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SUMMARY

The mission requirements for some satellites require that they
spin continuously and at the same time maintain a precise direction
of the spin axls. An analog-computer study has been made of an atti-
tude control system which is suitable for such a satellite. The con-
trol system provides the necessary attitude control through the use of
a spinning wheel, which will provide precession torques, commanded by
an automatic closed-loop servomechanism system. The sensors used in
the control loop are rate gyroscopes for damping of any wobble motion
and a sun seeker for attitude control. The results of the study show
that the controller can eliminate the wobble motion of the satellite
resulting from a rectangular pulse moment disturbance and then return
the spin axls to the reference space axls. The motion is damped to
half amplitude 1n less than one cycle of the wobble motion. The
controller can also reduce the motion resulting from a step change
In product of inertia both by causing the new principal axis to be
steadily alined with the spin vector and by reducing the cone angle
generated by the reference body axis. These methods will reduce the
motion whether the satellite is a disk, sphere, or rod configuration.

INTRODUCT ION

The mission requirements of some satellltes can best be satisfied
1f they spin continuously. An example is a manned space station which
spins in order to provide the occupants with a simulated gravity field.
It has been shown that if such a spinning body is disturbed it will
wobble with an undamped motion. (See refs. 1 to 4.) Therefore, such
spinning satellites require an attitude control system. For example, if
the manned space station is equipped with an auxiliary power unit which
uses a parabolic solar collector, it will be necessary for this collector
to point contlnuously at the sun with fairly good accuracy. 1In order to
provide control for such continuous pointing, the control system should
damp the wobble which will result from any outside disturbance and from
internal movements that result in changes in product of inertia of the
station with respect to the body axes. It will also be necessary to



provide a means of erecting the station to he sunline initially and
each time the station comes out of the earth's shadow.

Presented herein are results of an ana .og-computer study of a
control system which can satisfy these cont:"ol requirements. The
control torques are derived from the precesiion torques generated
by & spinning wheel. It 1s assumed that the control of this wheel
is automatic through the use of closed-loop control, with the command
information supplied by rate gyroscopes for rate control and a sun
seeker for control of the position of the sitellite axis.

SYMBOLS

X,Y,7Z body axes

Xi,Y{,Zy axes fixed in inertial space

X',Y',2' principal axes; identical to body axes when there 1s no
product of inertia

IX’IY’IZ moments of inertia about body X-, Y-, and Z-axis, respectively,

slug-ft2

IxysIxz,Iyy;  Products of inertia, slug-ft?

TX,TY,TZ body-axis control torques about X, Y-, and Z-axis, respec-
tively, ft-1b

M disturbance moment, ft-1b
p,q,r rates of rotation about X-, Y-, and Z-axils, respectively,
radians/sec

Wy yWy,0y, body-axis components of total rotstional rate of control-
wheel angular-momentum vector, radians/sec

H angular momentum due to spin of control wheel, ft-lb-sec

H' constant defined by equations (38 , slug-ft°

v,8,¢ Euler angles, radians

ﬁ constant vector on X;-axis (denotus only magnitude when bar

is removed), used with no dimensions specified
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l,m,n components of 1 along X-, Y-, and Z-axic, respectively, used
with no dimensions specifiled

57, outer gimbal deflection, radlans unless otherwise specified
oy inner gimbal deflection, radians unless otherwise specified
K1 control gain, radians/radian/sec

Ky' constant defined by equations (38)

Ko control gain, radians/unspecified dimension

s Laplacian varlable, per sec

t time, sec

0 frequency, radians/sec

Tl/2 time to damp to half amplitude, sec

P period, sec

c angle between body axes and princlpal axes, radlans
Subseripts:

o initial condition

X,Y,7Z component In X-, Y-, or Z-axls directions

X'y principal axes

A dot over a quantity indicates differentiation with respect to time.

