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SUMMARY

The mission requirements for some satellites require that they

spin continuously and at the same time maintain a precise direction

of the spin axis. An analog-computer study has been made of an atti-

tude control system which is suitable for such a satellite. The con-

trol system provides the necessary attitude control through the use of

a spinning wheel, which will provide precession torques, commanded by

an automatic closed-loop servomechanism system. The sensors used in

the control loop are rate gyroscopes for damping of any wobble motion

and a sun seeker for attitud_ control. The results of the study show
that the controller can eliminate the wobble motion of the satellite

resulting from a rectangular pulse moment disturbance and then return

the spin axis to the reference space axis. The motion is damped to

half amplitude in less than one cycle of the wobble motion. The

controller can also reduce the motion resulting from a step change

in product of inertia both by causing the new principal axis to be

steadily alined with the spin vector and by reducing the cone angle

generated by the reference body axis. These methods will reduce the

motion whether the satellite is a disk, sphere, or rod configuration.

INTRODUCTION

The mission requirements of some satellites can best be satisfied

if they spin continuously. An example is a manned space station which

spins in order to provide the occupants with a simulated gravity field.

It has been shown that if such a spinning body is disturbed it will

wobble with an undamped motion. (See refs. i to 4.) Therefore, such

spinning satellites require an attitude control system. For example, if

the manned space station is equipped with an auxiliary power unit which

uses a parabolic solar collector, it will be necessary for this collector

to point continuously at the sun with fairly good accuracy. In order to

provide control for such continuous pointing, the control system should

damp the wobble which will result from any outside disturbance and from

internal movements that result in changes in product of inertia of the

station with respect to the body axes. It will also be necessary to
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provide a meansof erecting the station to :;he sunline initially and
each time the station comesout of the eart]_'s shadow.

Presented herein are results of an ana__og-computerstudy of a
control system which can satisfy these cont:-ol requirements. The
control torques are derived from the precession torques generated
by a spinning wheel. It is assumedthat the control of this wheel
is automatic through the use of closed-loop control, with the command
information supplied by rate gyroscopes for rate control and a sun
seeker for control of the position of the s_ellite axis.

SYMBOLS

X,Y,Z body axes

Xi,Yi,Z i axes fixed in inertial space

X',Y',Z' principal axes; identical to body axes when there is no
product of inertia

Ix,Iy_I Z momentsof inertia about body X-, Y-, and Z-axis, respectively,
slug-ft 2

IXy,Ixz,Iyz products of inertia, slug-ft 2

Tx,Ty,T Z body-axis control torques about X,-, Y-, and Z-axis, respec-

tively, ft-lb

M disturbance moment, ft-lb

p,q,r rates of rotation about X-, Y-, _d Z-axis, respectively,

radians/sec

_X,_y,_Z body-axis components of total rotational rate of control-

wheel angular-momentum vector, ]'adians/sec

H

H'

,,8,¢

angular momentum due to spin of c(,ntrol wheel, ft-lb-sec

constant defined by equations (381 , slug-ft 2

Euler angles, radians

constant vector on Xi-axis (denot,._s only magnitude when bar

is removed), used with no dlmen:_ions specified
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_,m,n

5Z

5y

KI

K I '

K2

s

t

T1/2

P

components of _ along X-, Y-, and Z-axis, respectively, used

with no dimensions specified

outer glmbal deflection, radians unless otherwise specified

inner gimbal deflection, radians unless otherwise specified

control gain, radians/radian/sec

constant defined by equations (38)

control gain, radians/unspecified dimension

Laplacian variable, per sec

time, sec

frequency, radians/sec

time to damp to half amplitude, sec

period, sec

angle between body axes and principal axes, radians

Subscripts:

o initial condition

X,Y,Z component in X-, Y-, or Z-axis directions

X'Y' principal axes

A dot over a quantity indicates differentiation with respect to time.

DESCRIPTION OF CONTROL SYST2_

General Description

In order to facilitate a proper visualization of the control system

and its operation, a general description will be given followed by a

more exact definition with equations. The torque used by this control

system is the precession torque produced by a spinning wheel. Precession

torques arise when a spinning wheel is forced to rotate about an axis

other than its spin axis.
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A spinning satellite provides a natural situation for the applica-

tion of a spinning wheel to provide precession torques. In this case the

spinning of the satellite provides a constantly available angular-rate

vector which can be combined with the angul_r-momentum vector of the con-

trol wheel to provide a continuous torque. The operation of the assumed

mechanism is as follows. When no torque is required, the control-wheel

angular-momentum vector is alined with the _.pin vector of the satellite.

