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THE MAGNETIC FIELD OF A FINITE SOLENOID

By Edmund E. Callaghan and Stephen H. Maslen

SUMMARY

The axial and radial fields at any point inside or outside a finite

solenoid with infinitely thin walls are derived. Solution of the equa-

tions has been obtained in terms of tabulated complete elliptic integrals.

For the axial field an accurate approximation is given in terms of

elementary functions. Fields internal and external to the solenoid are

presented in graphical form for a wide variety of solenoid lengths.
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INTRODUCTION

The recent great interest in plasmas either as a source of energy

or as a propulsion device has resulted in a greatly renewed interest in

the magnetic fields produced by various configurations of electromagnets.

Of the possible methods of plasma confinement by far the most promising

appears to be the use of magnetic fields (ref. I).

The calculation of the fields generated by various electromagnetic

configurations such as loops_ finite helical solenoids, and infinite

solenoids has been treated by the early classical physicists, but only

the simplest cases such as the single loop have been calculated for the

entire field both inside and outside the loop (e.g., ref. 2). In other

cases such as the helical solenoid or the finite solenoid the calcula-

tions have been limited to the axis (ref. 3). Derivations of the off-

axis positions have been done by Foelsch (ref. 4), and the solutions

are obtainable by means of a large number of approximate expressions

which are valid over restricted ranges of size or position. The princi-

pal difficulty in the calculation of the fields of nearly all config-

urations has resulted from the fact that the integral solution cannot

be achieved without the use of various elliptic integrals. Even though

many of these are tabulated_ the calculations involved are laborious.

Such calculations can, however, be made using modern high-speed com-

puters since machine programs have or can be written for many of the

elliptic functions.



The purpose of this report is twofold: (i) to derive the equations
of the axial and radial field at any point within or outside a finite
solenoid in terms of standard tabulated functions and (2) to plot these
fields for a numberof solenoids.
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SYMBOLS

magnetic vector potential component in @-direction

coil radius

radial and axial magnetic induction component

complete elliptic integral, second kind

current in each filament

complete elliptic integral, first kind

coil length

number of turns per unit coll length

cylindrical coordinates

Heuman lambda function

permeability

z_ L
2

I

DERIVATION OF E:QUATION3

Consider a solenoid as shown in the follewing sketch:

L/2

z,Z
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The magnetic field due to this coil is given in terms of the vector
potential A by

=VXA (I)

where; for the geometry assumed_ only the A 8
Then equation (i) yields simply

;_Ae I

Br = _
I.

Bz = l _(rAe)
r ;gr

component can be nonzero.

(2)

For a single circular filament_ one has

Ae = 4_i_ifa c°sR 8 d8

where R is the distance from the local point on the filament to the

field point. For a solenoid made up of a series of n filaments per

unit length_ we have then

L/2

Ae=_/ a_o V(z

cos 8 d8

Z)2 +'r 2 + a 2 _ 2at cos 8

or

A0= f/o2_ d_
cos 8 d8

+ r 2 + a 2 - 2ar cos 8

(3)

where _ = z - Z, _ = z ± L/2; and Z is the axial distance from the

origin to the filament. On integrating with respect to _ this becomes

i o = _ cos e in + _2 + r2 + a2 _ 2ar cos ae (4)
2_ __

0

A more convenient form can be found by integrating by parts:

Ae = a_nilsin2_ 0 inI_ +
e=0

ar sin?8 de ]_+

+r 2 +a 2-2ar cos e)V_2 +r 2 +a?_ 2at cos 8J{_
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The first term vanishes. Onmultiplying the integrand by

_2 + + _ 2dr cos 8 - _ rearranging terms, and observing that
r 2 a 2

V_2 + r2 + a2 _ 2dr cos @ -

use of the limits eliminates one term, there follows

I I( _ sin28 d8 8]

Ae a2_ nit _ {+= 2_ (5)
a2 + r2 - Zar cos 8)V_2 + r2 + a2 - 2dr cos __

The two magnetic-field components can now be easily obtained.

field is found by differentiating equation (Z) and yields

_Ao _ cos 0 d0
Br = - _-_- = - 2_

_2 + r2 + a2 _ 2dr cos __

To get Bz, first evaluate _A@/_r from equation (4).
ceeding as in the case of obtazning equation (5), is

_AO_ _ alani _ cos O(r -a :os O)dO

r 2 + a 2 - 2ar cos 0)_'2 t- r 2 + a 2 -

If equations (S) and (7) are put into (2), th_ result is

Bz _ i _(rA8)
r _r = 2,_

The radial

(G)

The result_ pro-

2dr cos __

(7)

f[ _(a- ?cose)de 0]_+(r2+a2 2atcos0) +r2+a2 2= cos

(8)

Equations (6) and (8) describe the magnetic field due to a finite sole-

noid. Numerical results can readily be found by integrating these equa-

tions on a computer. However, the results eal also be expressed in

terms of standard elliptic integrals_ which as already tabulated. This
we proceed to do.