DESCRIPTION OF CONTROL SYSTEM

General Description

In order to facilitate a proper visualization of the control system
and its operation, a general description will be given followed by a
more exact definition with equations. The torque used by this control
system is the precession torque produced by a spinning wheel. Precession
torques arise when a spinning wheel 1s forced to rotate about an axis
other than its spin axis.



A spinning satellite provides a natural situation for the applica-
tion of a spinning wheel to provide precession torques. In this case the
spinning of the satellite provides a constartly available angular-rate
vector which can be combined with the angular-momentum vector of the con-
trol wheel to provide a continuous torque. The operation of the assumed
mechanism 1s as follows. When no torque is required, the control-wheel
angular-momentum vector is alined with the :¢pin vector of the satellite.
When torque is required about a particular liody axis of the satellite,
the control wheel is rotated on an axis parzllel to that body axis,
thereby a component of the control-wheel angular-momentum vector is
produced slong an axis that is perpendicular to both the satellite spin
vector and the satellite body axis for which the torque is required.

This situation procduces the desired torque, which can be expressed as

a cross product of the satellite spin rate and the control-wheel angular
momentum. This torque is a nearly proporticnal function of the tilt of
the control wheel, with a constant spin rate of the station and a constant
angular momentum of the controcl wheel assumed.

A sketch of the mechanism studled in this investigation is shown in
figure 1. In this case a single control wheel mounted in a double gimbal
is assumed. This type of gimbal mounting w:1l1l produce a conflict between
the operation of control about one axis and that about the other - that
is, if the inner gimbal 1s deflected 90°, rotation of the outer gimbal
will not change the direction of the contro..-wheel momentum vector. For
small deflections of the inner gilmbal, the e¢ffect is less pronounced.

It would also be possible to use two contro.. wheels mounted in single,
mutually perpendicular gimbals and eliminate this conflict. However,
the single-wheel configuration offers welght.-saving possibilities.

In this study it is assumed that the control-wheel gimbal angles
are commanded by signals from rate gyroscopes mounted on the body axes
of the satellite and by signals from a sun iieeker mounted on the spin
axls of the satellite and rigidly attached .0 the satellite. The rate-
gyroscope signals provide damping, and the i5un seeker provides the
necessary signal for alining the satellite with the sunline.

Equations of Motion

The general equations of motion are sirplified by making the following
assumptions:

no coupling exists between the force equations and the moment
equstions

Ltz = Iyy = O

My =Mz =0

O\~ 11
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the product of inertia terms IXYé and IXY@ can be neglected

Then the rotational equations of motion for a rigid body are:

Ib (IZ - IY) qr + Lpr = Ty (1)
Iy + (IX - IZ)rp - Iyyar + My = Ty (2)
i+ (Ty - I)pa - Iyp® + Tgya® = Ty (3)

The problems studied herein include the effect of introducing a
rectangular pulse disturbance about the Y-axis and the effects of prod-
ucts of inertia on the motion of the satellite. Products of inertia
exist when the X, ¥, and Z body axes are not the principal axes of
the body. For convenience and clarity in the preceding equations only
an Iyy product of inertia is included, although Ixy and Iyy prod-

ucts could also exist.

Presumably, a manned space station such as is being considered
herein will be built so that either the maximum or minimum principal
axis of inertla will be parallel to the center line of the solar col-
lector. The movement of an occupant will therefore cause the product
of inertia with respect to these body axes to change from zero to some
finite value. In order to investigate this situation, tests were made
in which a product of inertia Ixy was introduced. The movement of
an occupant would also cause small changes in the body-axis moments of
inertia, but these effects are neglected herein because they would have
only a small effect on the results.

In all the cases considered, it is assumed that initially the
satellite 1s spinning about the X-axis, so that the initial spin rate
is equal to Py and that it is the X-axis that should point in the
reference direction.

