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SOME EXAMPLES OF THE APPLICATIONS OF THE TRANSONIC

AND SUPERSONIC AREA RULES TO THE

PREDICTION OF WAVE DRAG I

By Robert L. Nelson and Clement J. Welsh

SUMMARY

The experimental wave drags of bodies and wing-body combinations

over a wide range of Mach numbers are compared with the computed drags

utilizing a 24-term Fourier series application of the supersonic area

rule and with the results of equivalent-body tests.

The results indicate that the equivalent-body technique provides a

good method for predicting the wave drag of certain wing-body _ombina-

tions at and below a Mach number of i. At Mach numbers greater than i_

the equivalent-body wave drags can be misleading. _e wave drags _om-

puted using the supersonic area rule are shown to be in best agreement

with the experimental results for configurations employing the thinnest

wings. The wave drags for the bodies oS revolution presented in this

report are predicted to a greater degree of accuracy by using the frontal

projections of oblique areas th_n by using normal _reas. A r_pid method

of computing wing area distributions and area-distribution slopes is given

in an appendix.

INTRODb_D TION

The area rule_ first advanced by Whitcomb in reference i, has con-

siderably altered the methods for predicting wave drag of wing-body com-

binations. Studies leading to the discovery of the area rule showed that

interference drag between wing and body components could be very l_rge.

Therefore_ estimation of drag by component buildup without somehow evalu-

ating the interference drag could give misleading answers. However_ in

consequence of the transonic area rule_ a valuable tool was made avail-

able to the designers in assessing the transonic drag. This v_s the

equivalent-body concept_ which states that at transonic speeds the pr,_s-

sure drag of the airplane is the same as that for a body of revolution

iSupersedes declassified NACARM L56DII by Robert L. Nelson and

Clement J. Welsh, 1957.
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having the samelongitudinal distribution of cross-sectional area. As a
result, the drag of the configuration is obtained by either estimating
or experimentally determining the equivalent-body drag. Experimental
checks for airplane configurations presented in reference 2 generally
support this concept in the transonic speed range.

The supersonic area rule 3 given by Jones in reference 33 provided a
powerful method for calculating the wave drag at supersonic speeds. In
references 4 and 5 the mechanics of the drag calculations were discussed
together with a number of comparisons of calculated and experimental
drags generally at low supersonic speeds. Jones pointed out in refer-
ence 3 that the method could be expected to give good results for thin
wings mounted on vertically symmetrical bodies. Later, Lomaxin refer-
ence 6 gave the complete linearized theory expressions for the drag.
The added terms in Lomax's result represented the limitation pointed out
by Jones.

The purpose of the present paper is to provide a better feel for
the range of applicability of both the transonic and supersonic area
rules. For the transonic area rule 3 this is done by making additional
comparisons between equivalent-body and wing-body experiments. For the
supersonic area rule 3 comparisons are madeof calculated and experimental
results for both body and wing-body combinations over a wider range of Mach
numbersthan heretofore made. The supersonic-area-rule calculations were
madeby using a 24-term Fourier series expression for the slope of the area
distribution.

SYMBOLS

A frontal projection of the area cut by a Machplane or wing
aspect ratio

an = _ dx 2

CD _o
drag coefficient, qS

Cp pressure coefficient

wing local chord

co root chord of particular pointed wing tip

cr wing root chord
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rm

S

sb

S e

Sw

wing tip chord

drag

maximum body diameter, 2r m

resultant pressure force

Z

wing-thickness-distribution function3
mAX

wing-area-distribution function

wing-area-distributlon slope function

m( 1 + _c°stanAe) for the left-wing panel_ m(l

the right-wing panel

length of configuration

total length of area distribution

body fineness ratio

Mach number

l+h) tanA

integer

dynamic pressure

local body radius

maximum body radius

reference area

body frontal area

wing exposed area

wing total plan-form area

3

cos e.] for
tan A !



wing semispan

so

t/c

semispan of particular pointed-tip wing

2Zmax
wing thickness ratio, c

x_YsZ Cartesian coordinates

x0 point of intersection of Mach plane with the x-axis

X ! x-coordinate measured from wing le_ding edge

xI dummy variable

Z
max

= _M 2 - i

local maximum wing ordinate

= cos -I 2 Zt

A wing leading-edge sweepback angle, except as indicated other-

wise by subscripts c/4, c/2, and 3c/4 for sweep at other

chord lines

X wing taper ratio, c-_-t
C r

Mach angle, sin -I !
M

X I

C

vo value of v at root of particular pointed-tip wing

_r value of v at root of actual wing

8 angle between z-axis and line of intersection of Mach plane

with the y,z plane

REVIEW OF TKE BASIC THEORY

From reference 6, the equation for the wave drag of any system of

bodies or wings and bodies can be written as
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 f(Xl'8)llog(x-Xl)
2q dx I 3

(i)

The equation is subject to the usual limitations of the linearlzed theory.

