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A MODIFIED HANSEN'S THEORY

AS APPLIED TO THE MOTION OF

ARTIFICIAL SATELLITES

by

Peter Musen

SUMMARY

This report presents a theory of oblateness perturba-

tions of the orbits of artificial satellites based on Hansen's

theory, with modification for adaptation to fast machine

computation. The theory permits the easy inclusion of any

gravitational terms and is suitable for the deduction of geo-

physical and geodetic data from orbit observations on arti-

ficial satellites. The computations can be carried out to

any desired order compatible with the accuracy of the geo-

detic parameters.
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A MODIFIED HANSEN'S THEORY AS APPLIED

TO THE MOTION OF ARTIFICIAL SATELLITES

INTRODUCTION

This work presents a systematic exposition of a theory of artificial sat-

ellites based on Hansen's treatment, starting from the basic principles of

the perturbation theory.

Hansen's ideas influenced the development of the theories of celestial

bodies for more than a century; but they are, generally speaking, difficult

to understand -- partly because of the unorthodox treatment of the perturba-

tions and partly because of the way they are presented in his original papers.

The basic idea consists in introducing a fictitious auxiliary satellite describ-

ing an auxiliary rotating ellipse of constant shape in accordance with Kepler's

laws. The position of the real satellite is determined by its deviations in

time and space from the position of this auxiliary satellite.

The perturbations o/ the orbit plane, which are small, are separated

from the perturbations _n the orbit plane, which are rather large. The per-

turbations of the orbit plane are determined by four interdependent param-

eters, two of which were introduced by Hansen himself. The perturbations

in the orbit plane are the perturbations in the radius-vector and in the mean

anomaly; they are determined by means of a single function _, for which a

differential equation of the first order is formed. The special characteris-

tics of Hansen's method consist in the addition of the angular perturbations

to the mean anomaly and not to the true longitude, and also in the use of just

one function to determine all the perturbations in the orbit plane.

In this modification of Hansen's theory the development is a numerical

one designed to take full advantage of the speed of modern computing ma-

chines. Repetitive operations also are emphasized for the same reason.

Finally, in several instances the development has been simplified and short-

ened by the application of vectorial operations in place of the notations of

spherical astronomy that were popular in Hansen's time.
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SOME FORMULAS FROM THE VECTORIAL

THEORY OF PERTURBATIONS

It can be assumed in the first approximation that a central body con-

sisting of homogeneous spherical layers is completely isolated and is rotat-

ing around an axis fixed in space. The center of the sphere is chosen as

the origin of the inertial system of coordinates -, y, z. The x and the y

axes are put in the equatorial plane, and the z axis has the positive direc-

tion of the axis of rotation. Let i, .j, k be the system of basic unit vectors

connected with this coordinate system. If a sate.lite with negligible mass

is placed in the gravitational field of this sphere, the differential equation

of the satellite's motion has exactly the same form as in the two-body

problem:

---- -- r

3 ' (1)
F

(position vector
r -- xi + y,j + zk

of satellite);

_ dx . dy d< k (velocity);- dr" + _-7j + 7_

d2x d2y _2z
i; - i + ,j +---k (acceleration).

dt 2 dt 2 ,{t 2

The mass of the central body, the radius, and t[.e gravitational constant are

put equal to unity. The orbit of the satellite is

a more general case it is a conic section.

The following notations will be used:

El = a =

E2 = e =

E3 =w =

E4 : _? =

E5 : i =

_ssumed to be an ellipse. In

semimajor axis of ellipse;

eccentricity;

argument of perigee;

longitude of ascending node in equatorial system;

inclination of orbit plane to equatorial plane;



E6 = go = mean anomaly at epoch;

'r[ ---- a

3

7 = mean motion;

g = go + n(t- t o ) = mean anomaly;

E = eccentric anomaly;

f = true anomaly;

P ; P×i + Pyj + Pzk = unit vector directed from origin to perigee;

II = Rxl + Ryj + Rzk = unit vector normal to orbit plane;

Q = R x P = O×i + Oy.j + Q k;

r ° = unit vector in direction of r;

n ° = unit vector normal to r, lying in orbit plane.

The first six elements E i (i = l, Z, 3, 4, 5, 6) represent the constants of

integration. The complete solution is given by the foliowing system of clas-

sical equations:

E - e sin E = g ;

r cos f = a(cos E- e)

r = a(1 - e cos E) =

r sin f = a_f_ - e 2 sin E;

a(i - e 2)

1 + e cos f '

(z)

P Qy By = sin _ + cos

LP_ Qz R 0 ' 0 +

o oi]+ cos i - sin

+ sin i + cos

i cos _ - sin _ 0 /

7

sin _ + cos _ 0

0 0 *1 ; (3)
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r = Pa(cos E- e) + Qav/-1 _ ,:2 sin E (4)

r \,,_-
- P a sin E (5)

The position vector r 0 and the velocity vector i"0 for the initial moment

t = to can be taken as the constants of integration instead of the elliptic ele-

ments E i (i = I, 2, 3,4, 5,6), which then must be determined by means of

Equations 2 through 5.

In this exposition, some classic results ar( presented in vectorial

form. Equation I admits of two vectorial integrals. The area integral

R

r× /_ = e - h ' (6)

where

1
h =

v/a (1 - e 2 )

is obtained from Equation 1 by cross multiplyiag by r and integrating the

result. The Laplacian integral

R× r + hr° + g = O, (7)

where

g = heP , (8)

is obtained from Equation I by cross multiplying by R and integrating the

re sult, taking

dr ) d r °
r h r_- r : h_

R × r3r _ h(r × it) × r3 - r 2 _ dt

into consideration. Forming the cross produ:t of Equation 7 and R, we have

R × (R × _) : -R _ (h, ° + g) ,

or

RR " r - rR " R : -R × (hr ° + g) .



But

R" _ = 0,

and

R" R = 1.

Consequently,

= R × (hr° + g) . {9}

This is the Hamiltonian integral in vectorial form. The vectors c and g,

taken as constants of integration, are not independent of each other. The

condition

c • g = 0

must be satisfied, and Equations 6 and 7 supply only five independent scalar

integrals.