Control Equations

The precession torque generated by a spinning wheel is equal to
the product of the moment of inertia of the wheel, its spin velocity,
and the rate-of-rotation components which are perpendicular to the spin
axls of the wheel. For thils investigation the moment of inertia of the
control wheel and its spin velocity are assumed to be constant, and only



their product, known as the angular momentum cf the control wheel H,
will be specified. It is assumed that the angular momentum of the
controller is due entirely to the spin of the control wheel, that is,
angular momentum due to rotation of the contrcller on axes perpendicular
to the wheel spin axis is neglected. As described before, this momentum
vector of the control wheel will be alined with whichever body axis is
prescribed, and therefore it is the body-axis components of the control-
wheel momentum, Hy, Hy, and Hy, that are of concern. The components
of the precession torque can be assumed equal to the product of these
angular-momentum components and the orthogonal rates to which they are
subjected. The equations for the body-axis ccmponents of the precession
torque are

Ty = Hyay - Hyoy (4)
Ty = Hywy - Hywy, (5)
Ty, = Hy®y - Hy%y (6)

The rate terms wy, Wy, and uy, which are tte X, Y, and Z components

of the total rotation of the control-wheel angular-momentum vector, are
given by the equations

Wy =P - éY sin 8y (7)
Wy =q + éY cos By (8)
(J~)Z|=I‘+éz (9)

In order to derive the gimbal rates, &y and By, first it will be
necessary to define the gimbal-angle equations.

The purpose of the control system is to supply damping torques
and torques which will aline the satellite X-uxlis with the reference sun-
line. The torques which are desired are torques about the Y- and Z-axis.
Since wy will be a large and steady value as compared with wy and

Wy 5 the Y and Z torques can be obtained by calling for momentum
components Hy and Hy, respectively, which, it can be seen, are
multiplied by wy. These momentum components are obtained by commanding

O+



a proper orientation of the gimbals carrying the control wheel. The
proper orientation of the gimbals is a function of rate-gyroscope and
sun-seeker signals.

A practical consideration of the output signals from rate gyroscopes
leads to the conclusion that, for analytical purposes, these signals can
be considered equal to the body-axis rates q and r. The analytical
representation of the sun-seeker signals is as follows: A constant
vector 7, coincident with light rays from the sun, i1s assumed to exist
on the reference Xj-axis. Body-axls components of this constant vector
can be defined by the equations:

1 = (cos 8 cos V)7 (10)
m = (cos ¥ sin 6 sin ¢ - sin ¥ cos @)q (11)
n = (cos ¥ sin 8 cos § + sin ¥ sin @) (12)

where Vv, 6, and ¢ are Buler angles, taken in that order. A sketch
showing these components 1is given in figure 2. The components m and

n are used to represent the sun-seeker signals. The fact that the
guantities m and n have the same characteristics that sun-seeker
signals will have 1s illustrated by the following two special examples.

If the satellite is spinning about its X-axis but with the X-axis displaced
from the reference Xj-axis, then m and n will oscillate about zero with
a frequency equal to the spin frequency and with a peak amplitude equal to
the displacement. If the satellite is spinning with the total resultant
rotation vector on the reference Xj-axis but with the X- xis displaced from

the reference line, then m and n will be constant = .th ng + n2 equal
to the half angle of the cone generated by the X-axis.

It is not necessary to determine the Euler angles in order to deter-
mine 1, m, and n. These components can be determined from the following

relationships:

il =mr-nq (13)
ho=np - Ir (C4)
fh =1q - mp (15)



l=n+/\idt (16)
m=/ﬁ1dt (17)

n=fr'xdt (18)

Tt is now assumed that the desired damping aid attitude control torques
will be obtained if the gimbal deflections are defined by the control
equations

Kyr + Kom (19)

By,

Sy = Kja - Kon (20)

where K; and Kp are the constant control gains. K; has the dimen-

sions of radians per radian per sec, whereas Kp 1s a nondimensional

number that, for small deflections, can be thought of as expressing
radians (of gimbal angle) per radian (of angular displacement of body
axes from reference space axes). The matheratical signs given in these
control equations are for the situation where the control-wheel angular-
momentum vector is nominally in the same direction as the spin vector of
the satellite, as shown in figure 1. The ccntrol should be such that the
gimbal always runs ahead of the satellite, that is, the gimbal should tilt
further than the satellite.