Before discussing the terms in the drag equation, it is well to review

the definition of Mach planes. The physical significance of equation (1)

is understood if the configuration is cut by Mach planes. Mach planes are

easily visualized by considering a Mach cone originating at a point on the

x-axis which is alined with the remote relative wind. A Mach plane is

simply a plane tangent to the Mach cone and at an angle of roll, e about

the x-axis measured from the y-axis. By moving the vertex of the Mach

cone along the x-axls, a series of parallel Mach planes will cut the con-

figuration for a fixed roll angle 8.

In the drag equation the term A(x,8) represents the frontal pro-

Jection of the oblique area cut by a particular Mach plane, whereas f(x,e)
represents the net force normal to the stream direction on this section in

the e direction. These relationships are illustrated in figure 1 for

angle of roll e of the Mach plane of 0 ° and 90 ° . By neglecting the

term __ df(x,e)
2q dx , the equation reduces to the supersonic-area-rule formula

given by Jones in reference 3. Evaluation of f(xj8) requires the pres-

sure distribution on the configuration which when Integrated over the

configuration gives the drag directly. As a result, large values of

df(x_e) impose a limitation on the supersonic area rule, even within
t_ dx
the framework of the linearized theory.

It is not the purpose of the present paper to evaluate the drag of

configurations including the effect of the pressure term but to evaluate

the drag of configurations using the supersonic-area-rule formula of

Jones. The influence of the pressure term was evaluated for one simple

case.

Equation (i) can be written in coefficient form as

lco = (2)



where

CD(Q) =-2_--_1 /0Zt/0 _t \d_x2/d2A2q_ _) (d2A\dxl2 2q_ _l) l°g(x - xl)dx dxl (3)

The quantity CD(e ) is most readily determined by solving the inte-

gral for CD(0 ) through a Fourier sine series expression for _ fol-

lowing the method of reference 7 if

= c°s-i _t

an = 2_0_ (_ x _2f--_sin n_ d_

then CD(8 ) can be written as

CD(0) = _Znan 2

For the computations of this paper, only 24 terms were used in the

Fourier sine series expression for dA. Thus,
dx

n =24

CD(e) Z= 4S nan2

n=l

BODY DRAG RESULTS

For bodies of revolution, the calculation of the drag is simplified

to some extent because the area distributions are identical for all roll

angles. However 3 except for high-fineness-ratio bodies, it is not pos-

sible to assume that the frontal projection of the oblique area cut by

the Mach plane is the same as the normal area. Figure 2 shows an example

of this for two parabolic bodies of revolution having different fineness

ratios and shapes. The area-distribution curve slopes were calculated
from the expression

dA 2 fxXU (x - xo)dx

_xx = _--2 Z J_2R2(x) - (x - Xo) 2
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The derivation of this expression is given in appendix A. It has also

been assumed for the calculations (and all succeeding body calculations)

that a cylinder can be added at the base of the body without altering

the drag. If this were not done_ the solution would require the flow to
fill the area behind the base which would exceed the limitations of the

linearized theory. Figure 2 shows large changes in the peak slope over

the afterbody of the fineness-ratio-6.04 configuration; these changes

would lead to a significant drag variation with Mach number.

The evaluation of the slope of the oblique area distributions is

extremely difficult except for simple bodies. There naturally arises

the question as to whether this is worth while if the pressure term is

ignored.

As derived in appendix B_ the local force acting on the oblique

area of a body of revolution is

dCp
f -_A --

= dx

The only assumption made in derivation of _ is that dCp isdx

constant over the oblique area. This is a reasonable assumption except

for bodies having discontinuitiesj and high local slopes. Then_

_A _f=aA+
dx 2 q dx

_2A dCp

2 dx

Thus_ the error in the drag introduced by ignoring the pressure term is

dCp
dependent on the pressure gradient d--_-"

It would be expected that the drag for a conical nose with an

attached shock wave over which the pressure is constant at zero angle of

attack would be least affected by the pressure term. (The pressure term

takes on a value only near the juncture with the cylinder; however 3 the

pressure term was not evaluated in this region.) Figure 3 presents a

comparison of the drag of various cones calculated with the supersonic-

area-rule formula with the exact theory drag of reference 8. The lowest

Mach number of the comparison corresponds to the lowest Mach number for

entirely supersonic flow on the cone as calculated with the exact theory.