If the form of the central body is not exactly spherical and the distribu-

tion of densities is less regular, or if some other bodies -- such as the sun

and the moon -- influence the motion of the satellite, then such a motion will

become a disturbed one and the differential Equation 1 must be replaced by

=_ _L + F (io}3
r

The disturbing force F is assumed to possess a force function _. In other

words, we assume that F has the form

F = grad _ = --1 + --.1 +--k. (11)
3x 3y _z

From the values of r and r for any given moment t, we can deduce

the system of instantaneous elliptic elements (the system of osculating ele-

ments) and obtain the position of the instantaneous orbit plane (the osculat-

ing orbit plane) as a plane passing through r and _:

': = f(t; E 1 E 2 ''. E_)r = f(t,a,e,:,_,i, 'go .... (iZ)

= ¢_(t, a,e, _, i,,_',gO = _ (t; El, Eg, • " " , E6 ) ' (13)



6

and the elements are functions of time themselves.

fating elements are defined, it can be concluded that

From the way the oscu-

_b
, (14)3t

_r r

_t" = =3 (15)

From the kinematical point of view, the oscu. ating orbit plane can be con-

sidered as a rigid body (without mass} rotatiag around the origin. This

plane, evidently, is tangent to the conic surface described by the radius vec-

tor of the satellite. Consequently, the instan;aneous axis of rotation of the

osculating orbit plane coincides with the rad us vector. We have

6

dEi 3r

3r
+ _" , (16)

/" -- 3_- dt ?E i

x=l

(_ = 1,2,3, • "- 6.)

6

Z dEi 3b_ + 117)
i: = _---_- dt )E i

i=l

Introducing the differential operator

6

- 2 dEi ?
dt dt )E i

,=1

and taking Equations 14 and 15 into account, we obtain

(18)

and

Consequently,

_r
--= 0
dt

_b
- F °

dt

6r $r °
- O,

dt dr
- O.

{19)

(20)

(Zl)



These two well known equations serve as a basis for the geometrical theory

of perturbations. For any osculating element Ei (i --i, 2, 3, • • ", 6),

In particular,

_E i dE i

dt dt

Taking

de _e dg _g
dt - dt ' dt dt (22)

From Equation 6, by applying the 3/dt operator, it can be deduced that

R dthd i + h-1 I_-- r x F. (23)

R • R = 1, R • R = 0, R x R = 0,

into account, we deduce from Equation 23 that

d 1
---- = R" r× F;
dt h

and

Finally,

and, with

taken into account,

R x R = hR x (r x F) ,

R x (r x F) = r R • F - FR • r

Rx R = hrR • F,

= h(r x R) (R • F).

This last equation shows that the vector

R r = 0

w -- hr(R • F) (23a)
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represents the angular velocity of rotation of ve(:tor R and, consequently,

is also the angular velocity of rotation of the osculating plane around the

instantaneous radius vector of the satellite.

We now introduce a system of coordinates X, Y, Z rigidly connected

with the osculating orbit plane, with the X and Y axes lying in that plane

and with the Z-axis normal to it. The intersection of the X-axis with the

celestial sphere is called the departure point. _.'he angle between the X-

axis and the line of nodes is designated by c. _hree Eulerian angles 8, cr i

determine the position of the XYZ system with respect to the xyz system.

The satellite is moving in the XY plane.

In order to investigate the motion of the satellite with respect to the

XYZ system we must use the formulas giving the. • connection between the ab-

solute and the relative velocities and the relative accelerations. If r is

written in the form

r = X i' + Yj' + Zk' ,

where i',j',k' = R are the basic unit vectors in the XYZ system, then

dr _ dX dY dZ k'
dt dt i' + d-_- j' + --dr

is the relative velocity, and

d2r d2X d2y . d2Z
• : --i' + j' - -- k'

dt 2 dt 2 dt 2 dt 2

is the relative acceleration.

The basic formulas giving the connection between the absolute and the

relative motions are

dr

+ W × r (24)- dt

d2r dr dw r
- + 2W x -- + W x (Wx r) + -- × r = - -- + F; (25)

dt2 dt dt r 3

or, taking Equation 23 into account,

dr

dt '
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d2r

dt 2
( ar)+ h r × _ (R " F)

d2r r
- + R(R • F) : - _ + F .

dt 2 r 3

By writing F in the form

F = (F) + _3f2 k' ,
3Z

where (F) is the projection of the disturbing force on the XY plane,

(F) - i' + -- j', (26)
_X _Y

we obtain

3_

R • F - 3Z (Z7)

and

d2r r

- + (F). (28)
dt 2 r 3

An important conclusion (Reference 1)is noted here: The differential equa-

tion of the motion of the satellite relative to the system rigidly connected

with the osculating orbit plane has the same form as in the inertial system.

The scalar equations of the motion are, consequently:

In the rectangular coordinates,

d2X X _
+

dr2 r 3 _ X '

and in the polar coordinates,

d2y Y 3_

dr2 r 3 3Y '

3f2 I _
(F) - r ° + R × r ° ,

3r r 3v
v : Z (X,r) (28a}
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r 1 _!5L
r - + -- (Z8b)

,it2 \dr ) r 2 Or '

TiT) >'_'d r2 dv .'_ (28C}
dt By

Thus, Hansenrs classic results about the rela.ive motion can be obtained

in a more direct way without appealing to the equations for the variation of

constants (Reference 2).

Because of the form of Equation 28, which is similar to Equation i, the

idea of osculation can be extended to the movng system of coordinates; and,

introducing the operator , we can claim ":hat in the moving system

- O, {z9)
d t

dr

dt dt
(F), (3o}

The quasi-integrals, Equations 6, 7, and 9 retain their form. In particular

the area "integral" may be written in the for_-n

r2
dv _ 1

d t h
{31}

The vector R is a constant vector in the XY;I system. By substituting

!1 • F --
_) Z

into Equation g8a we have

Co = h r , (3Z)
)Z

and by substituting Equation 31 into Z8c, ancther classic equation is easily

deduced:

The equation for d,,,t_..

Laplacian "integral":

d 1 3_q
-- -- = (33}
dt h ,"_v

is deduced by apply:ng the operator :.dr to the
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dr

R × d---_ + hr° + g = O.

