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SUMMARY

The lethargy-dependent equations of the consistent PI approximation

to the Boltzmann transport equation for slowing down neutrons have been

used as the basis of an IBM 704 computer program. Some of the effects

included are (1) linearly anisotropic center of mass elastic scattering,
(2) heavy element inelastic scattering based on the evaporation model of

the nucleus, and (5) optional variation of the buckling with lethargy.

The microscopic cross-section data developed for this program covered

_75 lethargy points from lethargy u = 0 (lO Mev) to u = 19.8 (0.025 ev).

The value of the fission neutron age in water calculated here is

26.5 square centimeters; this value is to be compared with the recent

experimental value given as 27.86 square centimeters. The Fourier trans-

form of the slowing-down kernel for water to indium resonance energy
calculated here compared well with the Fourier transform of the kernel

for water as measured by Hill, Roberts, and Fitch.

This method of calculation has been applied to uranyl fluoride -

water solution critical assemblies. Theoretical results established for

both unreflected and fully reflected critical assemblies have been com-

pared with •available experimental data. The theoretical buckling curve

derived as a function of the hydrogen to uranium-255 atom concentration

for an energy-independent extrapolation distance was successful in pre-

dicting the critical heights of various unreflected cylindrical assem-

blies. The critical dimensions of fully water-reflected cylindrical

assemblies were reasonably well predicted using the theoretical buckling
curve and reflector savings for equivalent spherical assemblies.

INTRODUCTION

The NASA Lewis Research Center has for some time operated a Zero

Power Reactor. This reactor consists of uranyl fluoride salt (U02F2)



dissolved in water and contained in a cylindrical aluminum tank. The

parameters of the system are the diameter of the cylindrical tank_ use

of a side reflector, and concentration of uranyl fluoride salt in water.

Criticality is achieved by varying the height of the solution in the

tank. No control rods are inserted into the solution while the reactor

is critical. Thus, good experimental conditions exist for obtaining

criticality data and performing reactivity measurements by measuring

changes in the solution height due to insertions in the reactor. Descrip-

tion of this reactor and its various characteristics are found in the

final hazards report (ref. i) prepared for the Atomic Energy Commission.

The criticality data obtained from the NASA Zero Power Reactor as

well as that obtained from extensive experimental studies performed at

the Oak Ridge National Laboratory (refs. 2_ 3_ and _) can be analyzed

by various theoretical models. Callihan (ref. 5) describes the use of

Fermi age-diffusion and Goertzel-Selengut analytical models as well as

a method due to Greuling for predicting critical reactor diameters of

various Oak Ridge experiments. A more recent study of the Oak Ridge

experimental data by Gwin and others (ref. 6) makes use of the empirical

kernel method_ which is based on the measured slowing-down distribution

in water rather than on any theoretical model of the neutron slowing-

down process. In addition_ the use of the Los Alamos DSN transport code

for obtaining minimum critical dimensions for water solution is described

by Mills (ref. 7).

The objective of the present study is to provide a theoretical model

based on the numerical solution of the lethargy-dependent consistent PI

approximation to the Boltzmann transport equation for slowing down

neutrons. This model is coded for the IBM 704 electronic computer and

employs microscopic nuclear data (refs. S, 9, and i0). This theoretical

model is tested by comparison with the experimental age and Fourier

transform of the slowing-down kernel of fission neutrons in water. This

model is further employed in estimating the absolute reactivity of un-

reflected UO2F2-water systems and is used as a basis for evaluating con-

sistent three-group parameters for the interpretation of water-reflected

UO2F2-water systems.

The next section gives the derivation of the general lethargy-

dependent consistent PI equations used as the basis for an IBM 704 code.

Next follows a section giving the analytical results based on this model

and comparison with experimental data obtained with the NASA Zero Power

Reactor as well as data obtained at Oak Ridge.
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THEORY

Slab Geometry Spherical Harmonics Form of Transport Equation

Let n(r_v)dr dv be the probable number of neutrons in the space

volume element d_ about position _ and in the velocity element d_
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about velocity _ per unit time. Then, the Boltzmann transport equa-

tion for slowing down neutrons at steady-state_ which equates the losses

per unit time of neutrons, due to transPort out of and collision re-

moval from the phase volume element d_ dV, to the gain per unit time

of neutrons, due to elastic and inelastic in-scattering and fissioning

of the fissile nuclei in the phase volume element d_ dV_, has the form

+/dV'_,in(V')_O(r_)K(_' _ _) + S(r_) (i)

where the neutron flux is defined as _O(r_) = vn(r_) with v being

the neutron speed; S(r_) is the source of neutrons due to fission_

Zt(v), _.es(V), _.in(V)are the macroscopic total, elastic scattering,

and inelastic scattering cross sections, respectively, at speed v;

is a unit vector along the direction of motion of the neutron; P(_ _ _)

is the probability that a neutron in the phase volume element d_ d_ t

will, after an elastic scattering collision, be in the phase volume

d_ d_. Similarly, H(_' _ _) is the probability that a neutron in the

phase volume element d_ d_' will, after an inelastic scattering col-

lision, be in the phase volume d_ dV.

Now transform equation (i) from (_,V) space to (_,v,_) spac e and

finally from (r_v,_) space to (r_u,_) space where u is the neutron

lethargy defined by the relation u = ]_U(Eo/E ) with E 0 usually taken

as 10 7 ev. The result of these transformations and writing an explicit
form for the fission source is

_- Vq0(rL u,_) + _t (u)q0(r_ u,_) =/du'_.es (u') / d_t q0(r_u'H _ )P(u-u' _L )

+f du, Zin( u, ) H(u' -_ u) f )
4_

f(u)fdu, (u,)zf(u,)f
+ 4_Keff (2)

where v(u) is the number of neutrons released per fission occurring at

lethargy u, r.f(u) is the macroscopic fission cross section, f(u) is the

fraction of the fission neutrons born in the lethargy element du about

u (the integral of f(u) over all lethargies is normalized to unity),

Kef f is the static criticality factor, and d_ is the element of solid

angle about the direction _. The inelastic scattering kernel is assumed

to depend only on the initial lethargy u' and the final lethargy u

of an inelastically scattered neutron and to be isotropic in the labora-

tory coordinate system. The elastic scattering kernel is assumed to



depend only on the difference between the final and initial lethargies

and on the cosine of the angle _L between the initial and final di-

rections of motion of a neutron undergoing an elastic scattering col-

lision. Davison (ch. II_ ref. ll) gives additional details concerning
equation (2).

