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By Neal Tetervin

SUMMARY

The minimum critical Reynolds numbers for the similar solutions of
the compressible laminar boundary layer computed by Cohen and Reshotko
and also for the Falkner and Skan solutions as recomputed by Smith have
been calculated by Lin's rapid approximate method for two-dimensional
disturbances. These results ensble the stability of the compressible
laminar boundary layer with heat transfer and pressure gradient to be
easily estimated after the behavior of the boundary leyer has been com-
puted by the approximate method of Cohen and Reshotko.

The previously reported unusual result (NACA Technical Note 4037)
that a highly cooled stagnation point flow is more unstable than a highly
cooled flat-plate flow is again encountered. Moreover, this result is
found to be part of the more general result that a favorable pressure
gradient is destabilizing for very cool walls when the Mach number is
less than that for complete stability. The minimum critical Reymnolds
nunbers for these wall temperature ratios are, however, all larger than
any value of the laminar-boundary-layer Reynolds number likely to be
encountered. For Mach numbers greater than those for which camplete
stability occurs a favorable pressure gradient is stabilizing, even for
very cool walls.

INTRODUCTION

In reference 1 a useful method for calculating the compressible
laminar boundary layer with heat transfer and arbitrary pressure gradient
1s presented. This method is based on the similar solutions of the lami-
nar boundary-layer equations obtained in reference 2.

Because of the importance of the problem of transition from laminar
to turbulent flow, it is often desirable to have an estimate of the sta-
bility of the laminar boundary layer. In order to obtain such an estimate



easily, the minimum critical Reynolds numbers for the similar solutions
presented in references 2 and 3 have been celculated for the Mach number
range between 0 and 2.8 by the rapid approximate method of reference .
The results are presented in tables and charts so that, after a calcula-
tion of the laminar boundary has been made by the method of reference 1,
the distribution of the minimum critical Reynolds number over the sur-
face can be easily estimated. The present investigation is limited to
two-dimensional disturbences. (See ref. 4 for & discussion of three-
dimensional disturbances.)

The distribution of the minimum critical Reynolds number and the
distribution of the boundary-layer Reynolds number ensbles the stability
of the laminar boundary layer with respect to the small-disturbance
Tollmien-Schlichting type of waves (ref. 4) to be estimated. The
boundary layer is stable when the boundary-layer Reynolds numbers are
less than the minimum critical Reynolds numbers and unstable when they
are greater. If the boundary lsyer is unsteble, the Tollmien-Schlichting
waves will amplify and eventually cause transition somewhere downstream
of the location where the boundary layer first becomes unstable.

It is known that, even though the boundary layer is stable, transi-
tion can still occur if surface imperfections or other sources of dis-
turbances generate disturbances sufficiently large to be outside the
scope of the linear theory (ref. 4) or if the type of disturbances that
lead to transition are different from those postulated (for example,
see ref. 5). Moreover, experiments seem to indicate that extreme cooling
may cause early transition (ref. 6) although the theory based on the
Tollmien-Schlichting type of waves predicts that the laminar boundary
layer on a very cool surface is stable; this phenomencn is not under-
stood at present.

SYMBOLS

1

constant

o1

velocity of sound

[e]]

wave velocity of disturbance

(E'|m

specific heat at constant pressure
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=2
s _ =71 ., u
hS Cpt + 2—
hy = Cpto
m exponent from Ue = AX® (ref. 2)
Mo local Mach number at outer edge of boundary layer, Ij—e-
8¢

dU, -2

= Or

dx
n=--~-—— correlation number (ref. 1)

Yo
Rex ¢ minimum critical boundary-layer Reynolds number based on dis-
’ placement thickness &%
Rg ¢ minimum critical boundary-layer Reynolds number based on
’ momentum thickness 6 .
B
S enthalpy function, — -1
t temperature
t =2
te
u velocity component parallel to surface
u=2
Ue

_ ua
U = —, transformed velocity component parallel to surface (ref. 2)

8e



v=1
Ue
X transformed distance along wall (ref. 2)
y distance from wall
y=1
e
Y transformed distance from wall (ref. 2)

B = —2—m—, pressure gradient parameter

m+ 1
y ratio of specific heats (taken equal to l.k)
B boundary-layer thickness
&% boundary-layer displacement thickness, & = f (l -
0]
U,
4. T —f}-, similarity variable
X Vo
- ® pu u
6 = f —(1 - — dy, boundary-layer momentum thickness
0 Pele\ Ue
= T U
Oty = f —[1 - =)a¥, transformed momentum thickness (ref. 1)
0 U\ Te

A= fo £'(1 - £')an

13 viscosity




v kinematic viscosity
o density
Npy Prandtl number
ﬂf"
1
g--=x _(f"; tEm - 2tre"
e If
v stream function (ref. 2)
Subscripts:
e at outer edge of boundary layer
0 stagnation value outside boundary layer
c at critical layer inside boundary layer, where u = ¢
_ _ 1
© value at which Re’c =oo when f, =1 - ﬁ;
w value at surface

Primes denote differentiation with respect to 1. Barred quantities
are dimensional and X, Y are dimensional.

ANALYSIS

Derivation of Equations

In order to calculate the minimum critical Reynolds numbers for the
similar solutions of references 2 and 3, equations (5.4.3) and (5.4.4)
of reference 4 are used; these equations can be written as
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when Mg 2 1, the supplementary condition éi 2 < - ﬁ:) (see eq. (5.3.24)

of ref. 4) must also be satisfied. It is remarked that the quantity 0.76
in the exponent 1.76 in equation (1) follows from the use of a power law
for the viscosity, with exponent equal to 0.76, in the derivation of
equation (1).

When the reference length is changed frcm ® to 5, equations (1)
and (2) can be written as

- c2l-g (5)
’ cl*\ﬁ - Mg(l - c)2 when M,




and
-5t QE) c i du |
(ay 2 P
w |t oloy - 0.58
t, 3o\2 W\t )
KS;) Ju=c
or
—_ ) 2
_1((@1_‘]) clt _a_u - @a_t.
%/, | %2 o
T = 0.58 (4)
El
Jy
— —u=c

In order to write equations (3) and (4) in the notation of refer-
ences 1 and 2, note that from references 1 and 2
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(ref. 2) thus,
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In order to obtain the expression for du/dy note that

§_Il_=_a_l-.]..___fngla_¥-é_fn m+lE_e_8_¥_é (7)
& dY dy 2 VX oy
8
The definition of & 1in equation (7) is
a=f°° pu_ () 3 \yy
0 Pele Ue
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but
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Then

£

213

= j: £'(1 - £')dn (11)
m +

e
2 v
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when equations (9), (10), and (11) are used, equation (7) becomes

au - ©0
_=§ﬂ]\fu-fm (12)
dy Pe 0
But
b _ e
Pe t
where

2

=t=(1+7;lpé>(1+s)-7’lxéf'2 (13)

e

(which is eq. 31 of ref. 2). Then equation (12) becomes

=< A (14)

&g

where

A= fo £1(1 - £')dn
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From equation (14) there is obtained

