
.-,.. p

Interfacing with Legacy Libraries using Remote Method Invocation
Scott M. Howard

Scott.Howard_msfc.nasa.gov
Home: (205)353-0110 Work: (205)461-4307 Fax: (205)461-4999

The assignment described was enough to make a neophyte Java developer bolt for the door: provide a
remote method for use by an applet which invokes a native method that wraps a function in an existing
legacy library. Mentally calculating the odds of making it to the parking lot, I discarded that option and
indicated my willingness to assume responsibility for this task with an air of cautious confidence. The

purpose of the remote method is to return an instance of a class object whose contents reflect the data
structure returned by the legacy function. Little did I know what I was getting myself into...

Perhaps the most significant hurtle I had to overcome while working on this task was the lack of useful

documentation to help direct me in my efforts. While embroiled in implementation, I spent an entire day
poring through the RMI use group archive on Sun's web site searching for guidance to no avail. I would
have spent the time wading through their JNI use group archive as well, but I couldn't seem to locate one.
Subsequently, I made the decision to try to document my findings in order to assist others.

Before we start on the class design, let's look at what the existing legacy code does. The C function to be
called, Oat_Legacy Data, consists of two steps: an ASCII file is read from the local disk and its
contents are parsed into a Legacy_Type structure whose address is passed as an argument by the caller.
Not much to it, really. The legacy code was compiled into a shared object library, legacy, so, using
the IRIX 6.2 compiler and then loaded onto the Web server, a Silicon Graphics Indy station loaded with
the IR/X 6.4 operating system.

As far as the class design is concerned, the first thing required is a class to act as a template for the data
structure returned by the legacy function. This class, JLegacy, declares a series of public instance
variables which correspond to the members of Legacy Type and provides a parameterless constructor.
This constructor is never called, not even by the native method which allocates the object for return to the
remote method.

Next, the remote interface declaration for the remote object must be defined. A remote interface is a lava

interface that extends the interface 9 ave. rmi. Remote, which is used exclusively to identify remote
objects. The remote method defined by JLegacy'rF, getJLegacy, returns a JLegacy instance and
throws j ave. rmi. Remoter.xeeption which provides a mechanism to handle any failures.

Now that the remote interface has been defined, let's look at the design of the remote object,

JLegacyRO. In order for JLegacyRO to implement getJLegacy, JLegaeyRO must interface with
theexistinglegacycodethrougha nativemethod,getN. getN isdeclaredintheJLegacyRO classbut
implemented in C, just like the legacy code. getN returns a JLegacy instance and is declared static
since its implementation is the same for all instances of the JLegacyRO class.

getN is implemented in a native shared object library, libJLEG, so, that is loaded into the Java virtual
machine at run time. libJLEG. ,_o is loaded using a static initializer in the JLegacyRO class.
Static initializers are executed once by the Java virtual machine when the class is first loaded. If

JLegacyRO doesn't load the native library, an UnsatisifiedLinkError exception is thrownwhen
getN is called. Failure to load libJLEG, so is established only by catching one of the exceptions
thrown by System. loadLibrary. The library name provided is qualified by the Java virtual machine
which prepends lib and appends the library extension, so for UNIX and. rill. for Microsoft Windows.

JLegacyRO implements the method defined by JLegacyIF by calling getN and returning the
JLegacy object returned by it. Nothing to it, right? Well... let's finish the JLegacyRO class before
we call this one a wrap.



The JLegacyRO class exports itself by extending UnicastRemoteObj ect and calling the constructor
of its supcrclass in its own constructor. In addition, UnicastRemoteObject redefines the equals,

hashCode, and tostring methodsinheritedfromjave. lang. Object forremoteobjects.

The first thing that the main method provided by the JLegacyRO class does is install

RMISecurityManager to protect its resources from remote client stubs, during transactions. The
RMISecurityManager provides the equivalent function of the applet security manager for remote
object applications.

Nex-t, the ma in method creates an instance of the JLegacyRO class and a remote object registry
listening on a port number which is declared stag ie final. The JLegacyRO class is the only
application that will use this registry.

Finally, the main method binds the instance of the JLegacyRO class to a unique name in the remote
object registry, making the object available to clients on other virtual machines. The name bound to the

object is formed using the port number, the name of the remote object's host which is passed to the
application as a command-line argument, and the string "JLegacyRO".

