard C, all NI
functions are called via this pointer (e.g., (env)->FindClass(env, "java/ lang/String”)).
The INIEnv structure is defined in C++ with inline functions which ultimately resolve to the same
references as the standard C functions. Since the sole purpose of the INIEnv pointer is to invoke the JNI
functions and its syntax is well-defined, I wrapped all of the JNI functions used in this native method to
promote greater readability and ease of maintainability. :

The sccond argument to a native method varics depending on whether the method is declared static or
not. If the method is nonstatic, the argument is of type jobject and is a pointer to the Java object
which invoked the method. In this case, the method is declared static so the argument is of type
jelass and is a pointer to the Java class which declared the method, the remote object class
JLegacyRO.

Any arguments passed to the native method in its Java declaration follow the second argument in the
function prototype. In this case, the method is declared with no arguments.

Remember that getN was declared as returning an instance of the JLegacy class? This is the
jobject returned by the function in the C prototype. Briefly, the native method will retrieve the
required data using the existing legacy function, instantiate the jobject to be returned, and populate it
with the retrieved data.

First, the native method calls Get_Legacy_Data passing it a pointer to the Legacy_Type structure
to be populated. Then, the fun begins...

Using the JNI AllocObject function, the native method allocates an object of the JLegacy class.
Because the native method is declared static in the JLegacyRO class, the jclass argument passed
to it is not the class for which an object is to be allocated, so the jclass must be established first using
the JNI FindClass function. FindClass requires a fully-qualified class name (i.e.,
my/jlegacy/classes/JLegacy).

The JLegacy object is an example of a local reference, which means that its scope is for the lifetime of
the native method and it is automatically freed by the Java virtual machine upon return. All objects
passed into or returned from native methods are local references. Global references remain visible until
they are freed.

Once the JLegacy object is returned, the native method must establish the field IDs for the public
instance (nonstatic) variables within the Java object in order to access the variables, or fields. Fields are
identified by the JNI using their symbolic names and type signatures.

Finally, the instance fields are set to the contents of the Legacy_Type structure returned by
Get_Legacy_Data using the JNI set<type>Field family of accessor routines, and the populated
JLegacy object is returned to the interface implemented by JLegacyRo. Former C programmers
should note that the Set<type>Field routines are provided only for the following primitives:
boolean, byte, char, short, int, long, float, and double; everything else is an Object of
some sort.

In this case, a series of the members in the Legacy Type structure returned by Get _Legacy Data
are char arrays or UTF-8 format in Java. The UTF-8 format encodes nonnull ASCII characters in the
range 0x01 to Ox7F (hexadecimal) in a single byte. Characters above Ox7F are encoded using up to three
bytes of storage.

The NI setObjectField function requires a native type for the value of the indicated field, so the
char arrays must be converted to java.lang.String objects before setting their instance fields in
the Java object, This translation may be performed using the JNI NewStringUTF function. Since there
is a series of these instance fields to be set, the steps taken to do this are generalized into another function,
JL_SetStringField.

In the event that an error condition arose during execution of the native method, the method would delete
the local reference pointed to by the JLegacy object and return a null object to the interface implemented

by JLegacyRo. Frecing the local reference is a habitual practice of mine when I write C code which is
not actually required in Java. To me it’s just good programming style.

Now let’s make everything talk to each other...

First, let’s discuss compiling getN into the native shared object library, 1ibJLEG. so. In the makefile
for 1ibJLEG. so, legacy. so must be supplied as an argument to the link editor in order to resolve the
symbol supplied by Get_Legacy Data’s object module for getN.

In addition, Java 3.1 (Sun 1.1.5) assumes the run-time linker to load n32 libraries. If you attempt to load
an 032 native library from the JLegacyRO class, a fatal error will be returned by r1d indicating that it
can not successfully map the shared object name to the LD_LIBRARY_PATH despite the presence of the
native library being located at a path specified by the environment variable.

