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A GRAPHICAL METHOD FOR ESTIMATING ION-ROCKET PERFORMANCE

By Thaine W. Reynolds and J. Howard Childs

SUMMARY

Equations relating the critical temperature and ion current density

for surface ionization of cesium on tungsten are derived for the cases

of zero and finite electric fields at the ion-emitting surface. These

equations are used to obtain a series of graphs that can be used to

solve many problems relating to ion-rocket theoretical performance. The

effect of operation at less than space-charge-limited current density

and the effect of nonuniform propellant flux onto the ion-emitting sur-

face are also treated.

INTRODUCTION

The potential of the ion rocket as a space propulsion engine (for

example_ refs. i and 2) has led to a sizable research and development

program on this engine. This work is being conducted in both the NASA

Lewis Research Center (ref. 3) and in several laboratories in industry.

A method for estimating the performance to be expected with various ion-

rocket configurations at different operating conditions is therefore of

importance.

Figure i depicts one simple ion-rocket configuration wherein a con-

tact ion source is employed. Many of the concepts and terminology that

follow can be understood by reference to this figure.

The type of ion source receiving the greatest research attention

for possible ion-rocket application is the contact ionization of alkali

metals_ primarily cesiumj on heated surfaces having a high electron work

function_ primarily tungsten. This report presents a graphical method

for estimating the performance of those ion rockets that employ contact

ionization of cesium on tungsten surfaces. The relations on which the

graphs are based were obtained from theory and from analysis of reported

data on contact ionization. The various assumptions and limitations

that apply to the method are listed in a subsequent section of the report.

The report also considers the effect on efficiency of nonuniform current

density and of operation at current densities below the space-charge-
limited condition.
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SYMBOLS

ion-emitting area, m 2

electric-field strength_ v/m

distance of propellant supply tube to emitter surface_ m

specific impulse_ sec

ion current density_ amp/m 2

average ion current density over totals_ emitter area, amp/m 2

ion current density for ideal diode_ _p/m 2

maximum local ion current density_ amp/m 2

Boltzmann constant

accelerator length_ m

ion mass, kg

power input to accelerator electrode_ w

ion beam power_ w

power required to emit electrons_ w

power input to ion rocket from general,or, w

power required to vaporize and ionize propellant, w

summation of power losses from ion ro_ket_ w

power radiated from ion emitter_ w

energy loss by radiation from ion so_'ce_ ev/ion

electronic charge, coulomb

ion emitter temperat_re_ OK

voltage_ v

voltage at ion emitter_ v
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voltage drop across accelerating gap_ v

overall voltage drop_ v

width of emitter surface, m

fractional distance from emitter edge

ratio of beam power to radiated power at two conditions

(defined by eq. (Sl))

thermal emissivity

permittivity of free space

ion-rocket energy efficiency

energy efficiency of ion source (uniform flux)

energy efficiency of ion source (nonuniform flux)

potential energy, ev

EQUATIONS FOR ION-ROCKET EFFICIENCY

lon-rocket energy efficiency is given by:

-- - p (1)

%--%

The various components of the term 2 Ploss for an ion rocket employ-

ing a contact ion source are as follows:

PR The radiated power from,__the hot tungsten surfaces.

This is by far the largest part of LPloss in most engines using con-

tact ion sources. For a given PR, the value of PB attainable is

dependent on the uniformity of the propellant flux onto the ionizing

surface; this will be further discussed.

Pprop The power required to vaporize and ionize the propel-

lant. This is usually negligible: Pprop < 6J, watts, where J is

total current in amperes.



Pelect The power required to emit the electrons for beam
neutralization. The value of this term can range from very small to
very large values relative to the other power losses_ depending on the
electron emitter configuration and work function (hence, temperature).

PA The power required to maintain electric potential on
the engine electrodes. This term must be very small in any engine having
reasonable operating life_ since ion impingement on the electrodes or
electron emission from the electrodes would result in _evere erosion
and/or overheating of engine parts.

Of the various componentterms in _Ploss, only PR is included

in the computations and graphs that follow. The term PR is associated
with the ion source_ while the other _Ploss componentterms are as-
sociated with other parts of the engine. In the strict sense, therefore,
the following discussion deals with the ion-source energy efficiency hs:

PB (2)
_s = PB + PR

As just noted, the other terms in _Ploss

for many ion rockets_ in which case

nay prove to be negligible

ms (3)

Many of the equations that follow apply onl_ to _s; others apply also

to _ and in such cases the appropriate symbols are used.

GRAPHS FOR ION-ROCKET PEFFORMANCE

Most of the equations for ion-rocket theoretical performance are

well documented (e.g., ref. 5); derivations of these equations are not

repeated herein. Except when otherwise notcd_ the equations that fol-

low are included in, or can be easily deriwd from, those of reference 3.