Before delving into the details of the native method, let's look at the last class: the client-side class which

invokes the method on the remote object, JLegacyC. JLegacyC provides a parameterless constructor
which is never intended to be called and a static method, get, which looks up the remote object in the
registry created by JLegacyRO and retrieves a reference to JLegacyIF through which the remote
method, getJLegacy, is invoked. The get method returns the JLegacy object returned by the remote
method invocation.

These three classes and the interface were compiled into the same package. All classes, including the
stub and skeleton created from the JLegacyRO class using the rmic compiler, were served from the
Indy Web server. The environment settings are explained at the conclusion of this article.

The native method to be implemented is relatively straightforward. However, before we can discuss its

details, we must establish its C prototype. The C header file which defines the prototype for the native
method is generated using the j avah tool with the -J ni option on the compiled JLegacyRO class.
Since the JLegacyRO class has been compiled into a package, the package name must be appended to
the class name when Javah is executed (e.g., Javah -jni my. jlegacy, classes. JLegacyRO).
The resulting header file will be prefixed with the package name (e.g.,
my_j legacy_classes_JLegacyRO, h).

If you have read the Java Native Interface specification, you are already familiar with the method used by
9 avah in composing native method names. If you haven't, I must warn you: it is not pretty. A native
method name has the following signature: Java<mangled fully-qualified class

name>_<mangled method name>. Imightadd thattheterm"mangled"isactuallyusedintheJNI
specification. If the native method were an overloaded method, the name is further concatenated with

<mangled argument signature>. There's that mangled word, again. For further information
on the Iava virtual machine's type signatures, I recommend reading the JNI specification.

The JN/interface (or JNIW.nv)pointer is always the first argument to a native method. The interface

pointer points to a table of function pointers, each of which is a JNI function. In standard C, all JNI
functions are called via this pointer (e.g., (env) ->FindClass (env, "9 ave/lang/String" ) ).
The JNIEnv structure is defined in C++ with inline functions which ultimately resolve to the same
references as the standard C functions. Since the sole purpose of the JNIEnv pointer is to invoke the JNI
functions and its syntax is well-defined, I wrapped all of the JNI functions used in this native method to
promote greater readability and ease of maintainability.



Thesecondargumenttoanative method varies depending on whether the method is declared star ie or

not. If the method is nonstatic, the argument is of type job j ect and is a pointer to the Java object
which invoked the method. In this case, the method is declared star ic so the argument is of type
j class and is a pointer to the Java class which declared the method, the remote object class
JLegacyRO.

Any arguments passed to the native method in its Java declaration follow the second argument in the
function prototype. In this case, the method is declared with no arguments.

Remember that getN was declared as returning an instance of the JLegacy class? This is the
jobject returned by the function in the C prototype. Briefly, the native method will retrieve the

required data using the existing legacy function, instantiate the jobj ect to be returned, and populate it
with the retrieved data.

First, the native method calls Get_Legacy_Data passing it a pointer to the Legacy_Type structure
to be populated. Then, the fun begins...

Using the INI AllocObject function, the native method allocates an object of the JLegacy class.

Because the native method is declared static in the JLegacyRO class, the j class argument passed
to it is not the class for which an object is to be allocated, so the jclass must be established first using
the JNI FindClass function. FindClass requires a fully.qnalified class name (i.e.,
my/j legacy/c iasses/JLegacy).

The JLegacy object is an example of a local reference, which means that its scope is for the lifetime of
the native method and it is automatically freed by the Java virtual machine upon return. All objects
passed into or returned from native methods are local references. Global references remain visible until
they are freed.

Once the JLegacy object is returned, the native method must establish the field IDs for the public

instance (nonstatic) variables within the Java object in order to access the variables, or fields. Fields are
identified by the JNI using their symbolic names and type signatures.

Finally, the instance fields are set to the contents of the Legacy_Type structure returned by
Get_Legacy_Data using the JNI Set<type>Field family of accesser routines, and the populated
JLegacy object is returned to the interface implemented by JLegaeyRO. Former C programmers
should note that the Set<type>Field routines are provided only for the following primitives:

boolean, byte, char, short, int, long, float, and double; everythingelseis an ObJeet of
some sort.

