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NATIONAIL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-990

METHODS FOR DETERMINING THE OPTIMUM DESIGN OF STRUCTURES
PROTECTED FROM AERODYNAMIC HEATING AND APPLICATION
TO TYPICAL BOOST-GLIDE OR REENTRY FLIGHT PATHS

By Robert S. Harris, Jr., and John R. Davidson

SUMMARY

General equations are developed for the design of efficient struc-
tures protected from thermal environments typical of those encountered
in boost-glide or atmospheric-reentry conditions. The method is applied
to insulated heat-sink stressed-skin structures and to internally cooled
insulated structures. Plates loaded in compression are treated in
detail. Under limited conditions of plate buckling, high loading, and
short flight periods, and for aluminum structures only, the weights of
both configurations are nearly equal. Load parameters are found and are
similar to those derived in previous investigations for the restricted
case of a constant equilibrium temperature at the outside surface of the
insulation.

INTRODUCTION

An ajrcraft which flies at high speeds in, or reenters into, an
atmosphere generates severe thermal environments by its high-speed
motion. Elevated temperatures have a deleterious effect upon such
material properties as the allowable yield stress and Young's modulus;
and, since the structural strength depends upon these properties, the
amount of load that the structure can support decreases as the temper-
ature rises. (In rare instances mild heating might increase an allow-
able yield stress, but this behavior is not utilized in design.) The
high temperatures associated with the thermal environment can raise the
temperature of the aircraft structure to a point where the material has
insufficient strength to support the aerodynemic loads. Structure tem-
peratures can be reduced by protecting the structure from its thermal
enviromment through the use of insulation or cooling, or both, thus per-
mitting lighter primary structures. However, the heat-protection system
itself adds weight to the aircraft and must be considered when the
weight of the protected structure is calculated.



For the purposes of this report, an optimum structure 1s defined
as the lightest possible structure which suprorts a given load within
a specific thermal environment. In obtaining the structural weight the
weight of the thermal protection system is ircluded. Hence, a protected
structure is efficient if the combined weight of the protected structure
and protection equipment is less than the weight of an unprotected struc-
ture designed for the same flight conditionms.

References 1 and 2 consider insulated heat-sink structures wherein
the structure itself is used as a heat sink, and insulation is placed
between the high-temperature atmosphere and the structure to retard the
flow of heat. Throughout those analyses the effective envirommental
temperature was considered constant. It was found that the system
weight could be expressed as a function of suructure temperature. An
optimum structure was determined by minimizing the weight with respect
to the temperature. From the results load parameters were derived
through which i1t was possible to plot the weights of optimum configura-
tions. The load parameters include the applied load, the flight time,
and the insulation characteristics. There was a load parasmeter associ-
ated with each of the design criteria of yie>d, buckling, and post-
buckling failure. The minimization of the weight with respect to the
temperature works well for the case of constant environmental tempera-
ture, but involves an excessive amount of algebraic manipulation when
applied to problems where the thermal environment varies with time.

A more general thermal environment, which is typical of that expe-
rienced by a boost-glide missile or atmospheric-reentry body, is con-
sidered herein. The work of the previous reports is extended to include
insulated and internally cooled structures as well as the insulated heat-
sink configurations. The algebraic difficulzies of the parametric method
are circumvented by applying Lagrange's method of undetermined multi-
pliers. The results lead to load parameters very similar to those of
the case of a constant-temperature enviromment. Computations are made
for a water-cooled structure, and the result; are compared with those
for an insulated heat-sink structure on the Hasis of plate buckling
strength.

SYMBOLS
A constant, °F/(sec)”
a dummy index
B exponential decay constant, 1/sec

b plate width, ft
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ey heat capacity of insulation, Btu/1lb-°F
co heat capacity of metal primary structure, Btu/1b-°F
3 heat of vaporization of coolant, Btu/lb
c! effective heat of vaporization when weight of pump and piping
3 equipment is proportional to water required, Btu/lb
E Young's modulus, 1b/sq ft
e exponential base, 2.718
Tk
G = J[ (Teq - Ty)dr
T

g(tl,te) function of (tl) and (t,)

H = BG (see eq. (13))

h heat-transfer coefficient, Btu/sq ft-sec-OF
K buckling coefficient

k thermal conductivity, Btu/ft-sec-°F

n constant

P load, 1b

Q amount of heat absorbed by coolant, Btu/sq ft

q(tl,tB) function of (tl> and (tB)

T temperature, Op

t thickness, ft

u,Xx,y dummy variables of integration

W welght per unit area, 1b/sq ft

w total weight per unit area of pump and piping equipment when

distributed over heated surface of vehicle, 1lb/sq ft



W weight per unit area of fixed weight portion of pump and
piping equipment when distributed over heated surface of
vehicle, 1b/sq ft

k
o = ————l—-—, 1/sec
copptoty

B exponential decay constant (associated with structural mate-

rial properties), 1/°F
Y constant (associated with structural material properties),

