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TECHNICAL NOTE D-465

THE MAGNETIC FIELD OF A FINITE SOLENOID

By Edmund E. Callaghan and Stephen H. Maslen

SUMMARY

The axial and radial fields at any point inside or outside a finite
solenoid with infinitely thin walls are derived. Solution of the equa-
tions has been obtained in terms of tabulated complete elliptie integrals.
For the axial field an accurate approximation is given in terms of
elementary functions. Fields internal and external to the solenoid are
presented in graphical form for a wide variety of solenoid lengths.

INTRODUCTION

The recent great interest in DPlasmas either as a source of energy
Oor as & propulsion device has resulted in a greatly renewed interest in
the magnetic fields produced by various configurations of electromagnets.
Of the possible methods of plasma confinement by far the most Promising
appears to be the use of magnetic fields (ref. 1).

The calculation of the fields generated by various electromagnetic
configurations such as loops, finite helical solenoids, and infinite
solenoids has been treated by the early classical physicists, but only
the simplest cases such as the single loop have been calculated for the
entire field both inside and outside the loop (e.g., ref. 2). 1In other
cases such as the helical solenoid or the finite solenoid the calcula-
tions have been limited to the axis (ref. 3). Derivations of the off-
axis positions have been done by Foelsch (ref. 4), and the solutions
are obtainable by means of a large number of approximate expressions
which are valid over restricted ranges of size or position. The princi-
pal difficulty in the calculation of the fields of nearly all config-
urations has resulted from the fact that the integral solution cannot
be achieved without the use of various elliptic integrals. Even though
many of these are tabulated, the calculations involved are laborious.
Such calculations can, however, be made using modern high-speed com-
puters since machine programs have or can be written for many of the
elliptic functions.



The purpose of this report is twofold: (1) to derive the equations
of the axial and radial field at any point within or outside a finite
solenoid in terms of standard tabulated functions and (2) to plot these
fields for a number of solenoids.

SYMBOLS
Ae magnetic vector potential component in f~-direction

a coil radius

B,,B, radial and axial magnetic induction component

B complete elliptic integral, second kinc
i current in each filament

X complete elliptic integral, first kind
k \/iar/[gz + (a + r)2]

L coll length

n number of turns per unit coil length

r,0,z cylindrical coordinates

Heuman lambda function

0
K permeability
L
Z & =
Es 2
-1 &
@ tan N

DERIVATION OF EQUATIONS

Consider a solenoid as shown in the follcwing sketch:
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The magnetig field due to this coil is given in terms of the vector
potential A by

-

B = W& (1)

where, for the geometry assumed, only the Ag component can be nonzero.
Then equation (1) yields simply

5 BAQ
oo (2)
1 B(rAe)
B, = = ——2—
Z " r Jr

For a single circular filament, one has

1 a cos O 48
Ap = BEE 4B COS O 4o
e 4 R

where R dis the distance from the local point on the filament to the
field point. For a solenoid made up of a series of n filaments per
unit length, we have then

L/2 ¢

A, = apni a1 cos 6 46
° " Tox 2 2, .2
-L/2 0 \/(z - 1) +r® + a® - 2ar cos 6

. 2 X
nil
Ap = é%;_ J/”

+ cos 6 4o
s f ()
E 0 \/éz + 1% + a - 2ar cos @

where £ =1z -1, £, =z £L/2, and 1 is the axial distance from the
origin to the filament. On integrating with respect to §, this becomes

2N
) £
Aez%}— cosGln[€+\/§2+r2+a2-2arcos B:L ae (4)
/ -

or

A more convenient form can be found by integrating by parts:

. %n
Ag = ?—gi—l[sin 9 ln[g + \/{:,2 + 12 + a2 - 2ar cos 6]§+
6=0

_oauni ar sin‘e dg £,
2
0 (é + \/§2+r2+32 - 2ar cos 9)\/§2+r2+a2- 2ar cos 6|



The first term vanishes. On multiplying the integrand by
\/52 + 1% + a? - 2ar cos 9 - 3

\/éz + 1% + af - 2ar cos 6 - ¢
use of the limits eliminates one term, there follows

x
A = azunir f 3 sin29 a6 §+(5)
0~  2x
0 |(a2 + r2 - 2ar cos 6)\/§2 + r2 + a2 - 2ar cos 6 E_

, rearranging tzrms, and observing that

The two magnetic-field components can now be 2asily obtained. The radial

field is found by differentiating equation (3) and yields
v

14
. . 8 _ _ auni cos 6 d6 .
Br - aZ 21 / > > 5 (b)
0 \/E + r® + a® - Z2ar cos OlE_

To get B,, first evaluate OA,/dr from equation (4). The result, pro-
ceeding as in the case of obtalning equation (5), is