In this case, a series of the members in the Legacy_Type structure returned by Get Legacy_Data

are char arrays or UTF-8 format in Java. The UTF-8 format encodes nonnull ASCIIcharacters in the

range 0x01 to 0x7F (hexadecimal) in a single byte. Characters above 0x7F are encoded using up to three
bytes of storage.

The JNI SetObjectField function requires a native type for the value of the indicated field, so the
char arrays must be converted to java. lang, string objects before setting their instance fields in
the Java object. This translation may be performed using the JNI NewStringUTF function. Since there
is a series of these instance fields to be set, the steps taken to do this are generalized into another function,
JL_SetStringField.

In the event that an error condition arose during execution of the native method, the method would delete

the local reference pointed to by the JLegacy object and return a null object to the interface implemented



/_

by JLegacyRO. Freeing the local reference is a habitual practice of mine when I write C code which is
not actually required in Java. To me it's just good programming _style.

Now let's make everything talk to each other...

First, let's discuss compiling getN into the native shared object library, libJLEG, so. In the makefile
for libJLEG, so, legacy, so must be supplied as an argument to the link editor in order to resolve the

symbol supplied by Get Legacy Data's object module for get=N.

In addition, Java 3.1 (Sun 1.1.5) assumes the run-time linker to load n32 libraries. If you attempt to load
an o32 native library from the JLegacyRO class, a fatal error will be returned by rid indicating that it
can not successfully map the shared object name to the LD_LIBRARY_PATH despite the presence of the
native library being located at a path specified by the environment variable.

To facilitate loading of an 032 library, two options are available. The first is to set the environment

variable SGI_ABI to "-32" before starting JLegacyRO, the second is to pass the "-32" argument to the
j ava interpreter when starting JLegacyRO.

On the Indy Web server, the LD_LIBRARY_PATH variable must include the path for 1 ibJLEG, so and
legacy, so, as well as/usr/9 ava/lib/sgi/green threads. Apparently, the Iava virtual
machine for the Silicon Graphics platform uses the default Green threads package as its user threading
model. The Green threads package maps all hva threads into a single native thread, prohibiting
concurrent execution of multiple threads in a hva application.

In addition, the CLASSPATH variable on the Indy Web server must include the path which precedes the
directory structure defined by the package into which the classes were compiled, in order for the Java
interpreter to locate them.

Finally, the applet class was served from the Indy Web server by setting the CODEBASE attribute,
accordingly, in the HTML file.

Well, I hope this answered more questions than it raised. I know I learned a lot while working on this
task, I even learned some more while describing how I did it. I hope you did, too.



RMI-JNI Command-Line Summary

AlthoughalloftheseclasseswereservedfromtheIndyWeb server,a summary ofthecommand-linesteps
fromaclient/serverperspectivemightbe useful.Inthiscontext,clientreferstotheprocess(i.e.,applct)

invokingamethoddefinedbya remoteobjectand serverreferstotheremoteobjectprocess.This

summary illustratestheclientand serverclassesrunningon differentplatformstomake clearon which

platformeachclassbelongsand on whichplatformeachsteptakesplace.The rmtc compilerisusedon
theservertocreatethestuband skeletonclasses;thestubclassiscopiedtotheclientbeforerun time.In

addition,Javah isusedon theservertogeneratetheheaderfilewhichdefinestheC prototypeforthe

nativemethoddeclaredbytheremoteobjectclass;developmentofthesourcefilewhichimplementstheC
functionislefttotheuser.The make ofthenativesharedobjectlibraryon theserverisnotillustrated,

norisbrowserstartupon theclient.