If the neutron distribution varies only along the Z-direction and

is azimuthally symmetric about that axis, if equation (2) is integrated

over the azimuthal angle, and if the flux _ (= _0(Z,u,_) (the quantity
is the cosine of the angle between the Z-direction and the direction

of neutron motion _) and the elastic scattering kernel are expanded

into a series of Legendre polynomials, that is,

oO

Z--O

OO

Z=O

and these expansions are substituted into the equation for _(Z,u, _),

which is then multiplied by a Legendre polynomial PK(_) and integrated

over all _, then the result will be the infinite sequence of integro-
differential equations given as

Z + 1 mZ -l(z'u) + _+i )]2_ + 1 _+i (z'u + Zt(u)_z(z,u)

:I du'_'es(u' )qOI(Z'u' )Pz (u-u') + 80, Z f du'_'in(u' )q°o(Z,u' )H(u' _ u)

du'v(u')Zf(u')_0(Z,u')_(_--0,l, 2,
+ 80, Z Keff

where 50, Z is the Kronecker delta defined here by the properties

80, Z = i, Z = 0

--o,_ _o (_)

Equation (&) represents the spherical harmonics form of the transport
equation in slab geometry.
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Slab Geometry Spherical Harmonics Form of Angular Slowing-

Down Density Due to Elastic Scattering

Another important characteristic of slowing down neutrons is the

slowing-down density Q(_u_). The slowing-down density due to elastic

scattering Q(_,u,_) is defined as the number of neutrons which pass the

lethargy mark u per unit time per unit phase volume (d_ d_). This

quantity is easily derivable as

Q(r_u_g2) = du' du" d_'Zes(U')q_(r_u'2')P(u" - U_L) (6)

If the slowing-down density varies only along the Z-direction and

is azimuthally symmetric about that axis, if equation (6) is integrated

over the azimuth angle _ if the expressions for _(Z,u,_) and

P(u-u'_L)_ given by equations (Sa) and (3b)_ respectively, are sub-

stituted into (6) and then integrated over d_'_ and if the resulting

equation is multiplied by a Legendre polynomial PK(_) and integrated

over all _, then the result will be the moments Qz(Z_u) of the

slowing-down density Q(Z, u,_); that is,

U oo

(z: o, l,a, ., (v)

Equation (7) represents the spherical harmonics form of the slowing-down

density in slab geometry.

Lethargy-Dependent Consistent PI Equations in Slab Geometry

To obtain the PI equations from equation (4) the assumption is now

made that q0z(Z_u ) -= 0 for Z __ 2, which implies for equation (7) that

Qz(Z,u) -= 0 for Z __ 2 also. The lethargy-dependent consistent PI

equations can now be obtained by assuming the following spatial and

lethargy dependence for q00(Z,u ) and q01(Z,u):

%(z,u) =  (u)G[G(u)Z ] (sa)

%(z,u): JC )F[G(u)Z] (Sb)
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In addition, the material buckling BmCu ) is assumed to be a slowly

varying function of lethargy. Therefore, the integral terms arising in

equation (&) can be evaluated by taking

_o(Z,u' ) - _(u' )G[B_(u)Z] (8c)

_l(Z,u' ) - J(u' )F[Bm(U)Z ] (Sd)

The lethargy and space variation for the Z = 0, i terms of equation (7)

follows from equations (8a) and (8b) and is

QoCZ, u) : QCu)G[_mCu)Z ] (8e)

Ql(Z,u) : PCu)F[_(u)z] (8f)

where G and F are spatial functions and Bm(u ) is defined as the

lethargy-dependent material buckling. In addition_ the spatial functions

G and F must satisfy the conditions

=

With the assumptions implied by equations (8a) to (8d) and (9a) and (gb),

the spatial dependence can be divided out, and the lethargy-dependent

consistent PI equations obtained from equation (4) are

Bm(U)J(u ) + Zt(u)cp(u ) = /du'_.es(U' )q0(u' )Po(u-u' )

!

O_

_D

o

+/du'Y, inCu' )qoCu' )H(u' _ u)

0 °
+ f-_ d_'_(u')Zf(u')_Cu')

Keff

i

- E Bm(u)qo(u) +Zt(u)J(u ) =/dU'Zes(U' )J(u' )Pl(U-U' )

together with
U CO

Q(u /
0 u

du"Zes(U')_(u')Po(U"- u')

(10a)

(10b )

(lla)
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In reference 12 Simon discusses some analytical solutions of the

lethargy-dependent consistent PI equations for hydrogen. To obtain the

analytical results, special cross-section variations were assumed for
hydrogen.

Elastic Scattering Kernel for Linearly Anisotropic

Center of Mass Elastic Scattering

Since most light elements exhibit anisotropic elastic scattering

in the center of mass coordinate system for high-energy neutrons, it is

important to include this effect if accurate values of the neutron age

are to be computed. Therefore, by following Marshak (ref. 15) it is

easy to show that for linearly anisotropic scattering in the center of

mass coordinate system the elastic scattering kernel P(u-u_L ) is
given by

(A+ :)2 -(u-u,)r [@+ :)2
-- 8_: e I:+ 3fl(U,)_2:

:I:e:<--u,:'
x du a_L d_oL

e-(U-u')

- A ------!e _-(u-u')
2

021

where fl(u) is the average cosine of the angle between the initial and

final direction of motion in the center of mass coordinate system of the

elastically scattered neutron of initial lethargy u, A is the ratio

of the mass of the scattering nucleus to that of the neutron, 8 is the

Dirac delta function, and _L is an appropriate azimuthal angle in the

laboratory coordinate system. The moments Pz(u-u') of the expansion

of P(u-u'_L ) into a series of Legendre polynomials, as in equation (Zb),

are given by the orthogonality property of these polynomials as

h (u-u,)=faa:,h @L)P@-_;_:,) (is)