1b/sq ft
€ ratio of variable portion of pump and piping weight to cool-

ant weight (see eq. (32))
A nondimensional time parameter, ot
H Poisson's ratioc
P density, lb/cu ft
o} general material strength property or parameter, lb/sq ft
ay yield stress, 1b/sq ft
T time, sec
Ter critical time, sec
¥ Lagrange undetermined multiplier

pr2/3 g2

Qb,e load parameter for buckling, <g§> Ko7’

1\ [ tu \71f1 \ 7T

£2 ££3.OF £t
2.2
Qy load parameter for yield DAL
’€ > \p2/ kie1’

(lb 2 {Btu \"1 {1p )'1
£t2 £13-OF £t3
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Subscripts:

1 insulation

2 primary structure

3 coolant

aw adiabatic wall (temperature)
b buckling

eq equilibrium temperature

i indicial notation

Jryk signify beginning and end of coolant vaporization period
max maximum

o] initial conditions

v vaporization

y yield

ASSUMPTIONS

A sketch of the insulated heat-sink stressed-skin structure is
shown in figure 1. Figure 2 is a sketch of the insulated and cooled
structure. The primary structures are considered to be edge-supported
plates loaded in compression such as covers of a box beam, or some other
load-carrying surface exposed to aerodynamic heating. The volume of
coolant required per unit of heated surface area is denoted by a
"thickness" tz. The subscripts 1, 2, and 3 have been assigned to

the insulation, primary structure, and coolant, respectively.
The following assumptions have been made to simplify the analysis:

(1) The heating is uniform over the entire surface of the member;
that is, the heat flow 1s one dimensional.

(2) The primary structure supports the entire load.

(3) The temperature gradient through the metal skin is negligibly
small.



(4) For the case of the heat-sink structures the thermal capacity
of the insulation can be neglected with respact to the thermal capacity
of the primary structure (metal skin). This approximation mey be
improved by the iteration method of appendix A of reference 1. The
iteration method is valid for cases where cpjt; < 2cpopotpy and should

ei,aty 1
is assumed that all of the heat passing through the outside surface of
the insulation 1s absorbed by the coolant.

be used whenever For the internally cooled structure it

(5) The outside surface temperature of the insulation Teq is a
known function of time. This surface temperature can be determined by
the method of appendix B of reference 1.
(6) The heat capacity and thermal conductivity of the materials
are independent of temperature. (Note that the yield stress and Young's
modulus are considered functions of temperature.)
(7) The coolant used in the insulated aad cooled structure absorbs
heat by vaporizing. The thermal capacity obtained by raising the cool-
ant temperature from 75° F to 212° F is neglacted. .

Assumption (4) has the greatest effect ipon the accuracy of the
analysis of the insulated heat-sink configuration. For the ranges of
thermal capacities commonly encountered in practice, the assumption will
usually lead to acceptable englneering accuracy without iteration. This
accuracy is evaluated in reference 3.

Assumption (7) will lead to a conservative (high) answer for the
weight of the insuleted and cooled configuration. The tendency to over-
estimate the coolant required is somewhat offset by considering the
heating period to exist only during the peri>d wherein the equilibrium
temperature exceeds the coolant boiling temp=rature. This situation is
discussed subsequently in more detail.

CHARACTERISTICS OF THE ASSUMED THERMAL, ENVIRONMENT

References 1 and 2 examine the problem >f finding the optimum
weight of an insulated structure exposed to 2 constant equilibrium tem-
perature at the outside surface of the insulation. In order to optimize
the weight of a structure exposed to boost-glide or reentry flight paths,
it is necessary to consider a variable equilibrium temperature at the
outer surface of the insulation. The develoosment of the equations in
parts of this report is general and independ=nt of any particular time
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variation of the equilibrium temperature except for the unobstructive
requirement that the equilibrium temperature eventually decreases during
the flight period, and that, consequently, the primary structure temper-
ature has a definite maximum value. This mathematical restriction does
not impede the solution of physically real problems concerning recover-
able vehicles which eventually must slow to landing speeds and hence, as

a natural result, experience a decrease in surface equilibrium temperature.

In order that demonstrative results might be obtained to illustrate
the application of the optimizing relationships, the following particular

time variation in equilibrium temperature Teq was chosen:

Teq - To = Athe~BT (1)

eq

The constants A, B, and n may be determined to give a best fit to
some experimental or predicted surface-temperature curve of interest.
Relations which may be useful for curve fitting are

Br =n (2)
when
eq ~ Teq,max
and
_ A n-n
Teq,max = ﬁ ne + TO (58')
or
A _ Teq,max - To (3b)

Bn nlle-1

Equation (1) is plotted in figure 3 for five values of n to show how
the shape of the curve is modified by n. In addition, figure 4 shows
by a nondimensional plot that the curve has a sharper peak as n 1is
increased.

This particular temperature variation was chosen for a number of
reasons: As seen in figure 3, the equation generates a temperature
history which might be considered typical of a boost-glide or reentry
heating condition. In addition, for the purposes of analysis it was
desired to have an analytic function which was easily differentiable
and integrable. Finally, the number of constents required to fit the
curve was kept small thereby keeping the constants appearing in the
loading and weight parameters small.



