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A METHOD FOR THE CALCULATION OF LATTICE ENERGIES OF COMPLEX
CRYSTALS WITH APPLICATION TO THE OXIDES OF MOLYBDENUM

By Wintiav S CioaNey

SUMMARY

A theoretical study has been made of molybdenum
dioride and molybdenum trioride in order to ertend
the knowledge of conditions and factors involred i
the oxidation of molybdenum. The lattice energies
hare been calculated by using an improved and more
generalized method which is baxed on the electro-
statie maodel.  The crystal structure has been eram-
ined and the details of the structure have been cor-
refated with the valence mechanisms contributing to
the lattice energy.

There are several energy-producing ralence mecha-
nisms which contribute to the lattice energy. Those
studied herein are coudombic energy, polarization
energy, Van der Waals energy, and repulsion energy.
The methods wused to compute these energies have
been modified and improved making them applicable
to many types of crystals which could not be readily
studied with the ofd methods.  In particular, the
new method permits the caleulation of lattice energies
of distorted erystal structures such as those found in
the orides of molybdenum.

The data reported by N-ray erystallographers have
been transformed into a vector system.  This system
is easier to apply in the energy caleulations and
easier to use in sketehing the crystal structure.

Covalent effects have been examined in the molyb-
denwm oride crystals but a quantitative caleulation
of covalent energy was not attempted. A postulated
covalently induced electrostatic energy was briefly
investipated and appears to be feasible.

It i felt that the overall study has provided much
insight ax to the nature of the bonding mechanisms
responsible for the stability of these orides. In
particular, the layer structure and weak interlayer
bond found in molybdenwm trioride are believed to

be responsible for the high rvapor presswre of this
odide.

Perhaps of more general significance, the methods
developed in this research should be wseful in extend-
ing the knowledge of compler crystals which have
not been subject to this type of study before.

INTRODUCTION

The electrostatic theories of valence have been
used for many vears to compute lattice energies
and to studv the relationships among ervstal
strueture, lattice energies, and physical properties
of eryvstals.  The established methods are limited,
however, to relatively simple erystal structures
possessing great symumetry.  The mathematical
methods that are emploved take advantage of the
crystal symmetry to express the energy relation-
ships in terms of mathematical series which may
be resolved by established techniques.  Although
the complexity of the established methods limits
their application to relatively simple syvmmetrieal
crystal structures, many real erystals are amenable
to these methods.

In this investigation, the clectrostatic theories
of valence were applied to the dioxide and trioxide
of molybdenum. Beeause of the unusual and
distorted crystal structure of these oxides, the
usual method of computing the components of
lattice energy could not be applied. A new
method has been developed which is more general
in its scope. This method is discussed in great
detail and it is applied to these two oxides of
molvbdenum. Because of the more general char-
acter of this method, it should be possible to
apply the electrostatic theories of valenece to the
many complex ervstals which have not been

1
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investigated by this means before,

Molybdenum is a metal which has attracted
interest. It possesses properties which make it
a potentially useful structural material in high-
temperature  environments.  However, in an
environment with very high temperatures and an
oxvgen containing atmosphere, such as the envi-
ronment for very high-speed terrestrial flight,
molybdenum combines with oxygen catastro-
phically.

The oxidation of molybdenum has been studied
by many investigators using empirical and experi-
mental methods.  Apparently no theoretical study
has been made of this problem. A theoretical
study was undertaken here to extend the knowl-
edge of the conditions and factors involved in the
oxidation of molybdenum.

The author wishes to express his appreciation to
Dr. O. K. Rice, Professor of Chennstry, Univer-
sity of North Carolina, for constructive eriticism
and helpful advice.

SYMBOLS

Ay Madelung constant

i, Bohr radius

ab,e erystal cell dimensions

B repulsion constant

¢ conversion {uctor, kealferg

- .

D vector between two tons

d distanee between ions

¥, ionization potential

e electronic charge

¥ electrie field veetor

- . . .

G position vector of a polarizable ion

g repulsion exponential law parameter

-

T general position veetor of an ion

ann : -

RAN unit veetors in an orthogonal system

g Vau der Waals dipole-dipole coefficient

1. Van der Waals dipole-quadrupole coeffi-
clent

M, number of bonds between jons 1 and )

Mo! molybdenum on position vector

N number of polarizable electrons

Nar Avogadro’s number or number of polar-
izable 10ns

n repulsion power Jaw parameter

O} oxygen lon position vector

P number of outer shell electrons in an ion

AERONAUVTICS AND SPACE ADMINISTRATION

Pe repulsion coefficient defined by equation
(74)

q electrie charge

R interionie distance at equilibrium

R veetor from the origin of one cell to the
origin of another cell

R, ionie refraction of the jth ion

1 ionie radius

U energy

. coulombice energy

Uga Van der Waals dipole-dipole energy

Uy Van der Waals dipole-quadrupole energy

U, polarization energy

U, repulsion energy

U, stabilization energy

U, total lattice energy

Cartesian coordinate system axes
7 valence

polarizability

interaxial angles of the erystal cell

2> =2

unit veetors i the directions of the
crystal-cell axes

parameter, laver number

o>

sealing parameter

number of ions per unit cell

electrie dipole moment

number of moles or stoichiometric units
per unit cell
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THE OXIDATION PROBLEM

In general, all metals except certain noble metals
have 1 natural tendeney to react with oxygen gax
and form anoxide.  The usefulness of a metal as a
structural material is greatly dependent on the
rate 1t whieh this oxidation process proceeds.
The Fasic method of controlling the oxidation proe-
ess 1s o interpose a barrier between the metal sur-
face and the atmosphere. This barrier may be an
artilicial deviee, such as a coat of paint; however,
for netals known to be inherently oxidation re-
sistant, the barrier is usually a tough tightly
adherent oxide film.

Th» oxide of a metal 1s a very important factor
in the oxidation characteristies of the metal.  The
oxide film may be loose, porous, or flaky and pro-
vide little protection to the underlying metal. A
protective oxide will form a tough and tightly
adherent film.  1f a break in this film should
oceur then subsequent oxidation will repair the
defee . This is said 1o be a self-regenerative film,
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The oxidation process that occurs in the presence
of a self-regencrative protective oxide film is
controlled by the rates of diffusion of either the
oxvgen atoms or the metal atoms or both.  The
force that drives the diffusion of atoms through
the film is related to the gradient of the chemical
potential of these atoms across the film.  As the
film becomes thick and the gradient of the chem-
ical potential small, the oxidation process may
reach a virtual standstill.  Nonprotective oxides
may occur where the oxide is in the gas state
rather than the solid state. Molybdenum tri-
oxide exists as a solid at lower temperatures but
readily vaporizes at higher temperatures affording
practically no protection for the metal. At high
temperatures, molvbdenum oxidizes very rapidly
and this imposes a serious limit on the usefulness
of the metal as a structural material.

There are several oxides of molybdenum known
to form under various conditions with compositions
ranging from a metallic oxide Mo,O to the tri-
oxide MoO;. The formation of oxides on the
metal surface is probably a complex transition
through several of the possible compositions. At
high temperatures the dioxide changes to the tri-
oxide. The trioxide is unstable in the sense that
it does not remain sohd and certainly does not
form a protective coating. The trioxide melis
at a temperature of 1,068° K under pressures as
low as 10 mm Hg. At a temperature of 1,428° K
and a pressure of 1 atmosphere, the molten molyb-
denum trioxide vaporizes.  Direct sublimation
oceurs at 0.3 mm Hg and 973° K.

There are two general arcas of importance in
research on oxides as they are related to the
oxidation of metals. The first pertains to the
physical nature of the oxide itself and to the
underlying reasons for the failure of the oxide to
form a protective film. The second pertains to
modifications of the oxide to make it more stable
and to reduce the diffusion controlled oxidation
rate.  The feasibility of research in this second
area has been demonstrated by Wagner in his
theory of oxidation (discussed in ref. 1) where it
is shown that small additions to the base metal
can modify a diffusion controlled oxidation rate.
Also, some double oxides are more stuble than the
single oxides forming them.  These two areas of re-
search are related in that the first provides a
foundation of knowledge on which the second
may be based.

ENERGIES OF COMPLEX CRYSTALS 3

The present research is devoted to an explora-
tion of the kinds of forces holding the oxides of
molybdenum together, of the relative magnitudes
of the energies involved, and of the relationship
of these features to the erystal structure.

INTRODUCTORY DISCUSSION OF THEORETICAL
CONCEPTS

An introductory discussion of the underlying
concepts which form the basis for the theoretical
developments in this investigation is given here.
Readers who are familiar with this field of work
may desire to omit reading this section.

The electrostatie theory of valence 1s a very
old theory and contains contributions from many
carly workers.  The method of computing the
bonding energy of molecules and the Iattice en-
ergy of eryvstals has long been established for cer-
tain compounds. This method is capable of
vielding accurate quantitative rvesults in many
cases, especially for eryvstals that are essentially
ionie in the nature of their bonds. It is possible
to account for the structural configuration of
nany presumably covalent compounds on  the
basis of the electrostatic theory.

The model used in the electrostatic theory is
based on the assumption that ions are forined by
the transfer of eclectrons from the more electro-
positive clement to the more electronegative cle-
ment, thus forming eations and anions, respeetively.
The ions are assumned to exist in the cryvstal
as quasi-spheres with a moderate  amount  of
hardness and with a variation in size over a small
range.  Except when the ions are polarized, the
electric charge is assumed to be concentrated at
the center of the sphere.  In the presence of an
electrie field, the ions may be polarized by ac-
quiring an induced separation of the centers of
positive and negative charge.  The ions contain
“orbiting” electrons which, on u short-time basis,
act with the nucleus to produce a revolving elec-
trie dipole and in two adjacent ions the revolution
of these dipoles may become synehronized to
produce an attractive foree between the dons.
When foreed together the ions repel one another
by repulsion forcees (other than coulomb forees)
which presumably act in compliance  with the
Pauli exclusion prineiple.  In most computations
the temperature is presunted to be 0° Ko The
ions in erystals vibrate about their mean positions
energy.  In  cuses

with  zero-point  vibrationul
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where the cation has partially filled d-orbitals,
crystal field effects may be present. The ervstal
field effects are not present in the trioxide of
molybdenum and are assumed to be ineffective in
the case of the dioxide.

In lattice energy ealculations based on the elee-
trostatic theory, there are several energy contri-
butions which are computed individually.
include coulombic energy, polarization cnergy,
Van der Waals energy, and repulsion energy.
Zero-point vibrational energy and erystal field ef-
feets are not included in this work.  The theoreti-
cal concepts are developed in the text and the
application of these concepts is carried out in
appendixes A to D.

These

COULOMBIC ENERGY

The coulombic cnergy is the electrostatic po-
tentinl energy of a molecule or stoichiometrie unit
located In an infinitely large crystal.  Since the
charge of cach jon is assumed to be concentrated
at the center point of that ion and potential energy
contributions of neighbors are additive, the com-
putation of coulombie energy amounts to a sum-
mation of potential energy contributions from an
infinite array of point charges. The electrostatic
potential energy of one ion due to another is
proportional to the reciprocal of the distance be-
tween them and decreases in magnitude as the
distance inereases.  However, for one reference
ion in an infinite ervstal, the number of neighbors
increases rapidly with the distance away from that
ion.  The overall erystal is electrically neutral and
there are positive and negative energy contribu-
tions resulting from the different pairings of pos-
itive and negative ions.  The net effect is that for
a reference 1on the electrostatic potential energy
inereases in magnitude as neighbors are added in
an array about it and rapidly levels off to a fixed
vadue.  In smaple eryvstals, the potential energy
contributions may be arranged in the form of a
muthematical infinite the limiting
value of the sum determined by analytical tech-
niques.  This method has been used, in several
varintions, to effect such a summation for most
common types of simple ervstals.

Where a crystal is found to be distorted with
very little periodicity of the ion spacing within a
single cell; the Iabor involved in the method just
desceribed would be very great and the results
be applicable to only one anomalous

series  and

would

eryvstal.  In this research a method of effecting
the summation is developed that requires no
symmetry at all within a erystal cell.  This method
tukes advantage of the periodic arrangement of
the cells themselves and the electrostatie poten-
tinl cnergy of a cell of ions in an infinite erystal of
cells is determined.  The summation of potential
energy contributions for a single reference cell as
neighboring cells are added in lavers around it is
expressed in terms of a distance parameter 7.
The ealeulation is made on an automatic compuier
with the Iattice expanding until covergence is
established.  The  finul  contribution  of  long-
distance neighbors is determined by extrapolating
to the Iimit of the potential energy us g approaches
infinity. This method is applicable to any
erystal and is limited only by the computational
speed of the computer,

VECTOR SYSTEM OF EXPRESSING CRYSTAL STRUCTURE

Censideration of the problem of computing the
coulombie energy of a erystal should make it
apparent that a system is needed to express the
position of each ion within a unit cell and to ex-
press the position of any cell with respeet to a sclee-
ted reference cell. A veetor system has been selee-
ted Because of the convenience of the vector notation
and established vector methods of computation.
The system adopted is actually a2 compound
systam consisting of reference systems loeated at
each point in a Iarger reference system. Each
cell in the ervstal constitutes a reference svstem
with the cell edges parallel to the cell reference sys-
tem: xes.  The origin of the cell is the origin of the
cell ceference system.  The position of each ion
in the eell 1s speeified by a position vector i the
In the larger reference
svstem, a single cell is selected as a relerence cell
and the origin of the cell is the origin of the system.

cell reference system,

The axes are again parallel to the eell axes but
distances along each axis are measured in units
ol ¢l dimensions. In this syvstem, a veelor
specifies the position of the origin of a cell with
respeet to the origin ol the reference cell.

s . . .