Taking Equations 34, 33, and Z8a into consideration, we obtain

dc _r × R + + h2 _v_ r°'

In the inertial system of coordinates,

(34)

(35)

_ __ _ rO × R + (1 + h2 / _fi r o (35a)
_r \r ] _ + 6Jx g.

This equation can be used for the computation of the special perturbations

in the elements. If y is the angular distance of the osculating perigee from

the departure point,

g = heP = he (i'

By substituting Equation 36 and

r o _-- i I

r°xR = i '

into Equation 35, two classic formulas

cos _ + ,j' sin _) . (36)

cos v + j' sin v,

sin v -,j' cos v

d(he cos _) = + _r sin v + -- + h 2dr r _ cos v,

d(he sin _) 3fl (1 )bfl= - _ cos v + -- + h 2
dt 3r r _-v sin v

are obtained. These, however, will not be used in this exposition.

Introduction of the Auxiliary Satellite

In any satellite theory some first approximation to the real orbit and

the real motion is used as a starting point. It is customary to call such a

first approximation an "intermediary orbit."

The choice of an "intermediary" is not unique. In the theory of Laplace,

as well as in the theory of Hansen, it is a rotating ellipse. In the theory of
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Hill it is a so-called "variational curve," which in the lunar theory is ob-

tained by neglecting the eccentricities of the salellite and of the sun and by

neglecting the solar parallax. In the case of the artificial satellite the "var-

iational inequalities" depend only on the mean argument of the latitude (Ref-

erence 3). We imagine a fictitious auxiliary salellite describing the inter-

mediary orbit in accordance with the prescribed law. The choice of the

intermediary and of the law of motion on it must be made in such a way that

the difference between the positions of the real and auxiliary satellites is

small.

In the Hansen-type theory which is present ._d here, the intermediary

orbit is an ellipse of constant shape lying in the osculating orbit plane, with

fixed. The auxiliary satellite is describing thisaa 0 , e 0 , and n 0 0

ellipse in accordance with Kepler's law. The ellipse is rotating uniformly

with respect to the eccentric anomaly of the auxiliary satellite around the

axis normal to the osculating plane. The directions and absolute values of

the radius vectors of the real and auxiliary sat{_llites do not coincide; but the

difference is small, being of the order of pertu:'bations. Let r ° be the unit

vector along the radius vector r of the real salellite at the time t . The

radius vector _ of the auxiliary satellite will h{ve the same direction at

some other moment say _. Then,

rO(t) = r°(_) . (37)

The time t and the "pseudo time" _ differ froln each by the order of pertur-

bations, and their difference is small. The absolute values of the radius

vectors r and r also differ from each other b3 the order of perturbations,

and we can put

r(t) = (1 ÷ v) f(_} , (38)

where v is small and the factor I + _ defines how the vector F must be

"stretched out" or "contracted" in order to become equal with r. Using

the accepted terminology, call _ the "disturbe{ time," and the difference

- t _ _:¢ can be understood as the "perturba:ion of time."

These two simple relations, Equations 37 and 38, serve as a basis for

Hansen's development. The motion of the auxiliary satellite in the basic

ellipse is governed by the usual equations fami.iar from the two-body prob-

lem. If the true anomaly of the auxiliary satellite is f and the eccentric

anomaly is E, then

a 0 cos E- ,_

/ ,2

} , (39)
0

.,i,, E, (39a)
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f : a0(1 - e 0 cos E) , (39b)

E - e 0 sin E = go + _o_' = go + v0 (t - to) + <0 _ " (40)

The area "integral" for the auxiliary satellite takes the form

d_ 1
f2

d-_ _ ' ho
x/ao(1 - e02 )

It is assumed that the auxiliary ellipse is rotating uniformly with respect to

E and that the position of its perigee is determined by the equation

-v = w o + _j.:lE,

where

AE = E- E o .

The "angular speed" of rotation ¢_ cannot be taken arbitrarily, but must be

determined in such a way that the development of the perturbations in the

mean anomaly <0 _ does not contain any secular term. The polar angle of

the auxiliary satellite at the moment _ with respect to the X-axis is

T * vr0 + _aAE. Let the polar angle of the real satellite at the moment t be

designated by v. The condition (Equation 37) of equality of the unit vectors

evidently can be replaced by the condition of the equality of these two polar

angle s :

v : f + Wo + _ AE. (41)

The node (J and the argument of the departure point contain two types

of terms: the secular and the periodic terms. Consequently, the constants

C'o, c_o, a, and 7? may be determined in such a way that the expressions

= 4 - c_ - 0 - 2:t AE (4Z)2N C_o + _0

2K : <7o - g_0 - cr + gJ + 2r i AE (43)

contain neither constant nor secular parts. Such a determination, together

with the proper determination of z},which is discussed later, leads to the

development of x, y, z containing periodic terms only. Now

: s - (g - r t) :_E - N - K (44)0

" (: : _; - (a + r t) AE - N + K (45)
0
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For the argument of latitude of the real satellite,

v - _ = f + (77o - a o) + (a_ + a - 7))AE + N + K.

The expressions

(or) = cro - (a - 77) AE,

(g_) = g_o - (a + W) AE,

(_) : (7% - _o ) + (_ + a - _) AE,

(46)

(47)

(48)

(49)

containing only the constant and secular parts, are called the mean values

of the corresponding elements.

Disturbing Function and its Derivatives

The disturbing function is defined as the negative of the difference be-

tween the gravitational potential and the potential of a spherical earth of the

same mass. In the present theory, _ is taken in the form of an expansion
in zonal harmonics:

f)
k 2 k 3 k 4

= r---_ (1 - 3_b2) + --r4 (3_b- 5_b3) + --r5 (3 - 30_P 2 + 35_b 4) + "'"

= _]2 + _3 + _4 + "'" ' (50)

where

%b = sin i sin (v- or) (51)

is the sine of the latitude. Taking

v = f +Tr o + _A_ (5Z)

and

c_ = c_o - (a - 77) AE - N - K,

(co) : (_7o - _o) + (xj + a - 77) AE

(53)

(54)

into account, we obtain
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The expressions for sin i, N, and K have the form of trigonometric series

in g and (w). It is, however, inconvenient to keep these series in the argu-

ment in W.