Substituting equation (12) into equation (1Z) and performing the indi-

cated integrations for Z = O, i will give



• <_' i_'¸ i i • •

A 2 + l_l2A , -i i _T.(u-u' ) < i

= O_ otherwise (i_)

h(u-u') --_L(u-u,)Po(U-U'),

= 0_ otherwise

-ii _T,(u-u') i i

(l&b)

If t = u-u', equations (14a) and (l_b) can be rewritten into the

following useful forms:

(A + i) 2 e-t + fl(u,)FZ(A + 1) 4 e-2t _ ,Z,(A2 + I)(A, + i) 2PO (t)
4A k 8A 2 8A 2

1
5 t (A I)(A + i) 2 -_ t

Pl(t ) (A + 1) 3 j-2 - e
= 8A - 8A

e-t]
(iSa)

+ fI(U,)[Z(AI6A 2+ I) 5 j 5t _ 5(A +8_l)Z e_ t

3(A-I)(A2+ i)(A+ i)2 e} t|
+ (lSb)

IgA 2 ]
Equations (iSa) and (iSb) reduce to their isotropic center of mass

elastic scattering values if fl(u') -O.

J
o]
<o
0

Differential Form of Consistent PI Equations

Although equations (10a) and (lOb) are the lethargy-dependent con-

sistent P1 equations, a differential form of these equations would be

more suitable for computation. To obtain these differential equations

differentiate equations (lla)and (llb)with respect to lethargy u:

du Zes(U' )_(u' )P0(u-u' ) + Zes(U)qD(u ) du"P0(u" - U)
U

= - 0_u du'Zes(U' )q)(u' )Po(u-u' ) + ?.es(U)qO(u)
(16a)
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/0du - dU'Ees(U')J(u')Pl(u-u') + Ees(U)J(u ) du"Pl(u" - u)

: -fdU'Zes(U')J(u')Pl(U-u') + _O(U)Zes(U)J(u) (iSb)

The integral I _ du"Po(u" - u) is evaluated using equation (iSa) and
U

is equal to unity. The integral du"Pl(U" - u) is evaluated using

(iSb) and is equal to _O(U) - the average cosine of the angle between

the initial and final direction of motion_ as measured in the laboratory

coordinate system_ of the elastically scattered neutrons. The first

integral on the right side of equation (lOa) can be evaluated using equa-

tion (16a), and the integral term on the right side of equation (iOb)

can be evaluated using equation (iSb). Equations (10a) and (lOb) now
become

Bm¢u)J(u) + [Za(U) + Zin(U)]_(u) +
du

of +/-- du' (u, )Zf(u' b(u' ) du' .in(U' b(u' u)
Keff

(17a)

_i Z Bm(U)_(u) + lEt(u) - _0(U)Ees(U)] J(u) + dP(u) 0 (17b)
du

where ra(U ) is the macroscopic absorption cross section. Equations

(17a) and (17b) represent the basic lethargy-dependent equations of the

consistent PI approximation to the Boltzmann transport equation for

slowing-down neutrons,

Two more equations are needed to complete the PI description of

the slowing-down process as given by equations (17a) and (17b). These

are coupling equations between q0(u)and Q(u), and J(u)and P(u),

which can be obtained by writing approximate forms for equations (ii)

and (16). These additional equations are obtained in the following

manner. Assume that the functions 7es(U' )q0(u' ) and 7es(U' )J(u' ) are

slowly varying functions and that they can be approximated by the first

two terms of a Taylor's series expansion about lethargy u. That is_

Ees(U')qo(u') --"Ees(U)qO(u ) + (u' - u) d_-_ lees (u)qo (u)] (18a)

d
Zes(U')J(u') -" Ees(U)J(u) + (u' - u) _ [Zes(U)J(u)] (18b)



i0

Substitute equations (iSa) into (lla) and (16a) and equation (iSb) into
(llb) and (16b). Then, evaluating the various integrals over lethargy
of Po(u-u') and Pl(U-U' ) and eliminating the terms involving
d d [Zes(U)J(u)] result ind--u[Zes(U)q_(u)] and _-_

y(u) dQ(u)+ Q(u) = _l(U)Ees(U)q0(u)
du

(19a)

p(u) dP(u) + P(u) = t_l(U)Zes(U)J(u)
du

(19b)

The parameters appearing in equations (19a) and (19b) are defined, in

terms of the quantity t = u-u', as averages over the distribution

function Po(t). That is,

_i _ _ (20a)

2_lY" _ t 2 (20b)

_i - t_L(t ) (20c)

2t_lp -- t2_L(t) (20d)

where the bar denotes an average value. Of course, the various param-

eters defined by equation (20) depend on lethargy since Po(u-u' ) and

Pl(U-U' ) depend upon fl(u).

Thus, equations (17a), (17b), (19a), and (19b) form the four

coupled first-order ordinary differential equations describing the

neutron slowing-down process in the consistent PI approximation to the

Boltzmann transport equation. Included are the effects of linearly

anisotropic center of mass elastic scattering, inelastic neutron scat-

tering, and lethargy-dependent geometric buckling. Although equations

(17) and (19) apply for only one nuclear specie, the extension of the

equations to include additional nuclear species follows directly. In

particular a set of equations (19) is written for each element with

appropriate modifications of equations (17).

Comparison of Lethargy-Dependent Consistent PI Equations

With Various Approximate Theories

Equations (17) and (19) are fairly general, and it is worth noting

that under various restrictions simpler sets of equations, which have

been used frequently in reactor analysis, can be easily obtained. This
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will be done for a few typical cases. The first of these is the age-

diffusion equation with no inelastic scattering which can be obtained

from (17) and (19) by setting Ein(U ) -- 0 in (17a), dP(u)/du ---0 in

(17b), dQ(u)/du = 0 in (19a), and dP(u)/du = P(u) = 0 in equation

(19b).