The body-axis components of the control -wheel angular-momentum
vector can now be defined as

Hy = H cos &y cos {y (21)
Hy = H cos By sin &g (22)
iy = - sin by (25)

Also, the rate factors, wy, wy, and a&y that are a part of the
precession-torque terms can now be defined. As was stated previously,

O H\uU =
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these rate factors are made up of the body-axis rates and the gimbal
rates, which are added vectorially. Since the gimbal sasngles are func-
tions of body-axis rates and m and n, the gimbal rates are functions
of the derivatives of these factors:

5y = KT + Kom (24)

K1 - Kpn (25)

i

5,

Substituting equations (24) and (25) into equations (7), (8), and (9)
gives

Wy =P - (Klq - Kgn) sin(Klr + Kgm) (26)
wy =q + (Klq - K2n) cos(Klr + K2m> (27)
wy =r + KT + Kol (28)

Substituting the expressions for the body-axis components of the preces-
sion torque (eqs. (4) to (6)) into equations (1) to (3), and then making
the substitutions for gimbal deflections and angular-momentum vector
from equations (19) to (23) and the substitutions for the rate factors
from equations (26) to (28) yields

Lo + (1 - Iy)ar + Iggpr = H[cos(l(lq - Kpn)sin(KjT + sz)] (r +qf + K2m>

+ H[sin(l&q - Kzn)] [q + (!(Lq - Kzﬁ)cos( r+ K2m>} (29)

I, + (IX - IZ>r'p - Iyyar + My = - s:Ln Klq - ][ Klq - Lu(l(lr + sz):]

- H[cos(k;q - K2n>cos(Klr + Kem):l (r +EE+Kg)  (30)

ILr + (IY - Ix)pq - IXYP2 + IXYq2 = K[cos(l(lq - Ken) cos(l(lr + K?ﬂ)]El +(K1c1 - K2ﬁ>cos(l(lr

+ xem)] - H[cos(k;q - Kzn) sin(KyT + sz)][p - (%4 - K58) sin(i;T R Kgm)] (31)
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The original intention was that, for example, a body rate q would
cail for a Y torque. Generally, this intention is carried out, but the
preceding equations show that other torques are also commanded as g result
of cross-coupling effects. These cross-couplirg effects make it difficult
to predict the effect of a given control commard and meke it desirsble to
conduct an analytical study of the system.

The use of simple constants Ky &and Ko for the control gains means
that perfect servomechanism operation 1is being assumed. Since the highest
frequencies that will appear in the solutions sre equal to the spin fre-
quency, and since servomechanisms can be made with natural frequencies
much higher than this spin frequency, it is felt that this assumption is
adequate for predicting the operation of an actual system.

Linear Equations

It is possible to write linear equations for a system restricted
to the principal body axes and the controller used as a damper by making
some simplifying assumptions. A general solution of the simplified equa-

tlons gives the natural frequency and damping of the system. The neces-
sary assumptions are:

P = constant

cos(Klq> =1
sin (Klq) = K1q
cos(Kyr) =1
sin(Klr> =K

p >> (Kl(;) (Klr>

\OH U=
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The equations (30) and (31) then become

]

IY(rl + (IX - Iz)I'p -HKlq_p - H(I‘ + Kli') (52)

I+ + (IY - Ix)pq H(q + Klé) -HKy 1P (33)

The solutions of these equations for an uncontrolled body have been
treated in other studles, for example, references 1 and 2, but will be
repeated herein to facilitate comparison with solutions for a controlled
body. The characteristic equation for the uncontrolled body 1s

2 . (Iz - IX) (IY - IX)I)E =0 (34)
Iyl

which, for Iy > ILy,Iz or Ix < Iy,Iy defines an undamped oscillation
with a period given by the expression

q = (1 - Ix)(Ix - Iy)p? (35)
\ Iylz

These solutions can be nondimensionelized by differentiating with respect
to nondimensional time pt instead of dimensional time +t. The results
will then be expressed in terms of spin revolutions instead of seconds.