Introducing the parameters

i i
;<1 = sin _- cos N , '<3 = cas _- sin E ,

i i
;\2 = sin T sin N , \4 = cos T- ,:o._ K ,

(56)

, {57)

yields a different form for #:

which leaves only f + (.,_) in the arguments. The parameters :L1 and :_9

were introduced by Hansen. The idea of introducing also and is a

natural one. In the first approximation,

_0

X 1 = sin T' "*'3 -- 0 , (59)

i
0 (6o)'\2 = O , X4 = cos --2

The next approximations add only small periodic oscillations about the

mean values of k i, and those mean values will differ from Equations 59 and

60 only slightly.

Thus, the introduction of A parameters permits an easy separation of

the secular motion of the orbit plane from the periodic oscillation of this

plane about its mean position. (The mean position of the plane is under-

stood to be the position affected only by the secular motion of the node.)

The components of the rotation matrix representing these small oscillations

about the mean position of the orbit plane are polynomials in '_'i" The price

paid for such a simple representation of the rotation matrix is the condition

in Equation 57, that only three parameters, in fact, are independent. The

relation (Equation 57) is, however, not a great inconvenience and it can be

used also to check the accuracy of the development. If an introduction of

only three independent parameters is necessary, then probably a satisfac-

tory choice would be
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K1 cos N i
p = + _ = • t_n- (61)

L 4 cos K 2 '

i
\2 _ sin N t an -- (6Z)

q = '<4 cos K 2 '

_3
s = + - + tan K. (63)

_4

The elements of the matrix of rotation ol the orbit plane about its mean

position are the rational fractions in p, q, s. The N parameters are anal-

ogous to the parameters of Euler in the theory of the rotation of a

rigid body (Reference 4), and the identity of p, q, s with the components

of Gibbs' rotation vector (Reference 5) is also easily recognizable. The

form of ¢ which is convenient to use in developing the disturbing function is

a 0 , ,

'¢' = 2 -- [(:_1:\4 - *,2<3) -v + (),_2\4 + \1\3 ) t ], (64)
F

where

a 2o

l
+--

2

sin If + (co)] i7-- --

a o 2

1 + V/1 - e02) cos [E + (c_,)]

-e o cos (cJ) ;

l +$I- 2) [E+

(65)

_i i - 41 - e 2) sin [E - (_)]
2 o

- e 0 sin (w).

For a0/F the classic formula (Reference 6) is:

a0 (+ )-- - + $ cos E _2= , - cos 2E + "'" .

4F 1 - e 0

(66)



_G

17

It is necessary to point out that the eccentric anomaly E plays two

roles. In the motion of the auxiliary satellite in its ellipse, E has the usual

geometrical meaning; but in the expressions for perturbations it is the in-

dependent variable replacing the time. These two types of E must be dis-

tinguished from each other because the partial derivative _/_E, which ap-

pears in this theory, is taken with respect to the "elliptic" E. The best

way to keep these two eccentric anomalies separated from each other is to

use a temporary notation F for the elliptic E in the development of the

disturbing function.

The disturbing function can be written in the form

k2 -3 ao 3 k3
- (i + v) (I - 3_fl2) -- + -- (i + _)

a 3 F3 a 4
o o

-4
4

a 0
{3_ - 5_ 2) --

F4

k 4
-- (l+>)

5
a

o

-5
5

a 0
(3- 30_ 2 + 35_ 4) ....

F5
(67)

The elliptic E is replaced by F, and _ by

( 01
ao3 (1 + z/) 3 \P/ (1 - 3_ "2)

+ 4 (1 + w)* (3_" - 5_ .2)
a 0 \P/

where

k 4
+ --

a05
(3- 30_ .2 + 35_ TM) + "-" , (68)

l/J* =

: ___>_o_ [_ +
a 0

a 0
2 --

P
[()kl_. 4 - X2X 3 ) _n* +

1
: y (i + J1 -

q

{X2_. 4 + A.1A. 3) £*J,

cos [F + (oJ)]

(69)

1
2 (1 - _/1 - e2)o

COS IF- (_)] - e COS0 (_),

(7o}



18

° ,_ 1

1
_T( i __/]_ _2 _i,,[F- (_)] - _o _i, (_), (71)o

and

a0 2
1 + ,S cos F + t3'2 cos 2 F + "'') . (7Z)

No replacement of E by F is done in 1 + v, K1, N2, k3, )_4" Conse-
quently, the introduction of the "temporary" eccentric anomaly F and _2"

instead of _ permits us to distinguish between two types of E and, if

necessary, to keep track of changes that occur i;_ _ (or _*) from one iter-

ation to another. Each iteration leads to a deve]opment of the form

and

l) = NC cos (%E + 2_w) + _S sin [_ E + (2_. + 1),_J] .

The last equation will not be used. In this expo:;ition there appears the par-

tial derivative Bfi/bE, which in fact must be understood as

RE )F (73)

The "bar" operation means in Hansen's notatiol the replacement of F by E

again. Each iteration step leads to an expressi)n of the form

3E
- BS sin (%E + 2_o) + BC cos I'vE + (2_ + 1),_] .

Taking

- +
o,v 3_ _E _f BE '

z

_E

a0v/1 - e 2

[: r



and

3F
--= aoe o sin E
_E

19

we obtain

3v 3T '

3fl 3_)

r _r _f '

?fl F )I-1 e o sin E ?f_

?v V_ 2 BE J r _ra 0 - e o 1 - %2

The development of the derivative r(3fl/%r) presents no difficulties:

r 3r a 3 (1 + v) -3 (1 - 3@2 )
0

a 4 (1 + v) -4 (3@ - 5_b3)
0

a 5 (1 + v) -5 (3 - 30@2 + 35_b4) +
0

= - 3f)2 - 41_ 3 - 5fl4 ....