The familiar Fermi age-diffusion equations result and are given as

(ref.i_)

Bm(u)S(u ) + Za(U)qO(u) + dQ_u) _ f(u) du'v(u')Zf(u')qo(u') (Zla)
du Kef f

J(u): D(_)_(u)_(u) (21b)

Q(u) = _l(U)Zes(U)qO(u ) (2 ic )

where the diffusion coefficient D(u) has been defined as

l (22)
D(u) = 3{Za(U) + Zes(_)[1 _ _o(U)] }

The Selengut-Goertzel approximation is basically the age-diffusion set

given by equations (21a) to (21c) but with the element hydrogen treated

by equation (19a) - other elements still being treated by equation (21c).

To see this, recall that hydrogen exhibits isotropic center of mass

elastic scattering collisions over energies of interest in reactors.

Thus_ _l(u) and _(u) for hydrogen are both equal to unity for all

lethargies giving

dQ_(u)du + Q_(u) --Z_s(U)_(u)

which is the Selengut-Goertzel equation relating the hydrogen slowing-

down density QH(u) to the lethargy-dependent flux _(u) (p. 348_ ref.

15). The Greuling-Goertzel approximation (p. 390, ref. 15) includes

both equations (21a) and (21b) of the age-diffusion formalism but re-

tains equation (19a) for all elements. Other approximations are also

possible but will not be discussed because machine programs are just as

easily formulated for the basic set of equations given by (17) and (19)

as for even the simple age-diffusion set of equations.

Equations for Thermal Group

The slowing-down equations given by (17a), (17b), (19a), and (19b)

are assumed to apply to some cutoff lethargy uT corresponding to an

energy FT. The energy ET is usually taken as about 5kT where T

is the temperature of the moderator in OK and k is the Boltzmann con-

stant. In the energy range from 0 to ET the neutrons have energies
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comparable to the energies of the thermally agitated nuclei and can
gain as well as lose energy upon making a collision. However, if the
absorption and leakage of neutrons are small, the neutron energy spec-
trum will approach a Maxwell-Boltzmann distribution in speed with a
temperature corresponding to that of the moderator. Under these con-
ditions and using the principle of detailed balance, the thermal equa-
tion in the PI approximation will be, after separating the spatial
function as before,

_TJT + _.aT_T = Q(u T) + du uT du'ZinCu' )(p(u' )H(u' -_ u) (24a)

i

-_ _mTq[_ + ZtrTJ T = P(uT) (2_b)

where ZaT and Ztr T are the appropriate averaged values of the macro-

scopic absorption and transport cross sections over the thermal speed

range. Thus, equations (17a), (17b), (19a), (19b), (2_a), and (2_b)

form the complete set of consistent PI equations extended to include

many elements, which are the basis for an IBM 70_ code.

Discussion of Boundary Conditions, Fission Spectrum,

and Inelastic Scattering Kernel

If the zero of lethargy is taken sufficiently lower than the low-

est lethargy in the source spectrum, the initial conditions for the

set of consistent PI equations will be

Q(u:0)= o, = 0 (25a)

: o, J(u--o): o (25b)

Depending upon the reactor, a number of possible source spectrums can

be used. For this study the uranium-£SS fission spectrum, given in

analytic form as

f(u) : 0.65270 _, exp -I_)sinh_/2.29 E
(26)

has been used. The quantity E is the neutron energy in Mev.

spectrum is normalized to unity; that is,

The

0_ du f(u) = 1.0 (27)

This normalization of the source spectrum permits the evaluation of the

static criticality factor of the reactor as

b.
I

L_
C
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_0 _Kef f = duv (u)Zf (u)qo(u) (28)

The characteristic dimension of the reactor is needed to compute the

lethargy-dependent buckling _m(U). For example, in the case of a

spherical reactor the equation used for _m(U) is

_m(U)--
r + 0.71}_tr(U)

(29)

where r is the radius and where

_tr(U): 3D(u) (3o)

The inelastic scattering kernel in equation (17a) has been obtained

from the evaporation model of the nucleus as described by Blatt and

Weisskopf (ref. 16). The evaporation model of the nucleus appears to

give the gross features of heavy element inelastic scattering. In terms

of energy_ this model gives for the inelastic kernel the following
result:

H(E' _ E)= const. EIe-_(E')E ] (31)

where the constant is determined from the normalization requirement that

_oE'_ H(E'- E): i.o (32)

In equation (51) E r represents the initial energy of the neutron and

E the energy after an inelastic scattering collision has occurred. _he

quantity _(E') is the reciprocal nuclear temperature in Mev -I and is a

function of the scattering nucleus and initial energy of the neutron.

It has been approximated by

with the parameter a being experimentally determined for each nucleus

of interest.

Discussion of Neutron Cross Sections

The lethargy-dependent consistent PI equations described along

with the initial conditions_ source spectrum_ and approximate inelastic

scattering kernel are integrated for a homogeneous unreflected reactor

system over the microscopic cross-section data of the elements involved



14

in a stepwise fashion from 107 ev to 0.025 ev (or from lethargy u = 0
to u = 19.8). This lethargy range is spanned by 473 mesh points such
that the cross sections of the various elements are well represented
in the resonance energy range. The microscopic cross-section data of
29 elements are represented in such a fashion for use with the IBM 704
code. These cross-section data include Oa, Oes, vof, fl_ and Oin
where oa is the microscopic absorption cross section_ Oes is the
microscopic elastic scattering cross section, wof is the microscopic
production cross section, fl is the average cosine of the angle between
the initial and final direction of motion of an elastically scattered
neutron as measured in the center of mass coordinate system, and Oin

is the microscopic inelastic scattering cross section. The quantity v

is the average number of neutrons produced in fission, and of is the

microscopic fission cross section. The quantity w is taken to be

energy-dependent according to the data of reference 17. In the thermal

energy range the absorption and fission cross sections are corrected for

non-i/v behavior as well as for hardening of the thermal spectrum, due

to absorption, using the data of reference 18. The transport cross sec-

tion at thermal energy is similarly corrected.

THEORETICAL RESULTS AND COMPARISON WITH EXPERIMENT

Age of Fission Neutrons in Water

One of the important parameters describing moderating materials is

the fission neutron age T. For hydrogenous media the age becomes espe-

cially important because of the well-known discrepancy for water between

the experimental measurements and various theoretical calculations. For

any homogeneous medium the lethargy-dependent consistent PI equations

can be solved for a given set of microscopic cross-section data, the

uranium-235 fission spectrum, and for a constant buckling Bm. From

the neutron fluxes and currents generated as a function of lethargy, it

is possible to compute the weighted fission age.