Reference 3 gives several solutions to the heat-transfer problem
of the insulated heat-sink structure. For the purposes of this investi-
gation the first approximation, as was mentioaned previously in the
assumptions, was used. Equation (34) of reference 3 gives the primary
structure temperature as

where
le
copototy
and
k
"
htq

It is shown in reference 3 that this solution for merodynamic heating,
based on adiabatic wall temperature and heat-transfer coefficlent, can
be converted to the solution of the problem of known surface tempera-

ture by performing the manipulation that, as h - «, Tow "Teq' See

ref. 1 or 3 for the determination of Teq' This manipulation results
in

A -
Tp - To = (Teq - T°)x=o(l - e Ny h/; [; - e—(%-ui}fifi%a__fel du (&)

Equation (4) may be written as

d(Teq - T
Ty - Ty = (Teq - TO)T=O(1 - e"9T) 4 \/;T {é . e-@(f-Yi]_S_E%s___EZ dy

(5)

where
ky

copatoty

Through the definition of a equation (5) shows that the first approxi-
mation will always lead to the general result that, functionally

HNONO H
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Ty = Tp(tytp) (6)

where (tltg) always appears as a product. Because of this characteristic,

T, oT,
“*2(%) - *’l(a) ™
t1

where the subscripts on the parentheses indicate quantities held con-
stant during differentiation. Use will be made of this property
subsequently.

Combining equation (1) with equation (5) yields

.
T - Ty = QA? = TRe=BT _ ne'a”\/; yn'le(a'B)ydy (8)

Temperatures obtained from equation (8), with n = 2 and
Teq,max = 5,000O ¥, are shown as a dashed line in figure 5. For the

case of the heat-sink configuration the maximum temperature of the
primary structure occurs at the time when its temperature equals the
equilibrium temperature; thereafter, aerodynamic cooling takes place.
The maximum temperature of the primary structure is the design temper-
ature and may be found by setting the right-hand side of equation (8)
equal to the right-hand side of equation (1). The result is

B? n_~BTer
7{CT2,max - Tp) = (Brep)e (9)
where Br., 1s determined from
B n -aTer [Ter n-1 (a-B)y
—(BT ) = nB% y e dy (10)
a\"Ter
0
In equations (9) and (10) the time of occurrence of the maximum
temperature T2 max is denoted as the critical time Top Mathemati-
2

cally there are three unknowns in the two equations, T2,max: Tays

and a«. The value of a depends upon the insulation and primary-
structure thicknesses +t; and tz which are not known as yet. The

additional equation required to determine the proper value of a 1is
found from the condition that the structure must be an optimum. Equa-
tions (9), (10), and the optimization equation are sufficient to deter-
mine the unknowns.
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In the following development the weight of an optimum heat-sink
structure is compared with that of an optimur cooled structure. It is
therefore desirable to be able to express the weight of the cooled con-
figuration in terms of the same parameters as those that are obtained
for the heat-sink configuration, and the following equations will be
useful for the manipulations of the equation for the weight of the
cooled configuration.

A result of assumption (7) is that the coolant is considered to be
expended only during the period in which the equilibrium temperature
exceeds the temperature at which the coolant vaporizes. The times at
which the equilibrium temperature equals the vaporization temperature
may be found from

T, - Tg = Teq - T

v eq - To = -B%(B1 )Re=BT (11)

The vaporization temperature and initial temperature are known as design
conditions, and the two roots of equation (l]) are found as BTJ and

Bty . (See fig. 5.) These roots are functions only of A/Bn, a known

characteristic of the equilibrium-temperature function used herein.
The amount of heat absorbed by the coolant is

k Tk
Q = ?l- f (Teq - T,‘.)d'r
1 Tj

Because tl is not known until the optimum smount of insulation has
been determined, it is convenient to define G as follows:

G = ka (Teq - T, )dr (12a)

T3

in the general case where G 1s proportiona. to the amount of required
coolant. For the particular equilibrium-tempjerature variation con-
sidered herein, because of equation (11), th: general equation (12a) is
better expressed as

Q
i
[

fBTk
T .(x) - T |d¢
e

B Jg,, [q v

J

(12b)

I
o~ [
w
4
%[>
»
[o]
]
»
]
3
<
]
3
(o]
]
&
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or

o
1
it

where

Bry
H =J;3 [% e X - (T, - Toﬂdx

TJ

_ . - Br = n! (1 o1
(TV TO) B3 Brg * E: (n - a)llgBTj)a (BTk)%]> (13)

a=1

The second expression is obtained by successive integration by parts of
the first expression.

The values of BTJ and Bry are functions only of A/Bn as was

noted after equation (11), and thus H 1is a function only of A/BR.

Because of equation (3b), A[B® is a function only of Teq,max - To
>4

and n, and it is assumed that T, Teq,maX) Ty, and n are all
known.