Consider Br. This can be evaluated by Ise of formulas 291.05 and
412.01 (noting the special case of _2 = k 2) )f reference 5. One has

successively,

__r m_. IK(k) m_._.-(.2 - _2)sn2u di:+Br = m " + (r + a) 2 1 - k2sn2u _

I
co
O
O
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+ (r + a)z i -

Br = _ T r 2k
K(k) E(k)][+

- k J__
(9)

where

k2 = 4ar

_Z + (a + r) 2 (10)

In a similar manner, B z (eq. (8)) can be reduced to standard elliptic

integrals. First change the variable of integration to t = cos @, and

then use formulas 233.19 and 413.06 of reference 5. There follows

successively

9
B z -

__ r22+ a2 2 r2 + a 2- t (1 - t _) _ + - t
2ar g _

_ni 1 sn2u ,

Bz - 2_(a + r) _k a + r du
i 4ar

0 (a + r)2 snZu _-

Fn__. [k (a - r)[

Sz = _ [._K(k) + ]"(a r)_l ;%(m,kj__
(11)

where

(12)

As before, k is given by equation (I0). The Heuman lambda function

ho(_,k ) is tabulated in references 5 and 6.

For many purposes_ it is convenient simply to know the variation

of the fields near the axis. As r _ 0, equations (9) and (ii) reduce

to the following well-known expressions:

Br _ni [(_2 +a2r / . ._]_+: ,_ a2,3/_, - (13)



_2+a2 __

A convenient approximation for Bz, valid whenever

to i percent in this range, is

B z = m(l + 2k') + 4 *

where m = (i- k')/(l + k'), k' =_- k 2.

actly to equation (14) at the axis.

(1A)

r _< a and accurate

Equation (15) reduces ex-

C
C

I
CO I
0
0

CALCULATIONS

Equations (9) and (ii) are readily written in dimensionless form

with the distances given in units of the solenoil radius. Then equa-

tions (9) to (14) still hold but with ij r/a, _h/a replacing a, r,

_+ throughout.

Plots of the dimensionless axial and radial fields_ +4Bz/_ni _
-4Br/_ni , are given in figures 1 and 2, respectively. Calculations were

made for the ratio of toll length to radius in the range from i to 25.

Note that in figures 1 and 2 the radial distance is given in terms of

the coil radius (r/a) and, the axial distance is given in terms of the

coil half-length (2z/L).

Discussion

The figures clearly show that increasing solenoid length decreases

the radial variation of the axial field. This r_sult is expected since

an infinitely long solenoid has a uniform field ;hroughout. For short

solenoid lengths (fig. l(a)), the axial field increases rapidly from

the center to the wall for positions near the ee:Iter of the solenoid.

In fact, at the center the curve approaches very closely that for a

simple loop.

It should be noted that the radial field is always infinite at

2z/L = 1.O and r/a = 1. This point corresponds to the edge of the

current sheet and would be expected to produce s lch a result.

In general, uniform fields with total variations of i percent can

be achieved over as much as 60 percent of the internal volume of the

solenoid if the length is 25 radii or greater.
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The calculations presented herein are limited to solenoids with in-
finitely thin walls but the results can readily be used to find approxi-
mate solutions for various shapedsolenoids of finite thickness with al-
most any current distribution. Since superposition principles apply, it
is only necessary to approximate any odd-shaped solenoid by a numberof
thin-walled solenoids and add the fields resulting from each. The accu-
racy of the answer is, of course, dependent on the numberof separate
solenoidal rings used to approximate the actual shape.

It is interesting to note that the results obtained herein for mag-
netic fields are closely related to the velocity fields produced by a
lifting helicopter rotor (e.g., ref. 7). The physical model is the same
but the detailed methods of solution are widely different.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland, Ohio, May 23, 1960
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Dimensionless radial field, 4J r/_ni

(a) L/a = i.

Figure 2. - Dimensionless radial field of a finite solenoid.
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Dimensionless radial field, 4Br/#ni

(b) "_/a = 2.

Figure 2. - Continued. Dimensionless radial field of a finite solenoid.
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(o) L/_ = _.

Figure 2. - Continued. Dimensionless radial field of a finite solenoid.
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Dimensionless radial field, 4Br/_ni

(d) L/_= 4.

Figure 2. - Continued. Dimensionless radial field of a finite solenoid.
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Figure _, - Continued. Dimensionless radial field of a finite solenoid.
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(f) L/a = lO.

Fi_e 2. - Continued. Dimensionless radial field of a finite solenoid.
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(g) L/a = 15,

Figure 2. - Continued. Dimensionless radial field of a finite solenoid.
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.4 .8 1.2 1.6 2.0 2.4 2.8

Dimensionless radial field, ABr/_ni

Figure 2. - Concluded. Dimensionless radial field of a finite solenoid.
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