(74)

Perturbations in the Orbit Plane

The perturbations in the orbit plane are the perturbations of the radius

vector, 1 + v, and of the mean anomaly, n08 %. Thus, the perturbations in

the mean anomaly and in the argument of perigee {from the standpoint of

Lagrangels variation of elements) are combined into a single angle n 0S_,

representing the perturbations of the mean anomaly from the standpoint of

the Hansen theory.
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Differentiating

v = T + Fo + _._AE ,

gives

dv _ df d_ dE
+ _'1

dt ch_ dt dt

Then, eliminating dv/dt and df/d_ by means oI

dv 1

dt hr 2

and

d_ hoF2 '

we have

dt = --_- _ aAh0 F2 dEdt

or, taking into consideration

F 1

r ] + _ '

(76)

ho z

a02 noV/l - e 2

we obtain from Equation 76,

dt
h(1 + z_) 2 _ 2n o - e o

Equation 76 can be written in the form

d_.. = W + h° v'2

dt h (1 + v) 2
noX/l- e

where

2

dE2 dt '
0

(77)

178)
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ho ho 1
-- - 1 - -- + 2 (79)

h h 1 + _'

The first and the third terms in Equation 78 are of the first order, and the

second term is of the second order with respect to the disturbing forces.

In order to obtain the main part of 83, we must find _; that is the next

problem.

The equation of the orbit,

a(1- e 2)
z

1 + e cos f '

can be written in the form

h(1 + v)
+ 17 g;

and, as a consequence, Equation 79 becomes

h 0

= - 1 h + 2 h 0 h F + 2 h 0 _ • g . (80)

By taking

h 2 ao (1 - e 2 ) = 1o

into account, the last equation can be rewritten in the form

-- h0 h _ + 2 _ " g (81)
W = - 1 h + 2 ho a0 (1 - e02) h0a 0 (1 - e?)

This is a classic equation written in terms of vectors. In forming the dif-

ferential equation determining W, it would be preferable to keep the per-

turbations separated from the elliptic motion of the auxiliary satellite. For
this reason it will be more convenient to introduce another function W

instead of W, by replacing f with /7. The vector /7 is defined as a function

of the temporary eccentric anomaly F which replaces E and which is con-

sidered as a temporary constant; or /7 may also be considered as a function

of the true anomaly @, which temporarily replaces f. After the integration

is performed, F is replaced by E again. Instead of Equations 39 through
39b, we then have

cos _ = a 0 (cos F- e0), (82)

sin _ = a 0 41 - eo2 sin F, (82a)
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-- a 0 (1 - e 0 cos F) ,

= i' _= cos (f + T 0 + ___ZE) + j' 5 sin (f + rro + _ 2'.E) .

In view of the foregoing remarks, 9" takes :he form

h0 h Z 2_ • g
9' = - 1 + o ,

h _ ho _o(1-_o 2> ho_ o(i- _)

Substituting Equations 83c and 36 into Equation 83 results in a classic
formula:

h0 h__ _ 1 + e cos (_ + r"0 + *_bE- ¥)

9, = - ] - --_ + 2 -h0 a0 1 - e 2
0

Eliminating -: in favor of F by means of Equations 8Z through 82b, we

obtain another formula:

where

(83)

(84)

_ = - + "r cos F * tg _in F, (85)

ho h 1 I1 _ eeo cos (_0 1'
+ _-a_E- ×) (86)

-- = - 1 h + 2 ho i - eo2

h e cos (_-9 + "._2E- X) - e 0

r = 2-_0 1 - e 2 ' (86a)
0

h e sin (r" o + _-_ZE- X)
-- (86b)

= - o h0 _/1- e 2
0

It follows from Equations 86 and 86a that

ho h

eor * =- = - 1 h + 2 h--%- 187)

The formulas 85 and 87 are used in the following exposition in the problem

of determining the constants of integration a_.d determining the perturba-

tions in h h 0.
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It can easily be seen that l_ is changing under the influence of the per-

turbations only. The "elliptic" motion is present in Equation 85 in the form

of F and is considered as "frozen" for the time being. This leads to the
conclusion that

_W d_

(it dt " (88)

The perturbations in fi are present only through _0 + aJ:_E in Equation 82c

in the argument. The only influence of the perturbative force on _ will

consist of the rotation of p around the Z-axis with the angular velocity

aj(dE/dr). Consequently,

5# dE

where _ is completely uninfluenced by perturbations; then

b/;_ 0. (90)
dt

There is obtained from Equation 83, by applying the operator _/dt and

taking Equations 88, 89, 90, 35, and 33 into consideration,

d_ _ )_c2 I P. r ° h 2 #. r° _ _ ]dt h 0 _ 2 1 + 2- -
r h 2 (1 - e 2)

0 ao 0

-- 4-

+ 2h 0 R" #x r )r h0a 0 (1 - e02) "_J at (9].)

Designating by p ° the unit vector in the direction of _, we have

#= #.p°

It follows from Equations 82 through 82c that

where

d p d/3 '0 o + _ d,o______° d__
dF dF d_ dF

d# _
dF a0e o sin F,

(9Z)

d_ a0
dF = _ _/i - e02 (92a)
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Evidently

It follows from 92 to 92b that

dp ° : ._p°
d,_j

(9Zb)

dp a o
X_-)._,,F + (. _---vl-

dF _ po aoeo p-- 0
e 2

Differentiating Equation 83 with respect to F gives

)W h e 0 sin F 2g
-- -- ÷

2 hoao(1 - e 2))F 2 ho 1- e ° o
_ ao ¢i 21°a0e 0 si _ F + (R × P ) • _- - e 0 ,

or

boa o (1 - e 2) a o 3F h-
o

1) e o sin _ 1
v_- e 2

o

Substituting this last result into Equation 91 _ives us

d_ OQ I P " r° i + 2 h2dt - h 0 3-_- 2 - r h 2 a o (1 - e 2
o o

P" r°-; + ( 5)2h o II " _ × r )r

o

From Equation 79,

ho l+v

h 1 - 7,2

(1 +_),

and substituting into Equation 78 gives us

dn o _ _ _ + z.,2
--. L I1

dt o
1 - v 2 V/7_ e2 dt

o

h o dE

+ --g- + i eo sin _-" (93)

(94)
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The last equation represents a generalized formula of Hill (Reference

7) in the theory of planetary perturbations. Differentiating Kepler's

equation

E - e o sin E -- go + no (t - t o ) + no S?.

