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HEAT TRANSFER AT THE REATTACHMENT ZONE
OF SEPARATED LAMINAR BOUNDARY LAYERS

By Paul M. Chung and John R. Viegas
SUMMARY

The flow and heat transfer are analyzed at the reattachment zone of
two-dimensional separated laminar boundary layers. The fluid is considered
to be flowing normal to the wall at reattachment. An approximate expres-
sion is derived for the heat transfer in the reattachment region and a
calculated value is compared with an experimental measurement.

INTRODUCTION

The mechanism of heat transfer through separated regions is very
complicated and little understood. Chapman in reference 1 first analyzed
this problem and obtained an estimate of the average heat transfer in this
region. A survey of the literature reveals that no local heat-transfer
analysis has been done for a Chapman type separated region. Reference 2
indicates that the complete physical problem is too complex to be ade-

uately described by a simple flow model. Existing experimental work
?ref. 3) shows that the maximum heat transfer in a separated region occurs
at the reattachment point. References 1 and 4 indicate that one may be
able to analyze the flow and heat transfer near this point. This paper

is concerned with heat transfer in the reattachment zone for normal reat-
tachment of a two-dimensional separated laminar boundary layer. Figures

1 and 2 show the model considered.

The flow approaching the reattachment zone is considered inviscid but
rotational. The viscous effect is assumed to be confined to the boundary
layer which develops along the x axis. The partition into inviseid and
viscous regions is justified because, as will be seen subsequently, the
vorticity in the inviscid region is smaller than that in the boundary layer
by an order of magnitude. In the followling analysis the fluld in the
inviscid region is assumed to be incompressible and a closed-form solution
of the flow field is developed. Thils solution is then used to solve the
boundary-layer equations for heat transfer along the x axis.
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NOMENCLATURE

total enthalpy
function defined by equation (15)
length of reattachment zone

length of separated mixing layer

Nusselt number,

=
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pressure
Prandtl number
heat transfer to the wall per unit area per unit time

nose radlus of a hypersonic blunt body

peuel
Reynolds number, ——
He
varlable defined by equation (13)
x component of velocity
streamwise velocity at the outer edge of' mixing layer

y component of veloclty

v(0, L)

H =

distance along the wall from reattachment point

particular value of x greater than L but still near the
reattachment point

A
L

distance in direction normal to wall

variable defined by equation (13) or function defined by equation

(AT)
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A parameter defined by equations (3) and (23)
W dynamic viscosity

3 dummy variable

o] density

¢,X Laplace transforms defined by equations (13)

s stream function
Q vorticity
Subscripts
e outer edge of mixing layer
r average value for reattachment zone (0 < x < L)
t reattachment point
W wall

INVISCID FLOW REGION

The flow approaching the reattachment zone shall be considered
invisecid, Incompressible, but rotational. Figure 2 shows the flow model
studied. For thls case, the distributlon of the streamlines on the x-y
plane is given by the equation

V& = -a(y) (1)

where V 1s the usual stream function, defined as:

- QY . oV (2)

bl dy ’ VE T
To obtain an expression for Q(¥), the velocity profile of the

incoming stream at a distance y = 1 must be known. The distance I 1is
defined such that the incoming stream is unaffected by the existence of
the reattachment wall for y > L; that is, u =0 for y> 1L and u is
positive for y < L. Actually u will be slightly negative for y > L,
as the fluid is being entrained into the mixing layer from the separated
region, and u is positive for y < L because of the wall. The value



of L will be obtalned a posteriori from the solution of the flow field.
A study of the mixing layer solution of reference 1 shows that the stream-
wise velocity distribution can be gquite accurately represented by the
expression

v(x, L) = -vge~Mx (3)
From the definition of L
u(x, L) =0 (L)
and
2o 1o (5)

The vorticity, Q(¥), may be evaluated at any boundary for it is
constant along a streamline. In the present study, the vorticity is
evaluated along the boundary at y = L. The orticity distribution cor-
responding to the velocity profile of equation (3) and to condition (5)
is derived in the following manner. From equution (3),