The highest Mach number of the comparison was arbitrarily taken as that

at which the slope of the Mach line equaled one-half the slope of the

nose. The agreement between the two theories is remarkable, within

5 percent except for a few points.
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A better comparison may be made by plotting CDQI/rm)2"- " against

_rm/_ , the quantity which defines the frontal projection of the oblique

area distribution. This has been done in figure 4 to give drag in dimen-

sionless or collapsed form. The drags from exact theory (5° half angle

cone was chosen as representative), slender-body theory (ref. 9), and

supersonic-area-rule theory are shown. The comparison shows the great

improvement of the area-rule theory over the slender-body theory at

values of _rm/Z greater than 0.2_ and the good agreement of the area-

rule result with the exact theory to _rm/_ of about 0.7. At higher

values of _rm/_ the area-rule theory is in error_ possibly first because

the pressure term is neglected but finally, near _rm/_ = I, because the

assumptions of the linearized theory are violated. At _rm/_ = i, the

Mach line lies on the cone surface, which corresponds to the realm of

hypersonic flows. (See ref. i0. )

For a body with curvature_ for example, a nose of parabolic profile,

the pressure over the nose is variable, and the influence of the pressure

term may be significant. Figure 5 presents the drag for noses of parabolic

profile in collapsed form. Here the supersonic-area-rule theory is an

improvement over slender-body theory but in only partial agreement with

the more exact second-order theory of reference ii. Inclusion of the

pressure term, evaluated by using second-order pressure distributions,

however# does give agreement with some of the second-order-theory results.

Since the second-order-theory drags do not collapse into one curve, agree-

ment should be expected only with those points for which the pressure dis-

tribution used in evaluating the pressure term apply. However, this was

not the case. For example, the pressure distribution used for the pres-

sure term calculation at _rm/_ = 0.3 corresponds to the flagged symbol.

For the parabolic noses, both the area-rule theory and the area-rule

theory plu s the pressure correction cannot be expected to apply near and

above _rm/Z = 0.5, where the slope of the Mach line equals the slope of

the nose tip.

Figure 6 presents a comparison of the pressure drag from supersonic-

area-rule theory with experiment and slender-body theory for a family of

parabolic bodies of revolution. The experimental drags were taken from

references 12 and 13. In determining the experimental pressure drags 3

the friction drag was assumed turbulent and evaluated by using the sub-

sonic drag level and the results of reference 14 for the effects of Mach

number and Reynolds number; the fin pressure drags were assumed identical

and have been published in reference 15; and the base drags were small

and were subtracted when available. The slender-body-theory drags were

calculated using the curves of reference 9.

L

i

0

0

0
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As would be expected_ the comparisons showthe increasing ability of
both the area-rule theory and slender-body theory to predict the drag as
the body fineness ratio is increased. In most cases, the area-rule theory
offers a significant improvementover slender-body theory. The area-rule
theory and slender-body theory are in agreement near M = i_ since at this
Machnumberthe supersonic-area-rule theory reduces to slender-body theory.

From these nose and complete-body comparisons that have been made_
the following conclusion can be drawn° The area-rule drag of bodies can
be predicted to a greater degree of accuracy by using the frontal projec-
tion of oblique areas at a given Machnumberthan by using normal areas,
if_ at the Machnumberunder consideration, the limitations of the line-
arized theory are not exceeded. This is illustrated by the comparison
between the drag at a given Machnumberand the drag near M = i especially
for the low-fineness-ratlo bodies. It is not to be inferred from the above
statement that the supersonic-area-rule method is recommendedfor evalu-
ating the drags of bodies of revolution. However, when the drags of wing-
body combinations for which the body area distribution is needed are deter-
mined, the oblique area distribution should be used if the body is of low
fineness ratio or has low-fineness-ratio components.

CALCULATIONOFWING-BODYDRAG

The difficulty in computing the wave drag of wing-body configurations
can be considerably reduced if the configuration meets the following con-
ditions: first_ the body is of sufficiently high fineness ratio so that
the change in body-area distribution with Mach number is small, and sec-
ond_ the wing is thin. These conditions imply also that the pressure
term is negligible. Somefeel for the body fineness ratios necessary for
the above condition to be met can be obtained from the preceding section
on bodies of revolution. The assumption of a thin wing allows the Mach
plane intersecting the wing obliquely to be replaced by a plane perpen-
dicular to the wing chord plane intersecting the wing plane along the
sameline as the Machplane. Note that_ at zero roll angle_ the Mach
plane is normal to the wing chord plane but is not normal to the wing
chord plane at any other roll angle for a Machnumberother than M = i.
Also the angle between the Machplane and the normal to the wing chord
plane is greatest and equal to tan-l_ at a roll angle of 90o.