In this work, the weighted fission age for water to indium reso-

nance energy is computed to be 26°5 square centimeters. Oxygen was con-

sidered to have linearly anisotropic center of mass elastic scattering.

For isotropic center of mass scattering for oxygen, the age is calcu-

lated to be 24.7 square centimeters. This demonstrates the importance

of precise calculation of the various competing effects on the neutron

spectrum. For comparison of the age of 26.5 square centimeters calcu-

lated in this work, the weighted mean of a number of different types of

calculations is given in reference 19 as 26. Q_0.5 square centimeters.

It is also of interest to note that a recent measurement of the fission

neutron age in water is 27.$6 square centimeters (ref. 20).

!
o_
_o
O
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Fourier Transform of Slowing-Down Kernel in Water

Another important property of homogeneous moderating media can be

described in terms of the Fourier transform K(Bm) of the slowing-down

kernel. Physicall_ the Fourier transform K(Bm) is the nonleakage

probability of the source neutrons to a given energy. The transform

K(Bm) can be derived from a solution of the lethargy-dependent consistent

PI equations for a given source spectrum and a constant value of the

buckling _m.

Figure i is a plot of the transform K(Bm) as a function of Bm

for fission neutrons in water to indium resonance energy. Shown on the

curve are values of the transform computed by Gwin_ Trubey, and Weinberg

(fig. i, ref. 6) from the experimental slowing-down kernel as measured

by Hill, Roberts_ and Fitch (ref. 21). The agreement over a wide range

of buckling is seen to be good. The value of the fission neutron age in

water reported in reference 21 is higher than the recent value of ref-

erence 20 by about S square centimeters. This is believed due to dif-

ferences between the two experiments of measurements near the source.

This difference near the source of the reference 21 measurement of the

slowing-down kernel in water is expected to have a small effect on the

calculation of the transform K(Bm).

Table I compares the transform K(Bm) to indium resonance energy

for water and two concentrations of uranyl fluoride salt in water solu-

tion. The differences as compared to water are slight except for extreme

values of the buckling.

Calculation of Critical Dimensions of Unreflected

Homogeneous UO2F2-H20 Assemblies

The lethargy-dependent equations of the consistent PI slowing-down

model described in the section on theory will be used to calculate the

parameters of critical assemblies of unreflected uranyl fluoride salt

UO2F2 dissolved in water. Comparison of theoretical results with avail-

able experimental data will also be made.

Before any calculations can be performed_ the physical properties

of uranyl fluoride - water solutions must be known. Figure 2 is a curve

of density of uranyl fluoride - water solutions as a function of hydrogen

atom concentration for a temperature of 25 ° C obtained from available

experimental data (ref. 22). The point on the curve for pure water is

for a density of 0.997 g_am per cubic centimeter and a hydrogen atom
concentration of 6.66XI0 _ atoms per cubic centimeter. Since the uranium

in the solution is considered to contain 93.2 percent by weight of the
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uranium-235 isotope_ the data of figure 2 can be used to derive a curve,

figure 5, of the uranium-235 atom concentrations N 25 in atoms per

cubic centimeter as a function of the hydrogen atom concentration N H

in atoms per cubic centimeter. On figure 3 are also indicated various

values of R defined to be the ratio of the hydrogen atom concentration

to uranium-235 atom concentration, R = NH/N 25. Various important char-

acteristics of the U02F2-H20 critical assemblies will be given in terms

of this parameter R.

Thus, specification of the solution density for the U02F2-H20 solu-

tion reactor in question gives the hydrogen atom concentration from the

curve given by figure 2. Then_ from figure 3 the uranium-235 concen-

tration can be determined. The atom densities for the other constituents

of the solution are determined from the following relations:

Uranium-238'. N 2S = 0.0730 N 25 (34a)

Fluorine: NF = 2(N 25 + N 2S) (34b)

A + (34c)Oxygen: N02 = 2

By using the atom concentration for the various constitutents of

the U02F2-H20 solutions in the manner described, calculations were per-

formed, using the lethargy-dependent consistent PI equations over the

473 lethargy points of the microscopic cross-section data extending from

107 ev to 0.025 ev, over a wide range of solution concentrations. In

terms of the parameter R, the solution concentrations were varied from

R = 25 to 700. As a result of these many calculations, the static

criticality factor Kef g is obtained for a given hydrogen to uranium-

235 atom concentration _R) as a function of the buckling _ of the

system. The buckling, although capable of being varied with the lethargy

in the _ 704 code, was considered to be lethargy-independent for these
calculations.

As examples, the lethargy-dependent flux _(u) is plotted as a

function of lethargy u for critical reactors having solution con-

centration values of R = 40 and 472. The source term for the cal-

culations corresponds to i fission neutron. The flux for R = 40, a

system heavily loaded with uranium-235, is shown in figure 4. In the

fission spectrum lethargy range from about lethargy u = 0 to u = 6

a resonance structure in the flux is noted which corresponds to various

high-energy scattering resonances of oxygen. In the resonance energy

range from lethargy u = 6 to u = 18.2_ the decrease in the flux with

lethargy occurs because of the absorption by the uranium-235 nuclei.

The dips in the flux correspond to absorption resonances in the uranium-

235. The effect on the flux of the approximately i/v capture is
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evident from lethargy u = 15.0 to 18.2. The flux for R = _72, a

system lightly loaded with uranium-235, is shown in figure 5. In the

lethargy range from u = 0 to 6 the flux for R = 472 appears roughly

the same as for the R = 40 system. In the lethargy range from u = 6

to u = 18.2 the flux is constant from about lethargy u = 7 to

u = 12.0. From lethargy u = 12.0 to 18.2 the effects of uranium-235

absorption resonances and i/v capture are evident but are not as

drastic as for the heavily loaded R = 40 reactor system.

Figure 6 is a plot of the static criticality factor Kef f for un-

reflected UO2_2-H20 assemblies as a function of the parametric R and

the buckling _. Curves of the criticality factor varying from 0.98

to 1.12 are shown. All the curves exhibit a broad minimum in the buck-

ling over values of R from 40 to 70. For the static criticality

factor equal to unity the radius of the equivalent unreflected sphere,

which includes the extrapolation distance, varies from about 18.25 to

2S centimeters over the range of the parameter R.

