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SUMMARY

General equations are developed for the design of efficient struc-

tures protected from thermal environments typical of those encountered

in boost-glide or atmospheric-reentry conditions. The method is applied

to insulated heat-sink stressed-skin structures and to internally cooled

insulated structures. Plates loaded in compression are treated in

detail. Under limited conditions of plate buckling, high loading, and

short flight periods, and for aluminum structures only, the weights of

both configurations are nearly equal. Load parameters are found and are

similar to those derived in previous investigations for the restricted

case of a constant equilibrium temperature at the outside surface of the
insulation.

INTRODUCTION

An aircraft which flies at high speeds in, or reenters into, an

atmosphere generates severe thermal environments by its high-speed

motion. Elevated temperatures have a deleterious effect upon such

material properties as the allowable yield stress and Young's modulus;

and, since the structural strength depends upon these properties, the

amount of load that the structure can support decreases as the temper-

ature rises. (In rare instances mild heating might increase an allow-

able yield stress, but this behavior is not utilized in design.) The

high temperatures associated with the thermal environment can raise the

temperature of the aircraft structure to a point where the material has

insufficient strength to support the aerodynamic loads. Structure tem-

peratures can be reduced by protecting the structure from its thermal

environment through the use of insulation or cooling, or both, thus per-

mitting lighter primary structures. However, the heat-protection system

itself adds weight to the aircraft and must be considered when the

weight of the protected structure is calculated.



For the purposes of this report, an optimum structure is defined
as the lightest possible structure which supports a given load within
a specific thermal environment. In obtaining the structural weight the
weight of the thermal protection system is izcluded. Hence, a protected
structure is efficient if the combined weigh_ of the protected structure
and protection equipment is less than the wedght of an unprotected struc-
ture designed for the sameflight conditions.

References 1 and 2 consider insulated heat-sink structures wherein
the structure itself is used as a heat sink, and insulation is placed
between the high-temperature atmosphere and the structure to retard the
flow of heat. Throughout those analyses the effective environmental
temperature was considered constant. It was found that the system
weight could be expressed as a function of s-_ructure temperature. An
optimum structure was determined by minimizing the weight with respect

to the temperature. From the results load parameters were derived

through which it was possible to plot the weights of optimum configura-

tions. The load parameters include the applied load, the flight time,

and the insulation characteristics. There _s a load parameter associ-

ated with each of the design criteria of yiekd, buckling, and post-

buckling failure. The minimization of the wv.ight with respect to the

temperature works well for the case of const_u%t environmental tempera-

ture, but involves an excessive amount of algebraic manipulation when

applied to problems where the thermal environment varies with time.

A more general thermal environment, which is typical of that expe-

rienced by a boost-glide missile or atmosphe_:ic-reentry body, is con-

sidered herein. The work of the previous reports is extended to include

insulated and internally cooled structures al_ well as the insulated heat-

sink configurations. The algebraic difficulties of the parametric method

are circumvented by applying Lagrange's method of undetermined multi-

pliers. The results lead to load parameters very similar to those of

the case of a constant-temperature environment. Computations are made

for a water-cooled structure, and the result _ are compared with those

for an insulated heat-sink structure on the basis of plate buckling

strength.
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SYMBOLS

A

a

B

b

constant, °F/(sec) n

dummy index

exponential decay constant, 1/sec

plate width, ft
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c1

c2

c3

E

e

heat capacity of insulation, Btu/lb-°F

heat capacity of metal primary structure, Btu/lb-°F

heat of vaporization of coolant, Btu/lb

effective heat of vaporization when weight of pump and piping

equipment is proportional to water required, Btu/lb

Young's modulus, lb/sq ft

exponential base, 2.718

TkG = (Teq- Tv)dT

J

g (tl, t2)

H=BG

h

K

k

n

P

Q

q (tl, t3)

T

t

u, x, y

W

w

function of (tl)and (t2)

(see eq. (13))

heat-transfer coefficient, Btu/sq ft-sec-°F

buckling coefficient

thermal conductivity, Btu/ft-sec-°F

constant

load, ib

amount of heat absorbed by coolant, Btu/sq ft

function of (tl)and (t3)

temperature, OF

thickness, ft

dummy variables of integration

weight per unit area, lb/sq ft

total weight per unit area of pump and piping equipment when

distributed over heated surface of vehicle, lb/sq ft
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E

P

_y

T

Tcr

,e

weight per unit area of fixed weight portion of pump and

piping equipment when distributed over heated surface of

vehicle, lb/sq ft

kl i/sec

c2P2t2tl'

exponential decay constant (associated with structural mate-

rial properties), 1/°F

constant (associated with structur_l material properties),

lb/sq ft

ratio of variable portion of pump _nd piping weight to cool-

ant weight (see eq. (32))

nondlmensional time parameter, sT

Poisson's ratio

density, ib/cu ft

general material strength property or parameter, ib/sq ft

yield stress, lb/sq ft

time, sec

critical time, sec

Lagrange undetermined multiplier

load parameter for buckling,

(_)2/' f.Btu___ -1 (lb _-i
\ftS-°F/ _ft}]

p )2 Eb 2load parameter for yield, _-_ kl-_'

f
ft2) _f'_- °F') \ft3J
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Subscripts:

1

2

3

aw

b

eq

i

j,k

max

0

V

Y

insulation

primary structure

coolant

adiabatic wall (temperature)

buckling

equilibrium temperature

indicial notation

signify beginning and end of coolant vaporization period

maximum

initial conditions

vaporization

yield

ASSUMPTIONS

A sketch of the insulated heat-sink stressed-skin structure is

shown in figure 1. Figure 2 is a sketch of the insulated and cooled

structure. The primary structures are considered to be edge-supported

plates loaded in compression such as covers of a box beam, or some other

load-carrying surface exposed to aerodynamic heating. The volume of

coolant required per unit of heated surface area is denoted by a

"thickness" t3. The subscripts i_ 2, and 3 have been assigned to

the insulation, primary structure, and coolant, respectively.

The following assumptions have been made to simplify the analysis:

(i) The heating is uniform over the entire surface of the member;

that is, the heat flow is one dimensional.

(2) The primary structure supports the entire load.

(3) The temperature gradient through the metal skin is negligibly

small.



(4) For the case of the heat-sink structures the thermal capacity
of the insulation can be neglected with respect to the thermal capacity
of the primary structure (metal skin). This approximation maybe
improved by the iteration method of appendix A of reference l. The
iteration method is valid for cases where CLPltI < 2c2P2t2 and should

be used whenever ClPltl > 2_" For the internally cooled structure it
c2P2t2

is assumed that all of the heat passing through the outside surface of

the insulation is absorbed by the coolant.

(5) The outside surface temperature of bhe insulation Teq is a

known function of time. This surface temperature can be determined by

the method of appendix B of reference 1.

(6) The heat capacity and thermal conductivity of the materials

are independent of temperature. (Note that the yield stress and Young's

modulus are considered functions of temperatlre.)

(7) The coolant used in the insulated aad cooled structure absorbs

heat by vaporizing. The thermal capacity obtained by raising the cool-

ant temperature from 75 ° F to 212 ° F is neglected.

Assumption (4) has the greatest effect Ipon the accuracy of the

analysis of the insulated heat-sink configuration. For the ranges of

thermal capacities commonly encountered in practice, the assumption will

usually lead to acceptable engineering accur_cy without iteration. This

accuracy is evaluated in reference 3-

Assumption (7) will lead to a conservative (high) answer for the

weight of the insulated and cooled configuration. The tendency to over-

estimate the coolant required is somewhat offset by considering the

heating period to exist only during the period wherein the equilibrium

temperature exceeds the coolant boiling temperature. This situation is

discussed subsequently in more detail.
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CHARACTERISTICS OF THE ASSUMED THERMAL ENVIRONMENT

References i and 2 examine the problem _f finding the optimum

weight of an insulated structure exposed to _ constant equilibrium tem-

perature at the outside surface of the insul_tlon. In order to optimize

the weight of a structure exposed to boost-gLide or reentry flight pathsj

it is necessary to consider a variable equilLbrium temperature at the

outer surface of the insulation. The develo_nent of the equations in

parts of this report is general and independent of any particular time
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variation of the equilibrium temperature except for the unobstructive

requirement that the equilibrium temperature eventually decreases during

the flight period, and that, consequently, the primary structure temper-

ature has a definite maximum value. This mathematical restriction does

not impede the solution of physically real problems concerning recover-

able vehicles which eventually must slow to landing speeds and hence, as

a natural result, experience a decrease in surface equilibrium temperature.

In order that demonstrative results might be obtained to illustrate

the application of the optimizing relationships, the following particular

time variation in equilibrium temperature Teq was chosen:

Teq - To = ATne-BT (i)

The constants A, B, and n may be determined to give a best fit to

some experimental or predicted surface-temperature curve of interest.

Relations which may be useful for curve fitting are

BT = n (2)

when

Teq = Teq, max

and

=Anne-n
Teq, max Bn + To (5a)

or

A : Teq tmax - To (3b)

Bn nne-n

Equation (i) is plotted in figure 3 for five values of n to show how

the shape of the curve is modified by n. In addition, figure 4 shows

by a nondimensional plot that the curve has a sharper peak as n is

increased.