2
9w _ Agpm t'f")éﬂ
NEp dy
where
_aﬂ = éTl g_ é = _i A
dy oY oy Pe
With
o B 1-7e 1
fe t
it follows that
a4
el (15)
Then
2 2
_8_121_ =L eem - prem) (16)
¥t
where, from equation (13),
t1 = (l + 4 é 1 )S' -2 Lé——lMgf'f" (17)

By the use of equation (15) there is obtained

ot . A
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When equations (6) and (14) are used, equation (3) becomes

1.76 1
25Af it T e 21 -

= Me (19)
t»:(fé)“\/l - M1 - £2)°

Rg

,C when Mg 21

where from equation (13) it follows that

ty = (1 — = Mg)(l + Sy) (20)

te = (} + 2 - 1 Mﬁ)(l +8) -2 - = Mg(f')%] (21)
(]

When equations (6), (1k4), (16), and (13) are used, equation (4)
becomes

-ﬂf" '
2" E:%(tf'" -2t't")| =0.58 (22)

tw |f

~
[

The expressions for t, t', ty, and te in equations (19) and (22)
are given by equations (13), (17), (20), ani (21), respectively.

Calculation Procedure

The values of the minimum critical Reyaolds number Re’c were cal-

culated by means of equations (19) and (22) for the Mach number range
between O and 2.8 for all the solutions wita f; > 0 presented in

table I of reference 2 except those for S, = -1, and for all the solu-

tions presented in table VI of reference 3. All the solutions of refer-
ence 5 are for 8y, = 0. The special case 3y = -1 1is discussed later.

The values Jf Re,c were also calculated for solutions that are not
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included in table I of reference 2 but which are listed in table II of
reference 2, namely, the solutions for B=0 and S; =1, 0, -0.4,

and -0.8. These solutions were obtained by using the solution for B =0
in reference 3 together with the Crocco relation for B = 0, that is,

S =5y(1 - £'). (See page 3 of ref. 2.)

The calculations were made with the aid of the IBM type TO4 elec-
tronic data processing machine. Because the value of Re,c depends on

fi raised to the fourth power (see eq. (19)) and is thus sensitive to
the value of f. and because a high-speed computing machine was avail-

able, an iterative method was used to find fi. The method was to com-
pute ¢, the left-hand side of equation (22), for a range of values of 1
beginning with n = 0. Upon reaching a value of 1 for which ¢ was
greater than 0.58, this value of ¢ and the two preceding values were
used in a second-order divided-difference interpolation procedure to

find the value of 1 at which ¢ = 0.58.

In a few cases the value 0.58 lay between N =0 and the first
value of n 1in table I of reference 2; in these cases two values of )
beyond 0.58 were used. Interpolations were made in the tables of given
data to find f, f', f", S, and S' at this value of 71 (called M) .

The value of f™ was also needed (see eq. (22)); this value was obtained
by the use of equation (18a) of reference 2 which can be written as

£ = g2 - (1 +8) - e (23)
The value of Re,c was then computed.

Because near n,, the functions f, f', f", S, and S' are

usually either monotonically increasing or decreasing whereas the func-
tion ¢ often has & maximum and a minimum, the accuracy of the inter-

polation was improved by using the values of fe, f&, and so forth to

calculate the value of @ for Nes; this value of @ usually differed

slightly from 0.58. A new interpolation to find M. Wwas then made.

In this interpolation the value of ¢ that differed slightly from 0.58

was included in the interpolation and the value of ¢ that differed
most from 0.58 was dropped. When the new value of Ne was found, inter-

polations were again made in the tables of given data to find £, £,
f', S, and S'. A new value of Rg,c and a new value of @ were

then computed. This procedure was continued until

R -R
8,02 8:¢1| < 6.0001

Re,cl
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but never more than six times. Because the data in table I of reference 2
are given to four significant figures, the final results of the present
computations were rounded off to four significant figures and are so
presented in table I. In order to provide "working charts" and to show
more readily the dependence of Re’c on B, M., and Sy, these results

are also presented in figure 1.

The case Sy = -1 1s a special case because the left-hand side of

equation (22) cannot be used to compute ¢ numerically because the
quantity ty in the denominator is zero for S, = -l. (See eq. (20).)

Equation (22) indicates that, in order that @ = 0.58 when t, =0, it
1s necessary that either f} =0 or (tf' - 2t'f"), = 0. First con-
sider the condition f) = O; the condition (t£ - 2t'f")c =0 is dis-

cussed later.'For M, <1, the requirement f} 2 1l - ﬁt does not apply;

thus, any value of £ between zero and unity is allowable. If the

quantities that occur in equation (22) are expanded in powers of 17 and
only the first power of 17 1is retained, these quantities become

£' o= fon
o= £+ £
£ = -p(1 + Sy + S/m)

t=(1+7;lb€)(l+sw+s;,r,)

t =(1+7;1M§)s;,-27—;-3;b4§f;2n

where the result that S; = O has been used. (See eq. (18b) of ref. 2.)
When these expressions are substituted into equation (22) and powers

of 1 greater than the first are neglected, the result for @, the left-
hand side of equation (22), is

_ nn 2 e
T Sw)f,';E(l i eqwfw] (24)

NN O H
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When S, 1is sufficiently near -1, the quantities S and f& are

both positive and the term 2S!f 1s much greater than B(1 + Sw)e.

The quantity @ therefore increases linearly with 1 from zero for all
values of B. As S, approaches -1, the slope of the curves for

against 71 approaches infinity so that the value ¢ = 0.58 occurs at
n = 0. Therefore, n, =0 and f! =0 are allowable values.

The form of equation (19) that is valid when Ne 1s near zero is

0.76
25A<1 $ 2 ME) (1+ 8y + sin)™ T
Rg o = (25)

,C
(1 + Sw)fi}STllé\/l - M2(1 - f{'ﬂlc)z

If the term PB(L + Sw)2 is neglected with respect to 2S5Jfy 1in equa-

tion (24), a value of 0.58 is substituted for @ and equation (24) is
solved for 1., the result is

_ 0.58(1 + Sy)
© axsy,

e (26)

If this value of Me 1s substituted into equation (25), the result is
an equation for Ry . that is valid for S, near -1 and M, <1;
namely,

A(l s 2122 Mg) (sp)*

2
2k 1+
(1+ Sw)3 2 (£ A1 - Mﬁ(l - 0.0923f% T'S"_>

_ L
Rec—hOxlo

)

W

(27)

If S, 1is placed equal to -1 in equation (27), the result is that
Re’c = @, Thus, for Mg $1 and ty = O(S; = -1), the critical

Reynolds number is infinite.



