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TECHNICAL NOTE D-930

A LINEAR THEORY FOR INFLATABLE PLATES OF ARBITRARY SHAPE

By Harvey G. McComb, Jr.

SUMMARY

A linear small-deflection theory is developed for the elastic
behavior of inflatable plates of which Airmat is an example. Included
in the theory are the effects of a small linear taper in the depth of
the plate. Solutions are presented for some simple problems in the
lateral deflection and vibration of constant-depth rectangular inflat-
able plates.

INTRODUCTION

For certain types of satellite and reentry vehicles it is desirable
to have a structure which can be packaged in a compact form for launching
and erected after injection into orbit or at the time of reentry. One
possible way of meeting this requirement is to utilize an inflatable
structure. Inflatable structures also have a variety of other applica-
tions where it is desirable to have a small package for transporting and
simple erection capability at the destination. These applications range
from inflatable airplanes to erectable living quarters. Where platelike
structural components are needed in an inflatable structure, for example,
for the lifting surfaces, fins, and control surfaces of a reentry glider,
an inflatable plate such as Airmat (developed by Goodyear Aircraft
Corporation) appears to be an efficient and useful scheme. This type
of plate is illustrated schematically in figure 1. It consists of two
woven covers having airtight coatings and held some distance apart by
the combined action of drop cords and internal pressure. The drop cords
are closely spaced, distributed throughout the plate, and may be of
varying length to form a plate of variable thickness. In a reentry-
glider application, for instance, metal wire would most likely be used
to weave the covers and form the drop cords.

In order to make rational stress, deflection, and aercelastic anal-
yses of inflatable-plate structures, it is necessary to have a theory
from which stresses and deflections in such plates can be calculated for
various external loading conditions. In this report a linear theory for
inflatable plates is derived, and some solutions to elementary static
deflection and vibration problems are presented.
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length of rectangular plate in x- and y-directions,
respectively

root chord length of triangula-~ plate

extensional stiffness in warp lirection of cover
extensional stiffness in fill lirection of cover

unit deformation through thickiess of plate
shear stiffness of cover

depth of plate

semispan of triangular plate

plate moment resultants

external moments applied to edzes of rectangular plate,
positive when causing tension or positive shear in upper
cover

vector components of moments asplied to edge of plate,
positive in the positive x- und y-directions, respectively

number of half waves in x- and y-directions, respectively

stress resultants associated w.th xyz coordinate system
and dependent on displacemenss

stress resultants associated w.th xyz coordinate system
and independent of displacements
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stresses in covers of inflatable plate asscociated with
x'y'z' coordinate systems

vector components of middle plane forces applied to edge

of plate, positive in the positive x- and y-directions,
respectively

internal pressure

X-, y-, and z-components, respectively, of external dis-
tributed loading per unit middle-plane area

transverse shear carried in covers due to taper (see eqs. (22))

coordinate along edge of plate (see fig. 1(a))

thickness of each cover

displacements in x-, y-, and z-directions, respectively
displacements in x'-, y'~, and z'-directions, respectively
change in volume of inflatable plate

external lateral loads applied to edges of rectangular
plate

external lateral load applied to edge of plate of arbitrary
shape, positive in the positive z-direction

work of external loads and body forces

rectangular Cartesian coordinate system

coordinate systems associated with covers

angles of rotation of the drop cords in the xz- and yz-
planes, respectively, from their initial position normal

to the xy-plane

strains in covers of inflatable plate

variational operator

rectangular Cartesian cocrdinates locating the final posi-
tions of points on the surfaces of the inflatable plate



A length-width ratio of rectangu.ar plate, b/a

huF Poisson's ratio associated with a contraction
direction caused by a tensile stress in the

HFW Poisson's ratio associated with a contraction
direction caused by a tensile stress in the

in the fill
warp direction

in the warp
i1l direction

il total potential energy

i strain energy in covers of inf.atable plate

It work done against internal pres;sure

o] mass of plate per unit middle-»lane area

w circular frequency of vibration

Subscripts:

F,W pertain to fill and warp direc:ions, respectively
m,n integers

+,- pertain to upper and lower cov:rs, respectively

A comma followed by a subscript denotes partial differentiation with
respect to the subscript. A dot over a symool denotes partial differen-

tiation with respect to time.

BASIC ASSUMPTIONS AND COORDINATE SYSTEMS

The inflatable plate shown in figure 1(a) is of arbitrary shape in
planform and may have a small linear taper in depth in the x- and y-
directions. The taper is assumed to be symnetric about the middle sur-

face. The covers of the plate are assumed to be identical
treated as orthotropic membranes. The closzly spaced drop

and are
cords are

assumed to be straight and inextensional, aad they are conceptually
spread continuously over the plate. The drop cords are assumed to be

normal to the middle surface before deformation, but they are assumed
to be hinged at the ends so that during deformation the angles between
the drop cords and the middle surface or the covers may change. The
internal pressure in the plate is assumed to be constant during defor-
mation. Sidewalls are presumed to be present at the edge of the plate
to contain the pressure, but their effects on plate behavior are not
otherwlse taken into account.
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In this investigation the undeformed shape of the plate is assumed
to be the shape existing after inflation and after inplane edge loads
are applied. All displacement gquantities in the derivation are to be
interpreted as being measured from this undeformed state.

A rectangular xyz coordinate system is chosen so that the middle
surface of the plate lies in the xy-plane as shown in figure 1(a). In
addition to the basic xyz coordinate system, two other coordinate systems

are used in the analysis. These additional systems are designated x;,
! 1

Ypr 2z, and xl, yl, z:. The (+) subscript refers to the upper
cover of the plate or the cover which lies on the positive-z side of the
middle surface and the (-) subscript refers to the lower cover. This
convention is used throughout the report.

The primed coordinate systems are obtained from the xyz system by
small rotations equal to the taper angles of the covers. Thus, the
x;yi—plane is parallel to the upper cover and the x'y'-plane is parallel

to the lower cover. The coordinate transformations defining the primed
systems are

h h

x = x! - z! X y = y‘ -7 —-—,y 7 = Z' + x| + ! 24
+ + 2 + + D + + 2 + 2

;D)

h h h h

X J 1 1 X 1 J

= ' 4+ 2 = ! + ! _’— = - _’._ - _,_
X X_ z_ 5 Y y_ Z_ 5 Z Z_ x_ 5 y_ 5

where the quantities h x/2 and h y/2 represent the taper angles as
2 2
shown in figure 1. These quantities are assumed to be small (i.e.,

n2 << 1, he << 1, and h _h _ << 1) and constant throughout the plate.
’x ’ ,y ’ ,X }y

DERIVATION OF DIFFERENTIAL EQUATIONS OF EQUILIBRIUM

AND BOUNDARY CONDITIONS

Derivation of Stress-Displacement Relations

It is desirable to derive the theory in terms of stress and dis-
placement quantities which are associated with the overall plate con-
figuration rather than local quantities associated with the individual
covers because these overall quantities can be identified with familiar
quantities in plate theory. The relationships between the local and
overall quantities are discussed in this section. In addition, there



are derived relations between the overall plate stress resultants and
the overall plate displacements.

Strain-displacement relations.- Displacements in the individual
covers of the inflatable plate in the primei coordinate systems are denoted
by ul, v, and w,. These quantities are related to 1w, Vi, and wy,

the displacements in the xyz coordinate system, by the transformations

h h
v X L RS W
U.+ = u+ + W+ ——2— U._ = u- - W_ -—é—- ‘
]
h h
v Y v Y
Ve =V o+ W, S vi=vo- v 5 (2)
h x h h h
v ) Y v s X Y
W+ = W+ - u+ 5 - V+ 5 W_ = W_ + u_ '—2— + v_ —2—

The strains in the individual covers are defined in the primed coordinate
systems in the usual manner:

, Bu; l(@w;>2 w
€ = —= A =|——
xt x4y © Bxi ‘
|
,dvi 4 (aw; )2 |
€t = S;z + 3 g;; (3)
‘ Bui Bvi avi Bwi ]
y _

+ = l+ l+ J ' f
T Qyy  Oxy Oy oy |

J

The following plate displacement guan.ities are now introduced:

u, +ow vy + v w++w_wl
ST T VET YETTE
()
u, - U vy - V. Wy - W
Q) = —— B:——.—— e = ——
h h h

The quantities u, v, and w are simply che averages of the displace-
ments in the upper and lower covers in the x-, y-, and z-directions,
respectively. For small displacements, th= quantities a« and f are

O H\O !
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the angles between the drop cords and the z-axis in the xz- and yz-planes,
respectively, or, in other words, a and @ are the rotations of the
drop cords during deformation. These displacements and rotations are
shown in figure 2 in their positive senses. The quantity e represents
the unit deformation or "strain" through the thickness of the plate.