with respect to E gives

F dt dno$?_

a 0 no -_- + dE ' (95)

and, eliminating dt from Equation 94,

dE 1 - u 2 ao dE /1 - e 2
o

Solving with respect to dn0S:k/dE gives

dnogg" = _-W + v2 F 1 -v2._ - __ _ (7o) 2
---dE 1 + W ao 1 + W ,it - e 2 (96)

o

Eliminating dno8%/dE from Equation 95,

dt.1_ 2(n° -d--E = a---o 1 + W 1 + _a F .
X/] - e02 (97)

Taking Equations 74 and 97 into account, we deduce from Equation 93 that

dW F _£2 e 0 sin E 3£) _ h 2
d'-E- = ho -- - r " 2- cos (f - _) - 1 + 2-

ao/1 - e 2 DE 1 - e 2 r h 2
o o o

/5 cos(f - c_) - 1 r 1 - v 2

ao 1- e 2 aono 1 +
0 /1- e 2

o

+ 2ho T

•j . . _V/I- e 2 a o _F
o

aono i + _ 1 + " " r-
- e 2 ao _r

0

J (98}
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or, after expressing the results in terms of E and F,

dWdE - (M 33Ea°_ + Nr 3 3ra°_) A +
S_

whe r e

(99)

M(1 - e 2)
o = -- -2 + 2e o cos E + 2 cos {F - E)

h 2
0

- e o cos (F- 2E) - e o cos F + 1 +------_

- 2e 0 cos E + e: cos {F + E) + {2', - e:) cos {F - E)

)- 2e o cos F + - _ + 2e o co_ E- 1-T-e cos 2E , (100)

N (1 - e:) h2[-- -- 2e 0 sin E - e
h 2

0

o sin F + e o sin (F - 2E)]

1 r
]-2e o sin E (2 ) sin (F - E)+ i + _ L - - e°2

+ eo T e sin 2E ,
{lol)

A

1 + W ao 2
-- e 0

and

S =- ao 3---_-- W + 1 + e o

In the first approximation, there is

Sill _"



M (1 - e 2) 1 ) 1 2 2E

k

= -3 l - _- e02 + 2e 0 cos E - _- e 0 COS

+ e02 cos (E + F) + (4- e02) cos (E- F)

- e 0 cos (2E - F) - 3 e 0 cos F,
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1 2 sin 2E + e 2 sin (E + F)N (1 - e ) = + e o sin E - 2- eo o

and

+ (2 - e02) sin (E - F) - e 0 sin (2 E - F) - e o sin F,

S = - 2 e 0 sin F .

Before integration of Equation 99 is started, _ must be determined in

such a way that no term of the form A sin F is present in this equation.

Otherwise, the integration will produce a secular term AE sin F in W and

a term AE sin E of the mixed type in -ft. As long as the inclination is not

near 63.4 degrees, only periodic terms are permitted and small divisors

will not make the process inoperable.

Perturbations of the Orbit Plane

It already has been pointed out that the motion of the orbit plane can be

decomposed into the secular motion of the mean orbit plane and the small

oscillations about this mean position of the orbit plane. In order to deter-

mine the secular motion as well as the small oscillations of the orbit plane,

the differential equations for L parameters must be formed. The classic

equations for the variation of constants will be used:

d_ 3fl
sin i - h r --sin (v - _), (lOZ)

dt 3Z

dcr dO
- cos i (I03)dt dt '

di 3Q
-- = h r cos (v - or) (104)
dt _ "
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Differentiating Equations 42 and 43 gives us

<iN de, d '; dE (105)
2 d_- dt dt 2_ dt '

dR d<7 d! _ dE ( 106 )'2 - + + o "i --
dt dt dt " dt

Substituting Equations i02 and I03 into the twc last equations, we have

dN dE 1 )22 i

.... :_ hr _-cot -- sin (v - _J)dt dt 2 _ '

(1o7)

dE I 3_ i
dK = + r; + -- hr tan--- sin (v - or) (108)
dt ' dt 2 _-

Differentiating Equations 56 for A_ parameter:; and substituting Equations

i04, I07, and 108 yields the following equations:

d;kl _ + ,x"_ dE + 1 _ (109)
dt 2 d-7- 97- aoh (1 + v) _ (+\4 _' - '\3 '_) '

d,k 2 d E 1 _

- :_ __ _ _ aoh( 1 + _,) 3_---(_X 5__ _,4,n) (109a)dt "1 dt 2

dE 1 (109b)d _,.3 _ + r! \ -- + -- a o h ( 1 + _' ) ,}[2dt ' 4 dt 2 _ (+ 'k2_ + '\1 _') '

d<4 dE 1 . (109c)
r i_, I + _ aoh (1 + _) )i__ (_ ;kl 2 + k2,r_)

dt 3 dt 2 )Z

But in this case

3_;1 )fl
- COS i , (iio)

and

d t F

dE a o n o
A . (111)

Taking Equations 110 and 111 into consideration, the following final

equations can be deduced from Equations 109 through 109c:
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dkl 1 h a0 727

dE - -_ c_L 2 ÷ 2- h_ " _ _ e0
2 _¢ cos i (+,<4 _ -L3_)A, (IIZ)

1 h ao _Q
dL2dE - COAl + 2 h-- " r--- COS i (--X3_- k4ca) A, (llZa)

)g,o gl 2
e 0

dX3 l h ao )_Q

dE - +_k4 + 2 h-o " V_ - e 2 _%b cos i (+k2_ + )_lr_)A, (llZb)
0

dk 4 1 h

dE - _?L3 + 2- h 0

ao _72

1- e °

cos i (-kl _ 4- A2_)A . (112c)

The values of a and _? must be determined from the second and the

fourth equations in such a way that no constant terms are present on the

right-hand sides. The system (Equations ll2 through ll2c) is solved by the

method of iterations starting with

i 0

k 1 = sin 2 ' k 3 = 0 ,

i 0
Z-2 = 0 , k.4 = cos -_

Each iteration step leads to an improved value of
ess must be continued until the final values of >.1'
are reached.

k and ,:_,_, and the proc-

'<2' _3' k 4, _z, and "r;

ON THE CONSTANTS OF INTEGRATION,

DETERMINATION OF THE BASIC HANSEN FUNCTION,

AND PERTURBATIONS IN THE MEAN ANOMALY

The constants of integration are the six given elements a0, e 0 go

i 0, and w 0 = _0 - or0" No moment of time exists for which these elements

are osculating. They must be compatible with the observations, and the

development of the coordinates obtained on the basis of these elements must



3O

contain the periodic terms only. The system ot basic elements is determined
by repetition of the orbit correction; after each orbit correction the develop-
ment of perturbations must be done anew in order to obtain a better repre-
sentation. If the two theories are compared, the systems of elements used
in different theories are similar but not identical. Such a comparison re-
quires, generally speaking, great care and ingeauity. But in any given theory
there is a unique system of elements compatible with the observations.