INSULATED HEAT-SINK STRUCTURES

General Equation

The general case of the insulated heat-sink stressed-skin structure
subjected to varlable temperature at the outside insulation surface (see
fig. 1) is discussed first. The insulated panel is heated aerodynami-
cally, and part of the heat entering the insulation outer surface from
the boundary layer is radiated away to the surroundings. The remainder
of the heat input is conducted through the insulation to the structure.
Appendix B of reference 1 discusses a simple method of determining the
temperature of the insulation outer surface by considering a heat balance
between input and radiation. This surface temperature is called the
equilibrium temperature. The problem is to find the combination of
insulation and stressed-skin thicknesses which results in the lowest
combined weight for a given loading and temperature environment. Because
the weights of surfaces are concerned, it is only necessary to determine
the minimum weight per square foot of surface to find the optimum dimen-
sions of the insulated panel. The equation relating the weight to the
thicknesses of the insulation and the primary structure is
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which may be written functionally as
g(tl,te) =0 =W- p1t) - 2pts (1)

The assumption is made at this point that the kind of metal to be
used in the primary structure and the kind of insulating material have
been chosen. (The insulating material should oce selected on the basis

of minimum kyp; and ability to withstand Teq,max as 1s discussed in

refs. 1 and 2.) The following physical and thermal characteristics are
thus fixed: k3, p;, pp, and cp. It is also assumed that the dimen-

sion b 1is prescribed. (See fig. 1.)

The allowable load depends upon one or more material properties
and the thickness of the primary structure; therefore,

P = P(o,tp) (15)

where P 1s the imposed load for which the plate must be designed. The
load and plate width b are prescribed in a design problem, and T, 1is

usually adjusted to make the design load equal the allowable load. The
symbol o stands for a general material strength property such as
Young's modulus or yleld stress, and is assumed to be a function of
temperature alone. Thus,

g = G(Tg) (16)

The temperature T, 1is that of the primary structure. For design
purposes the value of ¢ is determined at the maximum value of T2

because the metal mechanical properties are at a minimum at the maximum
temperature of the primary structure. The maximum value of T, is not

yet known because the relative dimensions of the optimum structure are
yet to be determined. The temperature of the primary structure T, is

a function of time and the insulation and metel thicknesses; thus,
Tp = Tp(t1,to,T) (17)

The temperature T, is also a function of the time-dependent equilibrium
temperature. However, it is assumed that Teq = Teq(T) is a given func-

tion, and therefore Teq does not appear explicitly in equation (17).

In references 1 and 2 the determination c¢f the optimum weight was
approached as an extremum problem where the weight was to be minimized

H\O\O
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for a given imposed load. Identical results may be obtained by maxi-
mizing the load with respect to a fixed weight. Lagrange's method of
undetermined multipliers is used herein, with the weight considered
fixed and the load to be maximized. The thicknesses t; and tp are

considered to be the variables, and equation (14) is used as the equa-
tion of constraint. The following two equations result from the appli-
cation of Lagrange's method to equations (14) and (15):

oP g _
5 + ¥ St 0 (18a)
oP dg

where V¥ 1s the Lagrangian multiplier. The set of equations (18) is
subject to the restraining condition of equation (14). Equations (18)
become

oP
—_— - =0

TN Vo,

oP
AS S =0

atg *pg

which yield
JoP/ot
Eg = __l__g (19)
Py BP/btl

The partial derivatives in equation (19) can be expanded by using
the previous functional relationships with the objective of obtaining
partial differential terms that may be easily evaluated from known
strength and heat-transfer equations. From equation (15) (keeping in
mind eqs. (16) and (17) and considering t3, to, and T as the inde-

pendent variables),
® _ (81) N (2) (BL)

where the subscripts indicate variebles held constant during the
differentiation.
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It is true that

(ﬁ) _ BL(_B_TE) ] &@)
oto 1,7 5T2 dto £, dTg\ate £, 7

where the last form is a consequence of equation (16). Thus,

3 (aP ) (BP) do (5T3>
— = (] + (=] =A== (20a) L

t )
9
which is a convenient form. 1

Similarly,
oT
2 - () () (2o
1 97¢, G2\t tp, T

Substitution of equations (20) into equation (..9) yields .

(gp_) (@z) :xi(zT_e) ,
- dto 5 ) do t, d4T2 dto -
P1 (éiz) S__(B_Tg) (é?) :zg_(a_Ta>

da to dTo\0t, £t do to AT, \0t, -

which may be reduced to

o dto 2y
2. g . L7 (21a)
Py (ap> do <aT2> (_ﬂé)

oT tp 4T2 oty - Y -

Equation (2la) is multiplied by to[t1 to obtuin
ta(ap oTp
1, \ot t2‘at
poto 1\0%2/ \Otp ty,7