Since the drop cords are assumed inextensional, e is not an independent
quantity for small deformations but is related to a and B Dby the
equation

e =_ % _ B (5)

With the use of equations (1) to (4) the following sum-and-difference
quantities necessary to the subsequent development may be calculated:

Cx+ T €x- €x+ T fx-
6 ) + 1 6 1 € ]

y+ 7 €y- y+ = Sy-

1 1 1 t
7xy+ + 7xy- 7xy+ 7xy—

In order to illustrate these calculations, consider the gquantity

, ,odup pfaw\® aul qfaw)\e
e DT § o} 6
e S ST <8x+) T L (©)

obtained from the first two of equations (3). From equations (1) and (2)

au_:. h,X dx h)x ay
g){‘;‘ _[ :Y)'*'—'é—w( ;Y)‘Jax (X:.‘f +—2—W( ;Y) 5x+

]

h
x

= Qh'+ é w+> (7)
x
J

Similarly,
AW ( hx hy \
) 2
T\ T YW - Vi (8)

axy 2 2 /,x

and so forth. When equations (7) and (8) and their counterparts for the
derivatives of u and w are used and when it is remembered that

h , and h y are constants, equation (6) becomes
) J
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' . x , X X 2
€x+ ¥ €x= T W, x ¥ 5 W x t U x 7 5 Vo x v S, x Y g , X
2
h
2y 2 2 X, Y
+ o Veox T B xYe xUe x m B oyWe Vi x ¥ > U, x4, x
2 2
+ w2 + Eif u + ELZ v + h W
-5 X L, X y X yX =, X=X
h . h
2 X, Y
+hoyw Vo oyt u—,xV-,x> (9)

The use of equations (4) then leads to

2
h h
1 1 _ )x 1 2 )x 2
€xy + €4 = 211’X + w?x + —5—(he’x + h,xe) + H(he,x + h,xe) + 9 uy
2 2 2
h h h
Y 2 y X Y
+ )+ V,X + F(ha,x + h,x(l) + 1—6—(hB x + h,XB)
By x h o+ h L0 4
R ( , X « ) - T( €,x ,xe)u,x
h ¥y h ¥y
A - =2y
£ W y(h xB + BB y) - F=(he x + h ye)v y
h ,h h ,h
y XY y X, Y
e AP —B—(h,xa, 4 ha,x)(h,xﬁ + hB,X) (10)

After substitution of equation (5) certain terms can be neglected in equa-
tion (10). 1In the first place, terms whict contain u, v, w, a, and B
and/or their derivatives to higher than second degree are assumed to be
small. Such terms ultimately lead to nonlinear equilibrium equations

and are neglected in this theory. Second-cegree terms in equation (10)
lead to linear terms in the equilibrium equations and are retained here.

he or h ,h are neglected because

. 2
Secondly, terms containing h Sy , Xy

X2
2
the taper is assumed to be small.

When the approach just described is e:tended to the other sum-and-
difference quantities the results are

O +\O
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' v 2 h
€xs ¥ Ex- = PUy + Wy - E[g,x“,x(“ + w,x) + h (B xB + h,yB,xw,%]

' v 2 h
Cyv ¥ Ey- T2,y * Wy - B, y8,y(B + ¥,y) * B,y3,y% + B,x3,y¥,y]

' v .k
Txy+ * 7xy- 2u,y +av o+ 20 Wy g[ﬁ,x“,y(“ + W,x)

+ h)yB)x(B + W’y) + h;XB)yB + h}Xa;Xw:y

Em)

+ h)ya)xa * h,yB,yW,x]

€xy = €x- = ha y + h’x(a + w’x) - DWWy - hoy¥ XV, x

m
1
m
i

h + h - h -
y+ y- Bxy ;y(B + W, y) )XW) yu)y h) yw; yv:y

xy+ " Yxy- = hc(,,y + hB,x + h,y(a + w’x) + h,x(B + W,y)

- h,x(w’xu,y + w,yu,x) - h’y<w,xv,y + w,yv’x) )

Stress-strain relations.- The strains in the covers are related to
stresses in the covers through the orthotropic stress-strain relations

SN

1 1 1]
Nyr = A€ + Appeys

~ "

Neyt = A557xyx

7
]
when the principal directions of the covers are alined with X4 and yi

axes. Note that the N' quantities, the stresses in the covers, are
expressed in terms of force per unit length rather than the conventional
force per unit area. If the covers are simply woven fabric, for instance,

with the warp and fill alined with the x,_ and y, axes, respectively,
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then the coefficients of the strains in equations (12) are related to
the usual orthotropic elastic constants for the cover materials by

Eyt Bt )
F
Ay = App =
1 - uyphpy 1 = Pyphpy
P A Aoy - HyFEpt ? (13)
T ey LT ey

The Poisson's ratios are related by “FWEWt = uwFEFt; therefore,
Ao = Apy-
Stress-displacement relations.- It is aporopriate, now, to intro-

duce stress quantities N+, Nyt’ and nyi associated with the

Xyz coordinate system and to define the folloving overall plate stress
and moment resultants:

h-
Ny = Nyt + Ne My = 5/ Nyy - Ne-) )
= =4 -
Ny = Ny + Ny M, = 5 Ny, Ny—) > (1k)
= - L
Ney = Niys + Ny Mey = 2(Vxys = Noy)

The assumption that the taper angles are small so that second-degree

terms in h,x and h’y are negligible compared to unity justifies
!

replacing Ny by Ny, Ny+ by N&i, and Nyo+ Dy Niyt' Thus,
equations (14) become

\
t : 1 T 1 2Mx
NX+ + NX— = NX NX+ - NX— = —h_
M
1 1 - ' - ' - _y
Nyy + Ny =N, Nyp = Yy = — F (15)
M
' ' _ ' _N' - Xy
Neye * Nyyo = Ny Yo = Ny =

O H\O
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The sums of the stress resultants in the upper and lower covers become
plate stress resultants and the differences are associated with plate
moment and twist resultants. These plate quantities are shown in fig-
ure 2 in their positive senses.

When the three pairs of equations (12) are added and subtracted
there results
-

m

Ny, + Ny = Ay (egy + e ) + Bro(eys * €y-)

Ny, + Ny = A21(e£+ + e#_) + A22(€§+ + e&_)
Nuye + Ney- = A33(7sy+ *+ 7xy-) B

L ' 1 1 1 1 (16)
Nyy = Nyo = Apa{exe - ex-) + App(eys - ey-)

=
]
=
|

v+ y- = A21(6i+ - €i—) + A22(€§+ - E&-)

1 L} 1 1
Nyy+ = Nxy- = A33(7xys - 7xy-) y

Equations (11) and (15) are now substituted into equations (16) and all
nonlinear terms are neglected to obtain the following linear stress dis-
placement equations:

Ny = 2{A11u x + AoV y) ~

N

y = 2(Ao1u y + AoV y)

ny = 2A55(u,y + V,X)

(17)

=
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n
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+
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<
N
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Use of the Principle of Minimum otential Energy

The differential equations and boundary conditions are derived by
using the principle of minimum potential ene:rgy. For the problem under
consideration this principle may be stated as follows: When the plate
is in equilibrium under external and body forces, the variation of the
total potential energy with respect to variations in the five displace-
ment quantities u, v, w, a, and P must be zero. The total poten-
tial energy is the sum of the strain energy n the covers and the potern-
tial energy of the internal pressurized gas riinus the work done by the
external and body forces. The principle can be written

8(llg + Ty - W) = 0 (18)

where the three quantities 8llg, Bllf, and &W are expressed in terms

of plate stress resultants and plate displacements. The variational
operations indicated by the symbol © are performed in detail with
respect to the displacements. When the coefficients of du, ©Bv, Bdw,
8a, and BB are equated to zero there results a system of five linear
partial differential equations and associatec boundary conditions which
govern the behavior of inflatable plates.