Server Clien_._._t

>ls

JLegacyjava
/LegacyIF.java
JLegacyRO.java

>javac JLegacy.java

>javac JLegacyIF.java

>javac JLcgacyRO.java

>Is

JLegaey.class
JLegacydava
JLegacylF.class
JLegacyIF.java
JLegacyRO.class
JLegacyRO.java

>rmicg,egacyRO

>Is

JLcgacy.class

JLegacy.java

JLegacyIF.class

JLegacyIF.java

JLcgacyRO.class
JLegacyRO.java

JLegacyRO_Skcl.class

JLegacyRO_Stub.class

>Is

JLegacy.java
JLegacyC.java
JLegacylF.java

>javac JLcgacy.java

>javac ILcgacyC.java

>javac JLcgacyIF.java

>Is

JLegacy.class

_egacy.java
JLegacyC.class

JLegacyC.java

JLegacyIF.class
JLegacyIF.java



* LEGACY.h defines the legacy structures and the associated _nction prototypes
*/

typedef enum { LEGACY P._.A,
LEGACY_P.._B,
LEGACY_P_..C,
LEGACY P D

} Legacy_P_Type

typedefenum { LEGACY M_ A,
LEGACY_M__B,
LEGACY_M__C,
LEGACY_M.._D,
LEGACY_M__E,
LEGACY M F,
LEGACY_M__G,
LEGACY M H

} Legacy_MType;

typedef struct {

time_t Timestamp;
Legacy_P_Type P_Type;
unsigned char Id;

Legacy_M_Type M_Type;
char String_A[5];
char String_B[5];
char String_C[5];

char SUing_D[5];

char String_E[5];
char String F[5];
char String_G[5];

char String._H[5];
} LegacyType;

int Get_LegacyData ( Legacy_Type *legacy );

Listing 1 : LEGACY.h



RMI-JNI Command-Line Summary (continued)

Server

>javah -jni my.jlegacy.classesJLegacyRO

>Is

]Legacy.class
/Legacy.java
JLegacyIF.class
K_gacyW.java
JLegacyRO.class
K.egacyRO.java
JLegacyRO_Skel.class
P,._gacyRO_gtub.class

my..jlegacyclassesJLegacyRO.h

>java my.jlegacy.classes.JLegacyRO hostname &
_._egacyRO: creating registry
/LegacyRO: bound in registry

>Is

JLegacy.class
/Legacy.java
FLegacyC.class
ILegacyC.java
/LegacyIF.class
/LegacylF.java
_.egacyRO Stub. class



* JLegacy.java provides a class for the legacy data. A populated instance of a JLegacy
* object is returned by JLegacyC.getO.
*/

package my.jlegacy.classes;

public class JLegacy implements java.io.Serializable
{

public long timestamp;
public int pType;
public byte id;

public int mType;
public String stringA;
public String stringB;
public String stringC;
public String stringD;
public String stdngE;
public String stringF;
public String stringG;
public String stringH;

public JLegacy0 {}

Listing 2 : JLegacy.java

************************************************************************

* JLegacyIF.java defines the method used to return a populated instance ofa JLegacy
* object from a remote object.
*/

package my.jlegacy.classes;

public interface JLegacyIF extends java.rmi.Remote
{

public JLegacy getJLegacy0 throws java.rmi.RemoteException;
}

Listing 3 : JLegacylF.java



* _egacyRO.java provides a remote object which returns a populated instance of a
* _.,egacy object.
*/

package my.jlegacy.classes;

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
import java. net.*;
import java.io.*;

public class JLegacyRO extends UnicastRemoteObject implements JLegacyIF
{

II JLegacyRO listens on this port in the remote object registry
public static final int RO_REGISTRY_PORT = 1099;

II The host address of JLegacyRO
private String host;

II Native method declaration

public static native JLegacy getN0;

//Static initializer
static

{
//Load the native library which includes getN
try{

System.loadLibrary("JLEG");
}
catch (SecurityException e) { e.printStackTrace0; }
catch (UnsatisfiedLinkError e) { e.printStackTrace0; }

}

public JLegacyRO0 throws RemoteException { super0;}

public JLegacy getJLegacyOthrows RemoteException
{

JLegacy jleg-- null;

jleg = JLegacyRO.getN0;

returnjleg;
}



H Application
public static void main (String args[])
{

JLegacyRO remote = null;

System.setSecurityManager(new RMISecurityManager0);

try
{

remote = new JLegacyRO0;
}
catch (RemoteException e) { e.printStackTrace0; }

ff (remote != null)

{
if (args.length == 1)
{

//Get host address of remote object
remote.host = args[0];

//Start registry and register remote object
tly
{

System.out.println( "JLegaeyRO: creating registry");

/* Create registry listening on RQREGISTRY_PORT. We can do this since this application
* is the only one that's going to use this registry.
*/