= 21b
() e )
ac 't2 dT2 Btl t2,T Btl tg,T
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Use will now be made of the property of the heat-transfer equation
exhibited by equation (7). When equation (7) is substituted into equa-
tion (21b) there results

t1\ot

= 1 22
o1ty  [oP\ ao forp\ (22)
do ts dt,\oty

It is only necessary to substitute the appropriate partial deriva-
tives into equation (22) to obtain the optimum conditions for an insu-
lated heat-sink structure. Equation (22) is a general result and applies
to any time variation of equilibrium temperature. Examination of the

first term on the right-hand side of the equation shows that %%— <0

2
because material properties generally decrease with temperature, and

to, T

oT
that (S—g < 0 Dbecause an increase in the insulation thickness will
t
1
t

2
decrease the temperature T,. All other terms are positive. Equa~

tion (22) thus indicates that
Pots > P1ty
or that the primary structure is heavier than the insulation for an
optimum heat-sink design.
Application of Mechanical Strength Criteria
Design on the basis of yield stress.- The optimization equation
(eq. (22)) 1is used to determine the optimum configuration for a struc-

ture designed on the basis of yield. For the yield condition equa-
tion (15) becomes

P = btyo (23)

y

An empirical relationship that relates the yield stress to temperature
was used in references 1 and 2 and will be used herein; the specific
form of equation (16) to be used in the snalysis is then

o, =7, o PLYT2 (24)

)
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This empirical representation of the yield stress is plotted in figure 6
with experimental data for 2024-T3 aluminum alloy. The functional equa-
tion (17) for the structure temperature is rejresented by the specific
equation (8). For design purposes, however, i1he maximum structure tem-
perature should be used. (This maximum is given by the simultaneous
solution of eqs. (9) and (10).) Taking the appropriate partial deriva-
tives of equations (9), (10), (23), and (24), and substituting the
results into equation (19) yields

B(Uy)ei (1-§> | =(§,§)23b2 _,

@\po/ Co Bi,y(T2,max - To)[g - (BTcr - n}}

where the subscript e 1is used to distinguish the load parameter

2 2 2 2
Oy e = (li> B from the load parameter Q. = <£1> b , Which is
Iy b2/ kipl < \p2/ ket

a result of references 1 and 2 where the equilibrium temperature was
considered constant. The two parameters are the same dimensionally.

In the case of constant equilibrium temperature the flight period (and
hence the heating period) is known. In the veariable equilibrium temper-
ature considered herein the time of occurrence of the maximum structure
temperature is not known a priori, but the vaue of B 1is known from
the characteristics of the equilibrium-temper:.ture curve.

The value of o for the optimum configuration can be found from
the simulataneous solution of equations (9), (10), (24), and (25) (with
To max used in eq. (24)). For the purpose o:' computing design charts

it is easier to solve this system of equation:s inversely by first

assuming values of B/a for fixed values of A/Bn, determining the
values of Tp pgy &nd oy from equations (91, (10), and (24) (or plots

thereof), and then computing Qy,e from equauion (25). After these
final results are plotted « may be determined for given values of Qy,e'

The substitution of equations (23) and (©5) into equation (14) yields,
after manipulation

1/2 2 7
WE2 \ ' P2, (B) B_1_ |, 1/2 (26)
b klpl O'y p2 « CQQ:',Q Y€

where oy and B/a are found through charts of the solution of equa~

tion (25) by using the given value of Qy e These values of o, and
b

B/a are values for an optimum structure because of equation (25).

H\O\O
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Design on the basis of plate buckling.- For plate buckling the equa-
tion relating the applied load to the plate dimensions and material pro-
perties characterized by equation (15) is

3
2 t
12(0 - w?) P

where K = 4 for a plate simply supported along the edges. (See ref. 4.)
An empirical representation for the elastic modulus is (from ref. 2)

-B1,pT2
E = 74 b8 ’ (28)
where 7i,b and Bi,b are adjusted to give good fit for two ranges of

temperature. The representation is shown in figure 7 for aluminum.

Equations (9), (10), (27), and (28) are substituted into equa-
tion (22) to obtain the relationship between the buckling load factor
and the optimum value of a. Thus,

B
S O O R WP
a 2 -l B 2 k
CoP2 3(1 g ) Bi,b(TE,max' To)Ei' (BTcr'Ilﬂ b 11
=Qb,e (29)

It should be noted that O e # Qy e because the loading index P/b2
2 I

is raised to a different power.

Substituting equation (29) into equation (14) yields, after
manipulation,

[; 2K ‘}2/5
1/2 >
wfme Y2 e ) 3G -4A) 12 (50
bikp 1/5 o 2 Qb,e
o 1°E Po ol e
3 - u2)

which is similar in form to equation (26).
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INSULATED AND COOLED STRUCTURE

General Equation

For the development of an optimization equation for the insulated
and cooled structure, the configuration is assumed to be as represented
in figure 2. The "thickness" t5 represents the volume of coolant per

square foot of heated structure surface and is used with the coolant
density to express the weight of the coolant. By determining the thick-
ness of the coolant layer for an optimum configuration the proper weight
of the coolant can be found. The weight per square foot of insulation,
structure, and coolant is

where w 1s the distributed weight per square foot of outside surface
of the pump and piping equipment necessary tc circulate the coolant.
The pump and plping weight is assumed to vary linearly with the coolant
welght; thus,

Vs W+ €p5t5 (32)

where vp is a fixed weight and € 1is a constant of proportionality.