16

Now consider the condition that (tf™ - 2t'f"), = O. When Mg > 1,
the relation f} 21 -1 must be satisfied. Therefore, 1, cannot be
equal to zero and is in fact far from zero for large M,. The quanti-

ties f' and t 1in equation (22) are then not zero. Therefore, in
order that @ = 0.58 when Mg > 1 and t, = 0, it is necessary that

(t£™ - 2t'f"), =0 (28)

The substitution of equation (13) for t and of equation (17) for t'
results in a form of equation (28) that contains Me explicitly, namely,

2 2

f"'Lg} yr-1 Mg)(l vs) - 221 Ma(£1)2] -

2 2

of" <} Lt M§>s' _r- 1 Mz2f' £"| = 0 (n = ne) (29)

Equation (29) can alsc be written as

y -1
1+ I £ ()2 - ner(en)®

y -1 M§ - £ (1 + 8) - 2f"s! (30)

2

When a value of 1, 1s chosen arbitrarily, ejuation (30) gives the
value of Me at which equations (28) and (29) are satisfied.

Calculations of M, Dby means of equatioa (30) for a range of values

of n show that equation (28) or (29) is satisfied at two values of 1q
for each value of Mg above a minimum value that depends on B. The

minimum values of Mg are found to be greater than unity so that the
condition (tf"' - 2t'f"), = O cannot be satisfied for Mg < 1. At the

1
M.
larger value of 1 this relation is satisfied when Mg 1is greater than

smaller value of 17 the relation f} 21 - is not satisfied; at the



M
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a value of Mg that depends on B and is called Me,e When Mg is
greater than Me, w0, the larger value of 1 1is thus Ne and is the

value of 17 that is associated with an allowable value of fi, a value
of f, for which

First consider the case fé > 1 - ==, Calculations show that for

fo>1 - ﬁ; the value of Mg given by equation (30) increases as £

increases. In order to examine the behavior of Me as f' approaches 1,

substitute for f'"' 1in equation (30) its expression given by equa-
tion (23). Equation (30) then becomes

1+ ; - Mg £3(1"')2E:"2 - (1 + sﬂ - £YE(EF + L") (51)
= 31
'72-—1M§ B(1 + s)[(f')2 - (1 + sﬂ - e [(1 + 8)r + 25"
C

As f' approaches 1, the quantities f", S, and S' all approach zero
but the quantity f becomes large. Then, considering

f=1
f'=1- €
f"=€
S = -¢
S' = ¢

and keeping only the largest part of each term results in
2
B(£)2[(£)2 - (1 + 8] »p[(£)2 -1 - g

e + 4" o £
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B(L +8)[(£1)2 - (1 + s)] Spf(£2 -1 - s]
(1L + S)f + 28" »f
Then for f' approaching 1, equation (30) becomes

-1
1+ 4

_ ple)2 -1 - 8] - £

=1 (32)
2 leen® -1 - 8] - e

2
y - 1

Thus, as f' approaches unity, the value of Mg that satisfies equa-

tion (28), or its equivalents equations (29), (30), or (31), approaches
infinity.

In order to show that the requirement ¢ = 0.58 1is satisfied when
equation (28) is satisfied and ty = O, note that the process used to
obtain equation (32) from equation (31) shows that the left-hand side
of equation (28) or (29) is negative for f' near unity. Then because
f', t, and f" in equation (22) are positive, the quantity ¢ is
positive for f' near unity. For ¢ty f 0 the quantity ¢ is thus
zero at a value of f' and Me glven by equation (30) and is positive
for f' near unity. At the same Mg there is another smaller value
of f' at which ¢ 1s also zero but this value of f' 1is too small

to satisfy the condition f{ 2 1 - ﬁt. (see, for example, fig. 2(b) of

ref. 7.) This smaller value of f' corresponds to the smaller of the
two values of 1 mentioned in the discuss:i.on that follows the presenta-
tion of equation (30).

By expanding f', f" and so forth around the value of 10 at which
¢ = 0 and then neglecting terms in n - n¢=o of order higher than the

first, it can be shown by a procedure simi’ar to that used to obtain
equation (24) that ¢ is approximately proportional to 7 - o neer

n = g0 Therefore, because t,, appears in the denominator of equa-

tion (22) the slope of the curve of @ against f' Dbecomes very large
as t, becomes very small. Consequently, the value of f' at which

@ = 0.58 approaches the value of f' at which equation (28) 1is satis-
fied. In the limit +t,; =0, the quantity ¢ is equal to 0.58 at this
value of f-.
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Thus for f} >1 - ﬁ%- there is a range of M, extending to infinity

for which ¢ = 0.58 at ty = 0. At Mg = o, fé =1 and 7, = 1.
Because A, f;, and t, are not zero in this range of Me but t, is
zero, equation (19) indicates that Re’c = w. Therefore for

ty = 0(Sy = -1) and a range of Me that extends to infinity, the
value of Re,c is infinite,

The range of M. determined in this way has a lower limit that

1, .
occurs when fé =1 - ﬁ;’ this value of Me is Me’m. In order to find

Me s equation (30) for Me must be solved with the condition that
fé =1 - ﬁé. The results of this calculation are given in table II.

Note that both conditions that allow equation (22) to be satisfied when
ty = 0 have been accounted for, nemely f) = O when Mg €1 and

(tge™ - 2t'f"), = 0 when Mg > 1. (See also page 476 of ref. 7 for a
discussion of the case ty = 0.)

For each value of B and Sy = -1 there is, in the range of M,

between unity and the value on the right-hand side of the last column
of table II, no allowable oscillation in the boundary layer because the

conditions @ = 0.58 and £ 21 - &: cannot be satisfied. The usual

interpretation, however, is that the boundary layer is stable in this
region of Mg. Therefore Rg,c = » for all values of Mg for S, = -1.

For values of Sy # -1(tyy > 0) there can also be a region of Mg
in which there is no allowable oscillation. This region of Mg can be

found for each value of S; and B, when there is such a region, by
noting that at the upper and lower boundary of the region the conditions

§ =058 (eq. (22)) and £} =1 - Ml—e are both satisfied.

In order to calculate these boundaries the condition

1
fl =1 - =
¢ Me
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was rewritten as

1-M2(1 - 12 =0 (33)

This term appears in the denominator of equation (19) and, when this
term is zero, Re,c is infinite. Actually, this condition for Re’c = o

is exact and does not depend upon equation (19). (See page 87 of ref. 4
and page 469 of ref. 7.) The calculation was made by choosing a value
of Mg and then finding f} from equation (22). The left-hand side of

equation (33) was then calculated. This procedure was repeated for a
range of M, large enough to allow interpolation for the value of Mg
at which equation (33) is satisfied. This value of Me 1s M o; values

of Me,o are presented in table II and figure 2. The values of Me,m

in teble II indicate that the upper branch of the curve of Me,» &against
B in figure 2 is double-valued between P = -0.3884 and B = -0.3657
for Sy, = -1 and probably also for part of the range between B = -0.3285
and B = -0.3250 for Sy = ~0.8. The curve of Me,o 8gainst B in

figure 2 has been drawn without regard for these double-valued regions.
It is remarked that, if Me,w were plotted sgainst f; instead of B,

there would be no double values. (See table II of ref. 2 for values of

f;.) Note that both conditions that allow Re’c to be equal to infinity

(eq. 19) have been accounted for; they are t. =0 and

1- Mg(l - f(':)2 = O. The condition f§ =0 occurs together with 1ty = 0
for Me T 1.