I'l ¢ advantage in using this compound system
15 that the relative position of any one ion with
respeet Lo any other ton may be simply expressed

. . o L

as an algebraie sum of veetors.  The notation is
particularly convenient for the methods of com-
putation developed in this research.
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The position of each ion or atom in the cell of
a crystal has been determined, for many sub-
stances, by experimental  measurements  using
X-ray diffraction techniques.  The experimental
data which are used i this work are given in
appendix A,

POLARIZATION ENERGY

Polarization energy exists for an ion in a erystal
when there is an electrie field present at the posi-
tion of the ion. The electric fiela acts to
wuse o sceparation of  the centers of positive
and negative charge in the ervstal producing
an eleetrie dipole.  This electrie  dipole  then
acquires an clectrostatic potential energy in the
elecetrie field.  The net energy effect is called the
polarization energyv.  Most simple symmetrical
crystals have a svmmetrie distribution of positive
and negative charges for which the associated
electrie fields cancel at the position of each ion
and polarization energy does not exist.  The re-
quirement of symmetry that made possible the
caleulation of coulombie energy with mathemat-
ical series effectively eliminated erystals in which
polarization energy would be expected.  Polari-
zution energy is to be expected in many distorted
erystals and isolated molecules.

The computation of the electrie field at some
seleeted point in an array of point charges re-
quires a vector summation of the eleetrie fields
associated with each charge sinee the eleetrie
field 18 a vector quantity.  This summation is
somewhat analogous to the coulombic energy
problem exeept that convergenece is much more
apid,

VAN DER WAALS ENERGY

Van der Wuaals energy, a kind of potential
energy, is associnted with Van der Waals forees,
a term applied to general forcees of attraction and
repulsion of uncharged molecules.  This term in-
cludes the interaction of molecules which possess
permanent electrie dipole moments.  The inter-
action of molecules, atoms, and 1ons not possessing
permanent dipole moments is the kind of Van der
Waals energy being considered i this research.
The associated forces are also called lLondon
forces.  The presence of a charge on an ion does
not prohibit the existence of Van der Waals forees;
rather, these forees are supertmposed on the cou-
lombie forces which are attributable to the charges.

~
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A mechanieal model frequently used to explain
the Van der Waals forces between atoms is de-
scribed by the svnchronized revolving  dipoles
mentioned previously. The theory of Van der
Waals energy is discussed in almost every text-
book on quantum chemistry and will not be
repeated in detall in this paper.

Van der Waals energy is a relatively smuall
contribution to the total lattice energy of nn 1onice
ervstal. [t can be an important facter in some
ervstals in determining which of two possible
similar structures is most stable.

REPULSION ENERGY

Whenever two atoms or ions are foreed together
they tend to resist this foree; that is, they tend to
oceupy a certain volume in space and resist any
action which would reduce this velume. This
behavior presumably is attributable to the Pauli
exclusion principle.  The methods of computing
the energy associated with this repulsion foree wre
empirical.  There are two methods in general use
known as the “inverse power law” and the
“exponential law.”  Each method emplovs an
expression with two unknown parameters.  One
parameter is eliminated by setting the derivative
of lattice energy with respeet to the interionie
distance equal o zero at the experimentally
determined distanee. It is presumed that at the
experimentally determined distance, the potential
energy forces are all in equilibrium.  The second
unknown parameter may be determined by using
experimentally determined compressibilities or by
using empirical eonstants.  The inverse power
law was used in this research because it was
mathematically simpler.  Both laws are valid for
ions the potential energv forees of which are in
equilibrium.  The exponential law is considered
by many investigators to be better where the
forces are not in equilibrium.

BORN-HABER CYCLE

The validity of the model used in these calcula-
tions of energy may be tested by comparing the
theoretically determined lattice energy with the
experimentally  determined lattice energy.  The
Born-Haber cvele is used to  determine  the
experimental lattice energy from thermochemical
measurements of the heats of formation. The
heat of formation of a crystal is the energy
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released when the erystal is formed from the
elements in their natural state at standard condi-
tions. The lattice energy is energy released when
the crystal is formed from the elements in the state
of gascous ions.  The Born-Haber cycle allows for
such factors as heats of vaporization and dissocia-
tion and also for ionization potentials and electron
affinities in computation of empirieal lattice
energy.

UNIQUE LAYER STRUCTURE OF MOLYBDENUM TRIOXIDE

Upon examination of the crystal structure of
molvhdenum trioxide, it hecomes apparvent that
this cryvstal is made up of layvers. In nonlaver
ervstals, the metal and nonmetal atoms are in
alternate positions so that like atoms are not adja-
cent to one another.  Layer eryvstals, in this sense,
are tyvpificd by structural layvers the boundaries of
which are defined by like atoms in the surface of
one layver being adjacent to like atoms in the sur-
face of the neighboring layver.  Layver structures
are believed to result from directed covalent
bonds or large polurization of the anons.  This
same structural coneept ean be carried further to
include crystals made up of chains or eryvstals of
small individual molecular configurations wherein
the boundaries are still defined by hke adjacent
atoms,

The 1mportance of layer structures in consider-
ation of their stability characteristies les in the
kind of bonding between the lavers. 1t is not
necessary that o eryvstal have every bond in 1t
broken in order that it lose its solid state.  In the
sense of becoming nonsolid, the ervstal may fail
by separating into small structural units. Only a
stall part of all the bonds in a crystal may break
and, in view of this, it is worthwhile to examine
the different kinds of bonds in a crystal to see
which might be the weakest.

It is generally believed that the interlayer bond-
ing 1n 1onie crvstals is predominantly Van der
Waals bonding.  This conclusion is reached by
elimination of the other tyvpes of bonds. The
most influential type of bond that might be pres-
ent in an ionie eryvstalis the coulombice bond.  The
seetion entitled * Interlayer Energy” is devoted to
an effort to make a quantitative estimate ol how
muech coulombice contribution there is in the inter-
layver bond. It is shown there that Van der Waals
bonding is not predominant.

AERONAUTICS AND SPACE ADMINISTRATION

COVALENT ENERGY

Covalent energy is sometimes discussed in con-
nection with ionie cryvstals as a sort of residual
energy that represents the difference in measured
lattice energy and lattice energy computed on the
basis «f the electrostatic model. This is not a
good explanation of the lack of agreement in
energy caleulntions although where the difference
in energy is small the error in concept is probably
not.so ohjectionable as when this difference is large.
Generally, the concept of the covalent bond im-
plies o utilization of the valence electrons that
would make the assumptions in the electrostatic
theory invalid.  However, in the case of molyvh-
denum dioxide, there are two d-electrons for the
plus-four molvbdenum ion that are not a part of
the valence electrons so far us the electrostatice
model 18 concerned. On the basis of distance
between pairs of molyvbdenum ions, Pauling has
suggesied that these d-celectrons interact to form
a covalent bond (ref. 2, p. 437). I this is true,
then, since these d-cleetrons are not a part of the
alene s electrons in the electrostatic model, the
energy of this convalent bond would exist inde-
pender-tly of the eleetrostatic energies. It hap-
pens that the difference in measured and computed
lattice energies for molvbdenum dioxide is much
greater than a reasonable upper limit to an esti-
mate of this covalent bond encergyv.  Because of
is. worthwhile to look further to see if
some unaccounted energy-producing mechanism is
presen .

this, 1:

A Luge difference in an ionice bond as compared
with a covalent bond lies in the electron density
in the region between nuclei. For a pure ionic
bond, the valence electrons are virtually com-
pletely transferred from the eation to the anion
and tle two ilons are attracted by a coulombic
force.  In this cuse, on examining the electron
densit, - along a line from the cation nucleus to
the an on nucleus, there will be a point where the
eleetrenn density s virtually zero,  In contrast,
for a covalent bond the electron density is not
zero wh any point between nuoclei but rather it is
greate - than the electron density of free atoms
positicned n the same locations.  This implies a
localization of charge hetween nuclei rather than
charge transfer which is compatible with the con-
ventional coneept that in the covalent bond there
is a sharing of electrons,
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In the section entitled “Covalent Effecets,” it is
assunied that the d-electrons in the molybdenum
dioxide lattice are diffusely located between the
nueclei of closely spaced molybdenum ions. A
rather crude electrostatic model is then hypothe-
sized and used to compute the coulombie energy.
On comparing coulombic energy values computed
with different internuclear charges with measured
energy values, it can be determined that the
internuclear charge which yields the correct cou-
lombic energy is of the right order of magnitude
to imply that this hypothesized model is feasible.

CRYSTAL STRUCTURE

The physical mechanisms  which operate  to
produce the different contributions to the lattice
energy and the physical properties of a erystal
are closely related to the geometrical arrangement
of the atoms in the erystal. It is neeessary to be
able to orient the crvstal conceptually and to
express the position of each atom in a form which
may be adapted to subsequent mathematical
developments.

Tt is difficult to form a mental unage of a com-
plex ervstal. A deviee frequently used to facili-
tate description of complex erystals is to describe
them in terms of polvhedra,  Many erystals are
made up of octahedra or tetrahedra and the
deseription of the erystal may be simplified by
expressing relationships of, say, octahedra rather
than atoms. The relationship between atoms is
expressed in the description of a single octahedron.
In both molvbdenum dioxide and molybdenwn
trioxide the octahedra are formed with an oxygen
atom at each of the six corners and the molyb-
denum atom in the ecenter.  This arrangement is
shown in figure 1. The octahedron shown in this
figure is regular. Tt will be scen subsequently
that the real octabedra in these oxides are dis-
torted. The representative octahedron is shown
in figure 2. In schematic sketehes of crystals,
corner views and edge views of the octahedra are
used and these are shown in figure 3. Nolyb-
denum trioxide is represented in figure 4 where
figure 4(a) shows the top view of a single layver
and figure 4(b) shows the edge view of the layers.
Molybdenum dioxide is shown in figure 5. Of
course, figures 4 and 5 represent only a small
section of the ervstal and the extension in all
directions should be apparent.

ENERGIES OF COMPLEX CRYSTALS

-~1

Fiavre [.-—Octahedron representing an arrangement of
atoms.

Froore 2-—Typieal schemuatie drawing of octahedron
used to represent atomie configuration,
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() Corner view of an octahedron.

(b) Edge view of an octahedron.

Frovre 3. Representative views of an octahedron.

A4

A ‘ ‘ N
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(b)
() Top view of a laver.

(b) Edge view of layers.

Frarre 4.--Schematie structure of Mo,

When octahedra are joined then the atoms
located at such a joint are shared by the neigh-
boring octuhedra.  Frequently the sharing of
atoms by octahedra will define the differences in

AERONAUICS AND SPACE ADMINISTRATION

Fiovre 5.--Schematic stracture of Mo(),.

“kinds” of atoms of the same element according
to environment. By inspection of figure 4, it may
be seerc that there are three “kinds” of oxygen
atoms in molybdenum trioxide. The three “kinds”
are those shared by three octahedra, those shared
by twc octahedra, and those that are unshared.
The two “kinds” of oxygen atoms in molybhdenum
dioxide are not so apparent in figure 5. In this
case, the distortion of the octahedra is significant
in establishing environmental “kinds” of atoms.
The structure of crystals is established by spe-
cialists using NXeray diffraction techniques.  The
general subject area of erystallography und X-ray
diffraction studies is somewhat complex in nota-
tion an-l terminology. In order to use this infor-
mation it is necessary to translate the deseription
of the -rystal from the compaet notation of the
Xeray crystallographer into a longer form more
approp-iate for mathematical developments, This
form may be called the “reconstructed lattice.”
In a practical sense, there are several features of
the erystal structure that should be expressed.
The siz» and shape of the unit cell must be known.
This irformation is given by the type of lattice
and the cell dimensions.  Next, the position of
each atom within the eell must be known.  This
is expressed by the space group and the atom
positior:  purameters. For use in subsequent
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developments in this paper, it is convenient to
express the position of the atoms in the cell by
position vectors. The axes of the reference
system for these veetors are parallel to the cell
edges and the unit vectors are 1 angstrom unit
long. The system is not necessarily orthogonal.

The lattices of molybdenum dioxide and tri-
oxide are reconstructed by using the following
method. The outlines of the cells and the posi-
tions of the atoms are given in figures 6 to 9.
These sketches are not easy to interpret from a
casual glance but rather require the coordinated
study of different views, with attention directed
townrd atoms of particular interest. It is possible
to locate and identify each atom and its neighbors
and then to associnte the proper position vector
with each atom. A method is given for taking
X-ray diffraction structural data in the form in
which it is conventionally presented and from this
arriving at a set of atom or lon position vectors.
These position vectors are then used to recon-
struct the lattice, to ealeulate bond lengths, and
to caleulate interbond angles.

(5

ENERGIES OF

COMPLEX CRYSTALS 9

Structural data from X-ray diffraction studies
include the following information:

(1) Type of lattice

(2) Space group

(3) Cell dimensions

(4) Atom positions

The atom positions will be given according to
the equivalent positions that are occupied and
the atom position parameters to be used with
the general coordinates of the equivalent posi-
tions. The general coordinates of the equivalent
positions are established by the symmetry prop-
erties of the space group. This information has
been assembled in the International Tables for
X-ruy Crystallography (ref. 3) wherein also the
conventional symbols of crystallography used in
this investigation are given. The information
necessary for the present work is given in appen-
dix A.

The atom position parameters may be substi-
tuted into the general coordinates of the appro-
priate equivalent position and the result will be
the coordinates of the atoms in units of cell

C

e

“o
/
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/
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]
ENAS

VTV Y/W
(WER)
A ,A/‘{( )
Y/

Ay
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Frovre 6. Projection of MoQ, model on ac-plane.

a

I inch =2 A,
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Section A

Fravre 7.—Sectional projeetion of MoO, model ou be-plane.

dimensions,  These coordinates may then be mul-
tiplied by the appropriate cell dimensions, ex-
pressed in angstrom units, in order 1o obtain the
coordinates of the atoms in angstrom units.
’l‘h(\A reference system is formed by unit veetors
a, 8, and 5 pointing in the lattice dircetions
a, b, and ¢, respectively, with interaxial angles
a, 8, and v. The reference system is not neces-
sarily orthogonal.  The position vectors are
readily  constructed from the coordinates and
unit vectors.  Once the position vector of each
atom is known, then the bond between two atoms
is expressed by the vector difference between their
two position vectors. By usual veetor methods,
bond lengths and interbond angles are readily

AERONAUTICS AND SPACE ADMINISTRATION

NG

™
»Mé\

A

—b

=

Section B

Secetims A and B alternate along a-axis: 1 ineh:=2 A.

determined. These methods have been applied
to the lattices of MoQO, and MoO,.