This particular temperature variation was chosen for a number of

reasons: As seen in figure 3, the equation generates a temperature

history which might be considered typical of a boost-glide or reentry

heating condition. In addition, for the purposes of analysis it was

desired to have an analytic function which was easily differentiable

and integrable. Finally, the number of constants required to fit the

curve was kept small thereby keeping the constants appearing in the

loading and weight parameters small.
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Reference 3 gives several solutions to the heat-transfer problem

of the insulated heat-sink structure. For the purposes of this investi-

gation the first approximation, as was mentioned previously in the

assumptions, was used. Equation (34) of reference 3 gives the primary

structure temperature as

- - - expT2 _o= (TawTo)_=o 1+ _

?O_[1 (_k-u-i÷l_(_aw-T°)+ - exp _i+ _u
du

where

k

klT

c2P2t2t I

and

- kl

ht I

It is shown in reference 3 that this solution for aerodynamic heating,

based on adiabatic wall temperature and heat-transfer coefficient, can

be converted to the solution of the problem of known surface tempera-

ture by performing the manipulation that, as h -_ % Taw -_ Teq. See

ref. 1 or 3 for the determination of Teq. this manipulation results
in

T2- T° = (Teq- T°)k=o¢l- e-R) + IO k I1 - _-(k-u)Id(Teq-du TO) du
(_)

Equation (4) may be written as

T2 - To = (Teq- To)T=O(I - e-roT) +

where

kI

c_o2t2t I

e_C_(T_y_ d(Teq - To)

Through the definition of _ equation (5) shgws that the first approxi-

mation will always lead to the general result that, functionally
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T2 = T2(tlt2) (6)

where (tlt2) always appears as a product. Because of this characteristic,

t21_)tl = tl_l/t2 <7)

where the subscripts on the parentheses indicate quantities held con-

stant during differentiation. Use will be made of this property

subsequently.

Combining equation (i) with equation (5) yields

T2- To- _-A_ Bine-BT - ne-_T/0T Ym-le(a_-B)YdYl (8)

Temperatures obtained from equation (8), with n = 2 and

Teq, max= 3,000 ° F, are shown as a dashed line in figure 5- For the

case of the heat-sink configuration the maximum temperature of the

primary structure occurs at the time when its temperatureequals the

equilibrium temperature; thereafter, aerodynamic cooling takes place.

The maximum temperature of the primary structure is the design temper-

ature and may be found by setting the right-hand side of equation (8)

equal to the right-hand side of equation (i). The result is

--BnA(T2, max - To) = (BTcr)ne -BTcr (9)

where BTcr is determined from

Bt B _n -C_Tcr _ Tcr n-le (o_ B)Ydy_ Tcr) = nBne y
_0

(i0)

In equations (9) and (i0) the time of occurrence of the maximum

temperature T2,ma x is denoted as the critical time Tcr. Mathemati-

cally there are three unknowns in the two equations, T2,max, Tcr ,

and _. The value of _ depends upon the insulation and primary-

structure thicknesses tI and t2 which are not known as yet. The

additional equation required to determine the proper value of _ is

found from the condition that the structure must be an optimum. Equa-

tions (9), (i0), and the optimization equation are sufficient to deter-

mine the unknowns.
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In the following development the weight of an optimum heat-sink
structure is comparedwith that of an optimum,cooled structure. It is
therefore desirable to be able to express the weight of the cooled con-
figuration in terms of the sameparameters as those that are obtained
for the heat-sink configuration, and the following equations will be
useful for the manipulations of the equation for the weight of the
cooled configuration.

A result of assumption (7) is that the coolant is considered to be
expendedonly during the period in which the equilibrium temperature
exceeds the temperature at which the coolant vaporizes. The times at
which the equilibrium temperature equals the vaporization temperature
maybe found from

Tv - To = Teq - TO = _(BI )ne-BT (ii)

The vaporization temperature and initial teml.erature are knownas design
conditions, and the two roots of equation (1]) are found as BTj and

BTk. (See fig. 5.) These roots are functions only of A/Bn, a known
characteristic of the equilibrium-temperatur_ function used herein.
The amount of heat absorbed by the coolant i_

kl f_ Tk (Teq- T_.)dT
Q = _ -j

Because tI is not known until the optimum _ount of insulation has

been determined, it is convenient to define G as follows:

f TkG = (Teq- Tv)dT

Tj

(12a)

in the general case where G is proportiona_ to the amount of required

coolant. For the particular equilibrium-tem_rature variation con-

sidered herein, because of equation (ii), the general equation (12a) is

better expressed as

G i f BTk= -
u Bvj

i _ BTk _A _ To _
= B BTj [_ xne-x - (Tv dx

(12b)
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or

where

H - BT:
0

= (Tv- To) J - BTk + (n a), j)a
a=l

(15)

The second expression is obtained by successive integration by parts of

the first expression.

The values of BTj and BT k are functions only of A/B n as was

noted after equation (ll), and thus H is a function only of A/B n.

Because of equation (3b), A/B n is a function only of Teq, max - To

and n, and it is assumed that Tv, Teq, max, To, and n are all

known.