Appendix C presents a simple analytical method for evaluating wing
area distributions and area-distribution-curve slopes. The curves neces-
sary for evaluating these quantities (figs. 16 and 17) are applicable only
to 65A series airfoils, but similar Curves can be madeup for other air-
foil sections.
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In order to get an idea of the applicability of the thin-wing assump-
tion, a calculation has been madeof the true area-dlstributlon-curve-
slope variation for 60° delta wing having an NACA6_A006airfoil section
for a roll angle of 90° and a Machnumberof 1.414. In order to simplify
the calculation, the wing was approximated by a sufficient number of
llnear-slope elements to define the airfoil section adequately. With
this approximation the Machplane intersection with the wing surface was
n_adeup of straight lines. The expression for the frontal projection of
the oblique area was then easily evaluated and differentiated to obtain
the slope. The results of the calculation are presented in figure 7.
Although the slopes for the upper and lower half wings are significantly
different, the total slope agrees almost exactly with the slope obtained
by using the thin-wing assumption. On the basis of this result, it is
felt that the thin-wing solution should be adequate for wings of present-
day interest.

For the wiz_-body combinatlons of this paper, an additional simpli-
fication was allowed in the supersonlc-area-rule wave-drag calculations.
Since the tall fins mounted on the models were thin and relatively small
(see ref. 16), their drags were subtracted as tares. Then, since the
bodies for all cases ere of high fineness ratio (and identical), the
body-area-distribution-curve slopes were considered independent of Mach
number, and the changes in the area-distrlbutlon-slope curves with Mach
numberand roll angle were due entirely to the wings. As derived in
appendix C, the area distribution for a given wing (m fixed) is depen-

dent only on the value of _ cos e. Thus 3 the area-distribution-slope
tan A

curves for the wing-body configuration are dependent only on the value

of _ cos 8. Then 3 from equation (2) and because of the symmetry of the
tan A

configuration,

CD(M ) = _'dO CD(e)d8

In order to obtain the wave drag of the configuration, a plot of CD

against e is required. This can be computed if a plot of CD against

tanCOSA8 is given, since the angle 0 is known for fixed values of tan A

and _ cos 0. The configuration drag is simply the average drag between
tan A

e = 0 and
5"

For the wing-body calculations of this paper the bodies were identi-

cal. The body-area-distributlon-slope curves are shown in figure 2(b).

The curve for M = 1.414 was chosen as representative for the Mach number
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range of interest. The wing area distributions and area-distribution-
curve slopes were obtained by using methods similar to that given in
appendix C. In addition, a limiting value of _ cos e = 0.8 was set for

tan A

configurations having blunt leading-edge airfoils. (Above _tanC°SAe = i,

the Mach line lies behind the wing leading edge, and the linear theory is

no longer valid for blunt airfoilso_
/

An example of the wave drag calculation for the most extreme configu-

ration investigated (60 ° delta wing, hi&CA 65A006 airfoil) is presented in

dA
figures 8, 9, and i0. Figure 8 shows nondimensional plots of _xx against

for various values of _ cos e • Figure 9 shows the effect on CD of
tan A

the number of terms in the series solution. Except at _ cos 0 = 0 and 0.8,
tan A

convergence was apparently obtained within 24 terms. Figure i0 shows the

variation of the area distribution drag with _ cos e
tan A ' the variation of

area distribution drag with roll angle, and the variation of the config-

uration drag with
tan A"

WING-BODY DRAG COMPARISONS

Figure ii presents some wave-drag comparisons for wlng-body combina-

tions. The experimental wing-body results were taken from references 16

to 19. The wing-body wave drags were obtained in the following manner.

The friction drags were assumed to be turbulent and were estimated by

using the results of reference 14. Base drags and fin pressure drags were

subtracted using the results of reference 16. The equlvalent-body drags

for a Mach number of 1 were obtained experimentally by using the helium-

gun technique described in reference 2. These models had four scaled

tail fins. The friction drag was assumed to be the subsonic drag level

corrected at higher speeds for Reynolds number and Mach number by using

the results of reference 14. Base-drag rise and fln-drag rise were not

evaluated for the equivalent-body models. These quantities, however,

should be small in the Mach number range where comparison is valid. The

supersonic-area-rule-theory drags were evaluated by using the method of

the preceding section. No attempt was made to evaluate the drag with

the pressure term included. The drag coefficients presented in figure ll

are based on total wing area.