When torque is required about a particular body axis of the satellite,

the control wheel is rotated on an axis par_llel to that body axis,

thereby a component of the control-wheel an_._lar-momentum vector is

produced along an axis that is perpendicular' to both the satellite spin

vector and the satellite body axis for which the torque is required.

This situation produces the desired torque, which can be expressed as

a cross product of the satellite spin rate _a_d the control-wheel angular

momentum. This torque is a nearly proportional function of the tilt of

the control wheel, with a constant spin rate of the station and a constant

angular momentum of the control wheel assumed.

A sketch of the mechanism studied in this investigation is shown in

figure 1. In this case a single control wh_el mounted in a double gimbal

is assumed. This type of gimbal mounting w il produce a conflict between

the operation of control about one axis and that about the other - that

is, if the inner gimbal is deflected 90°_ rotation of the outer gimbal

will not change the direction of the controL-wheel momentum vector. For

small deflections of the inner gimbal, the _ffect is less pronounced.

It would also be possible to use two contro wheels mounted in single,

mutually perpendicular gimbals and eliminat_ _ this conflict. However,

the single-wheel configuration offers weigh_-saving possibilities.

In this study it is assumed that the c_,ntrol-wheel gimbal angles

are commanded by signals from rate gyroscop_.s mounted on the body axes

of the satellite and by signals from a sun :_eeker mounted on the spin

axis of the satellite and rigidly attached to the satellite. The rate-

gyroscope signals provide damping, and the :_un seeker provides the

necessary signal for alining the satellite vith the sunline.
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Equations of Moti(,n

The general equations of motion are simplified by making the following

assumptions:

no coupling exists between the force ec[uations and the moment

equations

Zxz : Iyz: 0

Mx :M z :o



the product of inertia terms Ixy 9 and Ixy _ can be neglected

Then the rotational equations of motion for a rigid body are:

5

+(iz-iy)qr+ (i)

Iy_ + (IX - Iz)rp - Ixyqr + My = Ty (2)

IZ9 + (Iy- Ix) pq- Ixyp2 + Ixyq2 = Tz (3)

The problems studied herein include the effect of introducing a

rectangular pulse disturbance about the Y-axis and the effects of prod-

ucts of inertia on the motion of the satellite. Products of inertia

exist when the X, Y, and Z body axes are not the principal axes of

the body. For convenience and clarity in the preceding equations only

an Ixy product of inertia is included, although IXZ and Izy prod-

ucts could also exist.

Presumably, a manned space station such as is being considered

herein will be built so that either the maximum or minimum principal

axis of inertia will be parallel to the center line of the solar col-

lector. The movement of an occupant will therefore cause the product

of inertia with respect to these body axes to change from zero to some

finite value. In order to investigate this situation, tests were made

in which a product of inertia Ixy was introduced. The movement of

an occupant would also cause small changes in the body-axis moments of

inertia, but these effects are neglected herein because they would have

only a small effect on the results.

In all the cases considered, it is assumed that initially the

satellite is spinning about the X-axis, so that the initial spin rate

is equal to Po' and that it is the X-axis that should point in the
reference direction.

Control Equations

The precession torque generated by a spinning wheel is equal to

the product of the moment of inertia of the wheel, its spin velocity,

and the rate-of-rotation components which are perpendicular to the spin

axis of the wheel. For this investigation the moment of inertia of the

control wheel and its spin velocity are assumed to be constant, and only



their product, knownas the angular momentumcf the control wheel H,
will be specified. It is assumedthat the an_ular momentumof the
controller is due entirely to the spin of the control wheel, that is,
angular momentumdue to rotation of the contr¢ller on axes perpendicular
to the wheel spin axis is neglected. As described before, this momentum
vector of the control wheel will be alined wi_h whichever body axis is
prescribed, and therefore it is the body-axis componentsof the control-
wheel momentum, HX, Hy, and HZ, that are o__concern. The components
of the precession torque can be assumedequal to the product of these
angular-momentumcomponentsand the orthogons] rates to which they are
subjected. The equations for the body-axis componentsof the precession
torque are

Tx : Hf_z - _Z_y (4)

L

1

5
1

9

Ty = HZa_X - HX(OZ (_)

Tz : HX_ - H_X (6)

The rate terms _X, _y, and _Z, which are tl.e X, Y, and Z components

of the total rotation of the control-wheel an_ular-momentumvector, are

given by the equations

(7)

(8)

a_Z = r + &Z (9)

In order to derive the gimbal rates, _ and 5Z, first it will be

necessary to define the glmbal-angle equation_.