To facilitate loading of an 032 library, two options are available. The first is to set the environment
variable SGI_ABI to “-32” before starting JLegacyRO; the second is to pass the “-32” argument to the
java interpreter when starting JLegacyRO.

On the Indy Web server, the LD_LIBRARY_PATH variable must include the path for 1ibJLEG. so and
legacy.so, aswell as /usr/java/lib/sgi/green_threads. Apparently, the Java virtual
machine for the Silicon Graphics platform uses the default Green threads package as its user threading
model. The Green threads package maps all Java threads into a single native thread, prohibiting
concurrent execution of multiple threads in a Java application.

In addition, the CLASSPATH variable on the Indy Web server must include the path which precedes the
directory structure defined by the package into which the classes were compiled, in order for the Java
interpreter to locate them,

Finally, the applet class was served from the Indy Web server by setting the CODEBASE attribute,
accordingly, in the HTML file.

Well, T hope this answered more questions than it raised. Iknow I learned a lot while working on this
task, I even learned some more while describing how I did it. I hope you did, too.

RMI-JNI Command-Line Summary

Although all of these classes were served from the Indy Web server, a summary of the command-line steps
from a clicnt/server perspective might be useful. In this context, client refers to the process (i.¢., applet)
invoking a method defined by a remote object and server refers to the remote object process. This
summary illustrates the client and server classes running on different platforms to make clear on which
platform each class belongs and on which platform each step takes place. The rmic compiler is used on
the server to create the stub and skeleton classes; the stub class is copied to the client before run time. In
addition, javah is used on the server to generate the header file which defines the C prototype for the
native method declared by the remote object class; development of the source file which implements the C
function is left to the user. The make of the native shared object library on the server is not illustrated,

nor is browser startup on the client.

Server

>ls

JLegacy java
JLegacylIF java
JLegacyRO java

>javac JLegacy java
>javac JLegacylF java
>javac JLegacyRO java

>ls
JLegacy.class
JLegacy java
JLegacyIF .class
JLegacylF java
JLegacyRO.class
JLegacyRO java

>rmic JLegacyRO

>ls

JLegacy.class
JLegacy java
JLegacyIF.class
JLegacyIF java
JLegacyRO.class
JLegacyRO java
JLegacyRO_Skel.class
JLegacyRO_Stub.class

Client

>ls

JLegacy java
JLegacyC java
JLegacylF java

>javac JLegacy.java
>javac JLegacyC java
>javac JLegacyIF.java

>ls
JLegacy.class
JLegacy.java
JLegacyC.class
JLegacyC.java
JLegacyIF class
JLegacylF java

/ttt*t‘*#t#t###t#tti#tit‘lt*#*###t#titt###t##i#i#i*###tt‘t*#*titi###t#‘l*

* LEGACY h defines the legacy structures and the associated function prototypes
*/

typedefenum { LEGACY_P__A,

LEGACY_P_B,
LEGACY P_C,
LEGACY P D
} Legacy P_Type
typedef enum { LEGACY_M__A,
LEGACY_M_ B,
LEGACY M__C,
LEGACY M_D,
LEGACY_M_E,
LEGACY M_F,
LEGACY M_G,
LEGACY M_H
} Legacy_M_Type;
typedef struct {
time_t Timestamp;
Legacy P_Type P_Type;
unsigned char 1d;
Legacy M_Type M_Type;
char String_A[5];
char String_B[5];
char String_C[5];
char String_D[5];
char String_E[5];
char String_F[5];
char String_G[5];
char String_HI[5];
} Legacy_Type;

int Get_Legacy_Data (Legacy_Type *legacy);

Listing 1 : LEGACY.h

RMI-JNI Command-Line Summary (continued)

rver Client

>javah -jni my jlegacy.classes.JLegacyRO

>Is >ls

JLegacy.class JLegacy.class
JLegacy.java JLegacy java
JLegacyIF.class JLegacyC.class
JLegacylF java JLegacyC.java
JLegacyRO.class JLegacylF class
JLegacyRO java JLegacylF java
JLegacyRO_Skel.class JLegacyRO_Stub.class

JLegacyRO_Stub.class
my_jlegacy_classes JLegacyRO.h

>java my jlegacy.classes.JLegacyRO hostname &
JLegacyRO: creating registry
JLegacyRO: bound in registry

Faddb b bbb bl LA LA Al L L e T T e L L i i

* JLegacy java provides a class for the legacy data. A populated instance of a JLegacy
* object is returned by JLegacyC.get().

