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SUMMARY

The blackbody temperature and the albedo of a planet, and
the variation of bothparameters with latitude, longitude, and time,
are of great value in understanding the climatic and meteorolog-
ical conditions of the planet. An unchopped radiometer with a wide
but restricted field of view is capable of such temperature and
albedo measurements. Coated thermistors mounted in highly
reflective cones serve as detectors. Their performance as
sensor elements is analyzed in detail herein to prove the fea-
sibility of the measurement. The simplicity of the instrumenta-
tion and the low information bandwidth required make the experi-
ment equally attractive for earth satellites and space probes.
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A LOW-RESOLUTION UNCHOPPED
RADIOMETER FOR SATELLITES

INTRODUCTION

Measurement of the optical and thermal properties of the earth and other planets is
one of the basic experiments that can be performed by means of satellites and space
probes. Incoming and outgoing radiation determine the energy budget of a planet and are
responsible for climate and weather in the broad sense. Measurements in narrow spec-
tral bands can be used to determine atmospheric compositions and temperatures and to
give information on surface conditions.

The goal in this field of research could be detailed maps of the planets, showing the
visual picture, temperatures, and radiation in characteristic bands. All high-resolution
maps obtainable by photography, television, and spot-scanning techniques require high
rates of information transmission and, frequently, storage facilities in the probe. For
many purposes, especially if overall global or planetary studies are involved, only aver-
age values over rather large areas (e.g., 300 by 300 miles) are of interest. Even in the
case of earth satellites, where a high-resolution picture is possible, the relatively low
information rate and the integrating property of the wide-field detector justify simulta-
neous measurements by devices with low and high resolution.

The simplest form of such a wide-field radiation measurement is the heat-balance
experiment suggested by Suomi and Wexler in connection with the International Geophysi-
cal Year program (Reference 1). In this procedure the temperatures of small spheres,
coated to discriminate between solar and terrestrial radiation, are sensed by thermistors.
However, the omnidirectional device has restrictions in accuracy and resolution. It is
especially desirable in an image-forming experiment to match the field of view of both
high- and low-resolution instruments. Interesting correlations between cloud cover and
radiation balance might be expected.

The main problem in such a simple, unchopped radiometer is the loss in sensitivity
resulting from the restrictions in the field of view. A technique that overcomes this
limitation is analyzed in this paper.
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METHOD OF MEASUREMENT

In the suggested version a thermistor is mounted in the apex of a highly reflecting
cone. The detector can be classified as a thermal detector cooled predominantly by
radiation. Its temperature is governed by the equation of energy balance,

' 3 . .
e 0T = kg oTd + kyoT,* + Ky 40T (T, = T,) + kyAd sin 5. (1)

(All symbols are defined in Appendix A.)

Thermal radiation emitted by the thermistor balances radiation from the earth,
radiation and heat conduction from the satellite, and finally the earth's reflected solar
energy. The coefficients k consolidate optical as well as geometrical factors. The two
unknowns, i.e., the blackbody temperature T_ and the albedo of the earth, can be deter-
mined if a second linearly independent equation is available.

In the experiment the second equation is provided by a second thermistor with dif-
ferent optical properties. One detector is coated black; it is equally sensitive to reflected
sunlight and long-wave terrestrial radiation. The second detector is coated to be highly
reflective in the visible and near infrared to about 3 microns (Reference 2). The surface
appears white to the eye even though its emissivity in the infrared is very high. Since
99.9 percent of the terrestrial radiation is emitted at wavelengths longer than 4 microns,
both detectors will show the same equilibrium temperature when they face the dark side
of the earth. On the illuminated side the temperature of the black detector will rise — in
contrast to that of the white one, which is hardly affected by reflected sunlight.

Careful measurement of the temperatures of both detectors and accurate calibration
of all k values permits the determination of albedo and terrestrial radiation.* It has
been tacitly assumed that the influence of the satellite temperature T, can be kept small
(k, and k, << k), or the thermistor would read essentially the satellite temperature.
High thermal isolation of the detectors from the satellite structure is essential to the
experiment, and the major part of this paper is devoted to that problem.