Comparison of Calculated Critical Dimensions with Experimental

Values for Unreflected U02F2-H20 Assemblies

In order to compare calculated critical dimensions with experi-

mentally determined values, the effect of the aluminum containment

vessels on measured critical dimensions of unreflected UO2F2-H20 assem-

blies must be known. The worth of the aluminum bottom plate for the

NASA experiments was measured in terms of the change in critical height

as a function of the thickness of the bottom plate for a 12-inch-

diameter cylindrical tank. The solution concentration R was 47S.

These results are shown in figure 7 where it is seen that, for example,

a 1-centimeter-thick bottom plate is worth about 0.5 centimeter of solu-

tion height for this particular reactor. It is expected that the bottom

plate worths for other values of R would be nearly the same as for the

values for R = 475 since the fraction and spectrum of neutrons leaking

from these do not differ greatly. It is estimated that the reported

critical height for the NASA experiments could be too low by a maximum

of about 0.5 centimeter since the wall thickness of the aluminum cylinder

is i/8 inch. Thus, because of the expected smallness of this correction,

none of the Oak Ridge and NASA criticality data have been corrected for

the criticality effect of the aluminum containment vessels.

Since figure 6 is based on an energy-independent buckling, this

implies an energy-independent extrapolation distance 6. This valueof

8 can be deduced from experimental criticality data on unreflected

cylinders if the top_ bottom_ and side extrapolation distances are

assumed to be equal. Then, comparison with a wide range of reactor
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dimensions and solution concentrations will establish the validity of a

constant value for 8. Figure 8 shows theoretical curves based on values

of 8 = 2.5, 3.0_ and 3.5 centimeters for unreflected 12-inch-diameter

cylindrical reactors of UO2F2-K20 solution in which the critical height

is plotted as a function of the parameter R°

the following equation for the critical height

These curves are based on

h of the cylinders:

h : - 2_ (3Sa)

where

2.4-04:8) 2 (35b )

and r is the physical radius of the cylinders. For a given value of

___ is evaluated from figure 6 for a Kef f of unity_ and then, sinceR,

the values of r and $ have been fixed_ the physical height h is

given by equations (35a) and (3Sb). It is evident from figure 8 that

these critical assemblies are quite sensitive to the value of the ex-

trapolation distance which is used. For the 12-inch-diameter cylindrical

reactors considered the value of 8 = 3.0 centimeters seems to predict

the experimental critical heights listed in table II quite well as a

function of the atom ratio parameter R. This insensitivity of _ with

R is probably due to the fact that the hydrogen atom density, and hence

the leakage fraction_ changes but little over the range of R considered.

Therefore_ it was decided to use this value of 8 = 3.0 centimeters for

the extrapolation distance for all values of the parameter R for the

various diameters of the unreflected cylindrical critical assemblies of

U02F2-H20. Reference 6 reports using values of _ = 2.5 to 3.7 for the

empirical kernel method of calculation.

The curves of figure 9 represent calculations of the critical

heights of cylindrical reactors for various diameters and as a function

of the parameter R. These calculations are based on the theoretical

buckling curve given as figure 6 and the assumed constant value of the

extrapolation distance _ = 3.0 centimeters. The experimental points_

listed in table II, represent data from references 2, 3, 4_ and the

NASA solution reactor. The agreement for various diameter reactors as

a function of R is quite good between the theoretical model described

in this work and the various experiments. Thus, this provides the

verification of the general buckling curve (fig. 6) and of the constant

value of 3.0 centimeters for the extrapolation distance for these un-

reflected cylindrical reactors.

!
o_
to
O
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Calculation of Nonthermal Fission Fractions, Leakage Fractions,

Neutron Age, and Two- and Three-Group Macroscopic Cross

Sections as a Function of Solution Concentration

for U02F2-H20 Assemblies

In solving for the critical dimensions of unreflected U02_2-H20

reactors using the consistent PI equations_ the lethargy-dependent flux

q0(u) and current J(u) are generated. Since all the information about

a given reactor is contained by the flux and current, it is possible to

derive many useful quantities pertaining to the U02F2-H20 reactors.

Figures i0, ii, and 12 present some of this information.

In figure i0 is plotted the nonthermal fission fraction as a func-

tion of the parameter R for various cutoff energies. For a heavily

loaded U02F2-H20 system having R = 25, about 65 percent of the non-

thermal fissions occur between energies of 107 ev to 0.125 ev_ while

about $5 percent of the total fissions occur between energies of 107 ev

to i._ ev. For a U02F2-H20 reactor having R = 700 the corresponding

numbers are about S and 5 percent.

Figure ii is a plot of the fraction of the neutrons which escape

from critical U02F2-H20 systems as a function of R. This fraction is

nearly constant over the range of R from 25 to about 500_ varying be-

tween _ and _7 percent. For larger values of R this function de-

creases and is about 55 percent at R = 700.

Figure 12 is a plot of the fission neutron age • as a function

of the parameter R both for the indium resonance detector energy of

i._$ ev and the thermal cutoff energy of 0.125 ev. From about R = i00

to R = 700 the age is nearly constant. For values of R less than

I00 the age increases because of the decreased hydrogen atom concen-

tration. In the limit as R _ _ the l.$$-ev curve would approach the

fission neutron age in water.

The neutron fluxes generated in solving for the critical dimensions

of unreflected U02F2-H20 systems can also be used as a weighting function

for obtaining two- and three-group macroscopic cross-section parameters.

These two- and three-group cross sections can be used in calculating

reflected U02F2-H20 solution reactors.