Strain energy in covers.- The variation of the strain energy in the
covers corresponding to arbitrary variations B&u, v, ©Ow, ©da, and BB
of the displacements may be written as follows for a slightly tapered
plate of arbitrary shape:

S(x4,¥+)
Y * 1 * 1% 1 2+
BTl = ﬂ (Nxidegs + Nyidel, + ny+57xy+)_5_(}.(_y)_
b4
a(x' y.
* [ * »* - -
+ (Nyovey + Ny_Bey_ + N;(y_t‘ay}'(y_)———,——z ax dy (19)
B(x,y)
where
1 % 1O 1
Nyt = Nyt + Nyt
N =nS 4N
yr = By ¥ Ny

\O H\O
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1] 1]
. d(xye) .
or, since the Jacobians —Sz——_y— of the transformations (1) are both
X,y

unity,
ot = I [bst + 1+ )+ BOSE - 50 (e - k)
1 1] l 1] ]
+ %(N&i s WY (ey, + ey) * 5(Nyi - NTVB (e - )

e ZMFs + M) B(raye + Txy-) ¥ S = M) 87 - 7)'{3,_8 ax dy
(20)

The region of integration is the middle plane of the plate. Equation (20)
can be expressed in terms of plate stress and displacement quantities by
using equations (ll) and the following equations analogous to equa-

tions (15):

2M
tx U (S R X
Nyy + Ny = DNy Nyp = Nyo =
1% L3 * [ 1y 2My
N = - = L
yr + Ny = 0y Nyp - Nyo =3
M
(" L S | v LR Xy
ny+ + ny— - ny ny+ - ny— " h

When these substitutions are made, terms which consist of the product
of inplane stress resultants (N;, N;, N;y) and second-degree displace-

ment quantities are retained because these stress resultants contain
contributions which are independent of displacements (such as from
internal pressure) and hence yield linear terms in the differential
equations. Elsewhere, second-degree displacement quantities are neg-
lected. With the use of equations (11) the expression for the variation
of the strain energy in the covers can be written as follows with slight
rearrangement:



* hh,x hh)y
+Nyy® Uy + v o+ W Yy~ a’y(a + W,x) - B,X(B + w’y)
hh hh hh y hh y
) P ) s
- - A W _ = ——a - —— W + M_bda
4 B;yB L 3 X ,Y L » X L B)y ;X] X ,X

+ MytSB’y + MXyS(cz,,y + B,x) + sxs(a + w’x) + sya(s + w,y)}dx dy (21)

where 5y and Sy are defined by

_1
Sx = g, xMx + b, yMy)
(22)

Sy = %Ol,xMxy * 0 yMy)

These quantities represent that portion of the transverse shear which is
carried in the covers by virtue of the taper.

Potential energy of internal pressure.- The variation of the poten-
tial energy of the pressurized gas inside the inflatable plate is the
product of the magnitude of the internal pressure and the change in
volume due to virtual displacements &u, B&v, ow, ©®a, and B®B. The
increase in volume of the plate due to any set of small displacements
ut, Vi, and wi 1in the covers and along the edge, denoted NV, is

AV = ffs 6(e,n)ae an - jfh dx dy (23)

In the first integral ¢, N, and { are reciangular Cartesian coordi-
nates locating the final positions of points on the surface of the plate
and are functions of certain of the displacements Ut, Vi, and wy.

calculated from

The surface integration is performed over the entire outer surface of

\O H\O
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the plate (over the upper and lower covers and along the edge) in such

a manner that the surface is oriented with positive inward normal. (See
ref. 1.) The second integral is performed over the middle surface of
the plate at its initial position and represents the volume before defor-
mation. The detaills of this calculation are presented in appendix A.

The variation of the potential energy of the internal gas can be
written SHI = -pd AV and the results of the calculation in appendix A

yield

2
- - h~ _
oy Pﬁ{;[7ﬁh[§,x PV UV - BV (0B o B, x)

2 2
- % - % - Wy - 3"’,3de d}} (24)

In this expression quantities which are higher than second degree in u,
v, w, a, and B or their derivatives are neglected. The double inte-
gration is performed over the undeformed middle surface of the plate.

Work of external and body forces.- The plate may be loaded by dis-
tributed forces, inertia forces, and forces and moments acting on the
boundaries. The variation of the work of these forces may be written
as

2 2 ..
BW = kZ7q<qx_5u + qybv + q,06w - plidu - pVdVv - pWdw - %r pada - %r pBBB)dx dy

+ ﬁg(.ﬁNXBu + ﬁNyEV + VNSW + MNYB@ - ﬁNXSB) ds (25)

As before, the double integral is performed over the middle surface of
the undeformed plate. The line integral is around the boundary of the
undeformed middle surface and positive in the clockwise sense looking
in the positive z-direction. (See fig. 1(a).)

Equilibrium Equations and Boundary Conditions
The previously derived parts of the variation of the potential

energy are now collected, and where required variational operations are
performed in detail. Equation (18) thus becomes:
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Bll =

_ [ * hh;x
Bllp + Bl - BW = g Ny Bujx + W’XSW,X oy a,)x(ﬁa + 6w)x>
hh

hh o

)X ’X b
((1 Wy )Be - I B, - = BEB - I B0V

Y L

hh y h x hh

N a,y(t‘)a + 6w, ) - (o, + w)x)éa,;, -5 B’X(SB + 6w, )
hh,y hh, hh hh’X
e (B + w’y)SB}X i B,ySB al §Relc) y- @ <OwW y
hh hh hh hh

s X s Y s Y

N w,yBO“,x' -—c,’x&x- Tdf’a’,x TBysw,X

hh
Y
m w,XGB’)] + MBa o+ MBB L+ Mxy(é-a,,y + sa’x)

S, (da + 6w)x) + 8,88 + Bw,y) - phE)u)) + Sv’y + u’XSv,y

2
h
o] u _8v -V XSu,y + l—g(a’xbﬁ,y + B,y&’“,x -

u - OB
)X )y }X J )X

Yy *y
B’Xﬁa.’y) - ada - BBB - aﬁw)x - w’xE)cx, - Bﬁw’y - w,yﬁﬁ

2 2 ..
q,0u - qu)v - Q0w + pUBu + pVdV + pWdw + hT plda + hT pBSB}dx dy

Qg (Fydu + NyyBv + Vydw + My ba - Myx®3)ds = 0 (26)
v

\O —\O =
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The terms with partial derivatives of varied quantities are integrated
by using Gauss' theorem which can be written as follows (see ref. 1):

[ sygyon o - (2 1 5 e -

The operator O/ON denotes differentiation in the direction of the

inward nomal. For example, a term like \Z?thﬁu dx dy in equa-

y X

tion (26) is handled as follows:

/](N;E‘)u) « dx dy = -§§N;au X g (28)
’ ON
* L *
Nydu o dx dy = -S) NXSu = ds - f Ny, xdu dx dy (29)

When Gauss' theorem is applied in this fashion to terms in the double
integral of equation (26), there results

or

P * * *
N i ] e
JG (W, + Mg,y = Py = BB v,y + Py o+ g - ptifou + (N o

* . f’ * *
+ Nyy,x - Ph y - ph yu y + ph u o+ qy - pv)&v + \SNX’X + ny,y)w,x
(N* + N + N on* N* + S, .+ S, . + ph .
t My, y xy,X)W,y xWyxx ¥ SxyWoxy ¥ NyW gy ¥ OS¢ x T Sy y ¥ POy

+

ph yB + ph(a  + B y) - u’x(N; x* My, y) o+ (W, y + Ny ey

#*

hh
* * A
N o + 2N o + Nya yy] - ENy’y + Ny x)B,y + (™%,

+

+

.
>* *
Ny, y)s x * V3B ey + 2nyg xy + NyB yy] q, - p%}&w + '\MX,X + My g

he hh o
Sx - ph(a + W,X) - p_< XB ;yB)X) - T’—EN;’X * NZ.Y;)’)(CL * w)x)

(EQuation continued on next page)
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+