*/

package myjlegacy.classes;

public class JLegacy implements java.io.Serializable

{
public long timestamp;
public int pType;
public byte id,
public int mType;
public String stringA;
public String stringB;
public String stringC;
public String stringD;
public String stringE;
public String stringF;
public String stringG;
public String stringH;

public JLegacy() {}

Listing 2 : JLegacy.java

Taddbddd t it R A d Lt L S g L L Y T Y T T L Ll Ll Ll L LT ranrararraay

* JLegacylIF java defines the method used to return a populated instance of a JLegacy
* object from a remote object.
*/

package my jlegacy.classes;

public interface JLegacyIF extends java.rmi.Remote

{
public JLegacy getJLegacy() throws java.rmi.RemoteException;

}

Listing 3 : JLegacylF.java

JEErrkrkbbhhhdk bk Rk dkkkkhiok bRk kb kb khkbkhb Rk dkkh kb ok kR dhkhokk

* JLegacyRO java provides a remote object which returns a populated instance of a
* JLegacy object.

*/
package my jlegacy.classes;

import java.rmi.*,

import java.rmi.registry.*;
import java.rmi.server.*;
import java.net.*;

import java.io.*;

public class JLegacyRO extends UnicastRemoteObject implements JLegacyIF

{
// JLegacyRO listens on this port in the remote object registry

public static final int RO_REGISTRY_PORT = 1099;

// The host address of JLegacyRO
private String host;

// Native method declaration
public static native JLegacy getN();

// Static initializer
static
{
// Load the native library which includes getN

try {
System.loadLibrary("JLEG"),

}
catch (SecurityException €) { e.printStackTrace(); }
catch (UnsatisfiedLinkError €) { e.printStackTrace(); }

}
public JLegacyRO() throws RemoteException { super();}
public JLegacy get]Legacy(throws RemoteException
{ JLegacy jleg = null;
jleg = JLegacyRO.getN();

return jleg;
}

/! Application
public static void main (String args[])
{

JLegacyRO remote = null;
System.setSecurityManager(new RMISecurityManager();

try
{

}
catch (RemoteException ¢) { e.printStackTrace(); }

remote = new JLegacyRO();

if (remote != null)

{
if (args.length == 1)
{

/1 Get host address of remote object
remote.host = args[0];

// Start registry and register remote object

try
{
System.out.println("JLegacyRO: creating registry”);

/* Create registry listening on RO_REGISTRY_PORT. We can do this since this application
* is the only one that's going to use this registry.
*/

LocateRegistry.createRegistry(RO_REGISTRY_PORT);

Naming.bind("rmi://" + remote.host + ":" + RO_REGISTRY_PORT + "/JLegacyRO",
remote);

System.out.printIn("JLegacyRO: bound in registry");
}
catch (Exception €) { e.printStackTrace(); }

else
{
System.out.printin("usage: JLegacyRO host_address");
} /7 if (args.length == 1)
} // if (remote != null)
} // main
}

Listing 4 : JLegacyRO.java

/tti#*#it“#ttt#‘*t*ii#*ttti*#*itt###t**‘ltttl‘lll#"‘*tﬁ*##t‘t‘#itt*#it##t#t
* JLegacyC.java provides a static method which rcturns a populated instance of a
* JLegacy object,
*/

package my jlegacy.classes;

import java.applet.*;
import java.rmi.*;

public class JLegacyC implements java.io.Serializable

{
public JLegacyC({}

public static JLegacy get(Applet parent)
{

JLegacy jleg = null;