£0

Both three- and two-group constants were generated as a function of
R. Group I of the three-group split extends from u = 0 to u = 6.1,
group II from u = 8.1 to u = 18.2, and the thermal group is centered
about the lethargy of 19.8 corresponding to the room temperature kT of
0.025 ev. For the two-group split, the thermal group is the sameas
that of the three-group split, and the fast group (group l) extends from
lethargy u = 0 to u = 18.2. For the few-group calculations performed
with a one-dimensional mu!tigroup IBM 704 code, the parameters needed
are the group diffusion coefficient DG, group macroscopic absorption
cross section EG, group macroscopic production cross section v_Gf, and
the group removal cross section rG. These group parameters are defined

over the fluxes and currents genergted for a given value of R as

Zo J(u)du
DG = up (36a)

oup @)q (u)du

g_ro Za Cu)q_Cu) du

ZaG = up (36b)

g_roup _(u)du

(u)zf(u) (u)du
: up (36c)

gJ ro q (u)du
up

G
The quantity Eq

group in question.

constants were not sensitive to the choice of buckling

is evaluated by making a neutron balance over the

Over the range of buckling considered, the group

Zm.

The few-group constants obtained by the method described are shown

in figures 13, 14, 15, and 16 for both the three- and two-group splits

over the range of R values. The diffusion coefficient D is plotted

in figure 13 and is relatively constant over the entire range of R for

most of the fast groups; however, the effect of uranium-235 absorption

is seen for all the R values for the thermal neutron group. The ab-

section E_ is shown in figure l& andsorption cross varies strongly

with the atom ratio R. The production cross section rE9 is shown in

figure IS and exhibits similar behavior as the absorption cross section.

The removal cross section Zq is shown in figure 16 and increases as

O
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the parameter R increases. Table III gives the corresponding three-

and two-group data for water at room temperature.

O
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Comparison of Calculated and Experimental Critical Dimensions

for Water-Reflected UO2F2-H20 Reactors

In order to perform theoretical calculations on fully reflected

cylinders_ the reflector savings must be established as a function of

reflector thickness and concentration parameter R. Using the three-

group parameters plotted in figures 15 to 16 for various values of R

and the water constants listed in table Ill, the critical core radius r

was calculated for spherical reactors of UO2_2-H20 solutions with various

thicknesses of water using an IBH 704 diffusion code. The reflector

savings RS is defined as

RS = - r (Z7)

where for a given value of R the value of _ is obtained from fig-

ure 6. The results of these calculations are shown in figure 17. The

curves show a slight increase in the reflector savings with R. For the

completely reflected case (60 cm of water) the value of reflector savings

is S.S centimeters at R = 2S and 8.0 centimeters at R = 700. For the

range of R values considered the reflector savings reached its maximum

value at about 15 centimeters thickness of water.

The critical heights h of fully reflected cylindrical assemblies

were computed for cores of radius r as a function of the parameter R

using the critical buckling curve of figure 8 and the infinite water

reflector savings curve of figure 17. These results are shown in fig-

ure 18 and were calculated with the following two formulas:

h = - 2RS (3Sa)

Experimentally obtained data listed in table IV are also shown on the

curves. The agreement is generally good. The dashed curves were com-

puted by arbitrarily increasing the reflector savings by 0.5 centimeter

for all values of R. The two sets of curves bracket the experimental

data quite well and serve to indicate the sensitivity of the calculations

with small changes in the value of the reflector savings.
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CONCLUSION

The lethargy-dependent equations of the consistent PI approxima-

tion to the Boltzmann transport equation for slowing down neutrons, as

developed in this present study, have been used as the basis of an IBM

704 computer program. This program has been used to compute the age of

fission neutrons in water as 26.5 square centimeters as compared to a

recent experimental value given as 27.86 square centimeters. The

Fourier transform of the slowing-down kernel for water to indium reso-

nance energy calculated here compares well with the Fourier transform of

the kernel for water measured by Hill, Roberts, and Fitch. This method

of calculation has also been applied to uranyl fluoride - water solution

critical assemblies. Theoretical results established for both unre-

flected and fully reflected critical assemblies compare well with avail-

able experimental data.

b_
!
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Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, August 22, 1961
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APPENDIX - SYMBOLS

ratio of nuclear mass to neutron mass

inelastic scattering parameter defined by eq. (55)

lethargy-dependent material buckling defined by eqs. (8)

and (9)

transverse buckling for cylindrical geometry

diffusion coefficient at lethargy u defined by eq. (22),

cm

neutron diffusion coefficient for group G defined by

eq. (S6a), cm

spatial volume element

element of lethargy

velocity volume element

neutron energy

thermal cutoff energy separating thermal energy range

from fast energy range

spatial function defined by eq. (Sb)

fraction of source neutrons in lethargy interval du

about lethargy u

average cosine of angle between initial and final direc-

tion of motion, measured in the center of mass coordi-

nate system, for elastically scattered neutrons of

lethargy u

spatial function defined by eq. (8a)

H(_' _ _)d_dv probability that a neutron in phase volume element

(d_ d_' ) will, after an inelastic scattering collision,

be in the phase volume (d_ d_)

h physical height of cylindrical reactor

J(u) lethargy-dependent neutron current defined by eq. (17b)

• <

_ • _ _ I• _ • •
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Fourier transform of neutron slowing-down kernel

Keff static criticality factor for a reactor

k Boltzmann constant

concentration of an element, atoms/cm 3

probable number of neutrons in space volume element d_

about position _ and in velocity element d_ about

velocity v per unit time

anisotropic slowing-down density defined by eq. (19b)

P(_' _)d_ d_ probability that a neutron in the phase volume element

(d_ d_' ) will, after an elastic scattering collision,

be in the phase volume (d_ d_)

Pt(u-u') lethargy-dependent coefficient of index Z, in expansion

of elastic scattering kernel into a series of Legendre

polynomials, defined by eq. (13)

Legendre polynomial or argument _ and index Z

slowing-down density defined as number of elastic scat-

tered neutrons which pass lethargy mark u per unit

time per unit phase volume (d_d_)

Q(u)

Qt(z,u)

isotropic slowing-down density defined by eq. (!9a)

coefficient of index Z in expansion of slowing-down

density into a series of Legendre polynomials defined

by eq. (7)

R ratio of hydrogen atom concentration to uranium atom con-

centration for the U02F2-H20 solution reactors

RS reflector savings defined by eq. (37)

r physical radius of cylindrical reactors

r position vector

S(R )d dV source of neutrons due to fission which are produced in

phase volume element (d_ d_)

T moderator temperature, oK

!