GEOMETRY OF THE CONE

The field of view of a thermistor mounted in a cone can best be visualized by utiliz-
ing the mirror image of the detector (Figure 1). The conical detector is equivalent to a

*T.his is exactly true only if radiation from the earth follows Lambert's cosine law; but
since the atmosphere, with its peculiar absorption bands in the infrared and its tem-

perature gradients, does not emit as a diffuse surface, certain corrections have to be
made in the interpretation of data.



Figure 1 - Equivalent detector, imaging of thermistor

spherical one that is restricted in its field of view by an aperture equal to the base of the
cone. Reflection losses could be taken into account by assuming a reduced emissivity for
each image. It is justifiable to consider a sphere of uniform emissivity ¢, since evapo-
rated metal surfaces have high (90-99 percent) reflectivity (Reference 3) and since only
a few reflections are involved. Figure 2 shows the field of view for various thermistor-
to-cone radius ratios r;/r, and aperture angle ¢.

The energy exchange is judged better by a second mode of imaging, that of imaging
the source (Figure 3). The detector surface appears completely surrounded by the tar-
get. Radiation exchange between thermistor and earth is then described by

P=co(tt-THa, . (2)

The term o, = 27r 12(1 - cos ¢) represents the detector area. Without the conical
reflector the same detector would receive approximately P sin?4. The gain introduced
by the cone becomes about 5 for ¢ = 25 degrees. The same method of imaging permits
estimation of the amount of radiation between cone and detector, as shown in Figure 4.
Since the emissivity of the cone material can be kept as low as 0.02 and since a large
portion of the cone will be at the satellite temperature, this effect — small to begin
with — can be incorporated into the radiation exchange of the unexposed side of the
thermistor mount.
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Figure 4 - Radiation exchange between cone and detector

RESOLUTION AND BANDWIDTH

The resolution of such a system and the electrical bandwidth required to transmit
the gathered information are related to the altitude and speed of the vehicle. The de-
tector, slowly scanning the earth as the satellite moves along, responds to the average
radiation within its field of view (Figure 5). Any arbitrary intensity distribution in the
scanning direction can be taken into consideration by superposition of periodic distribu-
tions of wavelength A :

I, = ). a_ exp (ﬁ"") 3)

n n

The center x, of the field of view travels with subsatellite speed v, as the satellite,
visualized as a stable platform, orbits around the earth. Consequently, x, is equal to
vt; and, since

x=x0+*\,cos¢,

the radiation received by the detector of radius r, from a solid angle 0 is given by

P, = ‘L r12an exp (ik vt) exp (ik 2 cos ¢) dQ, (4)

where k_ stands for 27/)_ . The increment of the solid angle dQ is derived from geo-
metrical considerations:



Ada deg
h2 + a2 °

d) = cos & (5)
Equation 4 can be integrated over ¢ by Sommerfeld's integral for Bessel functions (Ref-

erence 4):

R .
P = j 27Tr12 a, exp (ikvl) h JO(k'L)(h2 + a2y T a2 gn . (6)
0

This integral can be solved by partial integration:

Jm(k R) 7
(kY™ @

P, = 7rla exp(ikv{)Z 2 W (2q - 1) cos £ sin?™8
m=1 q=1
The first null in Equation 7 characterizes the resolving limit of the system. A small,
square field of view exhibits 2 sin X/X characteristic and shows the first null at X, = .
A small, circular field of view has a 2J,(X)/X scanning function, and the first null is at
X, = 3.8. Evaluation of the sum in Equation 7 yields X; = 4; an altitude of 300 miles and
an angle ¢ of 25 degrees were assumed. The wavelength A, which corresponds to the
first null, is then
27R

N (®)
The corresponding electrical frequency band is given by Equation 9 (when v = 4.4 miles
per second, and R = 140 miles):

Figure 5 - Detector slowly scans earth as satellite moves alongvector v



= 0 = (9)
fmax Py 0.02 cps.

The thermal time constant of the detector has to be chosen to accommodate to the highest
frequency. Compared with those of other detection systems, these bandwidth require-
ments are very low.

ENERGY TRANSFER WITHIN THE CONE

A cross section of the detector assembly (Figure 6) shows the thermistor imbedded
in the central area on the tip of the cone. The thermistor material could be deposited
directly on the lower inner part of the Mylar cone. For small angles ¢ the black de-
tector, being truly gray since its emissivity is about 0.8, would resemble an ideal black-
body. This procedure is not too advisable for the white detector, since the reflectivity
for visible light is also reduced. The cover plate that shields the cone or cones from the
interior of the satellite is made highly reflective (¢ = 0.02). However, in the calculations
an emissivity of 1 (¢_ = 1) was assumed. This seems to be justified for the following
reasons.