INSULATED HEAT-SINK STRUCTURES

General Equation

The general case of the insulated heat-sink stressed-skin structure

subjected to variable temperature at the outside insulation surface (see

fig. l) is discussed first. The insulated panel is heated aerodynami-

cally, and part of the heat entering the insulation outer surface from

the boundary layer is radiated away to the surroundings. The remainder

of the heat input is conducted through the insulation to the structure.

Appendix B of reference 1 discusses a simple method of determining the

temperature of the insulation outer surface by considering a heat balance

between input and radiation. This surface temperature is called the

equilibrium temperature. The problem is to find the combination of

insulation and stressed-skin thicknesses which results in the lowest

combined weight for a given loading and temperature environment. Because

the weights of surfaces are concerned, it is only necessary to determine

the minimum weight per square foot of surface to find the optimum dimen-

sions of the insulated panel. The equation relating the weight to the

thicknesses of the insulation and the primary structure is
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W = Pltl + P2t2

which maybe written functionally as

g(tl, t2) = 0 = W- pIt I - o2t2 (14)

The assumption is made at this point that the kind of metal to be

used in the primary structure and the kind of Lnsulating material have

been chosen. (The insulating material should oe selected on the basis

of minimum klP I and ability to withstand Te_,max as is discussed in

refs. i and 2.) The following physical and thermal characteristics are

thus fixed: kl, Pl, P2, and c2. It is also assumed that the dimen-

sion b is prescribed. (See fig. i.)

The allowable load depends upon one or more material properties

and the thickness of the primary structure_ therefore,

P = P(_,t2) (15)

where P is the imposed load for which the plate must be designed. The

load and plate width b are prescribed in a design problem, and T2 is

usually adjusted to make the design load equal the allowable load. The

symbol _ stands for a general material strength property such as

Young's modulus or yield stress, and is assumed to be a function of

temperature alone. Thus,

: o(T2) (16)

The temperature T2 is that of the primsry structure. For design

purposes the value of q is determined at the maximum value of T2

because the metal mechanical properties are at a minimum at the maximum

temperature of the primary structure. The maximum value of T 2 is not

yet known because the relative dimensions of the optimum structure are

yet to be determined. The temperature of the primary structure T 2 is

a function of time and the insulation and metsl thicknesses; thus,

T2 = T 2(tl,t2,T) (17)

The temperature T 2 is also a function of th_ time-dependent equilibrium

temperature. However, it is assumed that Teq = Teq(T) is a given func-

tion, and therefore Teq does not appear explicitly in equation (17).

In references I and 2 the determination cf the optimum weight was

approached as an extremum problem where the w_ight was to be minimized
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for a given imposed load. Identical results may be obtained by maxi-

mizing the load with respect to a fixed weight. Lagrange's method of

undetermined multipliers is used herein, with the weight considered

fixed and the load to be maximized. The thicknesses tI and t2 are

considered to be the variables, and equation (14) is used as the equa-

tion of constraint. The following two equations result from the appli-

cation of Lagrange's method to equations (14) and (15):

8P 8g - 0 (18a)

_-_l + _ 3t I

8P 3g - o (18b)
8t--_+ _ 8t 2

where _ is the Lagrangian multiplier. The set of equations (18) is

subject to the restraining condition of equation (14). Equations (18)

become

_P

_t 2 @02 : 0

which yield

P2 3P/St2

Pl 3P/_t I

(19)

The partial derivatives in equation (19) can be expanded by using

the previous functional relationships with the objective of obtaining

partial differential terms that may be easily evaluated from known

strength and heat-transfer equations. From equation (15) (keeping in

mind eqs. (16) and (17) and considering tl, t2, and T as the inde-

pendent variables),

8t 2 _72 _ + \Sg/t2\St2Jtl,

where the subscripts indicate variables held constant during the

differentiation.
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It is true that

tl, m dT2 \_t2/tl, T

where the last form is a consequence of equation (16). Thus,

_-2 _ t2 dT2_St,__/tl, m

which is a convenient form.

Similarly,

_P

_t I

Substitution of equations (20) into equation (1.9) yields

P2

Pl

dT2\Stl/t2 '

+

m t2 tiT2\Stl_t2, m

which may be reduced to

P2
m

Pl

_2 _tl 'm
+

_';i_t2 'm

Equation (21a) is multiplied by

P2t2 _1 \_2/d

Pltl (_)t2 d_ I_21
dT2\Stl/t2, m

t21t I to obtain

l,
+

_dt'l ]t2 '

(20a)

(20b)

(21a)

(21b)
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Use will now be made of the property of the heat-transfer equation

exhibited by equation (7)- When equation (7) is substituted into equa-

tion (21b) there results

P2t2

Pltl

tl \8t2/_

(_-_P)t2 d--_-a_8T2_
dt2t_--_l/t2, T

+ 1 (22)

It is only necessary to substitute the appropriate partial deriva-

tives into equation (22) to obtain the optimum conditions for an insu-

lated heat-slnk structure. Equation (22) is a general result and applies

to any time variation of equilibrium temperature. Examination of the
da

first term on the rlght-hand side of the equation shows that --< 0
dT 2

because material properties generally decrease with temperature, and

that I_T21-- < 0 because an increase in the insulation thickness will

\_tl/t2

decrease the temperature T2. All other terms are positive. Equa-

tion (22) thus indicates that

P2t2 > Pltl

or that the primary structure is heavier than the insulation for an

optimum heat-sink design.