The purpose of the control system is to _upply damping torques

and torques which will aline the satellite X-axis with the reference sun-

line. The torques which are desired are tor_ms about the Y- and Z-axis.

Since _X will be a large and steady value a:_ compared with _y and

_Z, the Y and Z torques can be obtained b:- calling for momentum

components Hz and Hy, respectively, which, it can be seen, are

multiplied by _X" These momentum components are obtained by commanding



a proper orientation of the gimbals carrying the control wheel. The
proper orientation of the gimbals is a function of rate-gyroscope and
sun-seeker signals.

A practical consideration of the output signals from rate gyroscopes
leads to the conclusion that, for analytical purposes, these signals can
be considered equal to the body-axis rates q and r. The analytical
representation of the sun-seeker signals is as follows: A constant

m

vector _, coincident with light rays from the sun, is assumed to exist

on the reference Xi-axis. Body-axis components of this constant vector

can be defined by the equations:

z = (cos e cos _)_ (I0)

m : (cos _ sin 8 sin _ m sin _ COS _)_ (ll)

n = (cos @ sin e cos _ + sin @ sin _)q (12)

where @, 8, and ¢ are Euler angles, taken in that order. A sketch

showing these components is given in figure 2. The components m and

n are used to represent the sun-seeker signals. The fact that the

quantities m and n have the same characteristics that sun-seeker

signals w_li have is illustrated by the following two special examples.

If the satellite is spinning about its X-axis but with the X-axis displaced

from the reference Xi-axis , then m and n will oscillate about zero with

a frequency equal to the spin frequency and with a peak amplitude equal to

the displacement. If the satellite is spinning with the total resultant

rotation vector on the reference Xi-axis but with the X_ _is displaced from

the reference line, then m and n will be constant ._[th _m2 + n2 equal

to the half angle of the cone generated by the X-axis.

It is not necessary to determine the Euler angles in order to deter-

mine Z, m, and n. These components can be determined from the following

relationships:

:mr - nq (13)

=np - Zr (_,4)

= Zq - mp (15)



_
=q+ _dt (16)

m : j m dt (17)

n = 7 a dt (18)

It is now assumed that the desired damping a_d attitude control torques

will be obtained if the gimbal deflections ace defined by the control

equations

5Z = Klr + K2m (19)
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= Klq - K2_ (20)

where K I and K 2 are the constant control gains. K I has the dimen-

sions of radians per radian per sec_ whereas K 2 is a nondimensional

number that, for small deflections, can be thought of as expressing

radians (of gimbal angle) per radian (of angular displacement of body

axes from reference space axes). The mathematical signs given in these

control equations are for the situation wheze the control-wheel angular-

momentum vector is nominally in the same dizection as the spin vector of

the satellite, as shown in figure i. The c(ntrol should be such that the

gimbal always runs ahead of the satellite, _hat is, the gimbal should tilt

further than the satellite.

The body-axis components of the controS-wheel angular-momentum
vector can now be defined as

HX = H cos 5y cos _'Z (21)

Hy = H cos 5y sin _'Z (22)

KZ = -H sin 5y (23)

Also, the rate factors_ a_X, _y, and _Z that are a part of the

precession-torque terms can now be defined. As was stated previously,
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these rate factors are made up of the body-axis rates and the gimbal

rates3 which are added vectorially. Since the glmbal angles are func-

tions of body-axis rates and m and n, the glmbal rates are functions

of the derivatives of these factors:

gz = Km_ + K_ (24)
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=Kl_ - K_ (25)

Substituting equations (24) and (25) into equations (7),

give s

(8), and (9)

_X = p_ (KI__ K_)sin(Klr + KLan ) (26)

COy = q + (Klq - K_)cos(Klr + KL_n) (27)

o_Z = r + Kli_ + K2m (28)