JLegacyIF ifc = null;

try
{
ifc = (JLegacyIF)

Naming.lookup(
"rmi://"+parent.getCodeBase().getHost()
+"/JLegacyRQ");

if (ifc 1= null) jleg = ifc.getILegacy();
3
catch(Exception ¢) { e.printStackTrace(); }

return jleg;

Listing 5 : JLegacyC.java

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class my_jlegacy_classes_JLegacyRO */

#ifndef _Included_my_jlegacy classes_JLegacyRO

#define _Included_my_jlegacy_classes_JLegacyRO

#ifdef __ cplusplus

extern "C" {

#endif

/t

* Class: my_jlegacy_classes_JLegacyRO

* Method: getN

* Signature: QLmy/jlegacy/classes/TLegacy;

*/

JNIEXPORT jobject INICALL Java_my _jlegacy_classes_JLegacyRO getN
(JNIEnv *, jclass);

#ifdef _ cplusplus
H

#endif

#endif

Listing 6 : my_jlegacy_classes_JLegacyRO.h

Fadddd i b bl b Al LRSS IS bl 2L R i bR ey T P P e LTI r]

* Java_my_jlegacy_classcs_JLegacyRO_getN.c contains the native

* function which retricves the legacy data using the legacy library routine, instantiates
* a JLegacy object, and populates the object with the legacy data.

*/

#include <unistd.h>
#include <jni.h>

#include "my_jlegacy_classes_JLegacyRO.h"
#include <LEGACY .h>

/* The Java Native Interface functions used by this native method were wrapped
* to promote greater readability and ease of maintainability
*/

#define INI_ALLOCOBJECT(class) (*env)->AllocObject(env, (class))

#define INI_DELETELOCALREF(ref) (*env)->DeleteLocalRef(env, (ref))

#define INI_FINDCLASS(name) (*env)->FindClass(env, (name))

#define INI_GETFIELDID(name, sig) (*env)->Ge(FieldID(env,jlClass, (name),(sig))
#dpﬁne JNI_NEWSTRINGUTF(bytes) (*env)->NewStringUTF(env, (bytes))

#define JNI_SETBYTEFIELD(id, val) (*env)->SetByteField(env,jObject, (id),(val))
#define INI_SETINTFIELD(id, val) (*env)->SetIntField(env,jObject, (id), (val))
#define JNI_SETLONGFIELD(id, val) (*env)->SetLongField(env,jObject, (id),(val))
#define INI_SETOBIJFIELD(id, val) (*env)->SetObjectField(env,jObject, (id),(val))

/* Prototypes of functions found only in this source code file */
int JL_SetStringFieldJNIEnvy *env,

jobject jObject,

jfieldID jFieldID,

const char *bytes);

/i

* Class: my_jlegacy_classes_JLegacyRO
* Method: getN

* Signature: QLmy/jlegacy/classes/JLegacy;
*/

/i*t*#*ii****###***********#**#****#*#t*#t*#t*ti##*###i#t#**#**#*t**#t
* Java_my_jlegacy_classes_JLegacyRO_getN retrieves the legacy data using the
* legacy library routine, instantiates a JLegacy object, and populates the object with
* the legacy data. Failure is indicated by returning a null object.
*/
JNIEXPORT jobject INICALL Java_my_jlegacy_classes_JLegacyRO_getN
(JNIEnv *env, jclass jClass)