The inability of the supersonic-area-rule theory to predict the drag

near M = 1 is evident for nearly all cases. However, the agreement at

the higher Mach numbers between the theoretical drags and the experimental
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wing-body drags is excellent and within the accuracy of evaluating the
experimental wave drag, except for three configurations. Twoof these
configurations (figs. ll(c) and ll(g)) had 6-percent-thick wings which
were the thickest wings investigated. The third comfiguration (fig. ll(h))
had a 4_- percent-thick airfoil but with fairly steep wedgecomponents.2
For these configurations, a significant effect of the neglected pressure
term may be possible. As a result, the drags calculated for configura-
tions having wings of these thicknesses and sections should be viewed
with caution.

The comparisons in figure ii showthat the equivalent-body drags
give a good approximation to the experimental wing-body drags up to a
Machnumber of i, except for the two configurations having 6-percent-
thick wings (figs. ll(c) and ll(g)). This result is in agreementwith
reference 2 which showsthe validity of the transonic-area rule decreases
with increasing wing-thickness ratio. At Machnumbersabove i, the agree-
ment is variable but tends to be consistent with the flatness of the cor-
responding theoretical curve. That is, as the theoretical drag variation
with Machnumberbecomessmaller, the equivalent body gives a better
approximation of the supersonic-drag level. This would be expected, since
a flat theoretical curve indicates that the variation in area-distribution
drag with roll angle or Machnumber is small. Then the drag for the Mach
number i or roll angle 90° area distribution (corresponding to the equiv-
alent body) is representative of the configuration drag.

Figure 12 showsthe comparison between experimental-configuration
drag and equivalent-body drag for an airplane configuration. The com-
parison shows an extreme example, comparedwith the relatively good results
of reference 23 of the inability of the equivalent body to predict the
supersonic-drag level. The equivalent-body drag is approximately 40 per-
cent low in spite of the low aspect ratio of the configuration. Apparently,
the configuration tail surfaces cause the area distribution to changemark-
edly at low supersonic speeds. Below M = i, the equivalent body gives a
fair representation of the configuration drag. The drag of the configu-
ration minus the tail surfaces could probably be calculated to the degree
of accuracy shownin figure ii. The influence of the tail surfaces, how-
ever, maybe difficult to evaluate. If the horizontal tail supports a
load whenthe configuration is at zero lift 3 the influence of the pres-
sure term maybe significant. Although no supersonic-area-rule drag cal-
culations were madefor this airplane, reference 20 indicates that gen-

erally good predictions of complete-airplane drag can be made.I

iSubsequent to the preparation of this paper, NACARMA56107has
been prepared at the AmesLaboratory and presents supersonic-area-rule
calculations for a configuration similar to the one shownin figure 12
but with small differences in area distribution in addition to the
absence of a canopy.
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EVALUATIONOFCL)I,_OI'_ENTAL_DINTERFERENCEDRAGS

As was shownin the preceding section, the supersonic area rule can
be a useful tool in evaluating the supersonic drag of a wing-body con-
figuration. In order to assess the efficiency of the combination as a
whole, however, the effects of the combination on the componentdrags
and the interference drag between the componentsmust be _own. The
supersonic area rule provides a valuable method for evaluating these
effects.

The supersonic-area-rule equation can, of course_ be used in ew_lu-
ating the drags of individual wing and body components. _is was done
for a numberof bodies in a previous section of this p_qoer. The sa_necan
be done for isolated wings. An example of this is shownin figure i_
where the drag of delta wings having OSAseries sections is plotted in
collapsed form. _e area-rule result is comparedwith _ result obtained
by the method of Beane (ref. 21). The two methods are jusl two forms of
the s_e linearized wing theory. The agreementbetween the two methods
is good.

An example of the effect of the wing-body configuration on wing draC
is presented in figure 14. The calculation is for the configlm_ation having
the closest agreementbetween the theoretical and experimental dra_s
(fig. ll(b)). In this figure, the drag of the exposed-wing panels Oased
on total and exposedwing areas is comparedwith the isolated wing drain.
Separation of the wing panels gives appro×imately a lO-percent reduction
in wing drag coefficient at Machnumbersabove i._. As the Mach m_nber

approaches i, this favorable effect disappears. 'l_is would be ex]_ected_

for at M = i the area distributions of the exposed wing panels and the

isolated wing would be identical if the body were cylindrical.