Substituting the expressions for the body-axis components of the preces-

sion torque (eqs. (4) to (6)) into equations (1) to (3), and then making

the substitutions for gimbal deflections and angular-momentum vector

from equations (19) to (23) and the substitutions for the rate factors

from equations (26) to (28) yields

+ TT[sin(_q- K2n)][q + (_q- K2n)cos(_r + K2m)]
(29)

(30)

+_)]_ ,[oo<_,-_) <_ ÷_)][,- (_- _)._(_ +_)]
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The original intention was that, for examl_le , a body rate q would

ca_l for a Y torque. Generally, this intention is carried out, but the

preceding equations show that other torques ar_ also commanded as a result

of cross-coupling effects. These cross-couplirg effects make it difficult

to predict the effect of a given control con_nazd and make it desirable to

conduct an analytical study of the system.

The use of simple constants K1 and K 2 for the control gains means

that perfect servomechanism operation is being assumed. Since the highest

frequencies that will appear in the solutions are equal to the spin fre-

quency, and since servomechanisms can be made _ith natural frequencies

much higher than this spin frequency, it is felt that this assumption is

adequate for predicting the operation of an actual system.

Linear Equations

It is possible to write linear equations for a system restricted

to the principal body axes and the controller used as a damper by making

some simplifying assumptions. A general solution of the simplified equa-

tions gives the natural frequency and damping of the system. The neces-

sary assumptions are:

p --constant

L
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=0
XY

K 2 =0

cos(Klq) = 1

)

sin(_r) = Klr

P _ CKIq)(KI r)
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The equations (30) and (31) then become

(32)

(33)
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The solutions of these equations for an uncontrolled body have been

treated in other studies, for example, references 1 and 2., but will be

repeated herein to facilitate comparison with solutions for a controlled

body. The characteristic equation for the uncontrolled body is

z_zz

(34-)

which, for IX> Iy, IZ or

with a period given by the expression

IX < Iy,I Z defines an undamped oscillation

(35)

These solutions can be nondimensionalized by differentiating with respect

to nondimensional time pt instead of dimensional time t. The results

will then be expressed in terms of spin revolutions instead of seconds.

The characteristic equation for the controlled body is

The time to damp to half amplitude is given by the expression

T1/2

_ 0.692(Iy_ + H2K12 )

+
(37)
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The solutions for the controlled body can be nondimensionalized by
making these additional substitutlons:

H = pH' 1
Kl' l

K1 - p

(38)

The period and time to half amplitude would then be expressed as revolu-

tions instead of seconds, and the values obtairLed for a given configura-

tion would apply for any initial spin velocity.

RESULTS
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Linear Equations

The period and time to half amplitude obtained by using the linear

equations are shown in figure 3. The conditiors made in these calculations

are as follows. The rolling velocity p is a_sumed to be constant at a

value of 1 radian per second. The curves giver, in figure 3 represent the

results for a variety of axially symmetric configurations. The variation

in shape is defined in terms of the ratios Iy/I X or IZ/I X. The moment

of inertia IX is assumed to be constant and the moments of inertia Iy

and IZ are assumed to be equal and to vary sc that the ratios IZ/I X

and Iy/I X vary from 0.5 (a flat disk) to 2 (8 rod). The control wheel

is assumed to have an angular momentum equal tc 1/20 of the spin momentum

of the satellite body (_0IxP) . This value represents a wheel size and

wheel spin rate that could easily be carried in a satel3 ite. The gain

K1 between the body-axis rates q and r and the control-wheel glmbal

angles 5Z and 5y is assumed to be i radian per radlan per second,

For the uncontrolled body the time to half amplitude is always

infinite. For the disk configuration the periol of the wobble is equal

to the spin period, 6.28 seconds. As the ratio Iy/l X is incr,_:o.sed

to i (this value represents a sphere) the perioi increases to infinity.

Further increase in Iy and IZ causes a decr._ase in period, and this

rest,It represents the wobble of a rod spinning _bout its minimum axis
of inertia.

The addition of the damper control brings _bout very short times to

half amplitude, which vary from 3 seconds to 53 seconds. The longer time
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to half amplitude for the lazge values of Iy and IZ as compared with

that for the small values of Iy and IZ is a reflection of the fact

that under the assumptions made for these calculations the larger values

of Iy and IZ represent larger bodies, but the momentum of the control

wheel is held constant. Increasing either the angular momentum of the

control wheel or the gain of the control will shift the TI/2 curve to

smaller values. The period of the characteristic motion with the damper

is very nearly the same as for the body alone, with the exception that

the peak asymptote is shifted to a higher value of Iy/l X. This shift

reflects the fact that the addition of the control-wheel momentum to the

spin momentum of the body effectively increases IX a small amount.