+

+

+

(N;, y

+

*
Nxy,x)¥,y

any

* * 3 1] * * Y
F NG gy + 2Ny ey + N:,w’y.}] - (85,5 + Ney,x ja

he .l
m 9%6"“ * {"y,y *Mey,x - Sy - (B + v ) - S—(h ya - by )

hh, y

L

(N* *

v,y + Nxy,x

hh
¥* E} X ¥
Nyw, w] alien (%,

55 ((N; a; + Ny gx%

*ax

*By
(Nya—N'i'nya—

*
wa’ X

Ox

pha—+ph3§+_

ON

*

Ax dy
@"BN"LM"VEJ'

hh 3
e, (o + w’x)ﬁ] - —u’y(n* %, w ax) _ ([3 Ox

Ax

ON

oN

)(B + w,y) + (N;)x + N;q',y)"’,x + N;W,xx + 2N;yw,xy

2 .
x * Wey,y)8 - & o%%)ax ay

ox 3x ) =
- ph -ai - phv,y §ﬁ + pl;v’x gl% + NNx du

oy dy ox =
ph i phu)x 5 + phu . X + NNy)Sv

p

oy * dy * ox ox dy

*
§+Nyw’y-a—N+nyw’x-a—ﬁ+nyw’ya\]'-+ Sx-aﬁ'f' Sy-a-ﬁ

hh (N*a. ox * oy * ox

VN- m X ’XB—N*’NyCL’yﬁ‘Fnya’ygﬁ

dy hh v [ « » dy * ox
nydl,x ﬁ) - T)_<NXB,X ﬁ + NyB,y E + N}yB,X 5-1;‘- + NXyB,y a’-) Sw

QO = Q _— —_—
Y OoN XY ON 12 \'»Y oN

—

,'yE

dy dy ox hh v 3
b x a—N>}6“ ' &y oy M g M N eyt oy

d
N;yw,x N
ah_?( Sy :
12

Bx * ay

* Bx hh)x *
oy + ny(B + W’y)a] - 5 é\‘XB a + nyﬁ -a—N->

X

Hx e T Sy gﬁ)}%)ds =0 (30)

\O H\O
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In writing equation (50) second-degree terms in h,x and h’ are

y

neglected, and use has been made of the fact that h,x and h’y are con-

stants. By the usual arguments of the calculus of variations, the coeffi-

cients of the quantities ©&u, ©®v, ©&w, ©8a, and S8 1in the double integral

can be equated to zero individually. This procedure gives a system of
five partial differential equations of equilibrium. The first two equa-
tions describe the equilibrium conditions for the inplane forces, the
third is the lateral-force equilibrium equation, and the final two are
moment equilibrium equations.

The last three partial differential equations, those associated with
lateral forces and moments, can be simplified by some additional manipu-
lation. The lateral-force equation is simplified by using the two inplane

force equilibrium equations to substitute for the quantities Ni . + N;y v
y 2

and N;,y + N;y,x- Terms in the resulting expression are neglected if

they contain second-degree quantities in h,x and h,y or nonlinear

quantities in the displacements or their derivatives. In addition, terms
which contain products of an external loading and a displacement quantity
are nonlinear and are dropped. The moment equilibrium equations are
simplified by using*the inplane force equations and also by substituting

. * * . c s
for the quantity wa,xx + 2nyw,xy + Nyw,yy from the simplified lateral-

force equilibrium equation. The same sorts of quantities are neglected
as mentioned previously. In order to neglect all such quantities, the

assumption must be made that the inplane stress resultants (N;, N;, N;y)

are not of a higher order of magnitude than the quantity ph. The
simplified equations of equilibrium which result from these manipula-
tions are

N; x ¥ N;y - ph X(l + v y + ph yv xt Ay = pil (513)
) ’y b ) ) 2

* —_ LX)

Ny, y + Ny,x = Bhy(1 + uy) + phyu y + qy = o¥ (31b)

Ni[: - il(h,xa, + h,ya)lxx + N;’,E« - %(h)xa + h’yB)J,yy

h
+ ZN)%yEf - ﬂ(h,xa + h,yﬁﬂ Xy + Sx,x + Sy’y + ph’x(a. + W’x)

)

* ph,y(ﬁ * w,y) + ph(a’x + B,y) +q, =¥ (31c)
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h hh;X h2
Mxx+Mxyy-Sx—pha+wx-ﬂ(h,xa+h B)X+u (qz-pw)=—LTpa
(314d)
h hh)y h2 .
My y + My x = Sy - BrIB & vy - fn e h,:fB),] (8 - 0¥) = 5 e
(3le)

Note that in equation (3lc) the stress resultants N, N and N;y must

X’ y}
be replaced by Ni, N;, and ny in order -0 linearize the equation.

L

compared with the linear terms and are negle:ted.

Nonlinear terms like NX[: - lrl—(h’xoz, + h,yﬁi] are assumed to be small
XX

The appropriate boundary conditions are obtained by equating to
zero the line integral in equation (30). Th> usual arguments of the
calculus of variations lead to the following boundary conditions on the
boundary of the plate middle surface:

or

¥*
- EI: - ph(l + v,yﬂ cos(N,x) - (ny + phv,x)cos(N,y) = Nyx

<f o]L x - —-(h x@ + h yB) ;l + Nin,y - %(r’xa+ h’yB)y] + Sy

h
+ phc}cos(N x) &o[ Z h <&+ h,yB)y:]

)

Y RTOROS DR e S

j} 52a

v =0
or (52b
\[ (%2¢)

O F\O
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h |0 o -
{%x -1 ,y l+Exh’x(a + W,x) + ny(h,ya + h)xw)yZl cos(N,x) - {%xy

o o
+12 B,X_Kﬁxyh, a+w’x)+N (h R v ]cos N,y) = MNy

—~—

S
(324)
B=0 N
or

3
{%y - ?g— @y - %[%;h,x(ﬁ + w,y) + Niy(h)xﬁ + h’yw)xi] cos(N,y) + {%xy >

+ %gf o - %[ggyh’y(ﬁ W) No(h B+ h yw . g] cos(N,x) = My, )
(32¢)
In these equations the relations
g% = cos(N, x)
(33)
%% = cos(N,y)

are used where (N,x) represents the angle between the inward normal and
the positive x-axis and (N,y) represents the angle between the inward
normal and the positive y-axis. The differential equations (31) and
boundary conditions (32) govern the behavior of inflatable plates. In
addition to these equations the linearized stress displacement rela-
tions, equations (17), are required to complete the system.

Limitation of Linear Theory

The
specific
might be
problems.
validity

range of validity of linear theory certainly depends on the
problem under consideration. In some problems linear theory
valid up to substantially larger deflections than in other

In order to obtain a rough indication of what this range of
is, one simple problem is investigated in appendix B. The
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lateral deflection of a long plate simply supported on its long edges and
under uniform load is considered where the s:mply supported edges of the
plate are prevented from moving together. Cualculations made by a simpli-
fied nonlinear theory are compared with calculations made by the linear
theory. The results show that the linear res;ult is within 5 percent of
the nonlinear result if the following condit:.on holds:

2

Y1
(d+1)—=<0.05
h2

where
i, m(ﬁ)g
2ph\L

where w); is the lateral deflection at the :enter of the plate, and

where L 1is the distance between the simply supported edges. Of course,
this result is strictly applicable to this one problem only but it does
give a rough indication of what might happen in other problems.

SOME SOLUTIONS FOR RECTANGULAR PLATES

Solutions are now presented to some spezific problems in the deflec-
tion and vibration of constant-depth rectangilar inflatable plates sup-
ported on all edges. Consideration 1s given to static deflection under
uniformly distributed lateral load and vibration modes and frequencies
of both simply supported and clamped plates. A comparison between
results calculated from these solutions and some experiments conducted
on a square inflatable plate is presented ir reference 2.

Consider a rectangular plate of constart depth supported along
edges x = O,a and y = O,b. For the case where no edge loads are
prescribed, the boundary conditions, equaticns (32), are as follows:

on x = 0,a,

or (3ka)

or (34b)

.