Figure 15 shows an evaluation of the interference drag for the s_ne

configuration. The sum of the calculated body and wing drags is compared

with the calculated cow,figuration drag. The curves show a faw_rable inter-

ference effect at Mach numbers below M = i._. At Mach numbers above i._,

interference drag is_ for all practical purposes; zero. Thus for thi_<

configuration_ at Mach numbers greater than i._ the only beneficial effect

of combining the wing with the body comes from the separation of the wing

panels.

CONCLUSIONS

An investigation has been made of abilities of the equivalent-body

technique and a 24-term Fourier series application of the supersonic-

area-rule method to predict wave drag at transonic and supersonic speeds.

From the theoretical and experimental comparisons made, the following

conclusions can be drawn:
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1. The area-rule drag of the bodies of revolution presented in this

report are predicted to a greater degree of accuracy by using the frontal

projection of oblique areas at a given Mach number than by using normal

areas.

2. The supersonic wave drag of slender-wlngabody configurations can

be predicted with the supersonlc-area-rule formula. For the wing-body

configurations investigated, the best agreement was obtained for the con-

figurations employing the thinnest wings.

3. The equivalent body technique provides a good method for predicting

the _ave drag of certain wing-body combinations at and below Mach number 1.

At Mach numbers above l, the equivalent body wave drags can be misleading.

Langley Aeronautical Laboratory,

National Advisory Committee for Aeronautics,

Langley Field, Va., April 6, 1956.
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APPENDIX A

AREA DISTRIBUTION SLOPE FOR BODIES OF REVOLUTION

CUT BY OBLIQUE MACH PLANES

The area distributions are identical for all roll angles.

simplicity a roll angle of 90 ° will be used in the derivation.

i = Xu =' x =Xo+ _z z

For

Z u

The frontal projection of the oblique area cut by the Mach plane (see

sketch (a)) is given by the equation:

_z zu
A=2 ydz

From the equation for the Mach plane_ z is related to x by

and

The equation relating y and

x-x o
Z =

dz = ! dx

x is given by

y : _R2(x)-z2: _R2(x)
(x - x0)2

_2
i _h2(x) (x )2=_ - -xo

(AI)
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Then,

 xuJ 2R2 xlIxx012dx
A =_

(A2)

Differentiating the expression for A gives

_A 2 fxXU (x - xO) dx (A3)

where x_ and xu are the roots of x = x0 - pR(x) and x = x0 + pR(x),

respectively. In the text the subscripts on x are omitted when it is

not important to stress the functional nature of the symbol.
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APPENDIX B

THE NET FORCE ACTING ON T_E OBLIQUE AREA OF A BODY OF

REVOLUTION AT ZERO ANGLE OF ATTACK

For a body of revolution at zero angle of attack, the net force is

independent of roll angle. The derivation will be made for a roll angle

of 90° .

x--xo+_Z

(b)

The net force in the 8 direction (the z-direction for a roll angle of

9°o ) (see sketch (b)) can be written as

f= - Cp sin g dS

Since dS _d_ + dz 2 and sin a = dy

Jd_+dz2

q =_C Cp dy

The pressure coefficient at zero lift is a function of x only.

The equation for y in terms of x is given by equation (1) of appen-

dix A as follows:

-Ix-
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and

_2R(x)_" - (x - xO)
dy = dx

q_2R2(x)- (x - xo)2

Then, the net force can be written as

(_.S:oc, +q upper surface lower surface

q _Jxu _2R2(x) - (x - xo)2

dx +

_Jx_ $_2R2(x)- (x- _)2

dx

f Cp[_2R(X)_x- (x - xo)]

_:_/xxu__:_<x._>_dx

Integrating the expression by parts gives

2fXu dCp _2R2(x) - (x - Xo )2 dx_=-g xzq dx

dC_
If _ is essentially constant between the limits of integrations,

dx

fq = 2_ dxdCpfxXU _2R2(x) _ (x - xo) 2 dx
Z

Then, from equation for the frontal projection of the oblique area

in appendix A (eq. (A2))
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APPENDIX C

METHOD FOR DETERMINING WING-AREA DISTRIBUTION AND

AREA-DISTRIBUTION-CURVE SLOPE

This method assumes that the wing is thin and that the oblique Mach

plane can be replaced by a plane perpendicular to the wing chord plane.

The method also assumes the wing has straight leading and trailing edges

and constant thickness ratio.