The characteristic equation for the controlled body is

§2 4 | 2P * EHzKl o (T2 - )(Ty - )P+ HP PR+ (T - L - R B2
I I, + KK LI, + HK
The time to damp to half amplitude 1s given by the expression
0.692( IyI, + HK 2)
T p = (2 L (37)

1/2

PP + 2K,
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The solutions for the controlled body can be ncndimensionalized by
makling these additional substitutions:

H = pH' \k
(38)

Kl' {

Ki = —
lpJ

The period and time to half amplitude would then be expressed as revolu-
tions instead of seconds, and the values obtaired for a given configura-
tion would apply for any initisl spin velocity.

RESULTS

Linear Equations

The period and time to half amplitude obteined by using the linear

equations are shown in figure 3. The conditiors made in these calculations

are as follows. The rolling veloelty p 1is acsumed to be constant at a
value of 1 radian per second. The curves giver in figure 3 represent the
results for a variety of axlally symmetric configurations. The variation
in shape is defined in terms of the ratios IY/IX or IZ/IX- The moment
of inertia Iy 1s assumed to be constant and the moments of inertia Iy
and Iy are assumed to be equal and to vary sc that the ratios IZ/IX

and Iy /Iy vary from 0.5 (a flat disk) to 2 (a rod). The control wheel
is assumed to have an angular momentum equal tc 1/20 of the spin momentum

of the satellite body (éﬁpr). This value represents a wheel size and

wheel spin rate that could easily be carried in a satellite. The gain
K; Detween the body-axis rates q and r and the control-wheel gimbal
angles 57 and &y 1s assumed to be 1 radian per radian per second.

For the uncontrolled body the time to half amplitude 1is always
infinite. For the disk configuration the periol of the wobble is equal
to the spin period, 6.28 seconds. As the ratio Iy/Ix is incruased
to 1 (this value represents a sphere) the perioil increases to infinity.
Further increase in IY and Iy causes a decrzase in period, and this
resvlt represents the wobble of a rod spinning about 1ts minimum axis
of inertia.

The addition of the damper control brings sbout very short times to
half amplitude, which vary from 3 seconds to 53 seconds. The longer time

\O '\~ bt
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to half amplitude for the large values of Iy and Iy as compared with
that for the small values of Iy and Iy 1is a reflection of the fact
that under the assumptions made for these calculations the larger values
of Iy and Iy represent larger bodies, but the momentum of the control
wheel is held constant. Increasing either the angular momentum of the
control wheel or the gain of the control will shift the T1/2 curve to
smaller values. The period of the characteristic motion with the damper
is very nearly the same as for the body alone, with the exception that
the peak asymptote is shifted to a higher value of IY/IX- This shift
reflects the fact that the addition of the control-wheel momentum to the
spin momentum of the body effectively increases IXx a small amount.

Nonlinear Equations

Particular solutions for the nonlinear equations of motion were
obtained by using an analog computer. Three different configurations
were studied. The results for a nearly spherical satellite

(1x = 9,500 slug-£t2; Iy = I = 9,000 slug-ftZ), with an initial spin
rate of 0.6 radian per second, are given in figures 4 to 9. The results
obtained for a disk configuration (IX = 9,500 slug-ftg;

Iy = Iy = 4,750 slug-ftg) spinning on the axis of greatest inertia are
shown in figure 10. The results for a rod shape (IX = 9,500 slug—ftg;
IY =1y = 14,250 slug—ftg) spinning on the axis of least inertia are
shown in figure 1l1l. These figures are tracings of analog records.