Performance with Uniform Pr(pellant Flux

For cases where propellant flux onto the ionizing surface is uni-

form_ figure 2 permits a graphical determination of various performance

parsmeters, including Ns' Figure 2 contains four page-size graphs

that can be used to determine ion-rocket theoretical performance char-

_cteristics. Using figure 2(a), the overall voltage AV T required to
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yield a given specific impulse is determined. Using figure 2(b)3 for a

given accelerator length L and accelerating voltage AVA_ the ideal

current density Jideal can be read from the abscissa. This value of

Jideal can be used to enter figure 2(c), where j and emitter surface

temperature T serve to determine QR' the radiant-energy loss from

the emitter in units of electron volts per ion. The lower boundary

curve results from the minimum permissible temperature of operation for

the emitter surface governed by the current-critical temperature rela-

tion, equation (7). The value of QR can then be used to enter fig-

ure 2(d), where QR' together with the overall voltage drop AV T pre-

viously obtained_ serves to determine qs; _s is the ion-source energy

efficiency for the ion rocket giving the Is specified in figure 2(a).

A graph containing all four parts of figure 2 on a single sheet is in-

cluded in addition to the page-size graphs of parts (a) to (d). This

arrangement of the four parts facilitates their use.

The various parts of figure 2 are subject to the following assump-
tions and limitations:

(1) The propellant is cesium. (Figs. _(a) to (c).)

(2) The ion-emitting surface is tungsten with emissivity given by

figure S. (Fig. ?(c).)

(S) Operation is at the critical temperature defined by equation

(7). (Fig. 2(c).)

(A) Current density is equal to that for space-charge-limited

current from an ideal plane-parallel diode of spacing L. In some cases

this assumption can be modified by techniques to be discussed in a

later section. (Fig. 2(b).)

(5) Thermal radiation occurs only from the ion-emitting surface.

This implies complete radiation shielding on the upstream face of the

emitter and zero shielding downstream. (Fig. 2(c).)

(6) Space charge limitations occur only at emitter. (Figs. 2(b)

(c).)

The essential equations used in obtaining the graphs of figure 2
are as follows:

Graph (a):

Is = 12Z_A-_T (4)



Graph(b):

j = o._TS×lo-S(AVA)3/2
L 2

(s)

Graph (c):

(i)QR : io.zs7 (s)

(2) Emissivity of tungsten as a function of temperature as given

by figure 3

(3) ioglo j = ii. 3 - _ (7)T

(Derivation of this equation discussed in later section of report)

Graph (d):

PB i i (s)
PB + PR PR QR

i + PB 1 + £YT

If aperture and space charge effects are known for a particular

ion rocket so that J _ Jideal' this correction can be applied on the

abscissa of figure 2(c) before determining QR" For grid electrodes

the values of J/Jideal can be estimated by th_ method of reference 4

(see also ref. 5). For other electrode configurations, J/Jideal can

often be determined from limited test data on _e particular engine

under consideration.

!
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Performance with Nonuniform Propel]ant Flux

In some ion rockets a nonuniform propellan_; flux onto the ion-

emitting surface may be encountered. With poro_s tungsten emitters

this might result from nonuniform porosity. In other contact ion

sources it might result from the pattern of flm_ out of the propellant

vapor supply system. One example of nonuniform propellant flux is shown

in figure 49 this is the computed flux pattern _'or the engine depicted

in figure i.

Where a nonuniform propellant flux exists_ the ion emitter tem-

perature must be maintained at the critical te_)erature corresponding

to the local Jmax" Otherwise, an adsorbed ces.um layer will build up
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at that location with the resulting emission of a large percent of

neutral cesium atoms. Thus, while T and PR are fixed by Jmax'

the value of PB is reduced from the value that would be obtained if

j were uniform across the emitter with J = Jmax" This reduction in

PB results in a lower value of _s and q.

In figure 4 the area under the curve is proportional to Jav' while

the total rectangular area is proportional to Jmax" Now, if _ repre-

sents the energy efficiency that would be obtained with uniform propel-

lant flux and _5 represents the efficiency with nonuniform flux_ then

Jmax A AV
= _ (9)

Jmax A AV + 2. Ploss

and

Jav A Z_V

_8 = _ (lO)

Jay A AV + _JPloss

Now, values of h (actually 4s) are obtained from figure 2, and

simple correction factors are desired to use with these values to ob-

tain _5 and _s,$ for cases where propellant flux is not uniform:

_ Jav/Jmax

(il)

9\Jmax 4 + i

and

= Jav/Jmax (12)

(Ja--! i) s+i\Jm_x

A plot of 4JD and Ns,JNs is included in figure 5. If a given ion

rocket would have efficiency N or Ns with uniform propellant flux

(fig. 2), the efficiency of that same ion rocket with nonuniform flux

characterized by some value of Jav/Jmax is given by appropriate

values of _J_ or _s,#_s from figure 5.