In order to illustrate this procedure consider
the crse of the Mo ions in MoQ, There are
four 2lo 1ons in the 4(c) equivalent positions.
The position parameters arve given as follows:

x=0.232 v=0.000 z=0.017

The general coordinates of the 4(e) positions are

4(e)! X, ¥V, %
4(e)" Y,z
4(e)it! R e O 7
4(e) X, =y, Btz
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Froerg 8.—Partiad projection of MoO; model on ab-plane.

If the position parameters are substituted in the
coordinates of the (4¢) positions, the coordinates
of the ions are obtained. These are

0.232 0.000 0.017
—0.232 —0.000 —0.017
—0.232 0.500 0.483

0.232 0.500 0.517

These coordinates are expressed in units of cell
dimensions.  They may be multiplied by the cell
dimensions to obtain the coordinates in angstrom
units, The cell dimensions are

o

a=5.584 X
b=4.842 A
¢=5.608 A
8=120.94°

Y
b

lineh=2 &,

Multiplying the coordinates by the cell dimen-

sions gives the position vectors as follows:
Mol =1.2954-1-0.0008-1 00053
Mo'l = —1.2056 —0.0008—0.0953%
Mo'l— —1.2054+ 2.421512.700%
MoV —1.2956--2.421812.8095

()

In the same manner, the position vectors for
the ozygen ions in MoQ, are found. The oxygen
ions also occupy 4(c) positions, There are two
“kinds’” with position parameters as follows:
Four Op in 4(e),

x=0.11 v=0.21 z=0.24
four Oy in 4(e),
x=10.39 v=0.70 72=10.30
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Fircurre 9.—DPartial projection of MoO; modsl on ac-plane.

The oxygen atom position vectors are

OF —0.6140 4 1.0178+ 1.346%
O = —0.614&—1.0178— 1.346%

O = —0.6144 +3.4358+ 1.458%

OF =0.614a+ 1.4048-+4.1507

O, = 2.178a4-3.3808 -+ 1.682%
o 2178 —3.3898— 1.682
B2 178a+5.8108-+1.122%

—

A A
v =2.178a—0.9685+4.4867

5\

\

(2)

linch=2 A.

In this notation, the position vector is labeled by
the a omic symbol of the element involved with a
Romen numeral subseript designating a “kind’’ of
atom and a superseript designating the particular
equivalent position. The position vectors for
molyvhdenum trioxide have been determined and
are given in appendix A. A particular bond
between two atoms may be expressed as a vector
by tuking the vector difference of the position
vectors of the two atoms,  The length of this bond
is ree.dily determined by using the conventional
dot product.

LATTICE ENERGY

Tha lattice energy is the energy released when a
erystal is formed from elements which are in a
state of being both gaseous and ionized. To be
exact, this is an enthalpy since there will be
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a change in volume but the pressurc-volunie
energy is usually very small compared with the
internal energy and it is frequently ignored.

The lattice energy consists of a summation of
energy contributions from several different energy-
producing mechanisms.  In a generalized form
this summation is represented by the following
cquation:

- T T : - .
[‘t:l‘c%w[‘pfledT[T(1(1+Lr (';)

where

L, lattice energy

U, coulombic energy

1, polarization energy

Usa  dipole-dipole Van der Waals energy
Uy  dipole-quadrupole Van der Waals energy
1, repulsion energy

It will be shown that the repulsion energy has
the form

Ui=—pd U +4U,+6Usp+8Uyy) 4)

and each of the other energy expressions will have
the following forms:

U, :_i‘e;!‘f' )
Uy :—("‘;‘f‘ ()
U“";_fjﬂ (M)
Ve ™)

In these expressions

Ay Madelung constant

¢ electron charge

¢ constant for one type of crystal
a polarizability

J dipole-dipole coefficient

L. dipole-quadrupole coefficient

P scaling parameter

Pr repulsion coefficient

In the following four sections these energy
expressions are discussed separately and equa-
tions for computing each energy contribution to
the Iattice energy are derived. These cquations

ENERGIES OF COMPLEX CRYSTALS 13

are applied in practical caleulations of the lattice
energy of molybdenum dioxide and molybdenum
trioxide in appendix B. In the section entitled
“Summary of Energies” these contributions to
the Inttice energy are listed, added, and compared
with the measured lattice encrgies.

COULOMBIC ENERGY

The coulombic energy of a crystal 1s the energy
that is attributable to the electrostatic inter-
action of charged 1ons. In the model adopted for
these calculations, it 1s assumed that the atoms
present are lonized and that their charges are
concentrated at points at the centers of the ions.
The locations of these center points have been
experimentally determined and ave expressed by
the atom or 1on position vectors. Because of the
distortion in the lattices of the molybdenum oxides,
one of the established Madelung constants cannot
be used and the usual methods of determining
Madelung constants are not applicable. A general
method of computing coulombic energy and the
Madelung  constant is  developed here.  This
method requires the use of a digital computer but
the method is simple and systematic and may be
applied to any kind of crystal lattice. The
coulombic energy of the dioxide and trioxide are
determined.

Consider a crystal made up of positive and
negative ions.  There may be ions of several
elements present. The position of each ion within
a unit cell i1s known and is given by its position
veetor. The position of one unit cell relative to a
cell selected to represent the origin is given by a
vector

2 A

R=m&+n8-+1ny5 9)

A A A .
where a, 8, and v are unit vectors along the cell
axes and ng, n,, and n; are integral multiples of

the appropriate cell dimensions.  Also,
n =
n,=1=0Lb (10)
ny=/{¢

where a, b, and ¢ are cell dimensions and {,, &,
L=41 +2, +3, .. .. A method of assigning
values to /,, £,, and /3 1s given subsequently.

The electrostatic potential energy, in ergs, of
one ion, say the ith ion, due to another ion, the
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jthiion, is given by the following expression:

- sz (‘2 )
U= (11)
(‘1‘
where
¥/ valance of the ion
e eleetronie charge, statcoulombs
d distance between the two 1ons, ¢m
and
i d ¥ > . ) i
(]”:jl)]j‘:<l)”'l)”)ld (]2)

-y
The term Dy is a veetor direeted from the ith ion
to the jth ion and is expressed as follows:

D=1+ R—I, (13)

> -3
The veetors I and 1) are the position vectors of
the ith and jth ions, respectively.

The potential energy of all the ions in a given
cell, the Oth eell, due to the 1ons in another eell,
the Rth cell, is expressed as follows (here, 1
represents the Oth cell and j the Rth eell):

o
on=33 Uy, =33 7" (14)
7 T dy
The total potential energy of the lons in the Oth
cell due to all the other ions present is obtained
by summing ugge over all values of R from zero to
finity as

LTO:11L)O+RZ_] Uor (15)

The expression for R=0 is considered separately
sinee all terms where R=0 and i1=j must be
disearded to avoul dividing by zero.  These would
represent the interaction between an jon and
itself,

Since it is desirable for the energy to be ex-
pressed on a per mole basis the final energy
expression becomes

e NA\-[Yoi N.»\v('? ZIZJ = 7{1711
‘ 2f 2¢ i'j" (lu R-0 =1 ij (lu
(16)

where

Nav  Avogadro's number
¢ number of stoichiometric units per cell

AERONAUTICOS AND SPACK ADMINISTRATION

The cooflicient 1/2 compensates for double count-
ing.

In cases where a Madelung constant i1s used,
the energy expression is given by equation (5)
which s
Ay

p

U.—

where p s a sealiag parameter.  Frequently p is
the closest interatomice distance in the crystal.
In the present development the Madelung constant
18 glver as

pN\ lej = Z|Z}
A M= T, ) §j / + >: :_4 *‘j‘
2 ij  hy dr=0 R=1 ij Hy;

(17)

There is no advantage in expressing a Madelung
constant unless the ervstal lattice is a frequently
encoun ered type. The molybdenum oxide lat-
tices ar» unique and their Madelung constants are
not coriputed.

In expanding the coulombic energy expression,
equaticn (16), the first summation should be made
over all the ions 1 and j and then this rather large
expression is expanded by summing over all eells.
The swamation over i and jisstralghtforward, A
systenitie method 18 needed to sum over R and
extrapclate to infinity.

Consider the expressions for dy) (eqs. (12) and
(13), respectively)

(l“: (i’)u' I_S”)”E

anud
l)“: Ij+l{—_‘ ll
where
I):Ijl&+112é+113; (18)
L= lna+ 1B+ Ly (19)

In thes» equations the position vectors are written
in terns of the unit veetors of the system and

coeflicients.  The vector R ean be written
i A A A
R—=lna+0b3+ ey (20)

- 4 -
Using these forms for I, 1,, and R gives

f)ljz(l|1+11il—l|1)‘;+ (]je+]2h—lu>z§
- (I13+l:x('"ll:x)';’ (21>
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Onee values for i and j have been assigned, the
axprnsion over R involves assigning values to 1, 1,
and I, Counsider the Oth eell and let layers of
cells be added to it layer by layer until it expands
to fill all space, Let g designate a layer numher
starting at zero for the Oth eell only and taking
values 1, 2, 3, and so forth as layers are added.
The cuse for n==0 is a special ease, as pointed out
previously, and is computed separately.  As
values are assigned to x, the following values are
taken by £ (there are three groups and all combina-
tions in each group must be taken):

(1) li=n and —9q (2 values)
(2n-+1 values)
(291 values)

l,=—n to 0 to 7, inclusive
l,— —=uto 0 1o g, inclusive

(2) L=—(n—1) to 0 to (n—1), inclusive
(29 —1 values)
(2 values)
ly=—nto 0 to 5, inclusive (2721 values)

3) Li=—{(n—1) to 0 to (g—1), inclusive
(27—1 values)

lL=—(—1)to 0to (g—1), inclusive
(2n—1 values)

L=nuand —q

ly=n and —q (2 values)

There ave 244242 possible combinations of {, L,
and I, If there are 7 jons per unit cell, there will
be #2—7 terms in the total summation for the case
of =0 and 22472 +2) terms for cach case of 0.
It is convenient to modify part of equation (16)
by changing from summation over R to summa-
tion over 7. The following definition may be
introduced: 77
i 21045
A*r;} ? by
In this equation the special provision for the =0
case is tacitly ineluded. A further definition may
be given as )
A= S A

n=0 ij (111

(23)

Then, us values are assigned to &, a value A, 18
computed. The term A, will converge to A as
In practice, it is found that A, converges
fairly rapidly and it is suflicient to let « go only
as high as 6 or 8. A graphical extrapolation is
then used to determine the limiting value of AL
Once the limiting value of A is obtained, it is

K> @,

622837—62 3
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substituted into equation (16) to give the coulom-
bic energy as

- N,\ ,(‘,2A
Ue=—205 (24)
2t
The application of this method in computing
the coulombic energy of the oxides of molyhdenum
is given in appendix B.

POLARIZATION ENERGY

The polarization energy is the energy resulting
from the interaction of an electrie field and a dipole
induced in an ion or atom by that field.

The polarizability a of an ion or atom is defined
by the equation

-y
-ﬁ:a[“ (2:))
where
N )
© cleetrie dipole moment
-y
¥ cleetrie field veetor

The energy is then given as (ref. 4)

1 % 2 .
Uy=—: aF . F (26)

5
&

The eclectric field at o point in space due to u
charged ion at another point in space is given by
the following equation:

Y
) ZeD
o= 27
k 5 )?'-’ (27)
D.D,

where

/4 valence of the lon

e electronic charge

D veetor from the ion to the point of polariza-

tion

The energy for this case 1s

Up:—% aZle? _)I—)———B o (2%)
- (D-D
or
72,2
U= 4 (29)
o|D

Equation (29) shows the polarization energy to be
proportional to the reciprocal of the fourth power
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of the distance from the point in question to a
charge producing the electrie field.  Beeause of
this, it is not considered necessary to account for
eleetrie-field-producing ions at a great distance
from the point of polarization.  In computing
the polarization energy of o “kind” of ion, a
representative ion will be seleeted near the center
of a cell. The electrie-field veetor is determined
by taking a veetor sum of the contributions of all
jons in cases of =0 and n—=1 In a manner some-
what analogous to the coulombic-encrgy ecaleu-
Iation.

Consider a polarizable ion designated by its

—

position veetor Gy as follows:

Gy—gha+g.8 g]i&’;’ (30)

This 1ot will be seleeted to represent one “kind”

of 1on designated by j. Tt is seleeted from all the

-
ions 1, in a eell. The polarizing ions are the

-
retmining  fons I, as shown in the following
equation:

-

Il*‘In&*lml}f‘ll:ﬁ (31}

-
The cell containing 1, is positioned relative to the

5 -
cell contaiming Gy by the veetor R oas follows:

=
The expanded expression for 1y s

- 1
Fi=c >

There s one teem in the above summation where

-~
(=1, and this must be disearded.  1f there are
7 ions per cell, then there are (277 —1) terms in
-

the summation.  The veetor Fy comes out as a
simple veetor and from it and the polarizability of
the polarizable ion, the energy of polarization is
readily computed. The following modified expres-
sion gives the polarization energy on a per mole
basis for one “kind” of ion:

N

(U),==" 3 F)F, (39)
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—

R=fna+1hB+1e% (32)

In the subsequent summation, values of [ are
assigne:] in the sume manner as for the coulombie
energy and in view of the short range of the
polarization effects only the eases for =0 and
n=1 ar» included.

—

The veetor Dy s found to be
. N
D,=G,—1,—R (33)
This veetor s associated with an eleetrie-field

.
contribation Fyj and

K, :Z_FU (34)
or
7D,

F:vzﬂa N
T (5,5,)

H Dy is written in the form

DIJ:DIJI&‘*‘Duz(}‘%])uzsﬁ" (36)
then
Dyy=gn—ln—la
Dyp=gp—Ilp—06Lb (37)

Du:i;z‘-f):s“ Ty —1ye

- Dyt DDy
T (DD DGR 2D Dy cos 210Dy cos a+2D,;, Dy cos B)** "

where Ny, i1s Avogadro’s number. There will be a
polariz: tion energy computed for each 1on in a
mole o stoichiometrie unit and these must be
added to obtain the total molar polarization
energy.