17N

Figure 3 is a cross plot of figure 2 and shows the connection between
R _ ) _ 1
the wall temperature ratio for Rg o =« when fo =1 - T and M, for

a range of values of the pressure gradient puarameter B.

Relation Between n, Sy, and B

The present results give Re’c as a function of the pressure

gradient parameter B and the enthalpy function at the wall Sy. The

method of reference 1, however, results in a distribution along the body
surface of the correlation number n which is also a pressure gradient
parameter but which is not the same as B. In order to find the dis-
tribution of Rg,o oOver the surface from the calculated distribution

of n and the given distribution of 5, it is thus necessary to be

able to finc P when n and Sy, are known.



21

In order tc find the connection between B, n, and S note that
(from eq. (22) of ref. 1)

(34)

) f.n(énf
¥/,

or, upon using equation (10),

o _
<8U\ _pm(m+ 1 Ue T,

o/, T\ 2 P

Also note that

e

_ © = 5
etr=f Yo Ylay
0 Ue U

(which is eq. (16) of ref. 1) or, upon making use of equation (6),

e}
Bty = f £'(1 - £')ay
0

When equation (10) is used, this expression for étr becomes

Bey = (35)
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Then, equation (34) becomes

n(1l + Sy) = A2£!" (36)

From equation (18a) of reference 2, it follows that

£ = -B(1 + sy)

Therefore, equation (36) can be written as

n = -pA°® (37)

The relation (37) was used to calculate r for all the values of
B and A given in table II of reference 2; eguation (35) shows that

6 g,
the quantity A is the same as the quantity ;r\m; 1 -eX which is
v
0

presented in table II of reference 2.

The relation between n, B, and S, is presented in table III and
figure UL,

DISCUSSION

Accuracy

The values of Re,c have been calculated by means of equations (19)

and (22) which are both approximate. Equation (19) in particular is
highly approximate and probably is a useful approximation in a range

of whose upper boundary is only slightly greater than unity. (See
page 84 of ref. 4.) Moreover, even the more exact method of calculation
is believed to be adequate only up to a Mach number of about 2. (See
page 473 of ref. 7.) It is consequently apparent that the present cal-
culations of Re,c cannot be expected to show nore than trends with B

and Sy, when M. exceeds unity.

The accuracy of equation (22) and especially that of equation (19)
decreases as f; increases. The quantity f! increases as the ratio

of wall temperature to stagnation temperature increases (Sy increases)
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and as B decreases, except for cold walls (8w = -0.8). Consequently
for hot walls and small B the present calculations of Re’c probably

can only show trends even when Me 1is less than unity.

In order to obtain more direct evidence concerning the accuracy of
the calculated values of RG,c: three comparisons were made. The first

is shown in figure 5 and is g comparison of the values of Re’c cal-

culated by equations (19) and (22) for the Falkner and Skan profiles
(ref. 3) with the values of Rg,c calculated by Pretsch by an "exact"

method (ref. 8); the Mach number is zero and the wall is insulated
(Mg = 0; Sy = 0). The accuracy of the present results is believed to
be adequate.

The second comparison is shown in figure 6 and is a comparison of
the variation of RG,c with M, for a strong favorable pressure gradient

and an insulated wall (B = 0.6; Sy = 0) calculated by Laurmenn (ref. 9)
by an "exact"” method with the variation calculsted by equations (19)

and (22). For this case the accuracy of the present calculations seem
to be adequate up to about Me = 1.3. It is remarked that the theory

used by Laurmann has been improved by Dunn and Lin. (See ref. 7.)

The third comparison is the variation with Me of (%E) 5 the ratio
o0

e
of wall temperature to the temperature outside the boundary layer required

for Re,c = o when fé =1 - ﬁt, when the pressure gradient is zero

(B =0). For Me up to about 2, figure 5.4 of reference 4 shows that

the variation of <ZE> with Me 1is insensitive to the value of the
t
oo

e
Prandtl number and the variation of viscosity with temperature. There-

fore the accuracy of (§E> computed by equation (22) can be tested in
te o

this range of Mg by comparing these values of <§E> with more accurate

values even though the Prandtl number is different. Equation (33) is

also used in the computation of (EE) but is merely a statement of the
[e¢]

te



condition fg =1 --l-. Such a comparison is shown in figure 7; this
figure shows that for Mg up to about 2.8 the variation of <2E> cal-
te/w

culated by the use of equation (22) agrees fairly well with the varia-
tion given in reference 7.

It is noted that the indication from figure T is that, for values
t
of M, greater than about 2.0, the values cf f! are too low. The
te/w
inference is that this result is caused by the use of a Prandtl number
of unity in the calculations of the velocity and temperature profiles
of reference 2. This comparison thus shows that formula (22) is adequate

for the calculation of (%K) and Me,o up to at least Mg = 2. More-
€/

over, the discussions on page 84 of reference 4 and on page 469 of ref-

erence 7 indicate that formula (22) is much more accurate for the cal-

culation of (EE> and Me’w than 1s formuila (19) for the calculation
[e o]

te
of Re,c- It is remarked that formula (22) is approximate because the

number 0.58 is used on the right-hand side :nstead of a function of fé

and of the velocity and temperature profiles. This function is close
to 0.58 when f! is small. (See figs. 2(a', 2(b), and table & of

ref. 7.)

£,

The approximate connection between (:») and M, 1is shown in
te
-]

figure 3 for constant values of the pressure gradient parameter fB. An
increase in B, which means an increase in =he favorable pressure gra-
dient, causes the temperature ratio necessary for Re’c = o to rise
and also increases the range of Mg 1in whi:h it is possible to make
Rg c = o Figure 3 also indicates that an lnsulated surface can be

y
completely stabilized at Mg equal to abous 1.6 if B = 0.4 and for
a range of Me for B > O.4. For values of B greater than 0.4, sur-

faces that are hotter than the insulated surface can alsc be completely
stabilized for a range of M that is centered in the M, region between

about 1.6 and 2.0 and that decreases as the surface becomes hotter.
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Because figure 3 is a crossplot of figure 2, it is not as accurate
as figure 2. The points of intersection of the curves for B constant
and the curves for S, constant are accurately known but the other por-

tions of the curves for B constant depend on the crossplot.

Anomalous Results

The calculations of Re’c resulted in two cases in which Rg,c

decreased as f increased, an unexpected result. The first case is
that for S, =1 (fig. 1(a)) when B increased from 1.5 to 2.0, a

large increase in favorable Pressure gradient.

The reason for this result seems to be that the length 6 upon
which Rg,c 1s based is sufficiently smaller for B = 2.0 than for

B = 1.5 to cause the decrease in Re,c. Thus, from table II of refer-

8 T,
ence 2, the value of ;r Z ; 1 _ex, the quantity to which 0 1is pro-
v
0
portional, decreases from 0.1113 at B =1.5 to 0.06683 at B = 2.0,
a decrease of 4O percent. If the reference length had been the dis-
placement thickness, the value of Rg* o at Mg = 0 would be 1k4,460

for B = 1.5 and would be 18,290 for B = 2.0. The critical Reynolds
number RG*,c would thus increase with B, as expected.