The substitution of equation (32) into equation (31) results in
W =pity + poto + p5t3(l + €) + vy (33)

The coolant is assumed to protect the lcad-carrying structure by
absorbing the heat transmitted through the structure by vaporization of
the liquid. The result of this assumption is that the maximum structure
temperature (which is taken as the design temperature) is the boiling
temperature of the coolant. 1In this case, the problem is to minimize
the weight for a fixed load, with respect to the variables, ti, to,

and tj.

If the thermal capacity of the insulaticn and the structure is
small compared to the latent heat of vaporizstion of the coolant, the
heat-transfer problem is essentially one of quasi-steady state with all
the heat passing through the insulation being absorbed by the coolant.
When Teq < TV no coolant 1s boiled. The ccnservative assumption is

made that heat is absorbed only by the vaporization of the coolant.
Thus, the heat-transfer equation may be written as

= \O\O
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Tk

T f (Teq - Ty)dr = capsts (34)
T
J

where Tj St¢s Tx 1s the period during which Teq 2 T,.

Equation (34) may be represented functionally as
Tk
q(t1,t3) = 0 = capstzty - kl\/h (Teq - Ty)dr (35)
TJ

Equation (55) is the equation of constraint which 1s used in conjunction
with equation (33) to minimize the weight.

When the Lagrange multiplier technique is applied to equations (33)
and (35) there results

oW oq
aTl'{'*-aTl-—o
oW_ =l 0
Yo

oW

— + V¥ =0
at5 8t5

From equation (35) it is found that

%a
3t

1]
(@]

and therefore

¥
dto

or that the extremum problem is independent of tp. This result is to

be expected because to 1s in actuality dependent only upon the struc-
ture temperature, the imposed load, and the value of the temperature-
dependent material property in the strength equation, all of which are
prescribed and therefore invariant.
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The remaining two equations yield

dw[dty  dafdty
W[t 5 - da /3t

(36)

Taking the appropriate derivatives in equations (33) and (35) and
substituting into equation (3%6) yields

P11t = D3t§(l + ¢€) (37)
which is the optimizing relationship.

The weight per square foot of surface area becomes

kip1(1 + €)@G

Tk
where G = L/1 (Teq - Tv)dT from equation (12a). Equation (38)
T
represents the weight of an optimum structurs subjected to any arbitrary
variation in equilibrium temperature and is not restricted to the partic-
wlar equilibrium-temperasture variation used herein. Equation (38) also
shows that the proportionality constant between the pump and piping-

equipment weight and the coolant weight effectively reduces the thermal
capacity of the coolant to a value which is

3
1+ €

(39)

'-—
C5—

Application of Mechanical Strength Criteria

Design on the basis of yield stress.- The optimum weight of a
structure designed on the basis of either tensile or compressive yleld
will be determined. Equation (38) shows thet the weight is linearly
dependent upon the thickness of the primary structure. From equation (23)

H\O\O B



O \O t

21

and therefore

P k 1 G
w-wp=-p—2-+ 2¢ lpl( + e (ko)
%y 3

In equation (40) o, is evaluated at the boiling point or evaporation

temperature of the coolant. It should be noted that equation (40) is

not restricted to a particular mode of time variation of Teq if G

is not so0 restricted.

The weight of an insulated heat-sink structure may be compared to
that of an insulated and cooled structure. Equation (40) can be

expressed in terms of the load factor Qy e 88
)
1/2
1/2 [?(1 + e{} /

(W e R S W 2 )

Y,e
Since H 1is a function only of Teq max and n, the weight parameter

: ]

can be plotted against Teq,max and Qy,e as in the case of the heat-

sink configuration. Since the left-hand sides of equations (26) and (41)

differ slightly because of Y minor arithmetical computation is neces-

sary to compare weights directly unless wp = 0. If wp = 0, equa-
tions (26) and (41) can be compared directly.

Design on the basis of plate buckling.- The application of equa-
tion (27) (with K = L) to the buckling criterion follows in a manner
similar to that which was used for the heat-sink structure. From
equation (27)

- 51/5
to = I:(é)i(l—;@;)_b} (42)

Substitution of equation (42) into equation (38) yilelds

1/3
Wo- oy = bngﬂ}2>§g¥ - u2f} + D Jklpl(l + €)G (45)

b2 7°E C5

Equation (43) is manipulated to compare with the insulated heat-sink
structure expressed by equation (30). Equation (43) then becomes
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7°E 1/3 H(1 +¢) 1/2
(W"’P>(Bb2 >l/2 P2 leo [5(1_‘12)} [ °3 } oy 1/2
E 1/3 pgnb’el/Q ’€
5(1-u2)}
(L&)

and, as before, the weight per square foot of structure can be com-
pared directly by comparing values of the weight parameters when

wp = 0.

COMPUTATIONS

Structural weight and loading parameters have been computed which
permit a limited comparison to be made betwe=n an insulated heat-sink
structure and an insulated and cooled structire. The computations were
made to determine whether or not significant differences exist between
the efficlencies of the two configurations.