{
Legacy_Type legacy;
int istat =0;
jclass jIClass = NULL;

jfieldID timestamp_ID = NULL,

jficldlD pType_ID =NULL;

jfieldID id_ID = NULL;
jfieldID mType_ID = NULL,;
JjfieldID stringA_ID = NULL;
jfieldID stringB_ID = NULL;
jfieldID stringC_ID = NULL,
jfieldID stringD_ID = NULL,;
jfieldID stringE_ID = NULL;
jfieldID stringF_ID = NULL,;
jfieldID stringG_ID = NULL,;
jfieldID stringH_ID = NULL,
jobject jObject = NULL;

istat = Get_Legacy_Data(&legacy),
if (istat <0) return NULL;

jIClass = JNI_FINDCLASS("my/jlegacy/classes/JLegacy");
if (jIClass)
{
JObject = INI_ALLOCOBJECT(jIClass);
if (jObject)
{
/* Establish the field IDs */
timestamp_ID = JNI_GETFIELDID("timestamp", "J");

pType ID =]JNI_GETFIELDID("pType”, "I,

id_ID = JNI_GETFIELDID("id", "B"),

mType ID = JNI_GETFIELDID("mType", "I");

stringA_ID = JNI_GETFIELDID("stringA", "Ljava/lang/String;");
stringB_ID = JNI_GETFIELDID("stringB", "Ljava/lang/String;");
stringC_ID = JNI_GETFIELDID("stringC", "Ljava/lang/String;");
stringD_ID = JNI_GETFIELDID("stringD", "Ljava/lang/String;");
stringE ID = JNI_GETFIELDID("stringE", "Ljava/lang/String;");
stringF_ID = JNI_GETFIELDID("stringF", "Ljava/lang/String;");

stringG_ID = JNI_GETFIELDID("stringG", "Ljava/lang/String;");
stringH D = JNI_GETFIELDID("stringH", "Ljava/lang/String;");

/* Set the instance fields of the object to be returned */
if(timestamp_ID
&& pType_ID

&& id_ID

&& mType_ID
&& stringA_ID
&& stringB_ID
&& stringC_ID
&& stringD_ID
&& stringé 1D
&& stringF_ID
&& stringG_ID
&& stringH 1D)

JNI_SETLONGFIELD(timestamp_ID, legacy. Timestamp);
JNI_SETINTFIELD(pType_ID, legacy.P_Type);
JNI_SETBYTEFIELD(id_ID, legacy.ld);
JNI_SETINTFIELD(mType_ID, legacy. M_Type),

if (JL_SetStringFicld(env, jObject, stringA_ID, legacy.String_A)
&& JL_SetStringField(env, jObject, stringB_ID, legacy.String_B)
&& JL_SetStringField(env, jObject, stringC_ID, legacy.String_C)
&& JL_SctStringField(env, jObject, stringD_ID, legacy.String_D)
&& JL_SetStringField(env, jObject, stringE_ID, legacy.String_E)
&& JL_SetStringField(env, jObject, stringF_ID, legacy.String_F)
&& JL_SetStringField(env, jObject, stringG_ID, legacy.String_G)
&& JL_SetStringField(env, jObject, stringH_ID, legacy.String_H))

{
/* Instance string fields of object have been set */

else

{
JNI_DELETELOCALREF(jObject);
return NULL;

}

else
{
JNI_DELETELOCALREF(jObject);
return NULL;
}
} /% if (jObject) ¥/
} /*if (jIClass) ¥/

return jObject;
} /* End of Java_my_jlegacy_classes_JLegacyRO_getN */

TAdd b i dd A LA RS2 P R LR R R L e R L L e P T T TR T LS

* JL_SctStringField scts the indicated field of the object to a java.lang String object
* constructed from the indicated char array.
»/
int JL_SetStringFieldONIEnv *env,
jobject jObject,
jfieldID jFieldID,
const char *bytes)

int retval = 1;
jstring jString;

jString = INI_NEWSTRINGUTF (bytes);
if (jString)
{
INI_SETOBIFIELD(jFieldID, jString);
JNI_DELETELOCALREF(jString);
}

else
retval = 0;

return retval;
} /* End of JL_SetStringField */

Listing 7 : Java_my_jlegacy_classes_JLegacyRO_getN.c