Because of multi-reflections, the effective emissivity of two parallel surfaces of
emissivity «, and ¢, facing each other is

€182
Ceff ~ 5. ¥ e - c.5. " (10)

€1 t €5 - EqEy
If both emissivities ¢, and ¢, are small and equal, ¢_,;, becomes /2. However, if
radiation emitted by the rear surface of the thermistor is not reflected back to the de-
tector but bounces back and forth between cone and cover plate until finally absorbed,
then the cavity between cone and cover acts like a blackbody independent of wall emis-
sivity, and ¢_,, becomes equal to . rather than to ¢/2. The actual physical structure
will be somewhere between these two cases, probably closer to the black cave model.
Therefore, for the purpose of this calculation, and also to incorporate a small amount of
radiation from the front surface of the detector to the outer areas of the cone, an emis-
sivity of 1 was chosen for the cover plate.

The energy flux Q(r) in the cone material is proportional to the temperature
gradient,

Q(r) = -cD2ur sin & PI;Tyl . (11)

Simultaneously, Q(r) is the flux into the cone tip plus the received or emitted radiation:
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Figure 6 - Energy transfer within conical detector
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Q(r) = Q(ry) J EO’(Te4 - T;)da - j ea(Ty4 - T:) da. (12)
I’l T

1
The balance between incoming and outgoing radiation of the thermistor is

r

1 2c,q, (Tg = Ty)
Qry) = etU(T: - T:) 2771'12(1 - cos §) - S ao(Tt4 - T:)da - y3 £t (13)
0

These equations can be solved, after linearization by means of a reference temperature

T,

T, =Ty *y Ty4=T04+4T03y+--'

Ty =Ty v t Tt4=T04+4T03t+~--

T, =T, +S =1} +at]s + -

Te=Ty +E Tl v aTE (14)

The error introduced by the omission of second-order terms can be kept small if T, is
chosen close to the mid-range value of the temperatures involved. Furthermore, with-
out loss in generality, the satellite temperature S can be taken equal to unity and the
equivalent earth temperature equal to minus unity. Equations 11 through 13 then become

Q(r) = -cD27r sin 63—3:, (15)
Q(r) = Q(ry) - 2e027 sin 84T03 5 yr dr, (16)
1
2 1 -
Q(ry) = U4T0377r12 [—stZ(l - cos )(1 +t) + e(l - t) sin 6} + —%——t)—. (17)

Differentiation of Equations 15 and 16 leads to a Bessel differential equation:

3
Y 1, 2e04T, ~ 18
yviorey s v 2 % (18)

which is solved by Bessel and Hankel functions of order zero and imaginary argument
(Reference 5),

y = aJy(iér) + bH' D (iéry. (19)

'\
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The parameter ¢ is introduced for brevity:

2 4EUT£

=2 —5 (20)

Boundary conditions determine the constants a and b in Equation 19. One boundary
condition states that the temperature of the base of the cone must be the satellite
temperature:

y(r = r,) = +1. (21)
The introduction of Equation 21 into Equation 19 yields

_ Hy(igr) + a[Jo(ifr)Hoz = JoHy (i)
B H H '

(22)

02 02

At the other boundary r - r,, the thermal flux must be Q(r,) as specified by Equation
17, which determines the remaining constant a:

T [ Hoy Hoy Hyy
1 3o |e(p t sin ) (1 —w—— )= e.2(1 - cos 9) {1 ++— - i =
~ 4e sin & Hy, t Hy, H,, . (23)

gr]
4c sin &

[E(p t sin ) + €2(1 - cos 5)] JosHoz = JooHo1) * 1Ty Hop = JoHgy)