The second case is that for the highly cooled wall, S, = -0.8.
(See fig. 1(d).) 1In this case Rg,c decreases with an increase in B

for all Mg below Me,w. The two values of B that seem to be incon-
sistent are g = -0.3285 (f; = 0.0693) and B = -0.325 (f; = o.ohga).
This decrease of Re,c with increase in B has previously been encoun-

tered and discussed (ref. 10) in the comparison between a highly cooled
two-dimensional stagnation-point flow (B = 1) and a flat-plate flow
(B = 0) with zero or small rates of mass-flow injection. Note, however,
that the smallest value of Rg,c, that for B = 2.0 and Me =0, is

2.461 x 106, a value that is larger than any value of Rg 1likely to be

reached. The conclusion therefore seems to be that, for very highly
cooled walls with values of Rg,c larger than any value of the boundary-

layer Reynolds number likely to be met, the effect of & favorable pres-
sure gradient is destabilizing when Me < Me,w. Calculations for values

of Me up to 8 show that, for values of Me greater than Me,w, an
increase in B increases Re,c, the usual effect. The values of Re,c
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decrease rapidly from Re’c = 0w to Re,c < 100 for M, greater than
Me, o+ (See table I.)

Because figure 1(d), which is for Sy = -0.8, indicates that for
highly cooled walls at Mg < Mg o the critical Reynolds number Rg o
increases as PB decreases, the question arises as to what happens as

the separation point is approached; at the separation point B 1is neg-
ative and Rg o 15 usually near zero. In the solutions of reference 2

for Sy = -0.8, as the pressure gradient parameter f decreases from 2.0
to its maximum negative value, -0.3285, the quantity fyy to which the

skin friction is directly proportional also decreases. A further decrease
in f&, however, is associated with an increase rather than a decrease

in PB. (See table II of ref. 2.) 1In the region between the value of B
for separation (f; = O), namely, -0.3088, and the value -0.3285, there
are two positive values of f; for each value of B. Because the skin

friction is directly proportional to f&, it is thus f; rather than B8

which must be used to measure the nearness to separation. Therefore
Re,c has been plotted against f& in figure 8. The two values of B

that previously seemed to be inconsistent with the ipcrease in Re,c

as P decreases, namely, B = -0.3285 (fﬁ = 0.0695) and B = -0.325
(f& = 0.0h93) are now seen to be consistent. The conclusion from this
figure is that, although Rg o Increases as B and £ decrease, &
valjue of f& is eventually reached beyond which Re,c decreases rapldly
with a further decrease in f,. The behavior of Re,c for highly cooled
walls consequently agrees with the usual behavior, namely, that Re,c

approaches zero as f& approaches zero at the separation point.

The data in table I indicate that Re,c for the case B = -0.325,
s, = -0.8 (f& = 0.0493) behaves in an unusual manner for Mg between
about 1.013%3 and 1.116. For M. Dbetween 1.C13% and 1.016 the present
method of computation results in three values of Rg,c at the same Me.
(See table I.) The largest values of Rg ¢ belong to the set that
increases to infinity at Me equal to 1.016; the other two sets of
values of Rg,c coalesce at a value of 1,035 X 10 at Me equal to 1.0133.
If all three values of Re’c were physically significant, instability
would occur at the lowest value of Re’c. Therefore, the physically
significant value of Rg would reach a maximum of 1,248 x 103 at
Me = 1.0133, decrease discontinuously to 1,035 X 10 at this value ol Me,
and then decrease as shown in table I. Each of the two values of Re,c

NP
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that appears at Mo = 1.0133 belongs to a different set of values
of Re’c. One set increases with Mg to infinity at Me equal to 1.116.

This variation is unlike that encountered for any other case and is prob-
ably physically unimportant because the values of Re,c in the other

set are smaller; this set decreases continuously with Mz 1in the usual
manner and is probably the physically significant set,

CONCLUDING REMARKS

The minimum critical Reynolds numbers for the similar solutions of
the compressible laminar boundary layer computed by Cohen and Reshotko
and also for the Falkner and Skan solutions as recomputed by Smith have
been calculated by Lin's rapid approximate method for two-dimensional
disturbances. These results enable the stability of the compressible
laminar boundary layer with heat transfer and pressure gradient to be
easily estimated after the behavior of the boundary layer has been com-
puted by the approximate method of Cohen and Reshotko.

The previously reported unusual result (NACA Technical Note 4037)
that a highly cooled stagnation point flow is more unstable than a
highly cooled flat-plate flow is again encountered. Moreover, this
result is found to be part of the more general result that a favorable
pressure gradient is destabilizing for very cool walls when the Mach
number is less than that for complete stability. The minimum critical
Reynolds numbers for these wall temperature ratios are, however, all
larger than any value of the boundary-layer Reynolds number likely to
be encountered. For Mach numbers greater than those for which complete
stability occurs a favorable pressure gradient is stabilizing, even for
very cool walls.

Langley Research Center,
National Aeronasutics and Space Administration,
Langley Field, Va., February 13, 1959.
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TABLE I.- MINIMUM CRITICAL REYNOLDS MUMBERS FOR SIMILAR SOLUTIONS
OF THE LAMINAR COMPRESSIBLE BOUNDARY LAYER
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B =2.0 B=1.5
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.2808 L9173 1068 .2 .1523 .2918
L2854 <9157 1048 o .1553 2969
.2933 9131 1019 .6 1605 3056
3045 <9054 985.2 .8 .1680 3181
319 9043 956.0 1.0 1782 .3350
-3379 8977 959.5 1.2 1919 3571
3624 .8891 1017 1.4 2100 3856
3938 87T 1402 1.6 2345 L2206
- 1.8 2676 L4699
@ 2.0 L 31kk 5326
55T 8112 390.2 2.2 L3749 6056
6375 .TT28 99.45 2.4 REVT;) .6796
7095 <7333 45.75 2.6 15098 < ThOl
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8661 270 10.76 2.k 2.323 8876
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0.77h1 0.1512 4.368
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8267 1133 3.024
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TABLR I.- MINIMIM CRITICAL REYNOLDS NUMBERS FOR SIMILAR SOLUTIONS