A comparison of the efficiency for uniform and nonuniform propel-

lant flux can also be made readily by use of figures 2(c) and (d). Th.
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efficiency _ is read for Jmax as describe(i previously. The effi-
ciency _s is obtained as follows: From the point in figure 2(c) cor-
responding to Jmax and critical temperature (lower line), go up a
constant-temperature line to Jav" This point gives the appropriate
value of QR, and the efficiency _s is then read from figure 2(d) at
this value of QR and the appropriate AVT.

CRITICALTEMPERATURE- CURRENTRELATIONS

IN CESIUM-TUNGSTENSYSTEM

Zero Electric Field at Emitter

A different current - critical temperature relation (eq. (7)) is
used in this report from that used previously (refs. 3 and 5). This
equation was derived from the data of table I of reference 6 and is
recommendedas the relation to use for space-charge-limited flow con-
ditions, that is, for zero electric field at the ion emitter surface.
The equation relating current and temperature that previously was used was
obtained from data at other than space-charge-limited flow conditions.
A comparison of the equation used herein with the earlier equation at
current-density levels of interest for ion-rccket engines indicates a
temperature difference of around iSO° K between the two equations. This

difference may make considerable difference in the power radiated by

the ion emitter and hence in the calculated ion-rocket efficiency.

The zero-field relation presented hereir was obtained by plotting

the total evaporation rate (sum of the ion a_d atom currents) against

the fraction of a monolayer adsorbed on the surface for several constant

surface temperature values (fig. 6). A discussion of the behavior of

the cesium-tungsten system as governed by these total-evaporation-rate

curves may be found in reference 7. In partJcular_ it may be noted that

a plot of the current at the minimum in thes_ curves against the tem-

perature will yield a current - critical temperature relation. The

equation so obtained is

logloj : ii.3- (7)
T

k plot of this relation is shown in figure 7.

!
(D
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Electric Field at Emitter

The existence of an electric field at the ion-emitting surface

will affect both the current-voltage relation and the current - critical

temperature relation. The question arises as to whether there is an

optimum condition for operation, that is, one having the lowest ratio

of radiated power PR to ion beam power PB" The discussion in this

section is directed toward an answer to this question.

The equation for current flow between parallel planes when an

electric field E exists at the emitter plane can be expressed

3b 2
(13)

where

A plot of equation (15) for cesium in the range of AV = 40,000

volts and j = ZOO amperes per square meter is shown in figure 8.

The effect of the existence of an electric field at the ion-

emitting surface will be to reduce the effective potential barrier for
the escape of ions and hence to increase the ion current flow, similar

to the Schottky effect for electrons (ref. 8), illustrated pictorially:

/

/

/

/
/
/

/

Energy /
/

/

/

/

/

/

/

sJ

a_
_--_-Image potential, no external field

_0

ial of ion due to field, E

L _ distance from surface

The symbol 90 represents the potential energy barrier to the

escape of an ion in mutual interaction with the electrical image force.

The amount of the reduction in the potential barrier due to the pres-

ence of the field is given by the relation
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(14)

where hQ is expressed in electron volts and

Simplifying, this expression becomes

= -3.8×10.5El/2

E in volts per meter.

(15)

In order to illustrate the effect of the field on ion current flow_

equation (7) can be written in the form

j =loll. 3 e-2.62/kT (16)

In this form_ from the exponential Bolt;_nann factor_ the potential

energy barrier to escape of ions at zero fieZd would be interpreted as

2.62 electron volts.

by

The change in current flow caused by thc_ field may then be given

-_/_
DEjT 0 = DE=OjT 0 e (17)

where

JE=O,T 0 current at zero field

JE,T 0 current at field E and same temp_rature

and aq0, the change in potential barrier, is given by equation (15).

An equation for current - critical temp,_rature with other than

zero electric field can be generated by usini_ equations (15) and (17)

in conjunction with the zero-field ion curres[t relation.

Incorporating equations (15) and (17) ilto (16) yields the fol-

lowing relation for current - critical tempe:'ature at other than zero

field at the emitter:

_ A
j = loll. 3 e kT \ _,)! (18)

j = 1011.3 e kT _i-i. (19)

or, in logarithmic form, comparable with equ_tion (7)_

loglo a = ll. 3 - _ + O.192 -v'2
T T

(20)

I
CO
CO
CO



ii

This relation_ encompassing the effect of electric field on the current

critical temperature relation, may be compared with the experimental

data of reference 9. In reference 9 data are presented on the effect

of electric fields up to _XI0 S volts per meter on the critical temper-

ature for constant current. Values of dT/d_ ranging from about

-0.01 ° to -0.015 ° K/_volt/meter were obtained.