In the integration connected with determining the perturbations, some
new additional constants of integration are introduced. They must be deter-
mined in such a way that no secular terms appear in the development of the
coordinates. Implicitly, these additional const_L.ntsare determined as func-
tions of the basic elements. The analytical for_ of the dependence of these
constants on the elements is not evident in the xumerical theory.

In this development there will be series of the following four forms:

:_ C cos (LE + 2 _co) , (113)

Z C cos [£E + (2 _ + 1)c J] , (l13a)

_S sin (%E + 2 fc0) , (l13b)

E S sin [%E + (2 _ + 1)_] (113c)

In order to keep the secular terms absent in the development of the co-

ordinates, no constant of integration is added if the integrated series has

the formof Equations ll3a, l13b, or 113c; but cne is added if the integrated

series has the form 113. That is ciear because series in Equations ll3b

and ii3c, being the sine series, do not contain any constant terms. The

series l13a cannot contain any constant term tecause only the combinations

±co, -+3a, +-5_J, • • • can be present in the argurrent.

At each step of the process of iteration, v_e obtain for Equation 99 an

expression of the form

a--Kw= Ns sin(%E + 2_ + _F)
dE

+ ZC cos [%E + (2;_ + 1)co + hF] (114)

or of the form
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dW
d---E-= _ $ sin (%E + 2 _co) + _C cos [%E + (2_ + 1)_]

+ {_--S sin (%E + 2 _a_) + 7, C cos [%E + (2_ + 1)c_]} cos F

+ {_ C cos (4E + 2 _e) + _ S sin [%E + (2 _+ 1)co]} sin F. (l14a)

If the series in Equation 114 or l14a are integrated, the additive constant of

integration must be of the form

C o + C1 cos F

and the series for W has the form

W = C o + C 1 cos F

The series for W becomes

+ _C cos (%E + 2 _ + _F)

+ _ S sin [%E + (2 > + 1) + goF] . (ll4b)

W = C O + C 1 cos E + _C cos (%E + 2_co) + Z S sin [LE + (2_ + 1)co]. 1114c)

Equation 96 for n05 % can be put in the form

v2 _ _2 _ _ 1 - v 2 _2d_0_ - _ ! + (115)
2 1 + W a 2

dE ao 1 + W a 0 _1 - e o o

This form is convenient for the use of the method of iteration because the

values of v2 _2 and 1 + W can be taken from the previous iteration.

Hence, Equation 115 takes the form

dnoS_

dE - (C o + C 1 cos E) (1 - e o cos E)

+ _ A%_ cos (% E + 2 >w) + _ B%{ sin [% E + (2 { + i) w] . 111 5a)

The coefficients CO and C I must be determined in such a,way that no con-

stant term and no term of the form K cos E are contained in the last equa-

tion because such terms, when integrated, will produce terms already con-

tained in Kepler's equation. Then
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1

Co 2 e° C1 + A°° = 0 ,

or

- e o C O + C1 + A10 = 0 ,

C 0 _ -

2Aoo + e A1o

2 - e 2
0

C 1 _- _

2Aoo e o + 2Alo

and the coefficient A20 is corrected by an amount

1
- __ e o t.-2

The final forms of W, W and dn05?/dt, after _.he constants C O and C 1 are

determined and substituted into Equations l14b, 114c, and 115, remain the
same as before:

W = E C cos (_E + 2_ + g_F) + E S sin [LE + (2_ + 1)w + gaF] ,

= Zc co_(%E + 2_) + _S sin [%!,: + (2_ + 1)_] ,

dno_

dt

and at each step of the iteration process we (,brain for n0_ } a result of the
fo r n-i

no$ _ = _ S sin (_E + 2 _) + _C :os [_E + (2£ + l)w] •

Determination of the Perturbations in h/h 0

and in the Radius Vector

We have obtained for W:

W : EC cos(+E + 2:_w + $_F) + E S sin liE + (2_ + 1)w + _F] ,
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where

g.... 1, 0, +1 .

This result can be presented in the form

= - + _" cos F + _[J sin F ;

where - is obtained as the part in Equation l14b independent of

can be obtained by putting F 0 in the remaining part because

_ - (_ - E)
F=0

The perturbations in h h 0 can be obtained from

h o h
- + eo? = -1 + 2

h h o

Putting

h
0

1 +A
h

we deduce from the last equation

A - 1 (- +
3 e0T)

2 A 2
+

3 (1 + '&)

or
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(116)

F, and ,

(117)

(87)

(118)

(119)

(--_ + e 0 T)
+ 2 (52 _ A3 +

3

Also,

h

h o
- 1

1

+ T(Z + - + eor)_

Equation 79 can be put in the form

(IZO)

(IZl)

i (A -_) i -
2 _T -_(A + '_') " (lZZ)

This form is more convenient for the use of the process of iterations be-

cause Z, %- and > in the second term can be taken from the previous
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iteration. The determination of h/h 0 and 1 + v, =onsequently, does not require

any additional integration after the basic functicn W is determined.