OF THE LAMINAR COMPRESSIBLE BOUNDARY LAYER - Continued

(v) s, =0
. [« oo [ [ « 1=
p=1.6
o 0 1007 x 10 [ 0.1260 0.1790
.2 1008 x 10 2 .1266 L1799
A 1012 x 10 b 1286 .
.6 1028 x 10 .6 1319 .1869
.8 1075 x 10 .8 1367 1931
1.0 1222 x 10 1.0 129 2012
1.2 2053 x 10 1.2 1509 2115
1.265 - 1.2 | eememm | mmmee-
2.887 - 2.784% | ceee== | emmee-
2.8 6061 6488
p=1.2 g =1.0
o 0.1472 0.1837 o} 8102 s 0.1874
.2 . 1480 . 8093 .2 .1884
R L1504 L18Th 8081 s .1913
.6 L1545 .1921 8122 .6 L1964
.8 .160k .1989 8352 .8 L2034
1.0 .1682 .2078 9193 1.0 2131
1.2 1783 .2192 1359 x 10 1.2
1.290 | eeewee | memma- - 1.303 |  memeen | ememe-
2.643 | ccmeee ] wmeee- - 2.545 | eremme | mmo-ee
2.8 28 6843 101.9 2.6 6355
2.8 . T050
B =0.8 p=0
0 0.1843 0.1930 [+] 6298 [ [-2Y 0] 0.2023 [
.2 1855 .1940 6216 .2 2187 ,2035
A .1888 1973 6222 A 2230 2072
.6 1945 .2028 6171 .6 2304 .2135
.8 2027 .2107 6208 .8 2412 .e227
1.0 2139 221k 6562 1.0 2561 2354
1.2 2287 2354 8490 1.2 2763 252%
1.327 | cemme= | memem- B 1.37% immee | wemeea
2.3 | eememe | ceme-- « 2.189 mmmem | emmmee
2.4 6840 5851 1004 2.2 6939 5487
2.6 83551 6695 96.30 2.4 .8610 6403
2.8 BT 7278 k9.5 2.6 9992 -T7053
2.8 1.111 .7526




TABLE I.- MINIMUM CRITICAL REYNOLDS NUMBERS FOR SIMILAR SOLUTIONS

OF THE LAMINAR COMPRESSIBLE BOUNDARY LAYER - Continued

(b) S, = 0 - Continued

31

Me [ Sc nﬁ,c “e e 1'c' l 8¢ l Re,c
g = 0.40
] ] 4212 [4 0.2756 0.2203 [4 3328
.2 4180 .2 27T .2218 3204
RN 4090 R 2840 L2265 3196
.6 3960 .6 .2950 L2346 3047
.8 3826 .8 .3115 .2k67 2068
1.0 3762 1.0 .3350 L2637 2692
1.2 4018 1.2 L3684 L2875 2592
1.4 9201 1.4 172 L3215 2860
1.427 - 1.585 | cmmmee | mmemen -
2.037 « 1.657T | cmeeee | emmeee -
2.2 186.0 1.8 .6159 ko9 1729
2.4 75.31 2.0 .T833 5455 258.2
2.6 3.y 2.2 .9507 .6299 97.86
2.8 J 29.41 2.4 1.095 .6938 52.80
2.6 1.219 .Th20 ] 34.18
2.8 1.325 .TT90 4 2k.56
B =0.% B =0.20
(] 0.3268 0.2371 0 2365 o] 0.4108 0.2662 [ 1397
.2 3296 .2389 2332 .2 k169 2686 1368
R .3381 247 2233 Ry 4296 2762 1264
.6 3530 L2546 2079 .6 4520 -:13 151
.8 3756 2697 1879 .8 . .3100 979.9
1.0 4089 .2913 1646 1.0 5377 3595 779.8
1.2 4569 .3223 1383 1.2 612k .3817 563.3
1.h 5294 3675 1059 1.4 .7189 k395 353.1
1.6 6400 4332 614.5 1.6 8575 .5105 193.2
1.8 7922 5170 254.5 1.8 l.011 -5833 103.9
2.0 BT 599 113.3 2.0 1.160 LUTT 60.99
2.2 1.111 6668 60.17 2.2 1.295 7006 39.76
2.4 1.242 .T192 38.24 2.4 1.415 . Th32 28.17
2.6 1.3597 . 7600 26.97 2.6 1.521 TT76 J 21.22
2.8 1.458 .7923 b 20.38 2.8 1.616 .8056 4 16.71
B =0.10 B =0.05
0 0.5TT 0.3210 4] 602.1 0 0.7129 0.3634 o 3440
.2 .5838 320 584 .8 .2 L7211 3673 333.5
R L6043 3351 535.2 b L ThEh 379 303.6
.6 6405 3537 460.0 .6 .T899 hoo1 259.5
.8 .6953 3816 369.2 .8 .8535 Jh299 208.2
1.0 L7723 4199 27h.9 1.0 .9383 4689 157.5
1.2 .8738 4690 190.0 1.2 1.043 .5155 13.6
1.4 L9969 .5260 124 .4 1.4 1.162 5666 79.70
1.6 1.132 .5852 80.29 1.6 1.288 .6178 55.84
1.8 1.268 6408 53,29 1.8 1.5k 6657 39.92
2.0 1.397 .6896 37.11 2.0 1.533 . 082 29.45
2.2 1.515 .T310 21.16 2.2 1.644 . Tih9 22.47
2.4 1.6235 7656 20.7T1 2.k 1.746 .TT61 17.69
2.6 1.721 LTl 16.45 2.6 1.839 .8025 |, 14.31
2.8 1.810 .8185 + 13.81 2.8 1.925 8248 A 11.84
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TABLE I.- MINIMUM CRITICAL REYNOLDS NUMBERS FOR SIMILAR SOLUTIONS

OF THE LAMINAR COMPRESSIBLE BOUNDARY IAYER - Continued
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TABLE I.- MINIMUM CRITICAL REYNOLDS NUMBERS FOR SIMILAR SOLUTIONS

OF THE LAMINAR COMPRESSIBLE BOUNDARY LAYER - Continued

33

(c) S, =-0.4
Me l Ne fc' ' sc ] Re,c Me l Ne l fc' l sc Re,c
B =20 B =05
0 0.08762 0.1122 -0.3797 4450 x 10 [} 0.1421 0.1098 -0.3703 3828 x 10
.2 08793 1126 -.3796 4488 x 10 .2 1426 .1102 -.3702 3863 x 10
A 08885 1137 -.37% 4620 x 10 n .1hk0 1113 -.3699 3981 x 10
.6 09036 L1156 -.3791 4916 x 10 .6 BLY:N 131 - 3654 L246 x 10
.8 09245 .1181 -.3T86 5598 x 10 .8 kg7 L1155 -.3687 4852 x 10
1.0 .09509 1213 -.3780 7818 x 10 1.0 .1538 .1186 -.3678 6845 x 10
1.138 - 1.134 «
p=0 B = 0.2
[} 0.2645 0.1242 -0.3503 1810 x 10 0 1.163 0.3356 -0.2139 260.2
.2 2657 L1247 -.3501 1817 x 10 .2 1.173 .3390 -.212k 25k.1
RY 2692 1264 -.3h95 1846 x 10 A 1.202 .3hg2 -.2081 236.7
.6 2752 1291 -, 348k 1918 x 10 .6 1. 3662 -.2008 211.1
.8 2834 1330 -.3468 2098 x 10 .8 1.316 .3899 -.1910 181.6
1.0 2944 .1382 Y 2690 x 10 1.0 1. 4221 -.1780 1484
1.166 @ 1.2 1.517 L6271 -.1622 115.2
2.522 «- 1.4 1.646 5099 -.1446 85.55
2.6 1,459 646l -.1415 110.1 1.6 1.787 .5608 -.1264 61.54
2.8 1.637 . 7093 -.1163 18.55 1.8 1.9351 .6119 -.1089 43.67
2.0 2.0T1 6596 -.09329 31.37
2.2 2.202 . T026 -.07972 23.09
2.4 2.321 T3 .. 17-60
2.6 2.430 .TT08 -.05916 13.83
2.8 2.528 .T9T5 -.05153 1.18
B o= -0.24 p = -0.2u83
0 1.937 0.4791 -0.1301 38.62 0 2.461 0.5T76 -0,08941 9.524
.2 1.946 .82k -.1290 37.96 .2 2.469 5806 -. 9.383%
i 1.974 hgo2 -.1257 36,04 R 2.495 .5896 -.08621 8.979
.6 2.019 5084 -.1205 33.10 .6 2.536 L6041 -.08242 8.347
.8 2.082 5306 -.1134 29.43 .8 2.593 6234 -.0TT42 7.5Th
1.0 2.160 5581 ~.1049 25.42 1.0 2.662 6465 -.07155 6.722
1.2 2.251 5901 -.09549 21.37 1.2 2.739 6724 -.06519 5.853
1.4 2.351 6247 -.08556 17.61 1.4 2.8 6996 -.05867 5.031
1.6 2.457 6603 -.0T567 14,31 1.6 2.912 .T2T0 -.052% 4.287
1.8 2.564 6952 -.06635 1.56 1.8 3.002 LT53% -.046k0 3.640
2.0 2.669 . 7280 ~.05799 9.364 2.0 3.089 .TT82 -.04099 3.095
2.2 2.770 T5T8 -.05059 7.687 2.2 3.173 8006 -.03625 2.643
2.4 2.865 .TB42 -.0kk23 6.323 2.4 3.254 .8210 -.03201 2.268
2.6 2.954 .8075 -.0387h 5.290 2.6 3.330 .8388 -.028k0 1.964
2.8 3.035 .8276 -.03419 k.ol 2.8 3.402 .8548 -.02522 1.709