N
ohg - - auni tE cos 6(r - a os 6)d6 I

dor an

0 |(r?2 + a2 - 2ar cos 9)\/52 b r2 + a® - 2ar cos ot

(7)

If equations (5) and (7) are put into (2), th: result is

5 1 B(rAe) _ auni f t(a - =~ cos 9)do £+
r

z or 2
0 (rZ + aZ - 2ar cos 9)\/&2-+r2-+a2 - 2ar cos 0|g_

(8)

Equations (6) and (8) describe the magnetic fleld due to a finite sole-
noid. Numerical results can readily be found by integrating these equa-
tions on a computer. However, the results cail also be expressed in

terms of standard elliptic integrals, which a<® already tabulated. This
we proceed to do.

Consider B,. This can be evaluated by ise of formulas 291.03 and
412.01 (noting the special case of ol = kz) f reference 5. One has
successively,

B, - - apunif 1 fK(k) 1 - (2 - ¥%)snPu au |5+
" L\/éz + (r + a)2 0 1- kzsnzu £
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apni 1 K (k) > 2(1 - k%) g+
B = - 7 2-xf - P )
kz\/gz + (r + a)2 A 1 - k%sn®u g_

3
ni Rz - k2 E(k) |+
= £ \/_[ K - Tk ]g_ (9)

where
2 4ar ( )
k™ = 10
£2 4 (a + r)
In a similar manner, B ; (ed. (8)) can be reduced to standard elliptic

integrals. First change the variable of integration to t = cos 6, and
then use formulas 233.19 and 413.06 of reference 5. There follows
successively

+1 g(é _ )dt §+
B = —kni d/P T
/) (

2 4n<f2ar 2 + g2 o 62 + 12 + 42
Zar " (1 -%) 2ar T

3
puni a L= a frr snu *
B, = —X . & du
Z " 2n(a + ) A7 8k dar 2
1 - ————— sncu
(a + )2 E_

R R HENORS]

where

@ = tan™*+ £ |

a-r (12)
As before, k 1s given by equation (10). The Heuman lambda function
Ao lo,k) 16 tabulated in references 5 and 6.

For many purposes, it is convenient simply to know the variation

of the fields near the axis. As r — 0, equations (9) and (11) reduce
to the following well-known expressions:

ni 2y £y
B, = li [(g2ja2)3f] (13)




3
B, =t | L | (14)
2 2
£° + aJe_

A convenlent approximation for B,, valid whenever r £ a and accurate
to 1 percent in this range, 1is

3
B, = Ei- lglgm(l + 2x') —9 [%—il;———l + ZKE]sin ¢§ ¥ (15)
g

where m = (1-k')/(1L + k'), k' = Vl.- k2. Equation (15) reduces ex-
actly to equation (14) at the axis.

CALCULATIORS

Equations (9) and (11) are readily written in dimensionless form
with the distances given in units of the solenoill radius. Then equa-
tions (9) to (14) still hold but with 1, r/a, ¢ t/a replacing a, r,
gi throughout.

Plots of the dimensionless axlal and radial fields, +4Bz/pni,
-4B,./uni, are given in figures 1 and 2, respectively. Calculations were
made for the ratio of coll length to radius in tne range from 1 to 25.
Note that in figures 1 and 2 the radial distance is given in terms of
the coil radius (r/a and, the axial distance is given in terms of the
coil half-length (2z/L).

Discussion

The figures clearly show that increasing solenoild length decreases
the radial variation of the axial field. Thils r:sult is expected since
an infinitely long solenold has a uniform field shroughout. For short
solenoid lengths (fig. 1(a)), the axial field in:reases rapidly from
the center to the wall for positions near the ceiater of the solenoid.
In fact, at the center the curve approaches very closely that for a
simple loop.

It should be noted that the radial field is always infinite at
ZZ/L 1.0 and r/a = 1. This point corresponds to the edge of the
current sheet and would be expected to produce sich a result.

In general, uniform fields with total variations of 1 percent can
be achieved over as much as 60 percent of the internal volume of the
solenoid if the length 1s 25 radil or greater.

006-d
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The calculations presented herein are limited to solenoids with in-
finitely thin walls but the results can readily be used to find approxi-
mate solutions for various shaped solenoids of finite thickness with al-
most any current distribution. Since superposition principles apply, it
is only necessary to approximate any odd-shaped solenocid by a number of
thin~-walled solenoids and add the fields resulting from each. The accu-
racy of the answer is, of course, dependent on the number of separate
solenocidal rings used to approximate the actual shape.

It is interesting to note that the results obtained herein for mag-
netic fields are closely related to the velocity fields produced by a
lifting helicopter rotor (e.g., ref. 7). The physical model is the same
but the detailed methods of solution are widely different.

Lewls Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, May 23, 1960
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