Nonlinear Equations

Particular solutions for the nonlinear equations of motion were

obtained by using an analog computer. Three different configurations

were studied. The results for a nearly spherical satellite

_IX = 9,500 slug-ft2; Iy = Iz = 9,000 slug-ft2) 1 with an initial spin

rate of 0.6 radian per second, are given in figures 4 to 9- The results

obtained for a disk configuration (IX = 9,500 slug-ft2;

Iy = IZ = 4,7_0 slug-ft 2) spinning on the axis of greatest inertia are

shown in figure i0. The results for a rod shape (IX = 9,500 slug-ft2;

Iy = IZ = 14,2_0 slug-ft 2) spinning on the axis of least inertia are

shown in figure ii. These figures are tracings of analog records.

In all cases in which a control wheel was included, the angular

momentum of the control wheel is assumed to be 200 ft-lb-sec. This

angular momentum could be obtained by using a 32-pound flywheel with a

7-inch radius turning at 5,000 rpm. The control-system gains were varied

from 5 to 20 radians per radian per second for the rate signals, and

0.33 to 3.33 for the attitude signal in various runs. It should also be

noted that the ordinate scales used in the figures vary from figure to

figure.

Nearly Spherical Configuration

The response of the uncontrolled nearly spherical body subjected

to a lO-second rectangular pitching-moment pulse My of 15 foot-pounds

is shown in figure 4. In these tests in which step moments are used to

disturb the system, the moments are probably too large to represent any

particular event that might happen to a satellite, but the large moments

are used as a severe test of the stability and performance of the system.

With the use of the linear equations, a wobble period of 188 seconds is

predicted for this example, and this prediction is in good agreement with

the low frequency mode in the particular solution shown.
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The displacement of the X-axis from the reference Xi-axls is equal

to sin- n 2 + m2/_ . For convienence in us'ng the analog computer,

was given a value of lO0. The magnitude of the maximum values of

m and n of +-2.6, therefore, indicates ang_.ar displacements of +1.5 °.

The small oscillations superimposed on the 18_-second wobble oscillation,

which have a period equal to the spin period of 10.4 seconds, indicate

that the resultant rotation (spin) vector is displaced from the Xi-axis

by a small amount, approximately O.l_ °. Such a result would be expected

as a result of the pitching-moment disturbance. The displacement of the

X-axis from the instantaneous spin axis is equal to tan-l(_q 2 + r2/p).

The pitch and yaw rates are shown to have maximum values of +O.014 radian

per second, and therefore the X-axis is displ_ced from the spin vector by
an angle of 1.35 °. The phase relation of q and r indicates that the

X-axis displacement from the spin vector alte:n_ates from the XY-plane to

the XZ-plane in quarter periods. A sketch giving a pictorial representa-

tion of these results is shown in figure _.

Next the control system was included (fig. 6(a)), and the system

was subjected to a pitching-moment pulse of 15 foot-pounds, which this

time was held on for 36 seconds. The gain on the rate signal in this

case is lO radians per radian per second, and the gain on the attitude

signal is 0.33 radian per radian. The action of the damper control is

to hold the X-axis close to the spin vector, _hus the body rates r and

q are kept low. When the disturbance is rem(,ved, the X-axis quickly

alines with the spin vector, and q and r become exactly zero. At

this time the spin vector is displaced from the Xi-axis by 0.23 ° as is

indicated by the !0.4 oscillations in n and m with the frequency

of the spin frequency. It should also be pointed out that the varia-

tions of n and m appear in quadrature, so that _m 2 + n2 = !0.4 also.

In this case the attitude control is too weak to bring about any reduc-

tion in this amplitude in the short time of the test.