In practice, it is convenient to define a quantity

(’:\’x,), a3 follows:

(KD)J:Z ’_;/Jl]_)’}j 32 (4())
T (Dy,-Dyy)
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Fj:<'<:{,,>j “n

—

The 1(‘1111( ), may be obtained by modifying Dy
as follows:

Then,

Dy,=L D, (42)

'cl’—‘

Where pTis a scaling parameter which may be

taken as the shortest distanee between two jons,

Then,
(A" r/“D" w3 (43)

(I') >:«:/z

This treatment gives a more general character to

=

the (;\I,>, expression and is somewhat analogous to
the Madelung constant.  For computing repulsion
energy subsequently it will be convenient to make
the following definitions:

A;;) . ( A;:)j = (44)
and (eq. (6))
.. Ciae?
(U=

The following energy expression is then written
for one mole of one “kind” of 1on:

N\

V=32 U=y ?aJ(Ap (1),

(45)
or

IT[):—‘\:_,"::\?T a,( ) A2) (46)

i

This treatment of polarization involves some
approximations which should be pointed out.
The energy of polarization caleulated by the
method just presented is based on the assumption
that the electric field is homogeneous and that
the polarizability of an ion is a constant and, in
particular, not a function of the eleetrie field.  Tn
the ease of a real cerystal, such as those studied
herein, the electrie field is not homogeneous and
the polarizability  depends, to some extent at
least, on the environment of the ion or atom.  In
thig investigation, an eflort was made to obtain
polarizabilities of the ions for conditions similar
to those existing in MoO; and MoQOy, us diseussed
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in appendix C. The inhomogeneity of the electrie
field was ignored because it is too complex a
problem to be included in this work. It is imphed
in reference & that the error introduced is not
large.

The application of this method in computing
the polarization cnergy of the oxides of molyb-
denum is given in appendix B.

VAN DER WAALS ENERGY

The Van der Waals energy is a phenomenon
of cohesion whieh has been explained by London
(ref. 6) as the result of interaction of rapidly
revolving dipoles in two atoms. The revolving
dipoles are produced by the extranuclear electrons
rapidly orbiting about the nueleus.  When two
atoms are close together, the revolving dipole in
one synchronizes with the revolving dipole in the
other in such o manner as tolower the total energy,
and cohesion results.

The mathematical development of the Van der
Waals energy equation results in a sum of de-
Only two of these energy terms
the dipole-dipole energy

Creg Nnﬂ terms,
are considered herein:
(eq. (7)),

l'Ydd‘—“ 6
p

and the dipole-quadrupole energy (eq. (8)),

. L
l dq=™ T 7y
P
In these expressions, J and Lare constants for a
particular erystal and p is the scaling parameter
which is usually taken as the elosest interatomie
distance.  In order to obtain the total molar Van
der Waals energy, a summation must be taken
of all nearest neighbor energy contributions for
wch lon in astoichiometric unit.
Consider an ion of element j and another 10n of
clement k separated by a distance di. The Van
der Waals energy expressions are

J;
(Uaah=— 11: (47)
. L N
(L dq>m:‘—T’;{ 48)
(14

Then, summing over all neighbors k of 1on j at
distances d, and finally adding the contributions
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of all “kinds” of ions j gives the molecular Van der
Waals energy as

Udd=—' JJ% (49)
T dy
v IJ‘K "
l‘dq:—'% Is' (.)0)

The scaling parameter p may be factored yvielding
final expressions (eqs. (7) and (8))

ITdd:__ :IF)
p
. L
Ldu:'_;g
where
_ Jlk <
Ty 1
L. L 52)
e (dp)? -
and

(l?zl d, (53)
p

The dipole-dipole coefficient has been derived
by Kirkwood (ref. 7) as follows:

T %
VI &8
VN, "VN,
In this equation,
@ polarizability
N number of polarizable electrons in the ion

Equation (54) must be multiplied by e%,'’? to
convert from atomic units to centimeter-gram-
second units where e is the electronie charge and
4, 18 the Bohr radius.

The dipole-quadrupole coefficient has been ex-
pressed in terms of the dipole-dipole coeflicient by
Huggins and Sakamoto {(ref. 8 pp. 241-251) as
follows:

ij:?""fh ( :]11 'f'fv']‘k'i’ T (53)
¢ NJR; 7 NiRy.
where
Nav  Avogadro’s number
R, ionie refraction

In order to express equation (35) in terms of
polarizabilities,
sR, .
“drN (56)

a

may be substituted for Ry and Ry is determined
in a similar manner with the following result:

3 ’ J” Jkk ) -
A (XL P 7)

Lijx=
! Nkak,

The application of these equations in computing
the Van der Waals energy of the oxides of molyh-
denum is givern in appendix B (with the data
obtained being given in tables 1 and 2),

REPULSION ENERGY

The repulsion energy is the energy resulting
from the displacement of two atoms or ions toward
each other against an inherent force which tends
to move them apart. This repelling foree pre-
sumablv acts in accordance with the Pauli prin-
ciple.  There is no general fundamental expression
that exoresses the energy of repulsion between two
atoms.  There are two empirical expressions in
general use which are justified by the fact that
they give good results,

Consider the ease of a simple NaCl type crystal.
The two repulsion energy expressions are, from
the exponential law,

u_"B 58)

T exd

and, {from the inverse power law,

M ﬁlg Q"
L,—(l“ (614}

In these equations B, g, and n are unknown
parameters.  Oue of these, B, muy be eliminated
as followvs:

If the total energy is given by

U=U.+1, (60)
and it 1 assumed that, at d=R,
dU L

where I is the equilibrium interionic distance, then
by substituting equations (58) and (59) into equa-
tion (6() and applying the conditions expressed by
equation (61), the energy expressions are

, 1
U:Lc(l—gﬂ) (62)

and
1‘:1,(.(71;“,) (6:3)
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TABLL 1.—VAN DER WAALS ENERGY DATA FOR Mo,

lon pair Bond i
_ _ _ Man lvn,tl), Can dan
Ras
1\ B |
Moiii O, [ 1.o4 ;
0, ! 1. 98
O, 1, 1. 98 a1~ AN
e g 5 05 . 23078 0. 11382
O 1, 207 |
Oy i 1. 99
O, Oy 1, 3. 08
Oy 1, 3. 64
O, 1 2, 83
Oy ] 274 5. 32071 0. 721935
Oy ', 3. 35 |
Onr 1 2. 85
. On | by 2. 77 ‘
0Oy Moii L, 3. 69 ] | ‘
2 ‘ . 23078 382
Mo y | | 08 | 1. 23078 J 0. 1138 ‘
|—— o - S P — —_ ;
I O O, 1y 1. 49 ‘
0, 1 2. 91
| O, 1, 2 45
! O, L 3.15 . - —or2E
. 3 L 721930 :
Ony | 5 8% 5. 32071 0. T21935 |
On 1 3. 48 ‘
Op 1, 2,72
On i 2,90 ‘
,,,,, —| o i |
O Mot 14 2. 05 | e .
Mo . 2 0n { 1. 23078 5 0. 11382 |
{ ‘

%;, :\“[%f;g-l:ﬂ“:o.ﬁt:;g(n
These equations hold for the equilibrium distances
only. The same approach that was used in the
simple case is extended to the following complex
case. The inverse power law is used because of
its simplicity.

Equations of the form of (59) and (63) are used
as the basis of the computations of repulsion
energy for the oxides of molybdenum because
they are considered accurate at the equilibrium
distance and because they are rather casily
applied. The structure of these oxides is con-
siderably more complex than that of NaCl and
several modifications must be made.  In the NaCl
type crystal, only cation-anion contacts are con-
sidered and the bond length is constant throughout
the crystal.  For the molybdenum oxides. both

Mandan

=().0188¢
Ran 59

2

AB

cation-anion contacts and anion-anion contacts
are present. Also, the bond lengths range over
several values for each type of contact. Pauling
has developed an equation to compute the repul-
sion energy for the more complex erystals (ref. 2,
p. 523).
The potential energy between the ith ion and the
jth ion is given by Pauling as
7T o2 .
U“ — A"é’f,_,*_lgl ]Bo(,z Sk

{(64)

(11,
The term on the extreme right expresses the repul-
sion energy as

[«Y}r:BHBn(‘

9 _(rl“};;])fi (65)
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2.--VAN DER WAALS ENERGY DATA FOR Moo,

‘ Lon pair Bond
_ Z\IAB lengtl, (l“AH (1/\}1
Ran
. |
— S
. Mo ‘ Oy 2 1. 0% ‘
‘ Oy | 2. 31 |
Oy | 2, 08 0. 940564 0. 084511
Oy 1 1. B¢
Oy 1 [
(O% Oy 1 258
‘ (§2%} 2 2. 6F
i On 2 2, 8¢
: Oy 1 2. 81 5. 32071 0. 721935
On 1 3. 24
Oy 2 20 44
* Oy, 2 3. 4G
Or Our ! 2. 5¢
‘ O 1 2 Ry e o
| a (““NL i 9 300 5. 32071 (L 721935
* O, 2 297
*Next layver.
MauCas Mardag
PRABLAB 0 30141 PAFCAB _ (1.0061918
Z l{AH Z ]{\H
where where
B, a constant which i1s not dependent on the M, the number of bonds of type ij in a
particular ion pair molecule

rry  lonie radii

n a constant which is dependent on the
particular ion pair
Also,
Z, 7

Bu=1+4F + ! (66)
where
Z valenee
| 4 number of electrons in the outermost shell

for the particular ion
In order to compute repulsion energy on a per
molecule basis, a swnmation must be taken over
all bonds associated with the molecule as

. ynii—L
U:=2>M,,8,B,? ( i—:r[ij)‘_,_ ©7)
0 :

(11;: pl l!‘j

The ccustant B, may be eliminated in a manner
similar to the NaCl case except that now con-
sideration must be given to all kinds of binding
energy present in the crystal. Thus (eq. (3)),

[Y(: lrc+lvp+ lvdd-'} lvd(l+ ['r

or
) Ayer Cae? J L G '
[ =t ot dJ L B,et N (i1
¢ p o p“+ (izj)p““ (B8)
where
Gy=M, g, (Tt D (69)

(d‘l)j)n”
Now tie conditions expressed by equation (61)
are applied as follows:

d[/, Ayet 4Ca(l+ +'\L B, 2211,,(:,,

dp pz ni, 41

(70)
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At equilibrium
=R,
(71
dU, —0 1)
(IR(,

The constant B, may be factored from the re-
sulting expression to give
1 A&“ 4(‘& ()J

2 nyGy \R2 —*—u{n5 +(‘2R +“Eﬁ ) (72)
R nit!

Then this equation may be substituted into the

B,=

encrgy expression as follows:

G
V___l\]\l('z 2 i y‘ R nis
=R Gy
Z:l l}'lilﬁrl
2\1[ 4Ca ) G,J,, (\,IJ (,‘rCl!(‘2 J IA
(R R T eR T els) ™ Ko RO Ry
73)

In this equation R, has replaced p.

By defining a repulsion coeflicient p, us

Z 1\[11&) (’llj:jl’jx?“” -

(74)

O i e

£&)ﬂ(‘f 4(_‘ ('h ()J 8[1 —
( R" + I{”; +l{(,“+ > (_fv))

Thus, equation (4) is obtained as
ITr:‘—pr‘[~Y(~,+4[Iu+GITdd+8l‘rdq)

In computing the repulsion coefficient, it is
necessary to assign a value to nyy. It has been
found that n may be assigned a value of 9 and
for most crystals any error introduced will be
small.  Pauling has determined o set of values of
n for ions that are isoclectronic with the inert
gases (ref. 2, p. 509). For a heteronuclear bond,
an average is taken to arrive at a value for ny,.

The repulsion coefficient is computed for the
two molybdenum oxides in appendix B and this
in turn is used to compute the repulsion energy
(tables 3 and 4).
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SUMMARY OF ENERGIES

The contributions to the lattice energy which
have been ealeulated in appendix B are presented
as follows and are compared with the experi-
mental Inttice energy determined by means of the
Born-Haber cyele.  All energy units are kilo-
calories per mole.

MoO, MoQ,
Coulombie, U, . _ —2,110.00 —5, 850. 00
Polarization, U, _____ —53.12 —8068. 46

Dipole-dipole, Ugq---- —105. 99 —72.76

Dipole-quadrupole,

| S —76. 57 —25.13
Repulsion, U, .______ 462. 44 1,261, 12
Caleulated lattice

CNergy_ . .. —1, 883 —3, 555
Experimental lattice

CNergy - oo —2, 805 —6, 009

Difference in ealeu-
lated and experi-
mental lattice
CNerEN _ - o —022 — 454

Ratio of caleulated
and experimental
latiice energy . _.

0. 671 0. 924

INTERLAYER ENERGY

The bonding energy that exists between layers
of a crystal is important as a [actor affecting the
strength and stability of the erystal. A good
deal of insight as to the nature of the interlayer
bond may be obtained by computing the coulombie
energy of an isolated layer and comparing it
with the coulombic energy of the erystal.

The laver coulombic energy may be computed
in the same way that the crystal coulombice
energy was computed except that the system
for assigning values to [, ., and I must be
changed and position vectors of atoms within a
single layer only must be selected. In the case of
molybdenum trioxide the layers are oriented
parallel to the b-¢ plane. If position vectors are
selected to represent atoms within a single layer
in the crystal cell and the erystal is expanded by
adding cells in the b-¢ plane only, then a coulombic
energy may be computed by using the method
deseribed previously and this will be the coulombic
energy of an infinite single layer.