Qy:L = %X! = 7\voe-7\}".' (

™
N

To express equation () in terms of V¥, we write equation (3) as

d -
Vy-:L = = a%‘ = =Vpe 7\“

When the above equation is integrated to saticfy the definition of the
dividing streamline, w(O, L) = 0, (see ref. 1 there results the
relationship,

¥(x, L) = ‘% (1 - e M) (1)

Equation (5) is now rewritten with the aid of equation (7) as
Qy=L(W) = Ao - N3 (8)

Equation (8) shows the relationship between tle vorticity and the stream
functicn at y = L. Vorticity, however, 1s ccnstant along a streamline
throughout the flow field. Equation (8), therefore, is applicable for
the entire inviscid region.
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The inviscid flow equation (1) and the complete boundary conditions
can now be written for 0O < x<wand O <y <L as:

gi)}’.+:27i-7\2w+vox=o (9)
¥(0, y) =0 (10)
¥(x, 0) =0 (11)
¥(x, L) = % (1 - e=x) (7)
W(x, y)I <M (12)

where M 1is an arbitrarily large positive number and equation (12)
expresses the bounded condition. The solution of the above boundary value
problem is obtained by the Laplace transform method as follows.

The Laplace transforms of the stream function are first defined as

ols, y) = Lefu(x, ¥}

(13)
Lyfo(s, )}

X(s, z)

The transforms of the boundary conditions (ll), (7), and (12) are also
needed in the course of the solution. These are, respectively,

p(s, 0) =0 (11a)
¢(s, L) = NP (Ta)

and
lo(s, y)| < ¥ for all s> 0 (12a)

where N 1is another arbitrarily large positive number. When the Laplace
transformation is performed twice in equation (9) and the boundary con-
ditions (10) and (1lla) are applied, the following equation results.



x(s, z) = Alz) +K]23(i)z—2(vo7\/sz) (14)
where
K2 = g2 - » (15)

and A(z) and B(s) are unknown but particular functions of =z and s,
respectively. An inverse Laplace transformation of equation (14) with the
ald of boundary condition (7a) yields

L
1 vo sin Ky 1 Jf _
o, ¥) = g R \a(s v N KO [sin X(L - £)]A(8)aE

N voA sin Ky (

¥
1 .
& 1 - cos KL) + Z sin KL.\/h [ein K(y - £)]A(E)at

e}

voA sin KL
(YR ERKL () o k) (16)

Now, in the above equation, the integrals which include the unknown
function A(E) in the integrand will be evaluated with the aid of the
bounded condition (12a). Equation (16) shows that the first term on the
right-hand side of the equation, l/sin KL, becomes o when

= + 4%
K=% 2 (17)
where n=0, 1,2, . . . . Fromequations (15) and (17), this means
that l/sin KI, becomes o« when
2
g = % <}¥£> + A2 (18)

The boundary condition (12a) implies that the function ¢(s, y) mst be
pounded for all values of s > 0. It 1s, therefore, necessary that the
function in the braces in equation (16) be zero when s =.(nn/L)* + Az
in order to satisfy the bounded condltion (12a). The integral with the
unknown integrand, therefore, becomes

= N\ >



Main 22 (1 - ] _ nnvo AL - (D)7
/(: [ L (L - €) |a(e)ae = T, {(nn'/L)Z J(n:r/L)z + A

+ 1 )
Jnn/1)2 + 22 [(an/1)Z + 22 + 1y
(19)

Finally, the complete inverse transformation of equation (16) is obtained
by finding the residues at all the single poles for s < 0. The solution
of the boundary-value problem, equation (9) with its boundary conditions,
is thus obtalned and is

Y(X, ¥) _ coth AL (_. 1 - cosh ALY _ Y )
T T T (sinh ALY) + o - 5T exp( -ALX)

- AL(sin nxY) _ > > ] L
anlmf[(mf)z T OD7 exp'j \/(mr) + (\L)° X (20)

The value of AL is found by satisfying condition (4) with the aid
of the solution, equation (20). At y =L, from the continuity equation,
u, if other than zero, 1s a monatonically increasing function of x with
u(O, L) = 0 and a maximum at x = o. Thus, condition (M) can be satisfied
for 211 x if one sets wu(e, 1) = 0. Equation (20) can be used to show
that

u(e, L) _ 1
Vo ~ ginh AL

(21)

The velocity components, u(x, y) and v(x, y), were found to remain
practically constant for |u(w, L)/vol < 0.01. Thus, condition (h) can
be considered to be satisfied when u(e, L)/vo = 0.01, and from equation
(21) AL is found to be 5.3. In subsequent numerical work

AL = 5.3 (22)
is used.