An example in which a pitching moment of 120 foot-pounds was applied

for about 90 seconds is shown in figure 6(b). In this example, the gain

on the rate signal is 5 radians per radian per second, and on the attitude

signal is 3.33 radians per radian. When the (_isturbance is removed the

body-axis rates and m and n go to zero, s_:d this result indicates that

both the spin vector and the X-axis are realiled with the reference X_-axis.
It should be noted that in this example glmbs_ deflections of nearly bO °

are encountered. Figure 6(c) illustrates mor¢_ clearly the manner in which

m and n are brought to zero. Close examin_..tion of the analog-computer

record shows that the short period mode is beqng slowly damped out.
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These examples demonstrate that the controller is capable of

removing the wobble that results from a step disturbance and can realine

a given body axis with the reference sunline after it has been displaced.

A disturbance which is likely to occur in a manned space station is

a movement of the occupant, which will cause a change in product of inertia.

Presumablyj the station would be built so that either the maximum or mini-

mum principal axis of inertia will coincide with the center line of the

solar collector. The movement of an occupant would therefore cause the

product of inertia with respect to the body axes to change from zero to

some value. Therefore, tests were made in which a product of inertia

IXy of 50 slug-ft 2 was introduced. The results for the uncontrolled

spherical body are shown in figure 7.

With the body-axis moments of inertia of the satellite as given

(IX = 9,500 slug-ft2; Iy = IZ = 9,000 slug-ft2), the product of inertia

of 50 slug-ft 2 indicates that the principal axis is displaced 5.73 ° from

the X-axls in the H-plane. The relationship defining this shift is

_'Y' _ IX - Iy sin 2c + _y cos 2c
2

With X' and Y' taken as the principal axes of inertia 3 IX, Y, is

zero. Setting IX. Y, equal to zero allows the determination of the

angle c# which is then the angle between the body X- or Y-axis and the

principal X'- or Y'-axis, respectively.

A spinning body has a preference for spinning on a principal axis

of inertia. Thusj in the present example, with small factors neglected,

the yawing torque -Ixyp 2 produced by the product of inertia will be

balanced by the precession torque (Iy - Ix)Pq when the body yaws 5.73 °

so that the principal axis is under the spin vector. However, when there

is no damping in the system, an overshoot equal to the initial movement

will occur. Thus variations in m, which indicate angular displacements

from 0o to -ll.5 °, and variations in q from 0 to -0.12 radian per

second appear in figure 7. The precession coupling terms bring about

±5.73 ° oscillations about the Y-axis, and cause corresponding variations

in n and r.

The locus of points on the body which come under the splnvector

trace a circle around the principal X'-axis. Therefore it can be seen

that the solution presented herein is in agreement with the development

known as Poinsot's Construction. (See, for example, ref. 1.)
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The addition of a damping control tends Io bring the principal axis

into alignment with the spin vector, with the result that the X-axis has

a steady displacement of 9.73 ° from the spln vector - that is to say, the

X-axis describes a 9.73 ° cone about the spin _ector. An additional effect

takes place, however. By a process which wil] be described, the control-

wheel angular-momentum vector reaches a stead3-state deflection which

causes a steady-state torque to be applied which opposes the torque pro-

duced by a product of inertia, and the angle of the generated cone is

reduced in size.

A description of this process, which is C_efined mathematically by

equations (29) to (31), follows. At this point it is convenient to write

down the significant parts of equations (30) emd (31):

+(Ix- :

IZ} + (Zy - Ix)pq - IxyP 2 =-HKlrP

The main torque produced by the product of inertia is a torque on

the Z-axis described by the term Ixyp _. Thi_; torque can be opposed by

the torque created when an angle 5z (that i_;, Klr ) is commanded.

The relation is _yp2 _ H(Klr) p = the unbalanced torque about the Z-axis.

In this example, with H = 200 ft-lb-sec and p = 0.6 radian per second,

a value of 8Z of 8° is required to completely balance the torque produced

by the product of inertia.

When the rate gyroscopes alone are used to command the gimbal angles,

the following process takes place. The produ(:t of inertia produces a

torque about the Z-axis which, in the steady _tate, causes a pitching

rate q to be measured. This pitching rate will call for an angle 5y

which will produce a torque about the Y-axis. This torque will cause a

yawing velocity to be measured in the steady _;tate. This yawing velocity

will call for an angle 5z which will produce a torque about the Z-axis

which will oppose the product-of-inertia torque and thus reduce the cone

angle. It is not possible, with the assumed control equations, to reduce

the cone angle to zero, of course, because th_ situation is similar to

that of a weak-position servomechanism acting against a considerable

load. The possibility exists, however, of including the integral of the

attitude error in the control equation and thereby reducing the cone angle

to zero.