In Equation 23, o stands for

Colw

= —¥v 24
£EU4T:er ( )
Since the general solution for y equals t for r = r,, the thermistor temperature is
given by
H a(JgHgy = J )
¢ = H01 N 01 ozH o2tlos : (25)
02 02
and finally, by substitution of a and rearrangement of terms,
g(p * sin ) - €,2(1 - cos &) i JiaMoy 7 JoqHyy
4¢ sin 6 Y&, T H,, - J..H
¢ = . 1_Jo1%o2 02701 (26)
e(p *t sin 8) + g,2(1 - cos 6) i JiHoo — JooH
4e sin ¢ ' ¢ty JoiHoz ~ JooHox

Figure 7 shows the thermistor temperature t expressed by this equation (using numeri-
cal values from Reference 4). The thermistor temperature is within the two limits: the
satellite temperature S = +1, and the earth temperature E = -1. A variety of parame-
ters consolidated in x; and x, determines t. The abscissa in Figure 7 is x,, and the
curves correspond to a particular value of x,. The parameters x, and x, are
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proportional to the dimensions of the thermistor, r,, and of the cone, r,. They should
be chosen so that t approaches the earth temperature E as closely as possible without
unnecessarily increasing the physical dimensions of the detector. The value x; = 3
seems to be a good compromise. For thermal reasons alone, x, > 6 would be sufficient;
however, a well defined field of view requires x, > 4x,;. The radii r, and r, can then

D D
Ty = X > 3 Ty = X, = 3 (27)
2€U4T0 25041‘0

Numerical values for a 1-mil gold-coated Mylar cone yield a thermistor size of about 1
square centimeter, a reasonable dimension.

be determined:

To this point, the influence of wires connecting the thermistor electrically to the
resistance-measuring instrument has been neglected. This is justified, as can be seen
from Equation 26, as long as o < sin é oOr c.g, < &741‘03”12 sin 6, a condition that can
easily be met by a thin platinum wire (gage number 30, 4 = r,).. Heat conduction through
the wires can therefore be neglected.

"CALIBRATION OF THE INSTRUMENT

A very important task will be the determination of the coefficients k. The linearized
form of Equation 1 for both the black and the white thermistors yields two equations:

tyy = kB * kg8 H kA,

t, = kgyE + kppS + ky A (28)

The constants k,,, k,,, and k,, will be chosen high, perhaps 0.9. By proper coating,
the residual responsivity of the white detector to sunlight k,, will be made as small as
possible. Calculations in this paper have shown that the combined effect of radiation and
conduction from the satellite structure, k,, and k,,, can be made very small indeed
(0.1). The experimental verification and determination of all k's is the most important
part of the calibration. The temperatures of the black and the white thermistors and the
satellite structure will be telemetered back to earth; then Equation 28 can be solved for
the unknowns: the blackbody temperature E and the reflected solar energy A.
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Appendix A

LIST OF SYMBOLS

albedo

detector area

constants

specific conductivity

specific conductivity of connecting wire

thickness of cone material

areal element

temperature of earth relative to reference temperature

frequency

Hankel's function of first kind, =*" order of the argument (izsr)

(1, .
HO (1§r1)

(@D
HO (151y,)

1y ..
HDgigr )

satellite altitude

intensity

Bessel's function of m'" order of the argument (i&r)
Jo(ifrl)

Jo(igrz)

Jl(ifrl)

wave number

length of connecting wire

total radiant flux

thermal flux in cone

cross section of connecting wire

indices of summation

15
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Ty

T2

radius of target area

radius to arbitrary point in the target area

radius of thermistor

radius of cone

radius to an arbitrary point of the cone

temperature of structure of satellite relative to reference temperature
solar constant

absolute temperature (°K)

equivalent temperature of earth

reference temperature

temperature of mounting structure

temperature of thermistor

temperature of cone material

temperature of thermistor relative to reference temperature
time

subsatellite speed

first zero F(Xy) = 0

subsatellite path; arbitrary variable

center of field of view

auxiliary parameter (see Figure 7)

auxiliary parameter (see Figure 7)

temperature of cone relative to reference temperature
elevation angle

emissivity of cone surface (= 0.02)

emissivity of mounting structure in satellite =1
emissivity of thermistor (= 0.8)

wavelength of intensity distribution (Figure 5)

solid angle

azimuth angle

cdy/ 1 ecr4T03 7 12 as defined by Equation 24
Stefan-Boltzmann radiation constant

aperture angle (one-half of field of view)

\/m as defined by Equation 20 NASA - Langley Field, Va.
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