In all cases in which a control wheel was included, the angular
momentum of the control wheel is assumed to be 200 ft-lb-sec. This
angular momentum could be obtained by using a 32-pound flywheel with a
T-inch radius turning at 5,000 rpm. The control-system gains were varied
from 5 to 20 radians per radian per second for the rate signals, and
0.33 to 3.33 for the attitude signal in various runs. It should also be
noted that the ordinate scales used in the figures vary from figure to
figure.

Nearly Spherical Configuration

The response of the uncontrolled nearly spherical body subjected
to a 1l0-second rectangular pltching-moment pulse My of 15 foot-pounds
is shown in figure 4. 1In these tests in which step moments are used to
disturb the system, the moments are probably too large to represent any
particular event that might happen to a satellite, but the large moments
are used as a severe test of the stability and performance of the system.
With the use of the linear equations, a wobble period of 188 seconds is
predicted for this example, and this prediction is in good agreement with
the low frequency mode in the particular solution shown.
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The displacement of the X-axis from the reference Xj-axls 1s equal

to sin'l(dne + me/n). For convienence in using the analog computer,
n was glven a value of 100. The magnitude o the maximum values of

m and n of 2.6, therefore, indicates anguiar displacements of *1.5°.
The small oscillations superimposed on the 183-second wobble oscillation,
which have a period equal to the spin period of 10.4 seconds, indicate
that the resultant rotation (spin) vector is displaced from the Xi-axis

by a small amount, approximately 0.15°. Such a result would be expected
as a result of the pitching-moment disturbance. The displacement of the

X-axls from the instantaneous spin axis 1s equal to tan’l(\lq2 + rg/p>.
The pitch and yaw rates are shown to have max mum values of 0.0l4 radian
per second, and therefore the X-axis 1s displaced from the spin vector by
an angle of 1.35°. The Phase relation of q and r 1indicates that the
X-axls displacement from the spin vector altermates from the XY-plane to
the XZ-plane in quarter periods. A sketch giving & pictorial representa-
tion of these results is shown in figure 5.

Next the control system was included (fig. 6(a)), and the system
was subjected to a pltching-moment pulse of 1% foot-pounds, which this
time was held on for 36 seconds. The galn on the rate signal in this
case 1s 10 radians per radian per second, and the gain on the attitude
signal is 0.33 radian per radian. The action of the damper control is
to hold the X-axls close to the spin vector, whus the body rates r and
q are kept low. When the disturbance 1s removed, the X-axis quickly
alines with the spin vector, and g and r hecome exactly zero. At
this time the spin vector is displaced from the Xj-axis by 0.23° as 1is
indicated by the 0.4 oscillations in n and m with the frequency
of the spin frequency. It should also be pointed out that the varia-

tlons of n and m appear in quadrature, so that ng +n° = 0.4 also.
In this case the attitude control 1s too weak to bring about any reduc-
tion iIn this amplitude in the short time of the test.

An example in which a pitching moment of 120 foot-pounds was applied
for about 90 seconds is shown in figure 6(b). In this example, the gain
on the rate signal is 5 radians per radian per second, and on the attitude
signal 1s 3.33 radians per radian. When the ¢isturbance is removed the
body-axlis rates and m and n go to zero, ard this result indicates that
both the spin vector and the X-axis are realined with the reference X;j-axis.
It should be noted that in this example gimbal deflections of nearly 60°
are encountered. Figure 6(c) illustrates more: clearly the manner in which
m and n are brought to zero. Close examinetion of the analog-computer
record shows that the short period mode is be:ng slowly damped out.
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These examples demonstrate that the controller is capable of
removing the wobble that results from a step disturbance and can realine
a gilven body axis with the reference sunline after it has been displaced.

A disturbance which is likely to occur in a manned space station 1is

a movement of the occupant, which will cause a change in product of inertia.

Presumably, the station would be bullt so that either the maximum or mini-
mum principal axis of inertia will coincide with the center line of the
solar collector. The movement of an occupant would therefore cause the
product of inertia with respect to the body axes to change from zero to
some value. Therefore, tests were made in which a product of inertia

Iyy of 50 slug-ft2 was introduced. The results for the uncontroliled
spherical body are shown in figure 7.