In order to obtaln comparative results it was necessary to assign
certain characteristics and values to the parameters which determine
the configuration weights. Equilibrium-temperature variations corre-
sponding to boost-glide or reentry flight paths as given in equation (1)
were used with n = 2. This temperature variation with time is shown

in figure 5. Various values of the ratio A/B2 were chosen s0 as to
vary the meximum equilibrium temperature. (3ee egs. (3).)

The parameters for the insulated and cojled structure were con-
sidered first. It was necessary to choose a cooling fluid. Several
coolants were considered briefly, and water was chosen on the basis of
availability, simplicity of handling equipment, and high latent heat of
vaporization. The water was assumed to boll at atmospheric pressure to
1imit the design pressure of the coolant passage to one atmosphere.
Thus, the coolant boiling temperature was ficed at 212° F. For this
operating temperature 202L-T3 aluninum alloy was chosen as a familiar
and practical structural material. Somewhat arbitrarily, the propor-
tionality constant between the pump and pipiag weight and the coolant
weight was taken as

e = 0.072

900 Btu/ls in eq. (39)).

(which is the same as taking cé

H\O\0 =
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With these chosen values equation (44) was used to compute the
weight parameter for the insulated and cooled structure for the buckling
ceriterion. The results are shown in figure 8 where the weight parameter
is plotted as a function of Teq,max and Qp -

2

The 2024-T3 aluminum alloy was also chosen for the structure mate-
rial in the heat-sink case even though, if efficiency were the only con-
sideration, the results of reference 2 indicate that HK31A magnesium
alloy would be better. Aluminum was chosen to permit a more direct com-
parison between the heat-sink and cooled configurations (and because, in
considering present fabrication practices, aluminum seems to be favored
over magnesium for structural members near the external surface of a
heated aircraft). Again equilibrium-temperature variations given by
equation (l) with n =2 were used. For the heat-sink structure suc-
cessive values of the maximum equilibrium temperature (and hence A/B2)
were chosen and then, for each value, & range of B/a was assumed.

The critical time and the maximum structure temperature were determined
from equations (9) and (10). The load parasmeter was then computed from
equation (29) and is plotted as a function of maximum equilibrium tem-
perature and B/a in figure 9. This figure, together with figure 7

and equations (9) and (10) to determine the maximum structure tempera-
ture, was used with equation (30) to compute the weight of the insulated
heat-sink configuration. This weight is plotted in figure 10 in the
form of the weight parameter as a function of Teq,max and Qb,e'

In addition to the previous computations the effect of varying the
boiling point of the water was examined. The necessary increase in the
welight of the coolant channel with an increase in pressure was neglected.
In general, it is better to boil water at the highest possible tempera-
ture to obtain a slightly larger total heat absorption and to reduce the
temperature gradient through the insulation. This gain was slight, how-
ever, and probably would not offset the increased weight of the coolant
channels in an actual design. It should be mentloned that when other
factors such as the internal environment of the space vehicle are con-
sidered the best overall efficiency may be obtained by vaporizing the
water at room temperature (75° F). Although this may not be optimum
from the strict structural-efficiency viewpoint, operation at this low
temperature eliminates the need for internal cooling equipment to pro-
vide a habitable temperature.

RESULTS AND DISCUSSION
General

The relative weights of the insulated heat sink and the 1nsulated
and cooled configurations with aluminum used as the structural material
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may be observed by comparing figure 10 with f:gure 8. This comparison
1s limited to cooled structures where the weijitht of the pumps and piping
may be considered proportlonal to the coolant weight, with a factor of
proporticnality of 0.072. For these calculat .ons there was very little
difference between the weights of the two con’igurations; in fact, for
the range of Qb,e considered for the heat-sink structure, figure 10

may be superposed upon figure 8. As Qb,e decreases the insulated and
cooled configuration becomes more efficient.

It is worth noting that for the insulated heat-sink configuration
the weight of the primary structure is always greater than the weight
of the insulation in an optimum design. This fact is shown by the par-
tial differential equation (eq. 22) which defines the necessary relation-
ships for an optimum structure. The condition which determines the
optimum for the insulated and cooled configuration is that the weight
of the insulation is equal to the weight of the coolant when the coolant
weight is calculated by using the reduced the:mal capacity. (See

eqs. (32), (37), and (39).)

There is a significant difference between the relationships that
exist for the optimum heat-sink configuration and those for the optimum
internally cooled configuration. The equations which determine the
optimum insulated heat-sink structure (egs. (:25) and (29)) contain the
applied load P, whereas the equation for the internally cooled struc-
ture (eq. (37)) is independent of the load. .n the former case the
amount of heat sink depends upon the plate thickness, and, because the
heavier loads require thicker plates, an increased amount of heat sink
is more readily available. For the internall:r cooled configuratiocn the
structure temperature was prescribed so that ~he amount of absorbable
heat became independent of the thickness of the primary structure. Thus,
the optimization equation (eq. (37)) relates only the insulation weight
to the coolant weight and 1s independent of the applied load. The sim-
plification introduced by prescribing the stricture temperature is
impossible for configurations such as the hea-sink configuration if a
true optimum is sought.