The method is developed first for pointed-tip wings. Then, correc-

tions are made for curved-wingebody Junctures and finite wing tips. In

addition_ the right- and left-hand wing panels are considered separately.

Pointed-tip win_s.- Consider the right-wing panel shown in the fol-
lowing sketch:

A

I c x'

so

Zma x

z

x' -- x0 + y(_ cos e - tan A)

(c)



2O

The frontal projection of the area of one wing panel cut by the Mach

plane is given by

A = 2_z dy
J

and _ can be written as
C

_m_x z :!tf(v)
c Zma x 2 c

t
Then, for _ constant,

t /_,(V ) C
A : SoCo _ j_ _ d _

The value of _ and v are related by the intersection line of the Mach

plane and the wing chord plane for the right-wing panel given by the

equation

x' = x0 + y(_ cos e - tan A)

and for the left-wingpanel by the equation

x' : x0 + y(_ cos 0 + tan A)

Then,

v: 7- o + o(6 cos e ± tan A)_]

With

c---=l- _
co

V = 0 + _00(_ cos e ± tanA)

and

V0 - V

(tan A ± _ cos 8)c_ - v

Let

so

m =_tan A
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In terms of tapered wing geometry, m is given by

Then_

m = A 1+-_ tan A
41-k

V 0 -V

m(1 + _ c°s e] - v- tanA i

Let

K=m + tanA]

for the left-wing panel and

K = m - tanA ]

for the right-wing panel. Then,

d__q= K - V 0

dv (K - v) 2

c K - v0
--=l-q=
e0 _- v

c d_1 = . K - v0 dv

co (K- v) 5

The equation for the area can then be written as

_ Vupper f(v) t=-So_o_-(_-_°)_ v)3_ --s°°°_°(_'_°)c (K -Vlowe r
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The slope of the area-distribution curve is obtained by differentiating

the expression for A

°o 0 tI(dr0 v0) (K v) 3
Vlowe r

dv +

(K - vo) 2

(K - Vlower) 3

dVl°wer f(Vlower) -

dv0

K - v0)2

K - Vupper) 3

dvupperdv0f(Vupper I

or

dA t H(K, VO)
_Vo = s0c0

Curves of G(K, vo) and H(K, vo) have been made up for a 65A series

airfoil and are given in figures 16 and 17 for values of K from 0

to 2.4 and v0 from 0 to 1. In evaluating 7 f(v) dr, f(v) was
(K- v) 3

assumed to vary linearly between airfoil ordinate stations. Figure 18

gives a plot of f(v) for this assumption.

For K and v0 greater than i, G(K, vo) and H(K, v0) are given

by the expressions

o(K,_o)--a(_,l)
2

(K - v0)

(K - l) 2

_(K,vo):H(K,I)(K-_o)
(K- 1)

For K and v 0 less than O, G(K, vo) and H(K, vo) are given by

the expressions

a(K,vo): a(K,o)<K- _o)2
K 2

.(K,_o):H(K,o)(K- vo)
K
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Correction for curved-win_--bod[ Ouncture.- The following sketch

shows a pointed-tip wing mounted on a curved body.

_ _Ik _ i Line of intersection of Mach

-_ r _;_ _ / plane and wing chord plane

cr

j Co

s O I

(a)
The areas and slopes will be referred to the actual wing geometry

(Or, s, and X)o The areas and slopes, however, will be for the exposed

pointed-wing tip.

In sketch (d) consider one point of intersection of the wing panel

with the body. The area of the wing cut by the Mach plane through this

point is determined only by the product of SoC 0 of the exposed wing

through the point and the value of v0 for the exposed wing at the point

of intersection. As the point of intersection changes_ So, Co, and _0

change and account for the intersection line. Expressed in terms of the

actual wing-body characteristics 3 s0c 0 is given by

= CrS h)_] 2S0Co i U _ - (1-

r is related to w0 by the expressionThe quantity

WO=

r
vr - (i - _)m

1 - (1-

The area of the exposed wing panel cut by the Mach plane can be written

as
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t 2

A =i-_

The area is calculated for given value of

v is given by

_r=_0[_-_-_r]+_(___r
The slope is obtained by differentiating the expression for

is given by

dA
m

dv r

v0. The center-line value of

A and

CrS c_[lI- (_- _)r"]{[ I - (I - _)s_]H(K'vo) - 2(I - _)_v_ G(K3vo)I- J

dv r i -

Correction for finite win 6 tip.- In order to correct the pointed-

tip wing panel and slopes for the finite wing tip, the areas and slopes

outboard of the wing tip are subtracted.

i

c r

I

Intersection line of Mach plane and wing

s r-

x0

-_- sO --_

From sketch (e):

(e)

k 2

s0c0 = CrS i - k
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Then the areas and slopes are given by

Cr s t X2

Atip = i - X
G(K, vo)

t
dAtip CrS _

dWr i - h

The center-line value of

H(K, vo)

v is given by

vr = VOX + K(I - X)
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(a) O = 90°.