With the body-axls moments of inertia of the satellite as given
(Ix = 9,500 slug-ft2; Iy = Iy = 9,000 slug-ft2), the product of inertia
of 50 slug-ft2 indicates that the principal axis is displaced 5.73° from
the X-axls in the XY-plane. The relationship defining this shift 1is

Iy - T
IXIY1 = ‘l—z——Y' sin 2¢ + IXY cos 2¢

With X' and Y' taken as the principal axes of Inertia, Iy.y» 1s
zero. Setting IX‘Y' equal to zero allows the determination of the

angle c¢, which is then the angle between the body X- or Y-axis and the
principal X'- or Y'-axis, respectively.

A spinning body has a preference for splnning on a principal axis
of inertia. Thus, 1n the present example, with small factors neglected,

the yawing torque 'IXYP2 produced by the product of inertia will be
balanced by the precession torque (IY - IX)pq when the body yaws 5.73°

so that the principal axis is under the spin vector. However, when there
is no damping in the system, an overshoot equal to the initial movement
will occur. Thus variations in m, which indicate anguler displacements
from 0° to -11.5°, and variations in q from O to -0.12 radian per
second appear in flgure 7. The precession coupling terms bring about
15.73° oscillations about the Y-axis, and cause corresponding variations
in n and r.

The locus of polnts on the body which come under the spin vector
trace a circle around the principal X'-axis. Therefore 1t can be seen
that the solution presented herein is iIn sgreement with the development
known as Poinsot's Construction. (See, for example, ref. 1.) :
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The addltion of a damping control tends to bring the principal axis
into alignment with the spln vector, with the result that the X-axis has
a steady displacement of 5.73° from the spin vector - that is to say, the
X-axis describes a 5.73° cone gbout the spin vector. An additional effect
takes place, however. By a process which will be described, the control-
wheel angular-momentum vector reaches a steadj-state deflection which
causes a steady-state torque to be applied which opposes the torque pro-
duced by a product of Inertia, and the angle «f the generated cone is
reduced in size.

A description of this process, which is defined mathematically by
equations (29) to (31), follows. At this point it is convenient to write
down the significant parts of equations (30) aend (31):

Ty + (I - T = -
Ir + (Iy - Ix)ea - Lyp” = -HK 7P

The main torque produced by the product of Ilnertla is a torque on
the Z-axis described by the term IXYP2' This torque can be opposed by

the torque created when an angle dy (that i, Klr) is commanded.
The relation is IXYP2 - H(Kyr)p = the unbalariced torque about the Z-axis.

In this example, with H = 200 ft-lb-sec and p = 0.6 radian per second,
a value of & of 8° is required to completely balance the torque produced
by the product of inertia.

When the rate gyroscopes alone are used 1.0 command the gimbal angles,
the following process takes place. The product of inertia produces a
torque about the Z-axis which, in the steady state, causes a pitching
rate q to be measured. This pitching rate will call for an angle &y

which will produce a torque about the Y-axis. This torque will cause a
vawing velocity to be measured in the steady :tate. Thilis yawing velocity
will call for an angle ©®y which will produce: a torque about the Z-axis
which will oppose the product-of-inertia torque and thus reduce the cone
angle. It is not possible, with the assumed control equations, to reduce
the cone angle to zero, of course, because the situation 1s similar to
that of a weak-position servomechanism acting against a considerable

load. The possibility exists, however, of including the integral of the
attitude error in the control equation and thereby reducing the cone angle
to zero.

With a gain of 5 radians per radian per second for the rate signals,
the steady-state deflection of the X-axls in the XY-plane is 1.6°, and in
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the XZ-plane is 1.3°, for a resultant cone angle of 2.04° (fig. 8(a)).

With a gain of 20 radians per radian per second, the cone angle 1s 0.7°
(fig. 8(b)).