_D
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contraction for lethargy difference u-u'

neutron lethargy defined in terms of neutron energy E

by equation u = In(Eo/E), E 0 usually taken as 107 ev

cutoff lethargy corresponding to cutoff energy

neutron speed corresponding to energy E

neutron velocity

coordinate axis

quantity related to mean squared lethargy increase per

collision, defined by eq. (20b)

Dirac delta function used in eq. (12)

extrapolation distance defined by eqs. (55a) and (55b)

Kronecker delta defined by eq. (5)

reciprocal nuclear temperature defined by eq. (55)

neutron transport mean free path defined by eq. (50)

cosine of angle between Z-axis and direction of motion

of neutron in planar geometry

cosine of angle between initial and final directions of

motion measured in laboratory coordinate system of a

neutron undergoing an elastic scattering collision

average cosine, measured in laboratory coordinate system,

for elastically scattered neutrons

mean of the product of lethargy increase in a collision

times angle of scattering, defined by eq. (20c)

average number of neutrons produced per fission occurring

at energy E

average increase in lethargy per collision

quantity related to mean of the product of squared

lethargy increase per collision times angle of scat-

tering; defined by eq. (20d)
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Zes

Zf

Zin

da

des

df

din

_(E',E)

macroscopic neutron absorption cross section, cm -I

macroscopic neutron elastic scattering cross section, cm -I

macroscopic neutron fission cross section, cm -I

macroscopic neutron inelastic scattering cross section,

cm-i

macroscopic neutron total cross section, X a + Xes + tin ,

cm-i

macroscopic neutron absorption cross section for group G,

defined by eq. (38b), cm -I

macroscopic neutron fission cross section for group G,

defined by eq. (36c), cm -I

macroscopic neutron removal cross section for group G_

cm-i

microscopic neutron absorption cross section, cm 2

microscopic neutron elastic scattering cross section, cm 2

microscopic neutron fission cross section, cm 2

microscopic neutron inelastic scattering process, cm 2

neutron age, defined as one-sixth the mean squared

slowing-down distance to energy F. of a neutron

originating from a point source emitting neutrons of

energy E' in an infinite medium

neutron flux, nv

unit vector in direction of motion of neutron
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_ I.- Fo_zm _s_o_ [(_) oF SLOWING-DOWN

KERNEL FOR FISSION NEUTRONS IN WATER AND IN

UO2F2-H20 SOLUTIONS WITH ATOM RATIOS

OF HYDROGEN TO URANIUM-235, R,

EQUAL TO 50_ 150

_n _20@=_) R = 150 R = 5O

l.O 1.00

.05142

•06285

.12566

.20964

.26180

.51416

.5927

.5236

.7854

.9745

.9047

.6944

.4188

•2881

.1925

.0995

.0285

.0005

.9748

.9057

.6970

.4220

.2922

.1963

.i030

.0310

.0015

1.0

.9752

.9069

.7000

•4265

•2970

•2015

.1079

•0349

.0028
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i TABLE If. - EXPER_AL CRITICALIT_ DA_A FOR UO2F2-H20 UNREFLECTED

SOLUTION REACTORS CO_A_ BY _ V_BSEI_

Cylinder

diameter#

in.

l0 52.9

&69.0

27.1

44.5

75.4

43.2

44.7

Critical

height,

cm

54.0

41. 2

58.9

55.1

55.7

a34. 9

a54.7

Reference

4, p. 75-74

Gyllnder

diamet erj

in.

15

At om rat io,

R° ÷/ -255

169.0

528.7

499.0

755.0

27.1

44.5

74.6

Crlt ical

height,

om

18.5

21.7

27.4

45.6

18.5

17.9

16.8

Reference

2, p. 75

5, P. 25

50.1

51. 5

55.4

60.8

66.1

71. 5

85.1

85.7

54.8

a55.5

54.5

54.1

5&.1

54.1

54.4

54.9

J

r

2O

50. i

551

27.1

44. 5

75.4

50. i

60.8

17.9

22.9

15.8

15.0

15.2

15.4

15.5

% p. 25

4, p. 75

12 44.5

50.1
51.5

55.4

60.8

551

185

218

250

255

285

520

565

405

455

455

460

465

485

25.2

22.6

22.6

a22.6

22.7

32.8

25.5

26.6

28.5

28.5

50.2

52.0

55.4

57.0

45.6

46.2

47.0

48.2

48.8

Present

work

5O

525

44.5

72.4

50.1

51.5

551

18.7

15.7

15.9

15.8

a15.5

16.5

5, p. 25

5, p. 25

4, p. 75

S_alue too low according to ref. 4.
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TABLE Ill.

0-18.2

0-6.1

6.1-18.2

19.8

- THREE- AND TW0-GROUP CONSTANTS FOR WATER REFLECTOR

Diffusion

coefficient,

DG

1.27`$

1.722

.612

.1329

Absorption

cross section,

0.00068

.00012

.001`$5

.01962

Removal

cross section,

0.0`$598

.07857

.11592

TABLE IV. - EXPERI_AL CRITICALI_DATA _0R UO2F2-H20 REACTORS

FULLY REFLECTED BY AN INFINITE WA_'ER REFLECTOR

Cylinder

diameter,

in.

l0

15

At om rat io,

R = -255

26.2

29.9

52.9

58.8

99.5

192.0

290.0

`$5.2

52.9

528.7

`$99

52.9

56.7

221.0

`$99.0

755.0

Critical

height_

cm

21.5

20.7

19.5

20.5

22.,$

2s_.1
4=0.i

18.6

15.4=

22.`$

55.2

Reference

2, p. 69

,`$,

2,

7.90

8.50

ii.50

16.90

27.10

2,

J
i

I

p. 72

p. 69

p. 72

p. 72

p. 69

. • i q: ' ,
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on total buckling from figure 6 and extrapolation distance 5 = 5.0 cm.)
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Figure 18. Critical height plotted against a_om ratio NH/N U-255 for various

diameters of cylindrical UO2F 2 solution reactors having both end and side

reflectors of water (infinite thickness). Theoretical curves obtained using

calculated values of total buckling given in figure 6 and reflector savings
given in figure 17.
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