With a gain of 9 radians per radian per =_econd for the rate signals,

the steady-state deflection of the X-axis in the H-plane is 1.6 °, and in
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the XZ-plane is 1.3 ° , for a resultant cone angle of 2.04 ° (fig. 8(a)).

With a gain of 20 radians per radian per second, the cone angle is 0.7 °

(fig. 8(b)).

The transient motion brought about by a step increase in Ixy, and

the action of the controller, cause the spin vector to be displaced from

the reference Xi-axis , and a small oscillation with a period equal to the

spin period is superimposed on the steady-state values of n and m, as

is shown in figures 8(a) and 8(b). The addition of the attitude signal

causes this superimposed oscillation to be slowly eliminated, with this

elimination indicating that the spin vector is being alined with the

reference axis. The larger the rate gain, the longer the time required

to attenuate this oscillation. The attitude signal also causes changes

in the steady-state gimbal angles, which result in a slightly altered

cone angle. These results are shown in figure 8(c).

If the rate-gyroscope input axes were rotated 90 ° with respect to

the body axes, so that

8Z :: -Klq

8y = Klr

then the measured effect of a product of inertia would call for gimbal

deflections such that the control torque would directly oppose the

disturbance torque. However, there would be no damping in the system.

A case was tried in which it was assumed that the gyroscopes were advanced

through a lead angle of 60 ° , with a gain of 20 radlans per radian per

second, so chat

8Z : 20(0.5r - 0.866q)

Sy : 20(0.5q + 0.866r)

The results are shown in figure 9. A comparison with the case in which

the gyroscopes were not rotated shows a reduction in cone angle from

0.7 ° to 0.515 ° with the gyroscope rotated. Further comparison shows

a slight reduction in damping with the gyroscope_ rotated. A linear

analysis predicts such a reduction in damping. Again, the addition of

the attitude signals reduces the superimposed oscillation to zero.
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Disk and Rod Configurations

The motion of a disk, with a product oI inertia Ixy of 50 slug-ft 2,
is shownin figure i0. In this case the product of inertia of 50 slug-ft 2
indicates that the principal axes are shifted 0.5° from the body axes, and
therefore the variation in m indicates an oscillation from 0° to -i °,
and a pitching-rate oscillation from 0 to -0.012 radian per second occurs.
The wobble frequency is equal to the spin frequency in this case, and the
combination of wobble motion and spin motion results in a space-oriented
trace of the X-axis which is a straight line rather than a circle as was
obtained with the nearly spherical body. This result is indicated by the
fact that n remains at zero.

The addition of the controller brings _he principal axis into steady
alinement with the spin vector, and the X-sn:is movesin a 0.5° cone. The
controller is not as effective in reducing _.hecone angle in this case as
it was in the case of the sphere. The smalZ cone results in small body
rates q and r, and a very high rate gain would be required to bring
about the _Z needed to reduce the size of the cone. As can be seen
in figure lO, the combination of rate signal and attitude signal results
in a 5Z of O, and the cone angle is not r_duced by any significant
amount.

The results obtained with the rod conf:guration (fig. ii) are very
similar to those obtained with the disk. IzLthis case, again, the princi-
pal axis is shifted 0.5° from the body axis by a product of inertia of
50 slug-ft 2. With the rod, the wobble period is 32 seconds. The combi-
nation of the wobble period and the spin period of 10.4 secondsresults
in the peculiar wave shape for m and n. For a given rate gain, the
time to half amplitude is larger for the rod than for the disk for the
reasons given in the discussion of the line_r equations.

CONCLUSIONS

An analytical study of a wide variety c)f cases of the use of a
controller, which utilizes precession torqut_s produced by a spinning
wheel and which is commandedby rate-gyrosc_)pe and sun-seeker signals,
to control a spinning body showsthat the cc)ntroller will perform the
following functions:

i. The controller reduces the motion o:_the body resulting from
a rectangular pulse momentdisturbance by c_using the reference body
axes to be steadily alined with the spin vector, and by realining the
reference body axes with the space referenc._ llne.
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2. The controller reduces the motion resulting from a step increase

in product of inertia by bringing the new principal axes into steady

alinement with the spin vector, and by reducing the cone angle generated

by the reference body axis.

L
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