Application of Mechanical Strength Criteria

Design on the basis of yield stress.- The optimization equation

(eq. (22))is used to determine the optimum configuration for a struc-

ture designed on the basis of yield. For the yield condition equa-

tion (15) becomes

P = bt2ay (23)

An empirical relationship that relates the yield stress to temperature

was used in references 1 and 2 and will be used herein_ the specific

form of equation (16) to be used in the analysis is then

ay = 7i,ye-Bi,Y T2 (24)
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This empirical representation of the yield stress is plotted in figure 6

with experimental data for 2024-T3 aluminum a_loy. The functional equa-

tion (17) for the structure temperature is tel.resented by the specific

equation (8). For design purposes, however 3 lhe maximum structure tem-

perature should be used. (This maximum is gi_-en by the simultaneous

solution of eqs. (9) and (lO).) Taking the _@ropriate partial deriva-

tives of equations (9)_ (lO)_ (23), and (24) 3 and substituting the

results into equation (19) yields

(25)

where the subscript e is used to distinguish the load parameter

p 2 Bb 2 from the load parameter _,. = which is
_y,e = _ klPl _ klPl T3

a result of references 1 and 2 where the equilibrium temperature was

considered constant. The two parameters are the same dimensionally.

In the case of constant equilibrium temperature the flight period (and

hence the heating period) is known. In the w_riable equilibrium temper-

ature considered herein the time of occurrenc_ of the maximum structure

temperature is not known a priori 3 but the va:.ue of B is known from

the characteristics of the equilibrium-temper_.ture curve.

The value of _ for the optimum config_'atlon can be found from

the slmulataneous solution of equations (9)3 llO), (24), and (25) (with

T2,ma x used in eq. (24)). For the purpose o:' computing design charts

it is easier to solve this system of equation_ inversely by first

assuming values of B/_ for fixed values of A/Bn3 determining the

values of T2,ma x and _y from equations (9) 3 (10), and (24)(or plots

thereof), and then computing _y,e from equal;ion (25). After these

final results are plotted _ may be determin_d for given values of _y,e"

The substitution of equations (23) and (::5) into equation (14) yields 3

after manipulation

W/]562

k ( 12 i
B 1 _ 1/2 (26)

where :y and B/_ are found through charts of the solution of equa-

tion (25) by using the given value of _y,e . These values of Gy and

B/_ are values for an optimum structure because of equation (25).
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Design on the basis of plate bucklinK.- For plate buckling the equa-

tion relating the applied load to the plate dimensions and material pro-

perties characterized by equation (15) is

P = K_2E t23-- (27)

where K = 4 for a plate simply supported along the edges. (See ref. 4.)

An empirical representation for the elastic modulus is (from ref. 2)

E = Yi,b e-6i'bT2 (28)

where Yi,b and _i,b are adjusted to give good fit for two ranges of

temperature. The representation is shown in figure 7 for aluminum.

Equations (9), (i0), (27), and (28) are substituted into equa-

tion (22) to obtain the relationship between the buckling load factor

and the optimum value of _. Thus,

_ L _i,b(T2, max - o)[_-(BTcr-n

Bb 2

klPl

:rib,e (29)

It should be noted that _b,e _ _y,e because the loading index P/b 2

is raised to a different power.

Substituting equation (29) into equation (14) yields, after

manipulation,

w/_2]1/2: _2
b\kl01/

+B

(1-_2)j
1/2 (30)

e

which is similar in form to equation (26).
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INSULATED AND COOLED STRUZTURE

General Equation

For the development of an optimization equation for the insulated

and cooled structurej the configuration is assumed to be as represented

in figure 2. The "thickness" t3 represents the volume of coolant per

square foot of heated structure surface and is used with the coolant

density to express the weight of the coolant. By determining the thick-

ness of the coolant layer for an optimum configuration the proper weight

of the coolant can be found. The weight per square foot of insulation,

structure, and coolant is

W = Pltl + P2t2 + D3t 3 + w

where w is the distributed weight per square foot of outside surface

of the pump and piping equipment necessary tc circulate the coolant.

The pump and piping weight is assumed to vary linearly with the coolant

weight_ thus,

w : Wp + _p3t3 (32)

where Wp is a fixed weight and c is a constant of proportionality.