O H\O t
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or (3ke)

a=0
or , (3ka)
ph
MX - ‘i2— B’y = O

B =0
or : (5“’8)
ph _
Mxy + .]? CL’y =0
and on y = 0,b,
u=20
or (35a)
ny + phv,X =0
v =0
or (35b)
N; - ph(l + u)x) =0
w =20
or (35¢)
o) o) _
Nyw,y + nyw,x + php =0
a =0
or 3 (354d)
ph “o
May * 12 Bx
B=0
or ph5 (35¢e)
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If the U and ¥V accelerations are neglecied and only lateral loads
are considered, the differential equations {31) become

NX,X + ny,y =0 B
* *
Ny,y + ny,x =0
o o o e
NaW s + Ny oo 2Npow o+ ph(a,x + B y) +a, =e¥ $ (36)
_h? ..
My x + My y - ph(a + W,x) =5 el
M b h2 .
My,y * Mey,x = PR(B *+ W y) = 5 eB J

The portions of the stress resultants which are independent of dis-
placements must satisfy the following differential equations:

o o) -
NX,x + ny,y =0

Q QO -
Ny v+ Nxy,x =0

and, if u and v are not prescribed on the boundaries, the following
boundary conditions must be satisfied:

on x = 0,a,

NQ - ph =0
o _
Nyy = O
and on y = 0,b,
o _
Nyy =0
Ny - ph =0

The solution to this system is

> (37)

O H\O H
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The first two of equations (36) contain only u and v and the remaining
three contain only w, a, and P. Since for the particular problem under
consideration the lateral deflection is desired, the fact that the u

and v equations uncouple from the others means that it is necessary to
consider only the last three of the differential equations (%6) and the
appropriate boundary conditions. These differential equations reduce to

h h .o \
P (a,+ W;X),x + ph(B + W;Y),y +q, = pW
= he .. 8
Mx,x+Mxy,y’ ph(a+ w’x)——u—pa (38)
h2 .
My,y + Myy,x = PR(B + v, y) = - of J
and the boundary conditions become:
on x = 0,a,
w =20 )
or > (3%9a)
ph(a + w,x) = OJ
a =290 B
or (39b)
M ph3 5 -0 >
xT 12 Ny T
B =20
or (39¢)
Mo+ 224 oo
Xy T 12 Y
and on y = 0O,b,
w =20
or (40a)
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a=0
or (Lob)
ph’
Mxy + -]-2— B,X =
B=20
or 3 (40c)
ph

KA TR

Finally, from the last three of equations (17) the moments are written
in terms of the rotations

2
- h N
My = Z?(Alla,x + AlQB,J)

2
M, = b’é‘(A2la',x + AxoB ) ? (41)

h2
Moy =5 A33(%,y * Bx)

The differential equations (3%8) have the same form as the well-
known equations for the lateral motion of a uiiform plate with trans-
verse shear flexibility and rotary inertia. {See, for example, ref. 3.)
In this case the quantity ph plays the role of the transverse shear
stiffness per unit width. The salient conclusion of this investigation,
therefore, is that an inflatable plate can be considered as a particular
type of sandwlch plate where the pressurized zas acts as the core material.
Note, however, that certain terms peculiar to inflatable plates appear in
the boundary conditions (39) and (40). These terms are associated with
the deformations of the edge walls in the presence of internal pressure.
Consideration should be given to the importan-e of these terms before
sandwich-plate solutions are applied to inflatable-plate problems.

When equations (41) are substituted into the differential equa-
tions (38) there results

O O t*
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ph(a W)t ph(B + w,y) +q, = p¥

» X N

2 2 he .,
%;(All“,xx + Al2B,xy) + %r A53(°3yy + B,xy) - ph(a + w’x) ph ? (42)

i
e

2 2 h2 .
B (Moo xy + AooB yy) + & Azs(oyx + B yx) - Ph(B + w y) = 2

i}
W

The differential equations are now expressed entirely in terms of the
plate lateral displacements w and plate rotations o and B.

Simply Supported Rectangular Plates

For the case where all boundaries of the plate x = 0,a and Yy = 0,b
are simply supported, a reasonable set of boundary conditions can be
written from equations (39) and (40), with the help of equations (41),
in the form

w(0,y) = w(a,y) =0
B(0,y) = B(a,y) =0 (43)
o (0,y) =a  (ay) =0
and
w(x,0) = w(x,b) =0
a(x,0) = a(x,b) =0 (k)
=0

B’y(xy 0) = B,y(x)b)

Static deflection under uniform lateral load.- The response of the
plate to a uniform lateral load is governed by equations (42) with
terms W, &, and B set equal to zero and the term a, regarded as

constant. It is seen that the boundary conditions (43) and (44) are
satisfi=d by displacements and rotations of the form
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oo o0 N
, mnx ., nny
w=>: Z Vg Sin —— sin —=
m=1 n=1
oo [+ o)
a = E: E: %y COS ng sin E%X ? (45)
m=1 n=1
[+ 9] [+.0]
m=1 n=1 W,

When equations (45) are substituted into equations (42) reduced as just
indicated, there results

mrt mn nn nr\| ;. mnx ny _ 9g
Z Z:Eé-'-(amn'f'T»fmn?)"‘?(an'*'WmnT)]SlnTSiI’lT—-IEW

m=1 n=1
5 Z{E*l%%‘-) i) o + (12 + 2208 5
m=1 n=1

2ph mm max niy _ >(46)
+hT(an+-a—wmn> cos-—a—sinT—O

™1s

Ei
m=1

2 2
{E‘ez(n?“> + Asa(%)]ﬁmn + (Ao + A3)EF T oy

2ph nrn mnx nny _
+-hT(an+TWm> sin?cos—b——o

1

o]
1}

J

Equating to zero the coefficients of the Foirier series in the last two
of equations (46) yields equations for ay, and By, in terms of wy,.

The constant term q,/ph in the first of ecuations (46) can be expanded

in a double sine series in the interval 0 < x S a, O Sy<Sbv to yield
the equation

\O H\O
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e e %mn B 4
m n m mnn _ 16 %z 1
Wnn (; + ?> + T E + - -E = ;E oh (m and n Odd)
(47)
n°  n° %mn m  Pmn n
"mn—e‘“;E*Ta*Ts:O (m or n even)
a

When the expressions for ap, and Bpn in terms of w are substi-

mn

tuted into equation (h?), the resulting equation can be solved for wy,-
This procedure leads to the following expression for w,, 1in dimension-

less form (for m and n odd):
Rg

wh - Rg-g - 5 (48)
1 .
’“n{( ] zrn)am - g + (%02 - 02) A35]}

where
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Cmin T 2(1—\22@2 + KBB}\%U2)

dnn = 2hn (R + Tg3)

emn = )\211121'12 (l + K22 - 2Kl2)
and where
- A
12
Ao = o
App = g
1. o253

For either m or n even, all coefficients w,,, o, and Bpn Vvanish.

Natural frequencies of vibration.- The free vibration of a simply
supported rectangular plate is governed by cifferential equations (42)
with q, set equal to zero and boundary corditions (eqs. (43) and (44))

assumed to hold for all time. The functions (for m =1, 2, . . . and
n=1 2, ...)
iwt )
_= wt . mrx nxy
W = Wpne sin ~—— sin —=
a = Emneiwtcos Egi sin B ? (49)
_ = iwt mnx mry
B = Bpn® sin -5~ ccs _TT.J

are seen to satisfy the boundary conditions, equations (43) and (L4i4).
When equations (49) are substituted into equations (42) (with q, = 0)

there results (for m =1, 2, . . . and n=1, 2, . . .)

O F\O
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\
2
{%h (%;) + (%g):] - pw:}whn + ph BX & . + ph %} Boy = O
h° A on? el
2
+ h? % %(Alg + A}j)an =0 P (50)

%E)()\%nz + n2) - k%] PAm bn %‘Ew
- Pb mPl22 - 2 2 hr? ( x Gun | _ (51)
pAn T+5—-)\m +A55n-—§ §b—7\mnA12+A55) % 5
_ 2 — - D e = = k2> an
pn %,Er— )\mn(Alg + AB}) Bh‘g- + %(A22n2 + ABB)\zmQ Y -
2 pub®

where k = > is the frequency parameter. When the determinant of
Ajx

the coefficients of Wpn, Oy, and an is equated to zero and after
some algebraic manipulation, the following equation results:

k6 - [%(QR + agn) + by + cm%]k“ + [%2R(R + ampn) + P(R + amn) (byn + °mn )
2 2 - - 2

+ (bmncmn - dmn)]k - 1:’2Rfmn - pamn(brnncmn - dmn) =0 (52)
where the only symbol not previously defined is

- 2 2

fon = Mm%+ nc

+ 2?\mnd.m_n

mn
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The solutions to equations (52) define the natural vibration frequencies
of the simply supported plate corresponding tc the mode shapes given by

equations (49).