LocateRegistry.createRegistry(RQREGISTRY_PORT);

Naming.bind( "rmi://" + remote.host + ":"+ RO_REGISTRY PORT + "/JI.,egacyRO",
remote);

System.out.pdntln("JI,egacyRO: bound in registry");
}
catch (Exception e) { e.pdntStackTrace0; }

}
else

{
System.out.println("usage: JLegacyRO host_address");

} I/if(args.length == I)
} II if ( remote != null )
I/main

Listing 4 : JLegacyRO.java



* ILegacyC.java provides a static method which returns a popul_/ted instance of a

* YLegacy object.
*/

package my.,legacy.classes;

import java.applet.*;
import java.rmi.*;

public class ILegacyC implements java.io.Serializable
{

public JLegacYCO {}

public static YLegacy get(Applet parent)
{

_L.cgacy ,leg = null.
II..¢gacyIF ifc = null;

Uy
{

ifc = OLegacyll _')
Naming.lookup(

"rmi://"+parent. getCodeBaseO.getI-IostO
+"IJLegacyRO");

if(ifc]=null)jleg= ifc.getJLegacyO;

}
catch(Exceptione){e.pfintStackTraceO;}

return,leg;
}

}

Listing 5 : JLegacyC.java



/* DO NOT EDIT THIS FILE - it is machine gencratcd */

#include <jni.h>
/* Hcadcr for class my_.jlcgacy classes_JLegacyRO */

#ifndef_Included_my..jlegacy_classes_JLegacyRO
#define _Included_my_.jlegacy_classes_YLegacyRO

#ifdef mcplusplus
extern "C" {
#¢ndif
I*

* Class: my_jlegacy classes }LegacyRO
* Method: getN
* Signature: 0LmyljIegacylclasses//Legacy;
*I

]NIEXPORTjobject ]N-ICALL Java_myjlegacy_classes ]LegacyRO_getN
(_qlEnv*,jclass);

#ifdef cplusplus
}
#endif
#¢ndif

Listing 6 : my_jlegacy_classes_JLegacyRO.h



* Java_my_jlegacy_classes_JLegacyRO getN.c contains the native
* function which retrieves the legacy data using the legacy library routine, instantiates
* a JLegacy object, and populates the object with the legacy data.
*/

#include <unistd.h>

#include <jni.h>

#include "my_.jlegacy_classes_JLegacyRO.h"
#include <LEGACY.h>

1" The lava Native Interface functions used by this native method were wrapped

* to promote greater readability and ease of maintainability
*/

#define JNI_ALLOCOBJECT(class) (*env)->AllocObject(env, (class))

#define JNI_DELETELOCALREF(ref) (*env)->DeleteLocalRef(env, (ref))

#define JNI_FINDCLASS(name) (*env)->FindClass(env, (name))

#define JNI_GETFIELDID(name, sig) (*env)->GetFieldlD(env,jlClass, (name),(sig))

#define JNI_NEWSTRINGUTF(bytes) (*env)->NewStringUTF(env, (bytes))

#define JNI_SETBYTEFIELD(id, val)
#define/NI_SETINTFIELD(id, val)
#define JNI_SETLONGFIELD(id, val)
#define JNI_SETOBJFIELD(id, val)

(*env)->SetByteField(env,jObject, (id),(val))
(*env)->SetIntField(envdObject, (id), (val))

(*env)->SetLongField(env,jObject, (id),(val))
(*env)->SetObjectField(env,jObject,(id),(val))

/* Prototypes of functions found only in this source code file */
int JI., SetStringField(JNIEnv *env,

jobject jObject,
jfieldlD jFieldID,
const char *bytes);

]*

* Class: my_jlegacy_classes..ILegacyRO
* Method: getN
* Signature: 0Lmy/jlegacy/classesdJLegacy;
*/

**********************************************************************

* Java_my_jlegacy_classes_JLegacyRO._getN retrieves the legacy data using the
* legacy library routine, instantiates a JLegacy object, and populates the object with

* the legacy data. Failure is indicated by returning a null object.
*/

JNIEXPORT jobject INICALL Java_my..jlegacy_classes_JLegacyRO_.getN
(JNIEnv *env, jclass jClass)