The following system of assigning values to
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TABLE 3.—REPULSION ENERGY DATA FOR Mo,

ADMINISTRATION

[For Mott: r—0.68, Z=+4, P=10; for O~: r=1.40, Z =—2, P==8&,  Calculated p,=0.1295]
Ton pair ‘ ’ i
n;; I\[,j dij l'i+rj ‘ ‘Bij
b
i ‘ j : {
i
Moi O, 85 1 P193Y ] 2,08 115
O 8 5 1 1. 984 2, 08 1. 15
O, 85 1 1. 082 208 1. 15
O 8.5 1 2. 054 2. 08 1. 15
On 85 1 2,073 2, 08 1. 15
| O1 85 | 1992 2,08 115
Oy O T ' | 3.08) 2. 80 0. 50
) 0, 7 Lo 3639 2. 80 .50
‘ 0, 7 ‘ ©2 830 2. 80 50
‘ Oy 7 ] 2 742 2. 80 50
O, 7 1 3. 847 2, 80 50
O 7 ] 2 844 2. 80 ‘ .50
| Oy : 7 5 2. 765 2. 80 | . 50 !
Mot ' 85 1 3 689 208 115
: Mol? 85 1y 1. U82 2. 08 .15
‘ On ‘ 0, 7 B 1. 186 2. 80) 0. 50
| 0, 7 1 2,910 2. 80 .50
| O 7 1 2146 2. 80 .50
3 O 7 1 3146 2. 80 .50
Oy 7 1 2 845 2. 80 .50
On 7 5 3 47TH 2. 80 . A0
| oy 7 1 2717 280 .50
L og 7 I - 2 80 . 50
| Moi 8.5 14 b2 054 ! 208 115 ‘
Moii 8.5 i Co2 7Y 2,08 115 1
| ‘ ‘

i, &, and /; is applicable to layvers lyving parallel
to tlie b-¢ plane. The value of zero is assigned to
{; throughout the computation. The =0 ecase
is computed separately. For all other values
assigned to x, { must take the values given as
follows (all combinations of each group must be
taken):

(1 =0

lo=n and —y

ly=—7 to 0 to 7, inclusive
2) ;=0

la=-—(n—1) to 0 to (g— 1), inclusive
li=—nto0toq

I this computation, the following position veetors

—
were taken: Mo'' Moy,

—_— — e —

, O, Off, 0%, O, and

—_—

———
O, Examination of figures 8 and 9 shows that

these atoms lie within a single laver and single cell.

25 . :

I'he computation just presented
carried out and the layer coulombic energy is
given a'ong with the ervstal coulombic energy for
comparson as follows:

has  been

Layer U.=—5741 keal/mole
Crystal U= —5,850 keal/mole

One wvay that the laver-strueture energy rela-
tionships may be interpreted is to compare the
stabiliz:.tion effect of neighboring atoms on a
molecular unit.  For this  purpose it would
perhaps be better to use a molecular unit in the
configwation that it would assume isolated in
space.  This type of information is frequently not
available.  Therefore, a molecular unit will be
used in the configuration that the unit assumes in

a crvstall For these computations the atoms
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[For Moi*: r=0.62, Z=+6, P=8; for O*~: r=1.40, Z=-2, P=8. Calculated p. =0.12606]
e e i e e e
| Ton pair ‘
! 1y; _\I;‘ dii I'i+l‘j Bii
i i i 1
Mo Oy 8.5 2 | 1. 93 2,02 1. 50
Oy 8 5 1 | 2. 31 2,02 1. 50
On 8 5 1 2,08 : 202 1. 50
Oy 8.5 ! L8y | 202 150
O 85 | 1. 83 ‘ 2,02 1. 50 i
— —— i —— —|— -
Oy O 7 1 2. 5% | 2. 80 0. 50 !
Oy 7 2 2 65 ‘ 2. 80 .50
O 7 2 ‘ 2. 86 1 2. 80 .30
On 7 I ‘ 2. 81 ‘ 2. 80 . 50
O 7 1 3. 24 2. 80 . 50
O T 2 | 240 2, 80 .50
O ‘ T 2 i 340 280 .50
O Om 7 1 2. 56 2, 80 0. 50
O ! 7 1 : 2, 82 2. 80 . Bl
O T 2 ! 3,00 2. 80 .50
Om One T 2 § 277 2. 80 0. 50
: o

s s
Mo O, Off, and  Off;
clectrostatic potential energy of this group was
computed by using the position vectors to estab-
lish the configuration. The electrostatic potential
energy or coulombie energy of this group was
found to be —4,984 keal/mole.
A stabilization factor may be defined as

were selected and the

Crystal U,

Molecular U, (76)

Stabilization factor=
and  similarly defined for the laver coulombic
energy.  This stabilization factor represents the
increase in the magnitude of coulombic energy
eained by a molecular unit when it is located in an
infinite ervstal rather than when it is isolated in
space.  The stabilization factors for the ervstal
and layer are given as follows:

Crystal stabilization f':l(-t()l'::z'§;2:1.174
R 7
Layver stabilization f:l('t()l':_zriéél: 1.152

On comparing these values, it can be seen that the

layer stabilization factor is 98.1 percent of the
crvstal stabilization factor.

A different way of interpreting the layer
coulombic energy is to compare differences in
energy rather than ratios of energy.  Stabilization
energy may be defined as

Crystal U,=Crystal U—Molecular Uy (77)

and similarly defined for the layver stabilization
Values obtained with this method are
Layer U,=—757 keal/mole
(rystal U,=—866 keal/mole

cnergy.

From these values it can be observed that the
laver contains 87.4 percent of the crystal stabili-
zation energy.

The difference between the erystal coulombice
energy and the layer coulombic energy is —109
keal/mole.  This value represents the coulombie
energy that a molecular unit gains when an infinite
crvstal is placed (with the right orientation)
against each surface of the layer. Sinee two
surfaces are involved, half  the difference between
the energies may be considered to represent an
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average interlayer coulombice energy.  Thus, the
average interlaver ecoulombic energy is —54.5
keal/mole.

From table 2, it may be seen that there are two
O —Our and two O — Oy next-neighbor type
interlayer bonds per molecular unit.  From these
data, the mterlaver Van der Waals energy may
be computed and the values obtained are given
with the average interlayer coulombie energy for
cotparison as follows:

Average interlayver U= —54.5 keal/mole
Average interlayer Ugg=—9.2 keal/mole
Average interlayer Uy,=—2.6 keal/mole

These values indicate that the interlayer bonding
mechanism is not predominantly Van der Waals
type but that the bonding energy is small never-
theless.

COVALENT EFFECTS

In reviewing the summary of energies, it is
readily apparent that the electrostatic model of a
crystal is capable of accounting for the total lattice
energy  of molybdenum  trioxide although it is
entirvely possible that there is eancellation of errors
in summing the different energy  contributions.
It is also apparent that this model does not ac-
count for the total luttice energy of molvbdenum
dioxide. A quantitative estimate of covalent
energy contributions wiil not be undertaken here-
in but it is worthwhile to examine possible evi-
denee of covalent effects. Consider first  the
dioxide of molvbdenum.  According to Pauling
(ref. 2, p. 437) the two d-electrons on the Mot~
ion interact between pairs of molybdenum ions
and form a bond of bond number 1.47. The alter-
nate close and far spucing of the molybdenum ions
in MoO, plus the close bond distance of 2.49 A
as compared with the metallic bond distance of
2.72 X tends to support this hypothesis. [t is
difficult to estimate accurately an energy contri-
bution from this source. The energy of atomiza-
molybdenum is  155.5  keal/mole. I
molybdenum is considered to have a metallie
valence of 6, then there are three single bonds per
atom and the single bond energy would he 51.8
keal/bond mole.  In the MoQ, erystal there is
one half-bond of bond number 1.47 per mole.
A reasonable estinmte of an upper limit to this
energy contribution would be 100 keal/mole and
this value s far short of the 922 keal/mole of

tion  of

eniergy which is as yet unaccounted for.  Other
bond distances in MoQ, may be examined and
compared  with  the following covalent bond
distances:

From the Shomaker-Stevenson relationship dis-
cussed in reference 9,

Bond Mo—0), 188 A
and frem the O, molecule, reference 10,
Bond O—0, 1.207 A

The ionic bond distances (based on 0.68 A s
Mo+ radius) are 2.08 & and 2.80 & for Mo—O and
O-—0, respectively.  Tn the octahedron, the Mo—0
bond distances are as follows: 1.94, 1.98, 1.98,
1.99, 2 06, and 2.08 A. The O—0 distances vary
from 2.68 to 4.00 A. These distances do not give
a conclusive indication of the covalent or ionie
nature of the bonds, especially when allowance is
made for distortion of the lattice and polarization.

A possible mechanism which could account for
the energy in MoQ, would be an electrostatic
energy contribution induced by a covalent hond
betweer the two elose molybdenum ions. I a
covaler t bond is present between these two ions as
Pauling suggests, then the eleetron density will be
mereassd between the two 1ons and deereased at
the encs of this ion pair as compared with the case
of two individual ions. A crude model was set
up by placing a charge —q midway between every
close pair of molybdenum ions in the MoQ, lattice
and a eaarge %gq was added at the position of every
molybc enum ion.  The quantity A from equation
(22)

A= > Al
7=t i) du

and frem

Ui — 165.9A (78)
£ .
was computed for the cases of =1, 2, and 4.

The results of this work are shown in figure 10.
On the basis of coulombic encrgy alone, with
100 kegl/mole being allowed for the Mo —2Mo bond,
a value of A=70.7 is needed to account for all
the energy in the MoQ, lattice.  This value of A
is equiralent to q=04. From a qualitative con-
cept o7 a covalent bond of bond number 1.47
and in consideration of the crude nature of this
model, this scems to be a reasonable value for q.
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Frourre 10.—Covalently induced electrostatie effeets on AL

Summarizing the consideration of the MoO, lattice
shows that the evidence for a covalent bond
between the close pairs of molybdenum ions is
good. There is probably some covalent contri-
bution to the energies of the Nlo—O bonds but
there is no conclusive evidence that this contri-
bution 1s Iarge.

In the case of the trioxide of molvbdenum,
there is no evidence, other than possibly a bond
distance, of an appreciable covalent contribution
to the bond encrgies. A comparison of bond
distances shows some Mo—O bonds to be at the
right distance to be covalent.  However, the
large amount of polarization present in this
lattice makes it possible for some ionic bonds to
exist at distances other than the sum of ionie
radii. This possibility tends to reduce the impli-
cation that these bonds must be considered
covalent on the basis of distance alone.
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DISCUSSION
MODEL
The model used in these caleulations has
already  been  described; however, there are

several comments concerning the use of this
model as applied to the more complex crystals
studied here in contrast to the simple crystals
studied prior to this investigation.

The idea that the net charge of an ion can be
considered to be located at a point in the center
of the ion comes from the approximation that
the electronic charge in an lon has a spherically
svmmetrical distribution about the nucleus cither
in a series of thin shells or a solid distribution
with perhaps some radial variation in density.
It can be shown in classical electrostatic compu-
tations that the electric field generated by this
model of an ion will be the same as that generated
by a point charge located at the center of the ion.
The requisite keyv to this concept lies in the
spherical symmetry of the charge distribution,
and the electrie field resulting from the net ionie
charge is considered only at points outside the
ion,

The electrostatic model has been applied to
many crystals with great accuracy. The crystals
that have been amenable to methods of caleulation
hased on this model have n number of unique

features in common. The geometry of the
crystals was simple and highly symmetric.  The
jons were isoelectronic with the inert gases.

The positive ions were highly clectropositive and
the negative ions, highly electronegative. The
polurizabilities of the ions were relatively low.
Although these features appear to be desirable
for accurnte use of the electrostatic model, it
is apparent that there ean be appreciable deviation
from these features and still obtain calculated
energies that are within 90 percent ol the ex-
perimental energies.  This value may be com-
pared with about 98 perceunt for the more ideal
erystals.

If the coneepts of electron charge distribution
that are derived from quantumn chemistry are
representative of a true physical situation, then
the real atom does not possess the kind of charge
distribution needed in the electrostatic model in
an exact sense, although the approximation must
be very good. The features of the ideal ionie
ervstal appear to be such that they accomplish
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one basic act. They tend to preserve the sym-
metry of charge distribution of an ion about the
nucleus.  The large difference in electronegativity
of the cations and unions ussures complete charge
transfer leaving the ions isoelectronic with inert
The symmetry of the erystul provides
that the clectrie field at the position of cach ion
is zero and the distribution of charge in an ion
is then not altered by polarization.

The application of this model to a distorted
erystal like molybdenum trioxide incurs several
effects worth observation. In this work it was
assumed that the position vector of an ion es-
tablished the position of the nucleus of the ion
and that this was the center of net charge. If
this wssumption is true the electric field which
has been shown to exist at the nuclei would cause
a polarization that would destroy the symmetry
of the ion charge distribution. This polarization
would induce two effects: (1) there would be
established a polarization energy such as that
computed in this work and (2) the symmetry of
charge distribution would be chunged and the
center of positive charge would no longer coinecide
with the center of negative charge. In order
for the model used in this investigation to ap-
proach the real physical situation more exactly,
each ion should be considered not as a point
charge but rather as two point charges repre-
senting  the centers of positive and negative
charge.  This representation is still an approxi-
mation and is perhaps a less accurate approxi-
mation to a real polarized ion than the point
charge approximation to a nonpolarized ion. It
1s probably true that the separation of centers of
charge is very small because the inner electrons
of an ion are so tightly bound although the orbitals
representing the outer electrons may be quite
distorted.  The position vectors probably do
locate the positions of the nuclei with good
accuracy, as far as the model is concerned, since
the position vectors are established by X-ray
diffraction maximums which are a function of
electron density. Even for polarized ions, the
electron density should be greatest near the
nucleus.  The distortion of the outer orbitals
should have some influence in the measurement
of atom positions in a crystal and this is possibly
an unportant factor in barring great accuracy
in this type of work.

A distortion of the outer orbitals of an ion would

gases.
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be expeeted 1o have an effect on the computation
of Van der Waals energy and repulsion energy.,
The polarizability of a distorted ion would be
expected to be nonisotropic.  Also, the compressi-
bility of a distorted ion would be expected to be
nonisotropic. The Van der Waals energy and
the repulsion energy of individual bonds are
probably not as accurately computed in these
erystals as they would have been had the crystals
been symmetric and without distortion of the
ions. Since there are bonds in all directions about
a distorted ion, it is perhaps reasonable to assume
that the effects of this nonisotropy on calculations
involving the whole crystal will cancel in an
averaging process.