The substitution of equation (32) into equation (31) results in

W = Pltl + pyt2 + p3t3(1 + c) + Wp (33)

The coolant is assumed to protect the lcad-carrying structure by

absorbing the heat transmitted through the structure by vaporization of

the liquid. The result of this assumption is that the maximum structure

temperature (which is taken as the design temperature) is the boiling

temperature of the coolant. In this case, the problem is to minimize

the weight for a fixed load, with respect to the variables, tl, ty,

and t 3.

If the thermal capacity of the insulation and the structure is

small compared to the latent heat of vaporizstion of the coolant, the

heat-transfer problem is essentially one of quasi-steady state with all

the heat passing through the insulation bein_ absorbed by the coolant.

When Teq < Tv no coolant is boiled. The conservative assumption is

made that heat is absorbed only by the vaporization of the coolant.

Thus, the heat-transfer equation may be written as

L
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kl ZTk (Teq_ Tv)d_ . c3_3t3
_j

_ > Tv.where Tj _ T _ Tk is the period during which Teq =

Equation (34) may be represented functionally as

f Tkq(tl, t3) = 0 = c_3t3t I - kI (Teq - Tv)dT

Tj

(35)

Equation (35) is the equation of constraint which is used in conjunction

with equation (33) to minimize the weight.

When the Lagrange multiplier technique is applied to equations (33)
and (35) there results

8w 8q

8w 8-_-q= o
8t-_ + _ 8t2

8W _q = 0

_+ _ 8t3

From equation (35) it is found that

8q
-0

_t 2

and therefore

_w
-- = 0

_t 2

or that the extremum problem is independent of t2. This result is to

be expected because t2 is in actuality dependent only upon the struc-

ture temperature, the imposed load, and the value of the temperature-

dependent material property in the strength equation, all of which are

prescribed and therefore invariant.
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The remaining two equations yield

_W/_tl _ _q/_tl

_W/_t3 _q/_t 3
(36)

Taking the appropriate derivatives in equations (33) and (35) and

substituting into equation (36) yields

Pltl = p}t3(l + c) (37)

which is the optimizing relationship.

The weight per square foot of surface area becomes

W = 2Plt I + P2t2 + Wp

: P2t2 + 2_klPl(1 + E)G + (38)
c3 WpV

f Tkwhere G = (Teq - Tv)dT from equation (12a). Equation (38)

Tj
represents the weight of an optimum structure subjected to any arbitrary

variation in equilibrium temperature and is not restricted to the partic-

ular equilibrium-temperature variation used herein. Equation (38) also

shows that the proportionality constant between the pump and piping-

equipment weight and the coolant weight effectively reduces the thermal

capacity of the coolant to a value which is

': c3 (39)
c3 l+c

Application of Mechanical Strength Criteria

Desisn on the basis of yield stress.- _he optimum weight of a

structure designed on the basis of either tensile or compressive yield

will be determined. Equation (38) shows thEt the weight is linearly

dependent upon the thickness of the primary structure. From equation (25)
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and therefore

- _2P + 2 /llklol(l + c)a (40)
w - Wp -bo--j V °3

In equation (40) qy is evaluated at the boiling point or evaporation

temperature of the coolant. It should be noted that equation (40) is

not restricted to a particular mode of time variation of Teq if G

is not so restricted.

The weight of an insulated heat-sink structure may be compared to

that of an insulated and cooled structure. Equation (40) can be

expressed in terms of the load factor _y,e as

Iw- :_ _I__-)k_-_: - _2 _ 1/2 f
y, e j

1/2 (4_)
_y, e

Since H is a function only of Teq, max and n, the weight parameter

can be plotted against Teq, max and _y,e as in the case of the heat-

sink configuration. Since the left-hand sides of equations (26) and (41)

differ slightly because of Wp, minor arithmetical computation is neces-

sary to compare weights directly unless Wp = O. If Wp = 0, equa-

tions (26) and (41) can be compared directly.

Design on the basis of plate buckling.- The application of equa-

tion (27) (with K = 4) to the buckling criterion follows in a manner

similar to that which was used for the heat-sink structure. From

equation (27)

t2 = IF )3(I - _2)b_1/3_2E j (_2)

Substitution of equation (42) into equation (58) yields

f-t±/3(_.: 2).]1/3
w - Wp--b_2L\b2/ _2E j

(45)

Equation (49) is manipulated to compare with the insulated heat-sink

structure expressed by equation (30). Equation (49) then becomes
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and, as before, the weight per square foot o_ structure can be com-

pared directly by comparing values of the weLght parameters when

Wp--0.

COMHY_ATIONS

L
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9
i

Structural weight and loading parameter_ have been computed which

permit a limited comparison to be made between an insulated heat-sink
structure and an insulated and cooled structLre. The computations were

made to determine whether or not significant differences exist between

the efficiencies of the two configurations.