Clamped Rectangular Plates

Suppose, now, that instead of boundary
tions (43) and (44), the following boundary
for a rectangular plate:

w(0,y) = w(a,y) =

a(0,y) = ala,y) =

B(0,y) = B(a,y) =
and

w(x,0) = w(x,b) =

a(x,0) = a(x,b) =

B(XJO) = ﬁ(x;b)

ccnditions as given by equa-
ccnditions are prescribed

0

0

(53)

(54)

These boundary conditions are appropriate for a plate with all edges
clamped. The differential equations (ME) must. now be solved in conjunc-

tion with conditions (53) and (54).

Static deflection under uniform lateral [oad.- In equations (42)

set W, d, and B equal to zero and regard g, as constant.

The fol-

lowing deflection and rotation functions satisfy the boundary condi-

tions (53) and (5k4):

oc 00
W = W, sin mx
- mrn a
m=1 n=1
[e o] [ o]
. mRx
a = Qpn Sin —
a
m=1 n=

B = }i: E:: an sin ng

(55)

\O + Ot
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that is, w, «a, and B are zero on all boundaries. Substituting equa-
tions (55) in the reduced differential equations (L2) yields

j : 'z mn nx mzrx nay mux nny
-¥mn (?> + (—b—>:] sin == sin = + "mn cos - sin -

+ Bun Eb’f sin __mr[x _rrx}

0o [+4]
m2r2 2.2\,2
_ mx mnx n:ry _ s n“x=\h mnx nny
z z WpnPh Py cos - sin —= “mn%h + (All + 55 )—E—ilsinT sin <
(56)
nny
b

2
+ Bmn = Pg- %(Alg + A5§)cos mfzx cos =0

o0 o0
nx . mix nny mn nx he mx nny
- h — s —_— —_ L —_— —_
E E vmnPh —= sin 5 08 Tt omy = 5 o (Al2 + A53)cos 5 905 =

2.2 men2\he
- Bnm[Ph +( nb; + A )h—]sin _u_x:_x sin n}# =0 /

The Galerkin method is now applied by multiplying through all of equa-
inx
a

B
I
)
o]
1
[

tions (56) by sin

integrating over x from O to a and over y from O to b. The
resulting equations are written in dimensionless form as follows:

sin Q%b—’ (where i and J are integers) and

. . ~
© 00 1 J
Yijfh\ _of.2.2 2 kq,b [(-l) - l:]|:(-l) - lJ
T(B)“ (1 A ) * Z DA%y 37 i * Z 2BinYjn = o 13
m=1 n=1
NS ¥ Pb hrPfopn - o o BN
P Z mA & 7im - [T + -Eb—(l AT+ A3§J ) @y -2—5(1\12 + A}i)z Z mmﬁmn7im7jn =0 >(57)
m=1 m=1 n=1
oA Win 2, X T hrl
P Z n—= 7+ A12 + Baz Z z mNoGg 7 507 3y - [Eh- + = (Aegj + Bgyt xj‘] Byy = O
n=1 m=1 n=1 J
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where (using r and s as integers)

(_l)r-s -1 (_l)I‘+S -1

7I‘S= r - & + I + 8 (r#s)

Trs = 0 (r =s)

Examination of equations (57) shows that the unknowns are nonzero

W o
14
only for odd values of 1 and j, the unkncwns 04 j 8re nonzero only
for even values of 1 and odd values of j, and the unknowns Bij are
nonzero only for odd values of 1 and even values of Jj. For a first
approximation, truncate the system (57) by taking i =1, 2 and J = 1,2
and summing over m =1, 2 and n =1, 2. Equations (57) reduce to

169, b
8 8 b B Z
g 0%+ 1) 30 3 bl fpnn2
_ b h 2 — 2 hi— - _
'%“ 'Er%%@ﬂ+%@ - & Ee A cer)=| © (58)
- 2 hit T pb  hx?( % or
-3 S CEREFPL Eﬁ' * o (2 * 2 AiBﬂ Pre | ©

and three additional sets of equations which are homogeneous by virtue
of the symmetry of the lcading and, hence, ;rield the trivial results

Wip = Wp] = Wpp = a1 = Oqp = Ggp = By = Bpp = Bpp = 0. The last two
of equations (58) cen be solved for as; and Bjo in terms of wyp/h.

Substituting these expressions into the first of equations (58) and
solving for wll/h results in

Y11 Ry
= (59)
h 16 3252> 16 Ri( 2 20 )
1l - — aj] - — —|A ¢ + bpy] - =— A4
( o A 11 o B 2 21 onZ o2
where
16d,0\°
i P - 20
A==|Rp + b Rp + ¢ - ( )
n ( 21)( 12) o

More accurate approximations can be obtainel by taking more terms in the
series for w, a, and B, but the number of simultaneous equations which
must be solved increases rapidly.

O H\O
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Natural frequencies of vibration.- For the free vibrations of a
clamped rectangular plate assume deflection and rotation functions as

follows:
o
W= z Z ?Imneiwtmn
m=1l n=
©
a = Z Z c_xmneiwtsin
m=1 n=1
o oo
B = Z Z émnelwt in
m=1 n=1

When equations (60) are substituted into
q, set equal to zero there results

)

2
[l m2n2 + n21(2 v sin BIX i nny
ph a2 be mn a B

m=1 n=1
= mit mnx nwy a nn .. WX nny

+ — — — 44 — — =
Unn - €08 sin > + Byn p sin == cos 5 0

™7

-]
2
Z -anphm—;cosgaxsinagl+&mn[ﬂrﬁ—w2- ph -

n=1

8
1l
-

1
g

* Pon 5

2
nn h mnx nay\
-'_-b—- E—(Alg + AB})COS e cos b} =0

18

a
n=1

B
1
—

2

a

2 22 22
= (ph” 2 h ncn m°n . muX ney\ _
+ Bmn o w” - ph - —2—<A22 " + Aszz > sin == sin =/ 0

o0
2
z - nx mnx nny - mn nx h
-vmnPh > sin —— cos - + Qnp & Ny ?(Al2 + A35)°°S —= cOos ——

2
mnx .,  nny
- sin —
LNX sin B > (60)
a b
mrx .o DIy
a b
S

differential equations (42) with

2 2.2 2. 2

h m-n n-r mrx _. - nny
= (All = + A55 ﬂ sin e sin 5
(é1)

mix nny
a b
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Application of the Galerkin method as used in the previous section leads
to the following system of equations in dimensionless form:

2 ;r © o0 N\
2 =-(.2,2 . i - - - -
% k™ - P(12)‘ + Jgﬂ—h_‘j' - P Z mmmj7im - P Z nBinyjn =0
m=1 n=1
00 ;I R 2 - 2
- mJ °h .2 Pb  gnf.2.2 . T .2\|-=
Py M vimt E:t-b_k - T B *Aaﬂil“ij
m=1
[+ o] 00
bz Iy B - 62
+gp(Bia + Bs5)) " ) wBnnyinygn = O > (62)
m=1 n=1
[s4] ;'r o0 00
- in -_—
P Z M 7in T3 (A12 + A55)Z Z mma&nlylm"jn
n=1 m=]1 n=1
+ ﬁékz__@i_“z_h(xe i+ & 12?\2)[;, -
b h  2b 2 335 13 J

Limit consideration to the first four t2rms of each of the series
in equations (60); thus, the integers i anl Jj in equations (62) are
taken to be 1 and 2 and the summations are carried out over m =1, 2
and n =1, 2. It is found that only certaia terms couple. The Wy

coefficient couples with &21 and 512’ ﬁl? couples with &22 and
Bll’ ﬁEl -couples with &11 and B22’ and finally i22 couples with
a1o and Bpy. The frequencies for these various modes within the
framework of the 1, 2 approximation are givea by the following equations:

For the wy; mode,

2 -
b - 502+ 1) -3 -3

=0 (63)
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for the Wy, mode,

and for the Wy, mode,
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In each case the smallest real positive value of k which makes the
determinant vanish corresponds to the desired natural frequency.

TOTAL POTENTIAL ENERGY EXPRESSION
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(64)

(65)

{66)

The derivation of the theory has been carried out using the poten-

tial energy in varied form.