TABIZ I.- MINDMOM CRTTICAL REYNOLDS MUMBERS FOR SINILAR -QLUTIONS

ar THE LAMINMAR COMPRESSIBLE BOUNDARY IAYER - Contimued

(4) s, = -0.8
N N Y S S B
B=2.0 pal5
0.03470 0.03271 -0.7849 2461 x 16° [ o 0.03599 0.03111 -0.7846 2845 x 107
o373 L0324 -. T8N 514 x 100 2 03602 L0312k - 784 2907 x 107
03483 .03283 -.T8M8 2694 x 107 Rt 03611 05121 -.T846 3119 x 105
03498 03297 -. 7848 3086 x 10° 6 -03626 03134 - TBS 3581 x 107
.03518 .03316 - TBAT 5031 x 10° .8 03644 .03150 -.TBAk M696 x 103
03542 .03338 -.7846 1018 x 20* || 1.0 03666 03169 TR 1217 x 10%
1. - 1.037 -
B =0.5 =0
0.0k0M 0.02622 -0.7838 “yB2 x 103 || o 0.04528 0.02127 -0.7830 9160 x 100
.0k016 02624 -.7838 4893 x 107 2 0k5330 .o2127 -. 7830 9362 x 107
.oboek 02628 -.7838 5268 x 10 i V536 .02130 -.7830 1013 x 16*
04035 02636 -.T837 6085 x 10° 6 NSk 02134 -.78%0 1277 x 10*
04050 .026h5 - 837 8068 x 10}5‘ 8 M55 02139 -.7829 1577 x 10%
05067 02657 -.T8% 2278 x 10 1.0 LOks6E 02143 .. 7828 936 x 10"
1. - 1.0 -
B = -0.1k B = +0.3
0.04868 0.01875 -0.7825 1335 x 104 || O 0.06167 0.0129% -0.7805 3755 x 108
04870 .0LBT6 -.7825 1368 x 10% .2 0616¢ a1294 -.7805 3651 x 104
LOMBTH .018TT 1825 1579 x 10% kY 0611 01295 -.TB05 4176 x 10°
.OMBEL .01880 -85 1722 x 10 6 01T 01295 -.T805 4888 % 10%
04891 01884 -.T82% 2518 x 10 .8 06183 .01297 -.1805 6648 x 10"
.okga1 .01888 -.T82% e x 1% | 1.0 .06187 01298 -.T805 2651 x 107
- 1.012 -
B = 0.3 (£," = 0.2354)
0.07613 0.01035 -0.TTT8 6393 x 104
2 o613 .01035 ) 6559 x 10%
KY 07616 01035 -.T771 TG x 10*
6 07619 .01033 ) 8348 x 10
.8 o762k 01036 -8 140 x 107
1.0 07629 L1037 -7 5069 x 107
1.009 -
2.56) -
2.58 2.438 6267 -.1580 203.2
2.6 2.%75 .6390 -.1513 145.8
2.62 2.508 .6kgT -. 1455 18.1
2.64 2.537 .6593 -. 1405 100.8
2.8 2.715 L7151 -.1122 50.76

QP2 =T




TABLE I.- KINIMM CRITICAL REYNOLDS MUMBERS FOR SIMILAR SOLUTIONS

OF THE LAMINAR COMPRESSIBLE BOUNDARY IAYER - Concluded

(a) 8, = -0.8 - Concluded
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Me e ] ' Se Re,c LS l e I ' [ Se I RB,L‘
B = -0.3285 (f," - o.uoo) B = -0.3285 (rv" - 0.0693>
0 0.08526 0.009559 -0.7759 x| o 0.1270 0.009330 0. 7664 5560 x 104
2 .08526 009560 - TT59 T522 x 104 .2 .1270 -009331 - 7664 5704 x 10
A .08528 009563 -.TT59 8166 x 10" BN 1270 .009333 -. 7664 6193 x 10
.6 085352 009566 -39 9581 x 10% 6 1271 -009337 - 17664 7265 x 104
.8 08536 009572 -.TT59 1311 x 100 8 1271 005343 -6 9937 x 104
1.0 08541 009577 - TT59 6054 x 17 || 1.0 1272 009349 W6k x 10°
1.009 - 1.009 e -
2.385 - 1.995 - =
2.h 2.450 .5888 -.1694 361.6 2.0 2.425 5024 -.1996 709.6
2.6 2.737 6834 -.1205 55.36 2.2 2.728 6056 -.153 68.06
2.8 2.907 356 -.09625 33.29 2.4 2.932 6730 -.1139 35.30
2.6 3.091 1225 -.09261 22.99
2.8 3.222 7609 -.07711 16.63
B = -0.325 (r‘," - o.cdog))
0 0.2565 0.01507 -0. 7T 7320 x 103 [ T
2 2566 01508 - T37 7499 x 107
" .2569 .01510 - TN 8104 x 10°
6 2574 01513 - T3NS 9u31 x 107
8 2579 01517 - Tk 1272 x 10*
1.0 2566 01522 N o) 4668 x 10%
1.0133 2587 01522 -.T3h2 1248 x 107 1.0133 1.200 0.1287 -0.4961 1035 x 10
1.01k 2587 01522 -.T3h2 1518 x 105 1.014 1.196 .1281 1058 x 10
O o T e e - 1.016 1.188 1265 1118 x 10
1.0133 1.200 .1287 - h961 1035 x 10 1.018 1.181 1253 1172 x 10
1.01 1.232 L1346 -.4881 8697 1.02 117 L1242 1223 x 10
1.016 1.251 .1382 -.4833 789 1.04 1.134 umn 1705 x 10
1.018 1.265 .1408 -.4800 Tho3 1.06 1.108 L1126 2286 x 10
1.02 l.e75 .1k28 -.4773 T035 1.08 1.068 1093 3150 x 10
1.04 1.345 L1567 -. k600 5206 1.10 1.01 1064 5150 x 10
1.06 1.394 1668 -.4480 1331 1116 | mmmmem | emameen -
1.08 1.435 AT -.4380 3760
1.1 1.472 .1838 -.4289 3345
1.15 1.553 .2023 -.hogs 270
1.2 1.63% 2218 -.3899 2221
1.k 1.937 3035 -.3191 1268
1.45 2.006 3265 -.3015 1020
1.6 2.248 L3991 -.2513 403.1
1.8 2.531 k936 -.1953 127.6
2.0 2.772 5760 -.1527 55.84
2.2 2.970 L6424 -.1220 31,10
2. 3.134 6954 -.09935 20.06
2.6 3.273 T -.08250 14.28
2.8 3.39 LT3 -.06971 10.83