{
LegacyType legacy;
int istat = 0;

jclass jlClass = NULL;
jfieldlD timestamp ID = NULL;



jficldID
jfieldlD
jfieldID
jfieldID
jfieldID
jfie|dID
jfieldID
jfieldID
jfieldID
jfieldlD
jfieldID
jobject

pType_ID = NULL;
id [D = NULL,

mType_ID = NULL,
stringA_ID = NULL;
stdngB_ID = NULL;
stringC_ID = NULL;
stdngD_ID = NULL;
stringE_ID = NULL;
stringF_ID = NULL;
stringG_ID = NULL;
stringH_lD = NULL;

jObject = NULL;

istat = Get Legacy_Data(&legacy);
if ( istat < 0 ) return NULL;

jlClass = JNI_FINDCLAS S(" my/jlegacy/classes/JLegacy");
if (jlClass)

{
jObject = ]lqI_ALLOCOBIECT(jlCIass);

ff (jObject)
{

/* Establish the field IDs */

timestamp_ID = INI_GETFIELDID("dmestamp", "J");

pType_ID
idID
mType_ID
stringA_ID
stringSJD
stringC_ID
stringD_ID
stringEID
stringF_n3
stringG ID
stringH ID

= INI_GETFIELDID("pType", "I");
= _R_GETFIELDID("id", "B");
= 3NI_GETFIELDID("mType", "I");
= 3NI_GETFIELDID("stringA", "Ljava/lang/String;");
= _qI_GETFIELDIDCstringB", "Ljava/lang/String;");
= JNI_GETFIELDID("stringC", "Ljava/lang/String;");
= JNI_GETFIELDIDCstringD", "Ljava/lang/String;");
-- _'I_GETFIELDID("stringE", "Ljava/lang/String;");
= ]NI_GETFIELDID("stringF", "Ljava/lang/String;");
= JNI_GETFIELDID("stringG", "Ljava/lang/String;");

=/NI GETFIELDID("stringH", "Ljava/lang/String;");

/* Set the instance fields of the object tobe returned */

if( timestamp_ID
&& pType_lD
&& id_ID
&& mType_ID
&& stringA ID
&& stringB_ID
&& stringC ID
&& stringD ID
&& stringEID
&& strin_jD
&& stringG_ID
&& stfingH_ID )

{
JNI_SETLONGFIELD(timestamp ID, legacy.Timestamp);
JNI_SETINTFIELD(pType ID, legacy.P Type);
JNI SETBYTEFIELD(id ID, legacy.Id);
JNI_S ETINTFIELD( mType_ID, legacy.M_Type);



if ( JL_SetStdngField(env, jObject, stringA_ID, legacy.String_A)
&& JL_SetStringField(env, jObject, stringB_ID, legacy.String_B)
&& JL SetStdngField(env, jObject, stringC_lD, legacy.String C)
&& JL SetStdngField(env, jObject, stringD_ID, legacy.String_D)
&& YL SetStringField(env, jObject, stringE_ID, legacy.String_E)
&& JL SetStringField(env, jObject, stringF_ID, legacy.StringF)
&& JL_SetStringField(env, jObject, stringG_ID, legacy.String_G)
&& JL SetStringField(env, jObject, stringH_ID, legacy.StringH))

{
/* Instance string fields of object have been set */

}
else

{
JNI DELETELOC ALKEF(jObject);
return NULL;

}
}
else

{
JN'I_DELETELOCALREF(jObjec0;
return NULL;

}
}/* if (jObject) */

}/* if (jlClass) */

return jObject;
}/* End of 1ava my_jlegacy_classes_JLegacyRO_getN */



i

* JL_SctStringField sets the indicated field of the object to a jav_i.lang.String object
* constructed from the indicated char array.
*/

int JL SetStringField(JNIEnv *env,
jobject jObject,
jfieldlD jFieldlD,
consl char %ytes)

int retval = 1;

jstring jString;

jString = JNI_NEWSTRINGUTF(bytes);
if (jString)
{

JNI_SETOBJFIELD(jFieldlD, jString);
JNI_DELETELOCALREF(j String);

}
else

retval = 0;

return retval;
}/* End of JL_getStringField */

Listing 7 : Java_my_jlegacy_classes_JLegacyRO_getN.c