A study of reference 1 shows that A 1n equation (3) can be expressed
quite accurately by

_ 1 ~Re
T 2.222 1 (23)
1Equation (1) can also be solved by the method of separation of

variables (see appendix).
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Thus, for a given Re and 1, L and A can be readily determined from
egquations (22) and (23).

The velocity and pressure distributions along the wall, obtained from
equation (20), are shown in figure 3.

BOUNDARY LAYER AND HEAT-TRANSFFR ANATYSIS

Tec evaluate the heat transfer along the wall by conventional boundary-
layer theory one must first investigate the effects of the vorticity and
the enthalpy gradient of the inviscld region on the boundary-layer solu-
tion. The absolute magnitude of the vorticit:; interaction parameter
(ratio of average vorticity in the inviscid region to that in the boundary
layer) was estimated to be less than 0.1 for 0 < X < 1 and Re > 10%.
Classical boundary-layer theory can be applied with good engineering
accuracy when the interaction parameter is of this order of magnitude
(ref. 5). The effect of an enthalpy gradient in the inviscid region on
the thermal boundary layer will be about the came as that of the inviscid
vortlcity on the momentum boundary layer.

The present study concentrates on the re:tttachment zones that may
exist on a hypersonic vehicle. The heat-transfer analysis (an approxima-
tion) is based on the theory of a highly cooled boundary layer for hyper-
sonlc blunt bodies, developed in reference 6, and the pressure and velocity
distributions obtalned in the preceding secticn.

A typical heat-transfer variation near tle reattachment polnt is
shown in figure 3. In view of the drastic variation of the local heat
transfer within the small distance L, which is of the order of the mixing
layer thickness, an average heat transfer in this zone is of greater
englneering interest than the local heat transfer shown in figure 3. The
reattachment zone is defined as that area of the wzll along which flow
readjustment takes place and is defined two-dimensionally by O < X < 1.
The average heat transfer at the reattachment zone was calculated for
several pressures in the separated region and resulted in development of
the following semlemplrical expression

P
q.w - x D=3/2pp-2 /3 ’pt“t YTO (h-t - hw)<0.76 + 1.411 ':Ee—> (Ell')
’ ,’ t

for 0.1 < Pe/Pt < 0.5. To express the heat transfer in terms of the
fluid properties at the outer edge of the mixing layer, the following
approximaticns are made:

= OV



From reference 6:

Py
PeHy = (Qe“e) g

From reference 1 for Pr close to 1:

bt - bw . Vo _ 0.587

he - h'W Ue

Equation (24) now becomes, with the aid of equations (22) and (23),

-1/2

9., .Pri P\ " P

Nup = —3eX _ ~ 0.0L63 Prl/3Re3/% <—e> <O-76 + 1.411 —e>
(he - hylue Pt Py

(25)

The pressure ratio Pe/Pt can be obtained from the assumption of an
isentropic compression along the dividing streamline of the mixing layer
as shown in reference 4. It should be remembered that the area of the
reattachment zone varies with Re.

Sometimes, it may be desired to calculate the average heat transfer
to an area which 1s a bit larger than the reattachment zones, but includes
it. From figure 2 and the definition of I one can see that the pressure
along the walls 1is essentially constant for x > L. Hence, the average
heat transfer for L < x < Xo 1s readily found to be

0.0926 Prl/3Re®’# (26)

Nu =
(L<x<%) " 5 0020(x0/1) %R + 1

A weighted average of equations (25) and (26) would give the average heat

transfer near the reattachment point for x,> L.

DISCUSSION AND CONCLUDING REMARKS

There are no experimental data avallable, to the authors' present
knowledge, which could be used directly to compare the above theory.
However, a rough comparison can be made with the experimental results of
reference 3 in which an average heat transfer for xo/1 = 0.08 was
measured for a separated laminar boundary layer reattaching at an angle
of about 45°. The experimental conditions of reference 3 were used to
calculate the average heat transfer which was found to be within 10
percent of the measured value.
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The present analysis is for the normal reattachment only and therefore
its comparison with the experimental result for the 45° reattachment angle
lends only rough support. It is doubtful, however, that the variation of
the reattachment angle between 45° and 900 would change the heat-transfer
result drastically.