In many studies of bond types, much emphasis
is placed on the bond length or distance. Atoms
and iors have been assigned various radii, that is,
covalert, ionic, metallic, Van der Waals, and so
forth, and these are used with the assumption
that a bond distance should be equal to the sum
of the appropriate type of radii. In this sense
distance establishes bond type. These radii are
deternined from measurements made on erystals
or molrcules known to possess certain types of
bonds. The distance relationships appear to
work o1t very well on many substances and the
bond ty pes determined by this method correspond
quality ively with other features of the substance,
It is te be expected that these relatiouships will
not be valid for substances containing distorted
ions although, with some allowance for the dis-
tortion, bond distances may be compared with
sums of radii to provide w rough indieation of bond
tyvpe.

Wheto the types of bonds in a ervstal are being
conside~ed, comparisons with radii sums should
be mace with some allowance for the direction
and m: gnitude of the cleetrie field at each ion,
the polarizability of the ion, and the expected
shape ¢f the lon.  An analysis of bond distances
1s made in the section entitled “Covalent Effects”
where he bond distances in MoQ, are used lo
obtain some insight as to bond type.  On the basis
of polarization energy, MoQ, is considerably less
distorted than MoQ,; and the bond-distance
criteria is useful to some extent. The bond
distanees in MoQ; do not appear to be very
meaninzful as to bond type. Of course, in con-
sidering bond distances in crystals, it is necessary
to be certain that the geometry of the crystal
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permits ion contact at the point that the bond
is under consideration.

EXPERIMENTAL WORK

Sinee the energy computations are based on
the relative positions of the atoms or tons and
these positions have been experimentally estab-
lished, the importance of the accuracy of these
measurenients is worth consideration.

In X-rav diflraction work, the size and shape
of the erystal cell may be determimed with great
accuracy, that is, five or six significant figures.
The positions of the atoms in the eell are deter-
mined with less accuracy, perhaps three to five
significant. figures.  The data used in this investi-
gation were obtained by a highly experienced
group of specialists using single-crystal methods.
In general, the positions of the molvbdenum
atoms are believed to be established with accuracy
at least as good as three significant figures.  The
positions of the oxygen atoms are considered to be
established with only fair accuracy.  Although
three significant figures were assumed in estab-
lishing the positions of the oxygen atoms, the data
in the original reports (refs. 11 and 12) imply that
this is perhaps a bit optimistic for some of the
oxygen positions,

No effort was made to determine the effect of
atom position accuracy on the energy computa-
tions. The displacement of an ion frow its true
equilibrium position 1 a erystal would have the
effect of inereasing the lattice energy. The extent
of the increase would depend upon the displace-
ment, or error in position, and the shape of the
potential energy “well.”” Tt is not necessarily
true, however, that a real ervstal exists i oan
idealized state of lowest potential energy espe-
cially at moderately high temperatures and 1t is
possible that the displacement ol an ion could
lower the lattice energy. [t is not known what
effect an error in an atom position vector would
have on the lattice energy.  This effeet could be
determined but it would involve much computa-
tional work. The experimental work on which
these computations were based has been aceepted
in this investigation as being accurate.

TEMPERATURE

There are temperature effeets present in the
cnergies discussed herein which have been ignored
in this work but are sometimes considered in
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other studies of this kind.  The lattice energy ol a
crvstal should properly be the electrostatie poten-
tial energy of the ions in a ervstal at 0° K. In
some work, even the zero-point vibrational energy
is removed.  The error involved in ignoring room-
temperature effects is of the order of magnitude of
5 keal/mole.

The Born-Haber cyele caleulations are effec-
tively isothermal at 298.15° K. It would be
possible to determine the measured lattice energies
of 0° K but there are other considerations which
make this hardly worthwhile.

The caleulated Tattice encrgy determined  in
this work is the electrostatic potential energy of
the ions in a eryvstal without any temperature-
induced kinetie energy effects. Even the zero-
point vibrational energy has been omitted.  The
crvstal lattice is not that which would natucally
occur at 0° K but it 1s a lattice whase configuration
is established at, presumably, room temperatuve
and the atom positions are mean positions.

These temperature corrections would appear in
this work in comparing the ealeulated lattice
energy with the measured lattice energy. It was
felt that the magnitude of the correction was
trivial; the effect is compensated somewhat by
the omission of the AnRT term which was also
ignored in the Born-Haber ceyele caleulations.

CONCLUDING REMARKS

A method has been developed which makes pos-
sible the caleulation of the components of the
lattice energy of an ionie ervstal; this method has
been applied to molybdenum dioxide and molyb-
denum trioxide. The method is unique in that
it may be applied to complex and distorted
eryvstals. It may also be used to study perturba-
tions in a crvstal lattice.  Essentially all that is
necessary for this method to be applied is that
the ervstal be tonie and possess periodieity from
cell to cell. The main contribution from this
research is the development ol means of comput-
ing coulombic energy and polarization energy. In
addition, established techmqgues for computing
Van der Waals energy and repulsion energy have
been modified und extended to provide a complete
method for studying ionic cryvstals.

This method was applied to two oxides of
molybdenum which are highly distorted strue-
tures. The trioxide of molybdenum was found
to be amenable to this method of studyv. The
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cateulated lattice energy was 92.4 pereent ol the
measured lattice energy.  Molvbdenum trioxide
is known to have a laver structure and, as would
be expected for this tyvpe of structure, it was found
to have a relatively high polarization energy. The
interlayer bonding energy was studied and the
interlaver bonding was found to be relatively
weak.,  This weakness would account for the high
vapor pressure of molyvhdenum trioxide.  Although
the interlayver bonding is weak, Van der Waals
bonding is not predominant as might be expected;
rather there is a coulombic contribution which
predominates.

The dioxide of molyvbdenum was found not to
be amenable to this method of study.  Only 67,1
percent of the measured Iattice energy was given
by the energy  caleulations. A metal-to-metal
bond involving d-eleetrons in pairs of molybdenum
atoms was investignted by a simple model which
contains  a  hyvpothesized induced  electrostatie
effeet. This model is very crude but the ealeula-
tions imply that the metal-to-metal bond exists,
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and the mduced electrostatic effect will account
for the energy discrepancey.

The relationships  between  energv-producing
mechanisms and the ervstal structure of these
oxides appenr to be feasible wecording to general
concepts of structural chemistry. Much doubt
has existed as to the nature of the bonds 1 oxides
like molybdenum trioxide. Some investigators
have expressed the opinion that these compounds
are covalent. This research indicates molyb-
denum trioxide to be an ionie compound. The
nature of the bonds i the dioxide of molybdenum
1s not clearly established i this mmvestigation.
The evidence is moderately strong for ionic bonds
plus tke special atom-pair metal bond. It may
be speculated that many of the distorted metal
oxides will be found to be of an jonie nature with
perhaps additional anomalous mechunisms respon-
sible for their unique character.

Laxarey Resrarci CENTER,
NATIONAL AERONAUTICS AND NPACE ADMINISTRATION,
Lar crey Atr Forcr Base, Va., March ©, 1961,



APPENDIX A

CRYSTAL-STRUCTURE CALCULATIONS

For a number of years NX-ray diffraction teeh-
niques have been emploved by specialists to deter-
mine the straeture of erystals. By means of these
measurements the type of eryvstal, the space group,
cell dimensions, atom position parameters, and
other features may be determined. With modern
equipment and techniques these measurements
may be made with great accuraecy especially where
single-crystal measurements are made.  In the
following section on structural data the experi-
mental erystallographic data on molybdenum di-
oxide and molybdenum trioxide arve given.  These
data are taken from the onginal papers and com-
pendiums on the structure of crvstals, The see-
tion entitled “Atom Positions and Bonds” gives
computed data in the form of position vectors,
bond vectors, bond length, and bond angles. This
is the detailed numerical information derived from
the NX-ray diffraction measurements which estab-
lishes the structure of these ervstals, 1implies the
nature of the chemical bonds, and forms the basis
of the energy computations.

CRYSTAL-STRUCTURE DATA
Molybdenum dioxide:

The X-ray diffraction data for molybdenum
dioxide (ref. 11) are presented as follows,  The
notation is that used in reference 3.

Crvstal type . .
Space group .

Cell content .

Cell dimensions:

Monocelinie
R Q- [
4 units Mo(},

T : ... D.O%4
by X - .- 4.842
e X B N 5.608
8, deg 120.94
Cell volume, L e 120.33
Density, glem® . el 7.02

Coordinates of equivalent positions:
X, ¥, %

4(e) positions R

The atom position parameters arve:
For four Mo in 4(e),

x=10.232, v =0.000, 7z=0.017
for four Opin 4(¢),
x=0.11, v=0.21, z=10.24
and for Tour Oy in 4(¢),
x=10.39, Vy=0.70, 72=10.30

Molvbdenum trioxide:

The N-ray diffraction data for molyvbdenum
trioxide (ref. 12) are presented as follows:
Crevstal type. .o o Orthorhomhic
Space group oo ... B DY —TPima
Cell content . .. ~4 units MoQy
(el (Linwnsi(ms:

a, A e - 13. 85
b, A o 3. 696
A 3. 966
Cell volume, e 203. 0
Density, g/em® S 4. 50
Cloordinates of equivalent positions:
X, 4, %
X, ¥, 7

4(¢) positions_ . ... _ .. ______ N ,
I X, 4, Y

YN ez
The atom position parameters are:
For four Mo in 4(¢),

x=0.0995, 7z=0.084

for four O in 4(¢),

t

x=0435,  z=0.52

-~

for four Oy 1in 4(ce),
x=0.100, z=10.56
and for four O 1n 4(e),

x=10).230, z2=0.015
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ATOM POSITIONS AND BONDS

The X-ray cryvstallographer presents struetural
data in the concise form given in the previous
section.  These data have been converted to
a more usable form by the method deseribed in
the section entitled “Crystal-Structure Caleula-
tion.” By this method the position of each
atom in a crystal can be expressed by a position

> —
vector 1. The bond between two atoms 1, and

>

1, may be expressed by a vector as follows:

— -

L,=1,-1,

The bond distances L are determined by the dot-
product relationship

172

L= (L1 - LI,

The interbond angles are also determined by the
dot-product relationship; for example, in the

—

caxe of 15} and 1,1,

él]l 1Ili011[

-
oL T
L Ly,

The notation used is keyved to the figures and
the particular atoms may be located by referring
to the vectors identified by element symbol,
subseripts, and superseripts.

Molybdenum dioxide:

The atom position vectors for molybdenum
dioxide have been computed as an example to
illustrate the method in the section  entitled
“Crystal-Structure Caleulations.”  There are four
equivalent positions, one “kind”’ of molybdenum
atom. and two “kinds” of oxygen atom. The
reference system is nonorthogonal.  The atom
position vectors are as follows:

—

Mo' = 1.2054-+0.0008--0.09535
Mot = —1.2956—0.0008—0.0953%
Mol —1.2056 +2.4218-+2.7097
Mo = 1 2056-2.4218+2.800%

—
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Oi=0 6144+ 1.0176--1.346%
Oi=0.6146— 1.0173— [ 346
(_)‘f‘: ~0_(;14&+:fz.43xt§% 1.458%
OF —0.6148+ 1.4043-1 41503

04, =2.1784+3.3803+ 16825
O = — 2. 178 —2.3898— 1.682%

O = —2.178& +5.8108+ 1.122%
O =2.178ax—0.9688-+ 4486

These position veetors have been used to sketeh
projections of the lattice.  The projections are
shown m figures 6 and 7. Tt may be observed
that if the c-axis in figure 6 1s drawn perpendicular
to the a-aunis, there will be only slight deviation
from true periodicity due to the distortion of the
lattice and from this viewpoint the lattice is very
similar to the rutile lattice.

The bond vectors have been computed and are
listed with the bond distances. These vectors
have been computed in an orthogonal reference
svstem  for convenience.  The transformation
used is

Il
—>

> Tur» R>
Il

v=—(cos 59.06°)14 (sin 59.06°)k

The transformed vectors may be used as long as
the bounds of a single crystal cell are not exeeeded.
Periodicity cannot be carried over i the trans-
format on.  Along the a-axis the alternating
Mo—2Mo distances are 2.497 A and 3.096 A.
These distances are important in postulating a
unique Mo-—Mo bond.  With appropriate vector
subtraction, vectors to represent bonds are ob-
tained as follows:

- —

0

Moty = 1.171— 1.02§+ 1.24k (Li==1.98 1)
MoR O = 1,321+ 1.02] — 1.07k (L=1.98 )
Ao = —0. 11814 1.40j+ 133k (L=1.94 })
Mo# ) — - 158+ 0.965] —0.881k  (L=2.06 %)
Nom = —1.51i—0.968j+ 1.045k  (L=2.08 %)
MotDi— —0.068 —1.45]—1.36k  (L=1.99 %)
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(L=23.082 %)
(L=2.74 })

OFOF = —0.1561— 2.034§ +2.31k
OOy = 1 29?—2.4‘2]——().()9(3]&

0,0 = 2,75 — 1.98]+ 2.12K (L=4.00 })
03,07 = 2,681 — 0,049 4 0. 192K (L=2.658 %)
OROY = 1,241+ 0.436)+ 2.60k L=2.91 %)

—
C
[ 8V
A
|3
-0
e

OJOF =1 441 — 0,387 —2.41k

-0

0,08 =2.911+0.049]—0.192k

-
If
S
<
.
~—

—
|
I
-
jp="r)
S

O30 = 2.831 4 1.99) —2.12k

-
.
|
f
o
s
(W11
s
-0
~

)ﬁ()iui 1301 +2.47)+ 2 S8k

0

OO = 1,478 1 0.436] 4-2.21k (L=2.69 %)
O3 O = 1,301 12,37+ 0.288Kk (1L=2.77 &)
ORO% — —0.0501+2.86] 4 2.60k (L=13.93 X)

O03On= —0.075+1.94j— 1.93k (L=2.73 {)

OnOn=—1.520+2.42] 1 0480k (L=2.90 %)

i A

050} = — 1.44i+0.485) 241k (L=2.55 %)
The bond length in ecach case is shown on the
right. The bond vectors mayx point toward either
end of the bond hut the direction must be con-
sidered in computing the interbond angles.  The
bond vectors given here point from the atom on
the left toward the atom on the right.