It is of interest to write the total poten-

tial energy expression because such an expression is useful in obtaining
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approximate solutions. The potential energ’s is assumed to be measured
from the condition of the plate after it has been inflated and after
inplane edge loads NNx and NNy have been applied. In this state

the displacements and rotations wu, v, W, a, and B are assumed to
be zero and the quantities N3, N9, and N7y are assumed to be known
and independent of u, v, w, «, and B. Then, additional loads 4qy,
Ay, 4z VN, ﬁﬁx, and ﬁﬁy are applied. For this situation, the total

potential energy for the small deflections >f a tapered inflatable plate of
arbitrary planform shape can be written in terms of displacements and
rotations as

2
o o] o 1 40 h

jf Nou x + Nyv y + Nyy(u y + v x) + 5{}( Wox - ]I(h,x“ + h’yB)’)J
+ 8w - B(h,a+h B .l - B e+ n 8) |

i,y pV,X Yy )) Xy| »X BN X Y ,X I

hh 2 2 2 2

- =(h .o+ h - I_IN_ [=— + + No |l— +

).q.( X )yB),}J 2 [X(z 2 , X X¥y\2 2 , Y

hh 2 a2 2 .2 )
¥ {ne (& B o [a B 2 2
- —22IN (_ + ?> + N (_ + _2_.) X] ) + Allu’x + A22V,y

2 Y\2 2

2

2
h
+ Azz(a,y + v,x)° + 2h10u,x,y +—E13E‘x+(@+‘*x)_’§]

ny)° ,x
+A22 +(B+W )—h— +2A12 CL, (CL+W

h
+(B+w,y)-4hz]+A55EL,y+ ,x"'(“*w ) +(B+W,y) ;1%]

al 52

- ph‘i}x * V;y + u;XV;y - u)yv)x - —2 - -é- - aw)x - Bw)y

h2
+ EE(q}xﬁ)y - “,yB,x> - Qxu - QyV - q.,v dx dy

9§(ﬁﬁxu + Nyyv + Vyw + Myyo - MNXB)ds (67)
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In writing equation (67) terms of higher than second degree in displace-
ments and rotations or their derivatives have been neglected. In addi-
tion, inertia effects are neglected. Variation of equation (67) with
respect to u, v, w, a, and B yields with a little manipulation the
differential equations (31) (with the inertia terms set equal to zero)
and the boundary conditions (32).

In many problems only lateral deflections are desired and inplane
displacements are not of primary concern. Then equation (67) can be
simplified for use in obtaining approximate solutions by dropping all
terms containing u or v or their derivatives.

For a rectangular plate with edges x = 0,a and y = 0,b the
double integration in equation (67) is, of course, performed over x
from O to a and over y from O to b. By noting that on the

edge x = a, ﬁﬁx = ﬁg, NNy = ﬁgz, Vh = V}, MNy = _k, End MNx = —ﬁ§y,

on the edge x =0, Ny, = -N,, Nyy = -y, Uy = -Vy, Myy = -My,

My = Myy, and so forth, the line integral in equation (67) becomes
—'§g(ﬁhxu + ﬁﬁyv + Vhw + ﬁﬁya - ﬁNxﬁ)ds

b
= -\/; (ﬁgu + ﬁ%yv + Vyw + Mya + ngB) dy

a b
- /; (Fyv + Wygu + Vyw + Mo + Mop) . dx (68)

For a triangular plate oriented as shown in the following sketch

reef-3)
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the double integration in equation (67) can be performed first over Yy

from O to c<l - %) and then over x fron O to 1. The line inte-

gral becomes

; 515 (NNXu + Fyyv + Vo + Mgy - MNXB>ds

l 2
5 = = v = c
= - f (T + Fygyv + Tygw + Fya - MNXB)T)l + 5 dx
0 V l X
y=e(1-5)

€ ! \
+ /ﬂ (Myu + Nyoyv + Vow + Mya + My P dy
Jo (Nx Xy X X xyF)

x=0

l
+ J/\ (nyu + ﬁyv + Vyw + ﬁxya 4 ﬂy@I dx (69)
“ 0

CONCLUDING REMARKS

A linear theory has been developed which describes the behavior of
inflatable plates such as Airmat. A rough :ndication of the range of
applicability of the linear theory is obtained in an appendix by carrying
out a nonlinear analysis of a simple problen and comparing the results
with the linear solution. The theory turns out to be essentially the
same as sandwich-plate theory in which tran:sverse shear deformations
are taken into account. The internal pressure in the inflatable plate
is analogous to the transverse shear modulus in the sandwich plate.

Some simple static lateral deflection and vibration problems are solved
for rectangular inflatable plates of constant depth.

Lanzley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., June 21, 1901.
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APPENDIX A
CHANGE IN VOLUME OF INFLATABLE PLATE

Analytical Approach

In order to calculate the work done against the internal pressure
in an inflatable plate it is necessary to know how the volume of the plate
changes due to displacements in the covers and along the edges. The
derivation of the change in volume in terms of wu, v, Ww, a, and B
1ls presented in this appendix.

The derivation is carried out using the formula from calculus for
determining the volume of a three-dimensional body by integrating over
the surface enclosing the body. (See ref. 1.) Thus, the volume of the
deformed plate is given by

v=-ffscdgdn (A1)

where €, 10, and f denote rectangular Cartesian coordinates (along
the x-, y-, and z-axes, respectively) locating points in the surface of
the deformed plate. The double integral in equation (Al) is a surface
integration carried out over all external surfaces of the plate in the
deformed state. The negative sign in equation (Al) arises because the
surface of integration is assumed to be oriented so that an inward
normal is positive.

The initial volume of the plate can be represented by the integral

/[h dx dy (A2)

which is simply a double integration over the undeformed middle plane
of the plate. The change in volume AV 1is given by the difference
between V and the quantity (A2) as

AV = - ¢ dg dn - fhdxdy (A3)
IREEEN/
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Evaluation of Surface Integral

Upper cover.- The contribution of the surface integral over the
upper cover of the plate can be written by sutstituting

£ =x + u+(X:Y)
1=y + v (xy) (AL)
£ = % + W+(XJY)

into the integral in equation (Al). Over the upper cover, then, this

integral is
a(é;n)
- d = d A
[ vorm [[ o8 o (1)

where the deformation of the upper surface is considered to be a transfor-
mation of coordinates from the xyz system to =“he Enl system as given by
equations (A4). The double integral on the right-hand side of equation (A5)
is performed over the undeformed middle plane of the plate, and the quan-
tity é&éiﬂl is the Jacobian of the transfornation from the &n-plane to
a(x,y) )
the xy-plane. The upper cover projects onto —he xy-plane in a negatively
oriented region; thus, the minus sign of equaion (A1) is canceled out on
the right-hand side of equation (A5). The Jacobian is

-y
Ae,m) _ % oy
3(x,y) éﬂ éﬂ

ox Oy

(1 + u+;x)(l + V+JY) - u+,yv+,x (A6)

On substitution of equations (A4) and (A6) inuo the integral (A5), there
results for the contribution of the surface iitegral over the upper cover
to the volume of the deformed plate

\O H\O t
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d(x,y) 2 +yX Y +,X +,¥ + Y tX

+ v, + w+u+,x + VeV, y + w+u_{_,xv+,y - w4u+’yv4,%}dx dy
(AT)

Ilower cover.- For the lower cover of the plate the quantities E€,
n, and { are expressed in terms of displacements and the xyz coordinates
as follows:

£ =x + u(xy)
n=y+ v_(x,¥) (A8)
£ = - % + w-(xJY)

The surface integral over the lower cover becomes

_M[Y;- t de dn = -b[yﬁg %%%fg% dx dy (A9)

where the minus sign must be retained because the lower cover projects
onto the xy-plane in a positively oriented region. The Jacobian is now
written

ot 3¢
a(&,n) ox  dy

3x,y) |91 o
ox oy

(l + u_,x)(l + v_’y) S (Alo?

and the contribution of the integral over the lower cover to the volume
of the deformed plate is



L

a(é;ﬂ) h
-ﬂg o(x,y) dx dy = ﬂ-[g(l * u_,x * v_,y + u_’xv_,y - u_,yv_,x)

+ w_u_,yv_’x]dx dy (A11)

Edge.~ It is assumed that the drop cords along the edge of the plate
remain straight as they are displaced. Thus, the final coordinates of
points along the edge of the plate are given by the following functions:

u, (56,¥) - u(x,y) u, (x,3) + u(x,y) )
E =x + z +
h 2
n = + V+(x,y) - v-(X)Y) 7 + V+(X=y) + V-(X)Y) ? (AlQ)
h 2
b - N w+(x,y) = w_(x,y) .+ w+(x,y) + w_(x,y)

h 2 _/

In these equations x and Y are on the bourdary of the middle plane
of the plate and can be thought of as functions of s, the coordinate
along this boundary. The surface integral over the plate edge can be

written
/2 B(E )
Jgp . ¢ de dn ngt /2 ¢ 5?;fs) dz ds (Al})