It is interesting to investigate the dependence of the average
laminar heat transfer on Reynolds number. Equations (25) and (26) indi-
cate that the Nusselt number varies with Re®’'* 1in the reattachment zone
and with a slightly smaller power of Re outside this zone. Thus, the
average heat transfer for a given xo > 1L varies between Ret and
Re3/%#, the exact value depending on Xo and Re. It is worth noting that
the length of the reattachment zone, 1L, varies inversely with Rel’2;
therefore, as Re 1increases, for a given xo > L, the dependence of the
average heat transfer on Re decreases.

Finally, one can make an approximate comparison of the heat transfer
at the stagnation point of a hypersonic vehicle with that at a probable
reattachment zone. Thils comparison showed that the heat transfer at the
reattachment zone could be as much as two or more times that at the
stagnation point when Z/R < 1.

In an actual separated reglon, the boundary-layer thickness at the
separation point will not be zero as assumed in reference 1. For this
case, the present analysis remains unchanged through equation (22). The
heat-transfer equations (25) and (26), however, should be modified with
the proper values of A and vg at y = L which may be obtained from an
analysis similar to that in reference 7.

Ames Research Center
National Aeronautles and Space Administration
Moffett Field, Calif., July 10, 1961
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APPENDIX
SOLUTION OF EQUATION (1) BY SEPARATION OF VARIABLES

In a reglon defined by O< x < L and 0 < y< L the streamwise
veloclty distribution of reference 1 can be closely approximated by

v(x, 1) = wvo SR AL - x) (A1)

Following the method outlined earlier the inviscid flow equation (1)
and 1ts accompanying boundary conditions can be written for O < x < L and
O<y<L as

2 2
é_g + é—g = A2} = Avy coth AL (A2)
ox oy
¥(x, 0) =0 (A3)
11[(0, .‘Y) =0 (Al#)
g_j: (L, y) = 0 (45)
_ Yo _cosh ML - x)
V(x, L) = S [coth AL — jl (86)

Condition (12) has been replaced by the requirement that the fluid along
the wall at x = L be moving parallel to the x axis. That this is the
case is apparent from the symmetry of equation (1) and condition (4).

In terms of a new function =z, where
v
Vx, y) = 2(x, ¥) + > coth AL (A7)

the differential equation and i1ts boundary conditions become

ag_z + é_g_z_ = ?\22, (AB)
xZ  IYF
z(x, 0) = - VTO coth AL (A9)
2(0, y) = - =2 coth AL (A10)
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gi (L, y) =0 (A11)
2(x, 1) = - Vo cosh AL - x) (A12)

A sinh AL
This new functlion can be broken into the sum of three functions such that
z(x, y) = z1(x, y) + z2(x, y) + za(x, y) (A13)

The superpositlon principle can be used to break equations (A8) through
(A12) into three simpler problems.

For =zqy:
T2z4 = N2z
v
z1(x, 0) = = 38 coth AL
Zl(O: Y) =0
)
21 (L) Y) =0
ox
z1(x, L) =0
For zo:

v2Z2_ = 7\2Z2

zo(x, 0) =0

2500, y) = - %? coth AL

zo(x, L) = O

H O
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FOI' Z3:

V2z5 = Nza

ZS(X, O) =0
25(0, ¥) =0
BZS
Sx ( ’ Y)
za(x, L) = - Vo cosh ML - x)

A sinh AL

Each of these problems is readily sclved by the method of separation of
variables. Combining thelr solutions with the aid of equations (A13) and
(A7) will give a solution to equation (1). For sufficiently large values
of AL (AL > 5.3), this solution is equivalent to equation (20). That
this should be so can also be seen by examining equations (A1), (AE),

and (A5) which for large AL reduce to equations (3), (9), and (7).
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Figure 2.~ Reattachment zone 1'low model.
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Figure 3.- Inviscid velocity, pressure, and heat-transfer distributions
along the wall.
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