Determination of the Parameters

After the constants a and _ are determined, Equations 112 through

11 gc give

i0 + 1 (123)
A 1 : sin _- _-(A + B) + 8N I ,

h 2 = 6h2 , (12_.4)

k3 : _43, (IZ5)

io (1Z6)
_4 : cos 2 + _-(A - B) + 64 4 •

The terms

841 , 8A 2, 8h 3, 8;. 4

are obtained by the formal integration of EquatLons 109 through I09c. They

do not contain the additive constants of integration, and they have the form

8L 1 = E C cos (%E + 2 _) + E S sin [%E + (2 _ + 1) w] , (127)

8\ 2 : _ S sin (%E + 2 j cJ) + 53 C cos [._.E + (2 j + 1)_J] , (128)

5X 3 = 53 S sin (_LE + 2 j._) + 53 C cos [%E + (2 _ + 1) w] , (lZ9)

844 -: 53 C cos (%E + 2 _w) + 53 S sin [%E + (2 _ + 1) _J] (130)

Only the series for K1 and 4 4 contain the additive constants of integration.

The determination of these constants can be dcne in a more symmetrical

way if they are written in the form (A + B)/2 _nd (A - B)/2.

Two conditions must be satisfied: (1) The principal term in the latitude

must have the form
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sin i 0 sin If + (oJ)] ; (131)

(2) In addition,

2 2 2kl + k2 + k + £4 = 1. {13Z)

Now, Equation 58 is

= 2(\1)_ 4 - _2L3 ) sin If + (co)] + 2(h2L 4 + _lL3 ) cos If + (cz)], (58)

and, as a consequence of the first condition, the constant part in

2(_ I k 4 - k 2_3) is equal to sin i0. Substituting Equations IZ3 through 126

into 131 and 132, gives us

i0 • i0
1_ (A 2 _ B2 ) + cos -- + sin A + cos sin B
2 2 2

+ const, in 2(Sk 1 bk 4 - _2 _k3) = 0,

and

or

1 B2 (i0 ( i0-_ (A 2 + ) + cos -_- + sin A - cos -_-- sin B

+ const, in (_12 + sX_ + _ + _:) : o,

i 0
A 2 + 2A cos--_ + sin + (li) = 0, (133)

where

i 0
B 2 - 2B cos-_-- sin + (12) = 0 , (134)

(11) = const, in [(3k 1 + _k4 )2

(12) = const, in [(_k 1 - _L4 )2

Equations 133 to 134 are solved by the method of successive approximations

if i 0 _ 90 ° . It is preferable to use the p, q, s, system if the satellite is

a polar one. We simply put



36

and _p, _q, _s

p = tan --

q = 6q,

s = bs;

i
0

+_P,

are deduced by formal integr;ttion.

Decomposition of the Matrix ,of Rotation

In his lunar theory, Hansen developed the radius vector, the longitude,

and the latitude into trigonometric series. In this case, however, the incli-

nation can be large, and it is preferable to use, the matrix of rotation instead

of the development of the coordinates into series. Two types of rotation

matrices appear in the present exposition:

(1) The matrix representing a rotation a0out the x-axis for the angle

a. This matrix has the form

A I [_] = + cos ct - sin ct

+ sin c_ + cos ct

(Z) The matrix representing a rotation about the z-axis:

Aa[_]
Ii cos cL - si i (z i]J= sin a + cos a

0 0 +1

The coordinates of the real satellite wit} respect to the system rigidly

connected to the moving ellipse (the x-axis is directed to the perigee of the

moving ellipse and the z-axis is normal to ti_e orbit plane) are:

(1 + _') a0 (cos E- eo), 2 sin E, O.
(i + v) a o i - e °
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The transformation from the system rigidly connected to the moving

ellipse to the inertial system requires a triple rotation, and the position

vector in the inertial system can be presented in the form

r = (l+v) P.
a 0 (cos E - eo)

a o d - e02 sin E '
(135)

F" = A3[_? ] • Al[i ] A3[_ o + xjAE- c_] (136)

We had

and we deduce

0 = (_) - N + K ,

if0 + _ AE - _ = (_) + N + K,

Taking

= A3[(_)] A3 [K - N] Al[il " A3[K + N] • A3[(_)] .

_1 : sin
i i
_- cos N, k 3 = cos _- sin K ,

i
)_2 = sin _- sin N,

ik =
4 cos _- cos K

into account, we have

I_ = A3[(_)] [Nij] • A3[(cz)] '

where

Kll = +_12-K:-_32 +;k:, K21 = + 2 (k 3 _4 - K1k2 ) ,

k12 = - 2 (k 3 K 4 + k I k2) , k22 = -kl 2 + )k22- )k: + )k: ,

k13 = + 2 (k 1 k 3 - 4 2 k4) ' K23 = - 2 (X 1 k 4 + k 243) ,

k31 = + 2 (ha k 1 + k 2 k4) ,

_32 = + 2 (_4 hl - k2 k3),

k33 = - A. 12 2 2- k. 2 + _.32 + k- 4

(137)
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The numerical computation of the perturbations for a given moment of

time is done by the method of iterations. Usir_g Kepler's equation (Equation

40) and the development of n0$_, the values o: E and n0$ _ are obtained by

the method of iterations, starting with n0$__ -- 0.

Then the values of \i j, F and 1 + v ar,_ evaluated and, finally, the

coordinates ×, y, z in the inertial system a:-e evaluated.

CONCLUDING REMARKS

The theory described here is a numerical one and permits the full use

of the large capacity of modern machines. The computation can be carried

out to any desired order compatible with the _ccuracy of the basic data.

Terms are retained or rejected on the basis )f their numerical values, and

the decision about the importance of a certaiiL term is made by the machine

automatically. Hansen's theory permits the ,_asy inclusion of any number of

gravitational sources, and the present program can be used without modifi-

cation for such cases.

However, the numerical treatment has d_sadvantages in certain cases.

If the eccentricity is small, the determinatioa of the motion of the perigee

is difficult because the eccentricity appears _s a divisor. In the case of

large eccentricity, difficulties arise through the presence of the factor

l - e02 in the denominator and by the slow convergence of the series for

a0/F. For these two extreme cases an analytical development would be

preferable. In this connection we refer to the results obtained by Brouwer

(Reference 8), Kozai (Reference 9), and Gar_inkel (Reference I0).

In addition, there is the special probler_ involved in the treatment of

the critical inclination. An extension of the oresent methods, designed for

the solution of the critical inclination as well as the cases of very small and

very large eccentricity, is now in progress.
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