By differentiating equation (20) at constant current, the following

expression for (_T/_/E)j is obtained:

j i - l.4_xlo-Sw_ (21)

If E is limited to about lO 7 volts per meter, this relation is

approximately expressed

dT = _1.45×i0_5 T (22)
d_-

The range of temperatures investigated in reference 9 was about 700 °

to 900 ° K. In this temperature range, values of equation (22) vary

from about -0.01 ° to -0.013 ° K/_volt/meter, which is in agreement with

the experimentally determined values.

Efficiency with Other than Zero Field at Emitter

To determine whether there is an optimum condition of operation,

that is, one in which the ratio of beam power PB to radiated power

PR is a maximum, the ratio PB/PR at off-space-charge conditions can

be compared with that at the space-charge-limited condition

PB/PR PB/PB,o = J/J0
_ = z (23)

pB,o/PR,o = pR/pR,0 (_/_0T0)_

where the subscript 0 represents the space-charge-limited condition.

The actual ratio of efficiencies _/_0 will not vary as much as
the function in equation (23), since

_[L- Z

_0 l + _o(Z - l) (24)

With tungsten, in the temperature range of interest for surface

ionization_ the emissivity is proportional to temperature: so that
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Equation (25) can be rewritten:

(25)

z : J0 (26)

0+ j
The ratio Z may be readily evaluated for a constant accelerator

spacing L and constant accelerating voltage AV. As illustrated in

the following sketch, Jo is the space-charge-limited current flow.

J0

in j

AT E J

AT D

kk / Space-charge-limited

ow condi%ion
I fk'\ _ 0ff-s _ace-charge

I/T 4- Zero field

When the current is lowered by an amount Aj., a field E is present

at the emitter (determined from eq. (13) or :Tig. 8). The required

critical surface temperature is lowered_ bot]i because of the field and

because of the lowering of the current:

(9_'r As .- Z_ (2"7)
AT = ATE +ATj - _

Substituting from (22) for _T/_E and fret equation (16) (by first

differentiating) for _T/_j gives

_ _ k--LA_ _ -1._SXlO-s _r_+ _ _t (28)
T 2.}2 j

and thus equation (26) can be evaluated by t:le relation

b_
I
O9
bO
b0

Z _.

i + (Aa/ao)

- z. ,_sxlo-5 _/7 + 77.:77 ao

(29)
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Values of Z have been evaluated at several sets of conditions

varying from AV = i0,000 to 50,000 volts and currents from 200 to i000

amperes per square meter and are shown in figure 9. According to these

curves, more efficient operation could be attained at current densities

a few percent below space-charge-limited values. At high current den-

sities the region of greater efficiency for off-space-charge operation

is greater.

It should be noted_ however, that (i) the percentage improvement

in efficiency for off-space-charge operation is small_ even less than

the values of Z (note eq. (24)); (2) the surface temperature lowering

permitted to take advantage of this off-space-charge operation advantage
is small - of the order of 50 ° C or less. Such close control of emitter

surface temperature may be difficult.

CONCLUDING REMARKS

The graphs of ion-rocket performance parameters presented herein

constitute a means for rapid determination of theoretical engine per-

formance characteristics. The equation relating emitter temperature to

space-charge-limited current density, on which the performance graphs

are based, was derived from experimental data obtained with pure tung-

sten ion emitters in small-scale apparatus. NASA data on an experi-

mental ion rocket (ref. i0) indicate that higher emitter temperatures

are required in that engine than those indicated by this equation.

This discrepancy may be due to the presence of surface impurities on

the engine ion emitter. Such impurities_ if present, might also alter

the thermal emissivity of the emitter from that of pure tungsten. Thus,

in ion-rocket experiments_ the presence of impurities on the ion-emitting

surface can result in radiation power losses that are greater than those

computed from the equations given in this report. However_ it should

be possible to attain the engine performance indicated herein through

the use of inerting and bake-out procedures to keep the ion emitter

free of contaminants.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland_ 0hio_ May 12_ 1960
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Figure 7. - Current - critical temperature relation (eq. (7)) for cesium on tungsten.
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Figure 8. - Typical plot of voltage gra4Lient at emitter with

changes in accelerator length# voltage 3 and current (eq. (13)).
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Figure 9. - Effect of operating off-space-charge conditions
on ratio of beam power to radiated power.
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