The interbond angles are computed using the
dot-product relationship.  The angles with apexes
at the NMo™ atom have been computed and are
tabulated as follows:

LZOWN O =88.76°

ZOINMoH 0, =84.65°
ZOWN o8O =91.38°
ZOE N[Oy =94.17°
205\ o0 =86.96°
208N LoFOH =92 25°

ZGHNoMOE =91.65°
ZOEN oW, —=88.82°

LOINoMOY =82.81°
ZOPN o =92.06°
ZOBN o0 =92.19°
ZONM0H0, = 82.87°
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MMolvbdenum trioxide:

The atom position vectors for molybdenum
trioxide are determined by using the method
described  for molybdenum  dioxide.
four equivalent positions, one “kind” of molyh-
denum atom, and three “kinds” of oxygen atows.
The reference system 1s orthogonal.
position vectors are as follows:

There are
"The atom
Mo = 1381 40,9245 + 0333k
\[0" = — 1381+
Mo - .»3.54H—2.77j+2.:;212

Mo =X.30i 4 0.924] 4 1.65K

77— 0.333k

Oy =6.031+0.924j -+ 2.08k

OF = — 6.0314+-2.77 — 2.08k
OF =0.900i +2.77]+ 4.07k

OF = 12.951 +0.924] —0.099k

O — 1381 0.924] +2.22K
Of — — 1381 +-2.77
O = 5.541 +2. "*+4A2m}

O3 — .30t 10,9247 0.024k

—>
o
o
(8
28

—_—

()mf 319140, <)z4j+ 0.0595k
Ol — —3.101 12

();‘},:3.74i+2.77j
Ofc=—10.1114-0.92

0 0.)()01\
+2.o41§
454 1.92k

By using these atom position veetors, the lattice
of MoQ; can be reconstrueted.  Projections of this
lattice are shown in figures 8 and 9. In these
figures the cell boundaries are shown and the cen-
ters of the oxygen atoms are conneeted to outline
the octahedra. Tt 1s readily apparent that MoO;
has a layer steucture.  The lavers are formed from
one kind of octahedron and alternate octahedra
are oriented differently.  The layers are staggered
to formi a semi-interlocking joint. The three
“kinds” of oxvgen atoms result from the particular
wayv that the octahedra are joined n this structure.
The Op atoms are comnion to three octahedra and
are a part of an edge joint. The Oy atoms are
common to two octahedra and form a corner joint.
The Oy atoms belong only to one octahedron
and are unshared. Presumably, however, the
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O atoms play the dominant role in the interlayer
bonding.

The bond vectors have been computed and are
given as follows. As in the case of MoO,, one
octahedron is singled out to illustrate bonds and
interbond angles.  The bond vectors point from
{he molybdenum atom at the center of the octa-
hedron to the oxygen atoms at the corners,

Tn the 4a direction,

MorOi = 1.818+0.270k (L=1.83 %)

in the —a direction,

22714 0.430k

Mo Op (L=2.31 1)
in the +b direction,

MoOp = —0.480i-4-1.85] +0.240% (L.=1.93 })
in the —b direction,

MorOy ——0.480i—1.85]4-0.240k (L=1.93 })
in the +¢ direction,

Moy =2.08k (L=2.08 })

and in the —e¢ direction,

MorOn = —1.89k (1,=1.89 &)

Vectors for the Mo—X>Mo bonds are directed
from the nearest neighbor Mo atoms to the No™
atom at the center of this octahedron and are given
as follows (the subseript NC indicates next cell):

In the —a—+Db direction,

Mo Mon = —2.76i4-1.85] + 0.670k (L=3.38 %)
in the —a—b direction,

Mo Mos ——2.76—1.85]+0.670K (L=3.38 %)
in the +a4b direction,

MovMov—4.17i+ 1.85 - 132k (L=4.75 %)
in the +a—D>b direction,

AowMol =4.17i— 1.85] — 1.32k 3
in the ¢ direction,

Mo o —3.97k
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and in the —e direction,

e N
NMoMoy, = —3.97k (L=3.97 X)

The O—0 bond vectors are given for the bonds
within an octahedron. The interlayer O—0
bonds will be considered subsequently.  The se-
lectior: of positive direction for these vectors is
arbitrary and not of any significance.  The O—0O
bond vectors were chosen positive toward Oy as
much as possible and positive toward Oy other-
wise.  These vectors were obtained by deter-
mining the vector difference between the appro-
priate two Mo—O bond vectors as follows (the
subscripts A, B, L, and R designate, respectively,
atoms above, below, left, and right with respect to
the chosen orientation):

()-()“ =1.791—1.85] —0.19k
{0k = 1791+ 1.85]—0.19k
0{07r=2.27i + 1.65k
0iO0rn=2.27i—2.32k

0305 =2.201 +1.85] + 0.03k

(L=2.58 A)
(L=2.58 })
(L=2.81 })
(L=3.24 %)
(L.=2.94 })

O,Ti(’);v”:z.‘zm—|.353+0.031€ (L=2.94 &)
mf),”—l S11—1.81k (L=2.56 A)

()uni)nﬁl S1i42.16)k

(L=2.82 %)

i O A_0 481+1.85)+1.84Kk
O Ofin—0.48 — 1.85] -1.84K
O3 O — 0,481 4+ 1.85] — 2.13k
Ol —0.481 — 1.85) — 2.13k

(L=2.65 })
(L.=2.65 &)
(L=2.86 ])
(1.=2.86 %)

The interbond-angle relationships are perhaps
more «learly demonstrated by establishing a svs-
tem of polar angles. This system shows the nature
of the distortion of the octahedron better than
using the angles between bonds. There is a plane
of symmetry containing the Mo!v, two O, O, and
Oi atoms which provides for easy orientation of
the o¢ ahedron.

A unique and important feature of the MoO,
lattice is the laver structure. The Oy atoms are
unshared by octahedra. I the nearest neighbor
relationships only are considered, the Opr—Oyy
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bonds make up the interlayver bonding. The Of T . . . e
p il M. 8 t 0500 ra= —0.551 +1.85] 4+ 1,99k (1.=2.77 A)
atom has been arbitrarily selected as a represent- :

N R .
ative atom and the bond vectors to Op atoms 0¥ O0mire= —0.551+1.85]—1.98k  (L=2.76 A)
in the next layers have been determined as follows: E Ti‘ 2 8411 2,031 (L=3.49 :\)

The last bond vector represents the bond between
Sont a layer surface atom and the nearest nonsurface
O Oipn=—0.551—1.85j—1.985k  (.=2.76 X) atom in the next layer.

O Obma= —0.551 — 1.85]+1.99k  (L=2.77 })



APPENDIX B

METHODS OF ENERGY CALCULATIONS

There are four sections in this appendix which
arc devoted to the numerieal work involved in
the caleulation of the contributions to the lattice
energy.  The theory which forms the basis for
the practical ealeulations  discussed  herein has
been introduced in a general way in the seetion
entitled “Introductory Discussion ol Theoretical
Concepts” and the particular development  of
the equations has been given in the section
entitled “Lattice Energy.”  These equations are
used in this appendix to ealculate the lattice
energy of molvbdenum dioxide and molybdenum
trioxide.  There are four sections in  which
coulombic energy, polarization energy, Van der
Waals energy, and repulsion energy are discussed.

CALCULATION OF COULOMBIC ENERGY

The coulombie energy of a ervstal is given by
equation (24) as follows:

NavezA

U=

In order to have the coulombic energy expressed
in kilocalories per mole, this equation is modified
as follows:

¢ NAV(‘Zx\

_ .
Ue 10-% 2t (79)
where

Nav  Avogadro’s number, 6.024 X 10** molecules/

mole
e conversion factor, 2.3889> 107" keal/erg
£ molecules per cell
e electronice charge, 4.802 107" esu

The constants may be combined to give a working
formula {(eq. (78)):

165.9A
Ue=—""""""keal/mole
&
The factor A is determined by equation (22) us
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follows:
A=z s

=0 i ‘llj

The limmiting value of this equation is obtained by
taking finite sums as follows (eq. (23)):

N7
AK*E? du

The quantity A is determined on a computer for
lues of k from 010 6 or 8 where the convergenee
should be very good; then, graphical means are
used to get the limiting value A at x equal to
infinity.  Two systems of graphical extrapolation
were used in this work.  One system was to plot
Ae as ordinate and A,— A, or AA, as abscissa
then extrapolate to A at AA, equal to zero.

The other system was to seleet a convenient
value of A, at a point where the sum wuas con-
verging uniformly. This starting point may be
designated A, The following quantities are then
determined and plotted:

log, (Ax—Ay) is plotted on the ordinate
1/x 1s plotted on the abscissa

The ex rapolation to 1/k equal to zero, ork equal
infinity i made and  the limiting  value
(Ac— A Dimte 1s obtained.  Then,

A=A+ (Ac—AV) nmte

Both 1niethods were used and the two extrap-
olations were adjusted to give values of A that
agreed and at the same time conformed to
reasotole curvature of the extrapolation curves.

The 1most complicated part of the work in com-
puting the coulombic energy is the computation
of A which, in tumn, requires computation of a
sequence of values A, This work must be done
on a computer and the following comments are
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offered to aid in the programing of the problem.
The input data are as follows:

(1) Position vectors of all tons in a unit cell.
The form of these veetors is (eq. (31))

]j:]jl&+vljﬂﬁ+lj3';

(2) The angles «, 8, and ¥ between the axes of
the reference system

(3) The cell dimensions a, b, and ¢ in angstrom
units

(4) The values for 1), I;, and I3 determined from
values assigned to g

{5y The values Z; which represent the number
ol charges on the jth ion and the sign of the charge

Equation (23) which is

g YAV
X\K:ZZ 14

n=0 ] d 1

represents interaction between all the ions, desig-
nated by i, in the cell at the origin and all the
ions, designated by j, in a cell loeated by R where
(eq. (32))

- R R R
R=lna+Lbg+ LY

Then, if I, and I; are the position vectors of the

ith fon and jth ion in their respective cells, the

relative positions of these two ions is expressed by
the veetor (eq. (36))

- A A A
I)UiDlna+l)uzﬁ*l)m’)’
The cocfficients of the unit vectors are (eq. (37))

Dy =1,+la—1,
Dyp=Tu+Lb—1;
Dy=T5+le—1,
From this, d,; may be obtained as the magnitude
of the veetor BU as follows:

—

(]”:(D”.I)”)Uﬂ
= (D +D2,+ D +2D Dy cos v
42D, D5 cos 342D ,D s cos @)V (80)
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Tt 1s conventent to form a matrix

l] ]’2 ]3 e Ij
T[T 1 By oo 14
Tof To Too oy oo . Ty
-13 133 ]3'.‘ -[33 LI ]:{]
Lty T T .o ]ij_l

where the jth lons are arranged across the top and
the ith 1ons down the side.  Each position in the
matrix may be designated by the symbol 1y
Then, this symbol may be assigned to represent
the following operation:

Ly ="7 (S1)

Terms from all positions in the matrix are added
and this large expression is then expanded by per-
mitting » to increase from zero up to the point
It 13 1mportant to
note that when R=0 and =0 then all terms on

where the series converges,

the diagonal must be disearded.  Thus,
A A iy
A ,
r=nsn=nsih
=0 1] p=0"1 Uy

and the special provision for =0 must be tacitly
understood.

These methods were applied to two oxides of
molybdenum.  The convergence of A, is shown

in Afigures 11 and 12 for MoQ, and NoOy,
514
512

A

51.0

_ A,]m=50.83
508

{ 1 j | | i } |

08— 12 3 4 5 6 7 ®

Fraure 11.-—Convergence of A, for MoO),.
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1406 A,‘]m = 14056
1404
AK
1402
1400 ! . ‘ L !
I 2 3 4 5 & 7 @
n

Frarre 12.--Convergence of .\, for MoOy;,

respectively.
be:

The limiting values were found to
For Mo(),,

and for No(),,

A=—141, =4

These values were substituted into the formula
(eq. (TR))
165.9A
13

to obtain coulombic energies as follows:

U=

For NMo(Q),,

7. = —2,110 keal/mole
and for Mo,

.= —5,850 keal/mole

These computations required about 30 minutes
each on an IBM 704 electronic data processing
machine,

CALCULATION OF POLARIZATION ENERGY

I'he polarization energy of a crystal is given as
follows:

— 4)\: N A\‘\;i)'al(d ( K,»){( ‘:{[)j (N3)

where

Nav  Avogadro's number, 6.024 > 10%, molecules/

mole
¢ conversion factor, 235880 1071 keal/erg
a; polurizability of jth ion, em?
¢ cleetronic charge, 4.802 <1071, esu

and the index j represents the jth polurizable ion
or atom in a molecule and the summation s over

all ions or atoms in the molecule.  The constants
may be rombined to give a working formula, in keal/
mole,

l',,:#ms.gzjza;(f{")i.(j{n) (54)

where the prime indicates that the polarizability
=

is in &% units.  The evaluation of the vector (Ap>’
must be made on a computer. The following
comments are offered to aid in the programing of
the problem. The input data are as follows:

(1) Position vectors of all lons in a unit cell;
the forin of these veetors is (eq. (31))

4

11711!&“1“]1:64"113'3’
(2) Position vectors of the selected representa-
tive polarizable ions. These will be designated
G,. One ion of each kind j will be selected

-
from ions T, All the ions j will constitute a
moleeular unit.  The form of these veetors is

Gy=gpa+tgpB+ 2wy (85)

(3) The angles a, 8, and 5 between the axes of
the ref rence system

(4) "The cell dimensions a, b, and ¢ in angstrom
units

(5) 'Che values for l,, I, and Iy determined from
values assigned to 7 (in this work only values 0 and
1 are assigned to )

(65) 'The values Z; which represent the number of
charges on the ith jon and the sign of the charge

0

The vector (“A,,)j is computed from equation

(40y whieh 1s

(;(,) s Zlﬁ!j
b (4 ](l;)u'ﬁ”)i/z

where eq. (36))
l)ljll)l,\]&"j' Du:ﬁ’:*'l)lj:;%
and fers, (37))
D= gp—Li--la
l)”Q:‘L")v_l“*’zh

Dn:zfgil';:%* Pi—lye
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b d
The expanded expression for (A\,,)j s

Z(D& + Dy + D)
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(86)