The transient motion brought about by a step increase in Iyy, and

the action of the controller, cause the spin vector to be displaced from
the reference Xy-axis, and a small oscillation with a perlod equal to the
spin period is superimposed on the steady-state values of n and m, as
1s shown in figures 8(a) and 8(b). The addition of the attitude signal
causes thls superimposed oscillation to be slowly eliminated, with this
elimination indicating that the spin vector is being alined with the
reference axis. The larger the rate gain, the longer the time required
to attenuate this oscillation. The attitude signal also causes changes
in the steady-state gimbal angles, which result in a slightly altered
cone angle. These results are shown in figure 8(c).

If the rate-gyroscope input axes were rotated 90° with respect to
the body axes, so that

then the measured effect of a product of inertia would call for gimbal
deflections such that the control torque would directly oppose the
disturbance torque. However, there would be no damping in the system.
A case was tried in which it was assumed that the gyroscopes were advanced
through a lead angle of 60°, with a gain of 20 radians per radian per
second, so that

20(0.5r - 0.866q)

Sz,

20(0.5q + 0.866r)

'

The results are shown in figure 9. A comparison with the case in which
the gyroscopes were not rotated shows a reduction in cone angle from
0.7° to 0.515° with the gyroscope rotated. Further comparison shows

a slight reduction in damping with the gyroscopes rotated. A linear
analysis predicts such a reduction in damping. Again, the addition of
the attitude signals reduces the superimposed oscillation to zero.
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Disk and Rod Configurestions

The motion of a disk, with a product of inertis IXY of 50 slug-ftg,

is shown in figure 10. 1In this case the prcduct of inertia of 50 slug—ft2
indicates that the principal axes are shifted 0.5° from the body axes, and
therefore the variation in m indicates an oscillation from O° to -10,
and a pitching-rate oscillation from O to -C.0l2 radian per second occurs.
The wobble frequency is equal to the spin frequency in this case, and the
combination of wobble motion and spin motion results in a space-criented
trace of the X-axis which is a stralght line rather than a circle as was
obtained with the nearly spherical body. This result is indicated by the
fact that n remains at zero.

The additlon of the controller brings the principal axis into steady
alinement with the spin vector, and the X-axis moves in a 0.5° cone. The
controller is not as effective in reducing the cone angle in this case as
it was in the case of the sphere. The smal’l cone results in small body
rates q and r, and a very high rate gain would be required to bring
about the 8y needed to reduce the slize of the cone. As can be seen
in figure 10, the combination of rate signal. and attitude signal results
in a By of 0, and the cone angle is not reduced by any significant
amount.

The results obtained with the rod conf:.guration (fig. 11) are very
similar to those obtained with the disk. In this case, again, the princi-
pal axis is shifted 0.5° from the body axis by a product of inertia of
50 slug-ft2. With the rod, the wobble pericod is 32 seconds. The combi-
nation of the wobble period and the spin perlod of 10.4 seconds results
in the peculiar wave shape for m and n. For a glven rate gain, the
time to half amplitude is larger for the rod than for the disk for the
reasons given in the discussion of the lineur equations.

CONCLUSIONS

An analytical study of & wide variety of cases of the use of a
controller, which utilizes precession torques produced by a spinning
wheel and which is commanded by rate-gyroscope and sun-seeker signals,
to control a spinning body shows that the controller will perform the
following functions:

1. The controller reduces the motion o:7 the body resulting from
a rectangular pulse moment disturbance by cunusing the reference body
axes to be steadily alined with the spin vector, and by realining the
reference body axes with the space reference line.
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2. The controller reduces the motion resulting from a step increase

in product of inertia by bringing the new principal axes into steady

alinement with the spin vector, and by reducing the cone angle generated

by the reference body axis.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., April 11, 1961.
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Figure 2.- Sketch showing relation of inertial axes and body axes.
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Figure 10.- Motion of a disk with Ixy = 50 slug-ft2.
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