The normal vector to the plate edge projects onto the Z,s surface in a
positive region; hence, the minus sign is retained in equation (Al}).
The Jacobian in equation (Al3) is

\O O H
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x
3(e,n) 0z  Os
d(z,s)
o o
dz Os
Yp T Y- 8 dx ot dy
h ox ds  Jy ds
Y+~ V- ondx  Omdy
h dx ds  Jy ds

h h , X ds h h Ly

v + v_ v, - V_ u, - u u u_
++,y 2yidy T+ l+(+ >z++,x yX|dx

2 ds h h 2 ds
X

v, - v_[{u, - u u +u

. x ( + ) z + Y JYJ(}_Y_ (A1k)
h h Y 2 ds

When the last of equations (Al2) and equation (Alk4) are substituted into
equation (AlB), the contribution to the volume of the surface integral
over the plate edges becomes

F{ g ) 2 - () 4]

W, - W v, -V 3 - u -
-(1+ + )(+ -)h_Ka ) g+(u+ u_) ay
h h 12 h x ds h ds
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Total volume.- The total volume in the deformed plate is, of course,
simply the sum of eguations (A7), (All), and (Al5). When equations (&)
are used to express the deformed volume in terms of the overall plate
displacement and rotation quantities, there is obtained

1
vV = If{(l + e)h[l Uyt VR WV UV Z(hcc),x(hﬁ),y

-i—(ha.),y(hB),x] . w[(ha,),x b (18)y + (n3),yu,x - (0B) yu,y

7 3
(ha,),xv’y - (hor,),yv,x }dx dy - Sg{[ﬂ + e)%l_-é-(a.ﬁ,x - Ba)x)

-

+

3
+ whiav x - Bu x) - whp %xg + [(1 * e)%(“e’,y - Boy) + wh(av y

.-

Bu, y) + whcx;l%} ds (A16)

Simplified Expression for Change 1n Volume

Since a linear theory is sought, any terms in equation (Al6) which
are of a degree higher than two in the plate iisplacements and rotations
or their derivatives may be neglected. Higher degree terms lead to
nonlinearities in the differential equations which result from the appli-
cation of the variational technique. With this simplification the change
in volume due to displacements in the inflatsble plate becomes

AV = If{hu,x + hv y + hu xv y - hu yv y + E(hcx,),x(hﬁ)’y - )l:-(hon),y(hﬁ),x

] [0’ ax
+ he + w(ha) . + w(hﬁ),y_dx dy - Sﬁ [,i'z"(aﬁ’x - Bax) - thJa-s—

s

3
+ [%(mﬁ,y - Ba, y) + whoJ %X} ds (ALT)

When the relations

\O = \O
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dx _ 9y
ds ON
(a18)
dy _ _ ox
ds N

are utilized, Gauss' theorem in the form given in equation (27) can be
applied to the line integral in equation (Al7). The final result for
AV, after substitution for e in terms of o and B, is

2
h
AV = I[h[u’x tV,y t U xV,y - UV oy E(a‘,xﬁ,y - a,yﬁ,x)

2 2
-E - B, - BW,y]dx ay (a19)
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APPENDIX B
ESTIMATION OF VALIDITY OF LINEAR THEORY

A simple problem is discussed in this app2ndix in order to provide
some idea of the range of parameters for which linear theory is valid.
The results of a nonlinear analysis of the problem are compared with the
results of the linear analysis. The problem considered is a long
plate of constant depth which, after inflation, 1is simply supported on
its long edges in such a manner that these edgss cannot move. For
simplicity the plate is assumed to be loaded ty a uniform lateral load
equally divided between the upper and lower ccvers. For the linear solu-
tion, the manner in which the loading 1is divided between the covers is
immaterial. For a nonlinear solution, on the other hand, if the loading
is not equally divided between the covers, an additional nonlinear term
arises in the theory. A cross section of the plate under consideration
is shown in figure 3. The x-axis is assumed to be normal to the long,
simply supported edges, and the distance between these edges is L.

For this problem the potential energy in varied form can be written
as follows when nonlinear terms are included:

L 2
* 1 h® 2
I = fo [Nxﬁ(u,x +3 wE, + T e,x> F M+ e (v )

- phS(u’x +e - aw o+ eu,x> - qQBQ]dx (B1)
where
N; = ph + Ny )
1 oy
NX = EAll(u,x + 5 W"2x + —-- e}x)
(B2)
h2

O H\O
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When the variation of equation (Bl) is performed and appropriate integra-
tions by parts are carried out, there results the following system of
nonlinear differential equations:

NX,X + phcxa,,x =0

~
NyW, xx + Nx,xw;x + ph(a + w’x),x - (ana,x),x +q, =0
2 3 2 )
h® 2 _ph’? 2 ( h 2) ph 2
- Ny —aa, - =— aa“, + (N, — a + =—la (B3)
19-' Mx:x Xy X y » X X ) X L% N (:X ),X>
1
9 - (Mkw,x“),x + wa,xa;x - ph(a + W,x) - phu ya = 0
J
and the following boundary conditions at x = 0 and L:
u=w-=0
2 5 (B4)
h 2, ph 2
MX - MXW,XG‘+NXTG',XG' +T(1,XG, =0

This system of equations can be simplified (partially linearized)
by assuming that o and its derivatives are small compared with w
and 1its derivatives and by neglecting terms of second degree or higher
in a and terms which contain products of a times w or u or their
derivatives. For practical inflatable-plate proportions, this assumption
appears justified in this problem. When the equations are simplified in
this manner there results the differential equations

Ny,x =0 ')

NyW xx + ph(a + w’x),x +q, =0 > (B3)

i

My x - ph(a + w,x) =0 .J

and the boundary conditions at x =0 and L

u=w=M =0 | (B6)
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where

1

(B7)
h2
MX = —2_ Alld'}x

An exact solution to this system of equeations can be obtained.
The result is in terms of rather involved trinscendental expressions,
however, and it is difficult to find a relat:onship between the nonlinear

and linear solutions. For the purposes of tlhis appendix a simple approxi-

mate solution using the Galerkin method suff:ces.

Equations (BS5) can be written

1
ux + 3 Vg = C1 (B8s)
28100V, xx + PR(% + V,x) | = -dy (B8b)

h2
ry Ay xx - ph(a + w,x)

]
o

(B8c)

where C; 1is a constant and the boundery corditions (B6) at x =0
and L are

U =W = Q =0 (B9)

The following assumptions for w and a saiisfy the last two of equa-
tions (B9) exactly:

w = w; sin % (B10a)
X
@ =ap cos = (B10b)

When equations (Bl0) are substituted into equation (B8b) and the
resulting equation is multiplied by sin %? and Integrated over x

from 0 to L, there results

O H\O
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2 2
n ph b4 h 7 _ 2
Allclwl(-]’:> + -2— G:l -f; + 22— wl(i) = q, -1‘-(- (Bll)

From equation (B8c) there 1s obtailned

] B}

T2 A 2
o Z1L(x\" 4 g
2 ph \L

The constant Cl is obtained by substituting equation (B10a) into

ay (B12)

equation (B8a), integrating to find wu, and using the boundary conditions
u=0 at x =0 and x = L. The result is

& = ) (B13)

When equations (B12) and (Bl3) are substituted into equation (Bll), some
algebraic manipulations lead to

2
! vy ¥4 12 7+

A 2
2li %?) . Calculations showed very little difference between
P

this approximate result and the exact solution. The linear solution 1is

where J =

2
w
obtained when (J + l)(i%) is neglected compared with unity. It is

easy to see, for instance, that the linear solution 1is within 5 percent
of the nonlinear solution provided that

Y-
(7 + 1)(-1;1-) < 0.05 (B15)

This result is strictly applicable only to the problem under considera-
tion in this appendix but does give a rough indication of what might
happen in other problems.
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(a) Plate having linear taper in depth and arbitrary shape in planform.
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(b) Enlarged view of plate element showing taper angles.

Figure 1l.- Inflatable plate with basic coordinate systems.
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Figure 2.- Plate stress resultants, moments, and twists; plate displace-
ments and rotations applied to an element in their positive senses.
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Figure 3.- Cross section of long uniformly loaded inflatable plate
simply supported on long edges.
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