= 1
(4)-z= (D2y+ D+ Di +2D;,,Diecosy +2D;5:Dygycosa-t 2Dy Dy cos )7

Tn this expression for 5=:0, there will be terms

- -~
where Gy=1, and these must be discarded to avoid
dividing by zero.  They would represent the
mteraction of an ion with itself.
In computing the polarization energies of the
two oxides of molybdenum, the polarizable ions
were selected as follows:

For MoO,,

Gi== Mo =1.205a--2.4215+2.8097

—>

Y=0.614&+1.0175+ 13464

-y
Gy,=

. —s

1= 0 =2.178a - 3.3808-1-1.682%

and for MoOQ,,
z T oA P A
Gi=Mo'""=5.54a 4 2.7784-2.329

-3 — A a
Go=0,=06.03a-+0.9243-+-2 085

Gy Oli=5.54& + 2.778+4.20%
Gy= Ol =3.744 2,775+ 2.04%

7
i d

The computed (\;\,,), veetors were as follows:

For Mo{),,
(A,,)l =0.304& — 0.04738 1 0.0599%
(A,,),: 0.2428+0.1738--0.353%

(;\,,)3:n.m13&~0.113423"()‘()024;2%

and

(L{,,>1-< :(,,:‘)l —0.0795
(K,,)z-(L(I,X: 0.1253
(ﬁ(,)>3-<K,,>3::().004;45

(Mo'+)

(0O

ﬁndrfn‘ril\jlﬁ(i)Og,

and

(£, (8,)=0.4676  (Mot)
(£,)(£)i=0.1943
(£, (&) =051
(£ (&)= 208

The polarizabilities used were as follows:

(07)

For Mo,

o

o = 0.35 A7
for Moft,

o]

a’'=0.26 A*

»

and for Oz

3

-0

o =222

These quantities may be substituted into the work-
ing formula (eq. (84))

- L
U= — 1(;5.922(1,( A[,>j-(A,,>,
j
1o yicld polarization energy. The results e

for MoQ,,

U, =53.12 keal/mole
and for Mo(Q),,
17, =868.46 keal/mole

Approximately 10 nunutes on the IBN 704 com-
puter were required to compute a set of electrie-
field vectors for either oxide.
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CALCULATION OF VAN DER WAALS ENERGY
The Van der Waals forces are very short-order
forces and consequently, the computation of the
Van der Waals energies may be limited to con-
sideration of nearest neighbor interactions only.
[n computing the Van der Waals energies on a per-
mole basis, it is necessary to sum the contributions
of all bonds associated with one molecular unit
and multiply this by Avogudro’s number. Forone
bond, the dipole-dipole and  dipole-quadrupole
energies are given by the following expressions:
For dipole-dipole energy (eq. (62)),

']-jk

(ITdd)Uk: - (l 5

and for dipole-quadrupole energy (eq. (64)),

([vdq)ljk:#'I”k

d.®
In these expressions the indices j and k refer to in-
ternetion between an ion of element j and an jon of
element k. The index i refers to bond distanee i
for those two elements.  In the distorted strue-
tures there are several bond distances for each pair
of elements rather than a single distance found in
more svinmetrieal structures.  The coeflicients
T and Ly, are determined as follows.  The dipole-
dipole coeflicient s computed by using equation
(54) whieh is

T 3 ooy
e Jk_2 ” « -
I

VIR

where
a  polarizability

N number of polarizable electrons in the ion

For ions with closed-shell structures, the value
for N is that computed for the isoelectronic inert
eas.  These values were computed by Herzfeld
and Wolf (ref. 13) as follows:

For argon,

N=456
for krypton,
N=5.1 (interpolated)

and for xenon,
N=35.6

On this basis, the value of N for Mo® is 5.1 and
for O is 4.6. The value of N for the Mo** ion

AERONAUTICS AND SPACE ADMINISTRATION

must e estimated since it does not have a closed-
shell structure, Tt s assumed that the two
d-clee rons will cause an inerease in N for Mo'*
over that for Mot and a value N =5.5 is estinat-
ed for Mo't,

In order to establish a working formula for the
dipole-dipole cnergy, equation (54) must be mul-
tiplied by e%,Y* which converts from atomic to
cgs units and where

e electronic charge, 4.802 X 1071 esu
1w, Bohr radius, 0.529:<107% em

The fllowing constants must also be applied in
order to give a {inal expression in the units
kealirole:

¢ 2.3889 < 107! Kealferg
Nay  Avogadro’s  number,
cules/mole

6.024>X10%  mole-

These constants are combined to give the formula,
in keal/mole,

3 ooy, 1

2 o o, JR(ST)

VEE

1t is convenient 1o use the form, in keal/mole,

(Uga) 1= —241.41

1 v C N
(Caa) 1= —241.41 R‘j.% (S8)
where
3 oy )
Cm:‘;",””a'ak o (89)
b a oy

VEAV

Sunits and Ry is

Th» polarizabilities a are in
. o . . v . -
in A units. The dipole-quadrupole coefficient is

comp-ated by using equation (57) which is

L (g o ),

_Nja] Nkak

The nit conversion factors are combined to give
the fellowing formula, in keal/mole,

(Ugy) 1= —4,060 ;1{“; (90)
H
where
B Gy Cayg (
A= 4502 N,a,+,\‘kak)("”‘ 1)

The final formulas for computing the Van der
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Waals energies, in keal/mole, are as follows:

Uga=—241.41>" “”"E 1% (92)
Ry
Use= 40002“”""“‘ (93)

ijk

where My, is the number of bouds present between
ions j and k with a distance R;. The terms in
the summations of equations (92) and (93) are
tabulated im tables 1 and These values are
substituted into equations (92) and (93) to yvield
the following Van der Waals energies, in keal/mole:

For Moy,
Uga=—105.99

Ugy=—T76.57
and for MoQ;,

Ugg=—72.76

le(lk 2-) 13

CALCULATION OF REPULSION ENERGY

The repulsion energy Uy is given by equation
(4) which is

lrrj-pr(,l c+4lTp+“l dd+8lvdq)

where the U terms are the different kinds of
attractive energy and py is a repulsion coefficient.
The repulsion coefficient is given by equation
(74) which 1s
(refry)"is

dyymi

ZMlJﬁu
1.—+—| -1

Pe=
7 M= -, 'n,,
Ly
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where (eq. (66))
B *H— +

and

M,;  number of bonds per mole between ions 1
and j at a distance dy

r ionic radius

dy; bond distance between ions i and j

YA valence of the ion

P number of outer electrons for the ion

ny; a constant dependent on the particular ion
pair

The value of 1y, is obtained by using the method
of Pauling (ref. 2, p. 509). The quantities used
in the caleulations of p, are given in tables 3 and
4. The caleulated values of pp are as follows:

For MoQs,

pr=0.1295
and for MoQy,

pr=10.1266

Substituting these values in equation (20) gives
lal . bl

the repulsion energies as follows:
For MoO,,

T,=462.44 keal/mole
and for MoQy,

U= 1,261.12 keal/mole



APPENDIX C

METHOD OF OBTAINING POLARIZABILITIES OF IONS

The polarizabilities of the ions assumed to exist
m the oxides of molyvbdenum must be known in
order to compute lattice energy. Since some of
these data were not found in the literature it was
necessary to search for an empirical relationship
that would be capable of providing reasonably
accurate values of the polarizabilities. A method
[requently employed is the use of the cube of the
ionic radius as the polarizability.  This value is
generally recognized as a rough estimate ; however,
it does not agree with the method established in
this investigation. The empirvieal  relationship
presented here is believed to be a new and more
accurate method of obtaining polarizabilities of
posttively charged ions.

The polarizabilities of O*=, Mo't, and Mo""
1ons are needed to compute the polarization energy
and the Van der Wauls energy.  The polariza-
bility of an ion is sometimes regarded as a con-
stant.  Actually, the polarizabiity of an 1vn varies
over a small range of values according to the
environment. lonie  polarizabilities have been
caleuluted and measured by many investigators.
A small part of this work is described in references
14 to 16.

According to reference 15 the polarizability of
O varies according to ervstual tvpe. Of the
available duta, it appears that TiO; provides an
ion environment most like that in the oxides of
molybdenum for the O* ion.  Measurcments on
Ti0; vield a value of 2.22 A% for the polarizability
of the O~ iton.  Fajans and Joos (rel. 16) found a
value of 275 X3 for the O* ion in solution.
Polarizability calculations for the 0%~ ion in a free
or gascous environment vield values near 3.8 A%,
Polarizability measurements on several ervstals
vield values ranging from 2.0 to 2.5 X4 for the 02
ion.  The value of 222 A% as the polarizability
of the O ion has been adopted for the computa-
tions in this paper.

The polarizabilities of Mo and Mot lons were
not found to be reported in the literature and

40

presutnably have not been determined.  An em-
pirical relationship was determined to predict the
polarizability ol ions having the inert-gas-tvpe
closed-outer-shell structure. It is found that the
following relationship holds for ions having the
same harge and closed-shell structure:

3

r ,
o =k o (64)
E,
where
’ . oy . Ly
@ polarizability in A
o
r ionic radius in A
k, ionization potential in eleetron volts
k a constant for ions of the swne charge

Polzrizabilities of ions in solution measured by
Fajans: and Joos (rel. 16) are plolted against
rY/E; In figures 13 to 16 with a separate plot for
ions of different The slope of each
straight line produced yields a value of k for the
partic dar ionie charge.  Values of k corresponding
to charges of +1 to +4 were determined. A plot
of k against charge (fig. 17) was then made and k
was extrapolated to give w value for ions of
charge 6. By this means it was possible to
arrive al a value for the polarizability of the Mo®r

charge.

ton.  The values of k were determined as follows:

Charge ‘ k
i

- 12,5 ‘
=2 24 ‘
-3 41 |
i 4 70 1

: (5] i 100 ;

I "By extr: :

! - IiH(B‘\ extrapolation

|

| N . . L
For Mo**, + =0.00192 which vields polarizability

41

a’ equal 1o 0.28,
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Rb

2 O Na*

S/ L

LATTICE

.06 08 10
r3/EI

Firoure 13.--Polarizability  relationships  of =1
Polarizability taken from reference 16.

Mg2*
Be2* . ‘

1 1

jons,

|

0 0! 02 03

.04 .05 06 .07
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Frevre 14—DPolarizability  relationships of +2
Polarizability taken from reference 16,

08

ions.
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14

Frav

r?’/EI
rRE 15.-—Polurizability  relationships of 43 ions.
Polarizability taken from reference 146.
. . ‘ )
00l 002 .003 .004
ra/EI
Ficure 16.—DPolarizability relationships of -4 ions.

Polarizability taken from reference 16.



42 TECHNICAL REPORT R—112—NATIONAL
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Fravre 17.-—Polarizability constant for eations.

Presumably, the polarizability for the Mo't ion
can be obtained only by estimation.  There are
some factors to serve as a qualitative guide in sueh
estimation, however. The polurizability ol the
Mo*" ion must be larger than that of the Mot ion,

AERONAUTICS AND SPACE ADMINISTRATION

The Mo®™ jon has eight electrons in an outer-
closed-shell configuration which is inherently
stable.  The Mo** jon has the ecight electrons in
the closed shell plus two additional electrons.
The additional two electrons ure in larger orbitals
and arc less firmly bound.  They would tend to
cause  incereased  polarvizability.  However, the
presence of the two outer elecetrons would inhibit
somewl at the deformability of the eight electron
orbitals in the next inner shell and reduce the
polarizability slightly. In consideration of these
relationships, the polarizability of the Mo'* ion is
estimated to be 0.35 A%, No doubt there is a
good possibility of error in arriving at a value of
the polarizability of Mo'™ lon by this means.
There was no other apparent recourse and it is
felt thet the error introduced is less than that
which vrould vesult from assigning a zero value to
the polarizability of the Mo** jon, that is, from
ignoring it altogether.

In summary, the polarizabilities used in cowm-
putations in this paper are as follows:

For O,
for Mot

and for Mot
o' =0.35 AP



APPENDIX D

THERMOCHEMICAL DATA AND THE BORN-HABER CYCLE

The values which have been obtained for the
lattice energies of the oxides of molybdenum by
theoretical methods may be compared with experi-
mental  measurements. Thermochemical  meas-
urements are nuude of the heats of formation of
compounds,  These data are transformed into
lattice energy by the Born-Haber eyele. The
thermochemical data are given in the first section
of this appendix and these arve applied in the
second section which deseribes the Born-Haber
evele ealeulations.

THERMOCHEMICAL DATA

The heats of formation of MoQO, and MoO, have
been measured (refs. 17 and 18). The recom-
mended mean values are given as follows  (at
208.15° ()
Mo(e)+Ou(g) =NoOs(e) AH=—140.8

keal/mole
AH=—178.1

kealmole

Mo(e)+ 1140,(g) >NoOs(e)

Other thermochemical data from reference 19 are
Moler >NMolg) AH=155.5
0, »20 AH—116.8
Electron Aflinity:

The electron affinity of O*~ huas been recently
determined by Huggins and Sakamoto (ref. 8, p.
241) us follows:
Kleetron aftinity 07
Tonization Potential:

The energies required 1o remove the first six
clectrons front molvbdenum arve given as follows
(ref. 20):

1624+ 15 kealymole

For Mo,

1., _7.18¢lectron volts IV.  40.5 electron
volts
II 15.2 cleetron volts V .. 56 electron volts

HIL  27.0clectron volts VI 72 electron volts
for Mot

R9.88 electron volts or 2,068 keal/mole
and for Mot

217.88 electron volts or 5,014 keal/mole

LATTICE-ENERGY CALCULATIONS BY BORN-HABER CYCLE

The Born-Haber eyele is expressed by the
following equation:

AHp = AH;—aAH,—AH;— E,—E; (95)

where

AH,, lattice enthalpy (=lattice energy)
AH, heat of atomization (molyvbdenum)
AH, heat of dissociation (oxygen)

K. clectron affinity (oxygen)

E: ionization potential (molybdenum)
AH, heat of formation

Also,

AH = AE 4 AnRT (96)
The term AnRT is relatively sommdl and 1s
neglected; therefore, Al =AE,.
For MoQ,,
AH, = —140.8—155.5— 116.8—324—2 068
=2 805 keal/mole
For MoQy,
AH, = —178.1—155.5—175.2—486— 5,014
= — 6,009 keal/mole
43
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