In order to obtain comparative results it was necessary to assign

certain characteristics and values to the parameters which determine

the configuration weights. Equilibrium-temperature variations corre-
sponding to boost-glide oF reentry flight paths as given in equation (i)

were used with n = 2. This temperature varLation with time is shown

in figure 5- Various values of the ratio A/B 2 were chosen so as to

vary the maxim_n equilibrium temperature. (,See eqs. (3).)

The parameters for the insulated and co_led structure were con-

sidered first. It was necessary to choose a cooling fluid. Several

coolants were considered briefly, and water _as chosen on the basis of

availability, simplicity of handling equipment, and high latent heat of
vaporization. The water was assumed to boll at atmospheric pressure to

limit the design pressure of the coolant passage to one atmosphere.

Thus, the coolant boiling temperature was fi_(ed at 212 ° F. For this

operating temperature 202h-T3 aluminum alloy was chosen as a familiar

and practical structural material. Somewhat arbitrarily, the propor-

tionality constant between the pump and piping weight and the coolant

weight was taken as

= O.072

!

(which is the same as taking c3 = 900 Btu/lo in eq. (39)).
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With these chosen values equation (44) was used to compute the

weight parameter for the insulated and cooled structure for the buckling

criterion. The results are shown in figure 8 where the weight parameter

is plotted as a function of Teq, max and _b,e"

The 2024-T3 aluminum alloy was also chosen for the structure mate-

rial in the heat-sink case even though, if efficiency were the only con-

sideration, the results of reference 2 indicate that HK31Amagneslum

alloy would be better. Alumin_n was chosen to permit a more direct com-

parison between the heat-sink and cooled configurations (and because, in

considering present fabrication practices, aluminum seems to be favored

over magnesium for structural members near the external surface of a

heated aircraft). Again equilibrium-temperature variations given by

equation (1) with n = 2 were used. For the heat-slnk structure suc-

cessive values of the maximum equilibrium temperature (and hence A/B 2)

were chosen and then, for each value, a range of B/m was assumed.

The critical time and the maximum structure temperature were determined

from equations (9) and (10). The load parameter was then computed from

equation (29) and is plotted as a function of maximum equilibrium tem-

perature and B/m in figure 9. This figure, together with figure 7

and equations (9) and (lO) to determine the maximum structure tempera-

ture, was used with equation (30) to compute the weight of the insulated

heat-sink configuration. This weight is plotted in figure lO in the

form of the weight parameter as a function of Teq, max and 2b, e"

In addition to the previous computations the effect of varying the

boiling point of the water was examined. The necessary increase in the

weight of the coolant channel with an increase in pressure was neglected.

In general, it is better to boil water at the highest possible tempera-

ture to obtain a slightly larger total heat absorption and to reduce the

temperature gradient through the insulation. This gain was slight, how-

ever, and probably would not offset the increased weight of the coolant

channels in an actual design. It should be mentioned that when other

factors such as the internal environment of the space vehicle are con-

sidered the best overall efficiency may be obtained by vaporizing the

water at room temperature (7_ ° F). Although this may not be optimum

from the strict structural-efflciency viewpoint 3 operation at this low

temperature eliminates the need for internal cooling equipment to pro-

vide a habitable temperature.

RESULTS AND DISCUSSION

General

The relative weights of the insulated heat sink and the insulated

and cooled configurations with aluminum used as the structural material
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may be observed by comparing figure l0 with f_gure 8. This comparison

is limited to cooled structures where the weii_t of the pumps and piping

may be considered proportional to the coolant weight, with a factor of

proportionality of 0.072. For these calculations there was very little

difference between the weights of the two configurations_ in fact, for

the range of _b,e considered for the heat-sink structure, figure l0

may be superposed upon figure 8. As _b,e d,_creases the insulated and

cooled configuration becomes more efficient.

It is worth noting that for the insulate_[ heat-sink configuration

the weight of the primary structure is always greater than the weight

of the insulation in an optimum design. This fact is shown by the par-

tial differential equation (eq. 22) which defines the necessary relation-

ships for an optimum structure. The condition which determines the

optimum for the insulated and cooled configuration is that the weight

of the insulation is equal to the weight of the coolant when the coolant

weight is calculated by using the reduced thermal capacity. (See

eqs. (32),(37),and (39).)

There is a significant difference between the relationships that

exist for the optimum heat-sink configuration and those for the optimum

internally cooled configuration. The equations which determine the

optimum insulated heat-sink structure (eqs. (_5) and (29)) contain the

applied load P, whereas the equation for the internally cooled struc-

ture (eq. (37)) is independent of the load. _n the former case the

amount of heat sink depends upon the plate th_ckness, and, because the

heavier loads require thicker plates, an incr._ased amount of heat sink

is more readily available. For the internally cooled configuration the

structure temperature was prescribed so that _he amount of absorbable

heat became independent of the thickness of _le primary structure. Thus,

the optimization equation (eq. (37)) relates only the insulation weight

to the coolant weight and is independent of _le applied load. The sim-

plification introduced by prescribing the st_cture temperature is

impossible for configurations such as the hea_-sink configuration if a

true optimum is sought.