(b) o = o°.

Figure i.- The areas and pressures which influence the drag of configura-

tions at supersonic speeds.
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Figure 2.- The effect of Mach number on the area-distribution-curve slope
of bodies of revolution.
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Figure 3.- Comparison of the drag of cones calculated with the area rule

with the drag from exact theory (ref. 8).
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Figure 4.- The drag of cones in collapsed form.
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Figure _.- The drag of parabolic noses in collapsed form.



32

II
II

tl
II

U

I I , ,,_ 1

1til
I

i J

I

I,
rl
IJ

II

I;

|

ii

i

El

f _
I

II %

I I r l

/I"
//
i/

j r i

/

/11

I /

r i

J _
I

I

I

-t_ "

I

_d
(27

0

0

II

4_
.r-t

©
,--t

®

+._

4"_
.r-I

4J

_ o
o q)

_ 4-_
0

_ 0
•,-I _:_

i
0

•_1 _0

0 _

_._

4_

0

0

.r"l

gt
_3

r..)

!

',,D

b_
o_

L-
I
I-
C
C
C



5X

33

G

.8

.6

.4

.2

0
.8

\
f

__._L_/
/

/

Exporimen t

A_-rule lheo_j

31ender-_o_ _heo_

, , I

l.O 1,2 14
M

I

1,6

.#

,8

3/d = 8._I

/.0

f

M

I

/.2 1.4 /.6

.4

0

.8

J/d =/2.5"

/.4/.0 /,2
M

/.6

(b) _nos__.___e=0.2.

Figure 6.- Concluded.



34

I
e

y7

t5
I I I I I

i

\

\



55
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Figure 8.- Example of the area-distribution-curve slope for a wing-body

configuration for various values of _ cos 8/tan A. 60 ° delta wing;

NACA 65A006 airfoil section.



36

J

1

i I I

©

•_ o

©

-r-I
0

O_

@ .r-I

o

-0

©
_,'d
0

O.

0 -0

_ 0
.r-.t

! r/1
• ffl

0_ i1)

113

.r-I



37

.03

.0/

0
0

i I t, i

.2 .,I _ cosw/ta_ o6_ .a

i
1,0

(a) Area distribution drag.

.o3

.o2

.oi

re#.4.

!
Oi l I I I I _

0 /5 30 45 GO 75 90
0, de_

(b) Area distribution drag against roll angle.
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(c) Configuration drag.

Figure lO.- An example of the calculation of the configuration drag from

the drag of the area distributions at various values of _ cos e/tan A.

60 ° delta wing; NACA 6_A006 airfoil section•
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(c) Model 5 (ref. 16); 60 ° delta wing; NACA 65A006 airfoil section;

- o.o3o5.

.o2_ Ro_ alato,/ _ Ex,_,vp_,_a,t"
I ,. Ar_.r_IE th_v

M

"-4
I I I

/,# /.5 1.6

(d) Model 6 (ref. 19); 60 ° delta wing. Thickness ratio varies from 0.03

at root to 0.06 at 0.9 semispan. Sb - 0.0305.

Figure ii.- Comparison of the calculated drag with experiment and

equivalent-body test results for wing-body combinations.
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Figure ii.- Continued.
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Figure 14.- Effect of wing-panel separation on wing drag.

wing; NACA 6_A005 airfoil section.

60 ° delta

.016

.012

.OOe

'r
0
I0

I I I I I I I I

/,I /.2 1,3 Z4 KS L6 /,7 I,@
M

Figure l_.- Comparison of the sum of component drags with the configura-

tion drag. 60 ° delta wing; NACA 6_A003 airfoil section.

!

O
O
O



43

24

20

Figure 16.- Area distribution parameter G(K, vo) for 65A serles airfoil.
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(a) v0 from 0 to 0.45.

Figure 17.- Area-distribution-slope parameter H(K, v0) for 65A series
airfoil.
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(b) v0 from 0.5 to 1.0.

Figure 17.- Concluded.
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Figure 18.- Approximation of 6_A series airfoil for the calculation of

G(K, VO) and tt(K, v0).
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