A similar but more subtle point arises for internally cooled con-
figurations when several different coolant vanhorization temperatures
are under consideration. In general, the cool.ants will have different,
but prescribable, vaporization temperatures. Because the structure
thickness t, depends upon the temperature-dependent material prop-

erties, t, will vary with the coolant vapor:zation temperature chosen.

The problem of finding the coolant which prov..des the least total welght
of structure now depends upon t,. However, :f each coolant and its

vaporization temperature 1s considered independently the equations devel-
oped herein are applicable, and the optimum weights for each coolant can

H\O\O 7



O \O

25

be found. A comparison of these optimum weights (by directly comparing
the values obtained for the weight parameters) will reveal the most
efficient coolant.

As was mentioned in the section entitled Computations, the slight
Increase in thermodynamic efficiency realized by boiling the coolant
(water) at a pressure higher than atmospheric pressure would probably
be offset by the increase in the weight of the coolant passage required
to contain the higher pressures, and, if overall vehicle efficiency be
considered, the total vehicle weight might be minimized by vaporizing
the water at 75° F to eliminate the need for heavy internal climate-
conditioning equipment.

Use of the Computed Curves

A1l of the computed curves contained herein are based upon the
thermal environment described by equation (l), with n = 2. As was
mentioned previously, curves for other heating conditions may be com-
puted by the procedure outlined at the end of the section entitled
Computations.

Once a set of curves has been obtained for the desired value of n,
the optimum protection system may be found for any combination of A
and B. The first design step is to determine the type of insulation to
be used. The optimum insulating material will be that which, first of
all, will withstand the peak value of the equilibrium temperature
Teq,max’ and second, will have the minimum value of kj;p;. It is obvious

that this Insulation will be an optimum for both the heat sink and the
internally cooled configurations, whichever may later turn out to be
the better method of designing the structure. The values of B, b, P,
and Xkjp; are used to compute the loading parsmeter (Qy,e or Qb,e’

whichever may apply). The structural conflguration of least weight
(heat sink or internally cooled) may be obtained from a comparison
of the weights determined from charts such as figures 8 and 10.

Under the assumption that the weight comparison, together with other
considerations (such as simplicity of design) indicates a choice of the
heat-sink configuration, it is then necessary to find the values of t1

and tp for a minimum-weight structure. The value of B/a for optimum

conditions can be found from a figure similar to figure 9. Since B is
known, a 1s determined; BTcr may be found from equation (10); and the
maximum temperature of the primary structure can be determined

T2, max y or E (which-
ever is applicable) is known; and, since the design load is prescribed,

T2,max

from equation (9). Once is known, either o
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the thickness of the primary structure t, 1is determined from either .
k
equation (23) or equation (27). Because a = ————;———, t; can easily
capntst
2r2¥21
be computed.

On the other hand, if an internally cooled structure is used,

either oy or E 1is immediately fixed by the coolant vaporization

point, and t, may be readily computed. The times at which the vapor-
ization of the coolant commences and ends are found from equation (11).

By combining equation (34) with equation (37), g
9
Cj(l + G) 2 ka 1

kypq (p5t3) B (Tet;L - Tv)d"r

kb

from which t3 may be computed. This value is used to find t; ‘through
equation (37).

CONCLUDING REMARKS

The Lagrange multiplier technique has been used to determine the
design conditions for optimum insulated heat-sink structures and for
optimum insulated and cooled structures. This method is advantageous
over the direct method used in the references when the equilibrium tem-
perature at the outside surface of the insulation is other than a very
simple function of time.

Computations were made to illustrate the application of the analysis
to a thermodynamic flight path similar to that of atmospheric reentry.
The computations were restricted to aluminum load-carrying structures.
Except under conditions favorable to the insulated heat-sink design (high
structure loads and short heating periods) where the weights of the two
configurations are equal, water-cooled structures are more efficient than
heat-sink structures.

The results of the calculations are presented in graphic form by
means of load parameters which account for the loading condition, heating
condition, and insulation properties. The loed parameters are similar
to those derived in previous investigations fcr the simpler case of con-
stant temperature at the outside surface of the insulation.

The differential equations show the general result that, for optimum .
heat-sink structures, the weight of the primary structure alweys exceeds
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the insulation welght. For the internally cooled structure an optimum
configuration exists when the insulation weight equals the combined
weight of the coolant, pump, and piping if the pump and piping weight
is considered to vary in linear proportion with the amount of coolant
required; the weight of the primary structure does not influence this
optimizing relationship.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Air Force Base, Va., December 13, 1961.
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Figure 6.- Yield stress as a function of temperature for 2024-T3 alumi-

num. Solid lines express the analytic approximation to experimental
data.
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Figure T.- Modulus of elasticity as a function of temperature for
2024-T3 aluminum. Solid line expresses the analytic approxima-
tion to experimental data.
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