A similar but more subtle point arises fc)r internally cooled con-

figurations when several different coolant va_)orizatlon temperatures

are under consideration. In general, the coolants will have different,

but prescribable, vaporization temperatures. Because the structure

thickness t2 depends upon the temperature-d,_pendent material prop-

erties, t2 will vary with the coolant vapor_zatlon temperature chosen.

The problem of finding the coolant which pro_.des the least total weight

of structure now depends upon t2. However, _f each coolant and its

vaporization temperature is considered independently the equations devel-

oped herein are applicable, and the optimum w,_ights for each coolant can

L
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be found. A comparison of these optimum weights (by directly comparing

the values obtained for the weight parameters) will reveal the most

efficient coolant.

As was mentioned in the section entitled Computations, the slight

increase in thermodynamic efficiency realized by boiling the coolant

(water) at a pressure higher than atmospheric pressure would probably

be offset by the increase in the weight of the coolant passage required

to contain the higher pressures, and, if overall vehicle efficiency be

considered, the total vehicle weight might be minimized by vaporizing

the water at 75 ° F to eliminate the need for heavy internal climate-

conditioning equipment.

Use of the Computed Curves

All of the computed curves contained herein are based upon the

thermal environment described by equation (1), with n = 2. As was

mentioned previously, curves for other heating conditions may be com-

puted by the procedure outlined at the end of the section entitled

Computations.

Once a set of curves has been obtained for the desired value of n,

the optimum protection system may be found for any combination of A

and B. The first design step is to determine the type of insulation to

be used. The optimum insulating material will be that which, first of

all, will withstand the peak value of the equilibrium temperature

Teq, max, and second, will have the minimum value of klP I. It is obvious

that this insulation will be an optimum for both the heat sink and the

internally cooled configurations, whichever may later turn out to be

the better method of designing the structure. The values of B, b, P,

and kiP I are used to compute the loading parameter ,C_y,e or _b,e,

whichever may apply). The structural configuration of least weight

(heat sink or internally cooled) may be obtained from a comparison

of the weights determined from charts such as figures 8 and lO.

Under the assumption that the °_eight comparison, together with other
considerations (such as simplicity of design) indicates a choice of the

heat-sink configuration, it is then necessary to find the values of t1

and t2 for a mlnimum-weight structure. The value of B/_ for optimum

conditions can be found from a figure similar to figure 9. Since B is

known, m is determined; BTcr may be found from equation (lO); and the

maximum temperature of the primary structure T2,ma x can be determined

from equation (9). Once T2,ma x is known, either ay or E (which-

ever is applicable) is known_ and, since the design load is prescribed,
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the thickness of the primary structure t 2 is determined from either

k1
equation (23) or equation (27). Because _ - , tI can easily

c2D2t2t I

be computed.

On the other hand, if an internally cooled structure is used,

either ey or E is immediately fixed by the coolant vaporization

point, and t2 may be readily computed. The times at which the vapor-

ization of the coolant commences and ends are found from equation (ll).

By combining equation (34) with equation (37),

c3(i + _) f_k
klP 1 (P3t}) 2 = ,j (Teq- Tv)d,

from which t 3 may be computed. This value is used to find tI through

equation (37).
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CONCLUDINGREMARKS

The Lagrange multiplier technique has been used to determine the

design conditions for optimum insulated heat-_ink structures and for

optimum insulated and cooled structures. Thi_ method is advantageous

over the direct method used in the references when the equilibrium tem-

perature at the outside surface of the insulation is other than a very

simple function of time.

Computations were made to illustrate the application of the analysis

to a thermodynamic flight path similar to that of atmospheric reentry.

The computations were restricted to aluminum load-carrying structures.

Except under conditions favorable to the insulated heat-sink design (high

structure loads and short heating periods) wh_re the weights of the two

configurations are equal, water-cooled structt_res are more efficient than
heat-slnk structures.

The results of the calculations are presented in graphic form by

means of load parameters which account for th_ loading condition, heating

condition, and insulation properties. The lo_d parameters are similar

to those derived in previous investigations f¢,r the simpler case of con-

stant temperature at the outside surface of the insulation.

The differential equations show the general result that, for optimum

heat-sink structures, the weight of the prima_ structure always exceeds
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the insulation weight. For the internally cooled structure an optimum

configuration exists when the insulation weight equals the combined

weight of the coolant, pump, and piping if the pump and piping weight

is considered to vary in linear proportion with the amount of coolant

required; the weight of the primary structure does not influence this

optimizing relationship.
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