36

TABLE II.- VAIUES OF Mg e THE MACH AT WHICH

' 1
Rg,c = @ WHEN f} =1 e
B Me,
Sy = 1.0
2.0 1.727 2.096
Sy =0

2.0 1.265 2.887

1.6 1.274 2.784

1.2 1.290 2,643

1.0 1.303 2.545
.8 1.327 2.395
.6 1.37h 2.189
.5 1.427 2.037
" 1.585 1.657

Sw = -0.'-}

2.0 1.138 3,673
5 1.134 3.385
0 1.166 2.522

Sy = -0.8

2.0 1.039 6.814

1.5 1.037 6.307
.5 1.031 5.28%
0 1.020 4.478

-1k 1.018 4, 0k2

-.50 1-012 5’051+

-.3250 (£ = .1354) 1.009 2.561

-.3285 (£% = .1100) 1.009 2.385

-.3285 (fy = .0693) 1.009 1.995

-.3250 (fy = .0493) 106 | 0 -

Sy = -1.0

2,0 1 10.50
.5 1 6.981
0 1 5.728

-.1k4 1 5.209

-.30 1 4,284

-.360 1 3,647

-.308L 1 2.88k

-3057 1 2,304
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TABLE III.- RELATION BETWEEN n, B, A, AND Sy
B A n B A n
Sw = 1.0 Sy = =.b

2.0 0.06683 -0.008932 2.0 0.2944 -0.1733

1.5 .1113 -.01858 5 <3799 -.07215

1.0 1765 -.03115 0 L4696 0
5 2740 -.03754 -.20 5544 .06148
3 <3334 -.0333%6 -2k .5868 .08263

L4696 0 -.2483 .6001 .08941

-.10 .54k25 .02943 -.246 .6045 .08989

-.1295 S6TT LOb1Th

Sy = -.8
Sw =0
2.0 0.3551 -0.2522

2.0 0.2308 -0.1065 1.5 .3659 -.2008

1.6 .2504 -.1003 5 4091 -.0837

1.2 2761 -.09148 0 L4696 ¢]

1.0 .2923 -.08544 -.14 .5037 .03552
.8 .3118 -.07778 -.30 .5821 .1016
.6 .3359 -.06768 -.325 .6107 1212
.5 .3503 -.06135 -.3285 .6193 .1260
4 .3667 -.05380 -.3285 .6286 .1298
.3 .3857 -.04L6s -.325 .6335 L1304
.2 4082 -.03332 -.3088 6274 1215
.1 4355 -.01897
.05 L4517 -.01020 Sy = -1.0

0 4696 0

-.05 4905 .01203 2.0 0.3833 -0.2938

-.10 5150 02652 .5 235 -.0897

-1k .5386 .0L0o61 0 4696 0

-.16 5522 .04878 -.1k 952 .03433

-.18 5677 -05801 -.30 .5498 .09069

-.19 5765 .06316 -.36 .5908 .1256

-.195 5814 06591 -.388L .6400 .1591

-.1988 -5854 -06813 -.3657 6571 1579

-.326 .6400 .1335
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(a) Enthalpy function at the wall. S, = 1.0.

Figure l.- Variation of boundary-layer critical Reynolds number Re,c

with Mach number at edge of boundary layer M. for constant values
of the pressure gradient parameter B.
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(4) Enthalpy function at the wall.

100,000 x 104
80,00

60,00

40, 001

20,00

10,000

.f i
L b e -
}
i
i
HH o
¥ Y~
Sitol~Heto i3]
SHESHS S!S i
Wi R O R oo
T I B
HEE o
Vb =
- D tH
AA - L
<im o ad sha) TNER Y
[ o [=) [=]
S o o S SO0 & S «
S S oS S S® O < 8 @0 -
O O o o~ —

Rg,e

NIDIT




4o

L-226

A.Hu = Mg 07 ¥ TT® I0F ®™ = o.mmv
«Me  goqomeaed AdTeRyjue 90BJINS SU3 JO SaNTBA PIXTF JI0F d ao3emered jusaTpwIZ 2ans
3

~-saxd oyj3 uo NJW -1="9; usyr o= 9Dy 107 zoqunu oWy ouy ® W Jo souspuedsq -°g SINITI
g
0°2 81 9T ¥:12°1 O°1 N A . 0_2-¥=
w - 1 ’ _-l_—_ OOHI
O ﬂ.l = @ _., .
wo.H P i .,
01 P ]
0 \\..\\\.\\\ )
/
v A \\\
L~
P /1
1 \\\< h
|\\\\\\\\! - .
- = ¢
8" - — n
" ® = ¥ Yotym [~
ul UoTIBaJa ST JUBISUOD = Mg — 4
anano Aq pesoTous cOﬂMm%\\\ 3
- o]
P
L
01
-
0'T - = Mg

1T



b3

. *J9qomwsIrd quaTpeId
mgmmmnmmnuum.HOmmzdgpﬁdpmnoo.Ho.H nhohdabnﬂ@qzopmﬁv%omm.@wmnppwhwgsbq modzwnp

©/3
!
S uo .‘H_H - = w.w UayM o = o\om I0F 0138 aangwIadmaq ayy ¢ .3|\.|v Jo aouspuadaq -*¢ aanITg
°n
11 ] 6 8 ! 9 g 14 z 4 1 0
N !
\ + T .
N LT [\Reo - = [ v
. AN ON T Ve \ g
AN /z / e / \
NI \ T AT o1
wl \\
S /N.Mf / // \‘\\ ‘\\
N @.7 LA q \\ , 91
02NN NINON
N NI ] 0z
\4// 1/ /0.// \-V-n\ ¥ >
’ ] NN\ 7] ©/e
e ANV V2 [
, \\ /////.“ / 7
4 ; / .
7 f B8*¢
\\ / / “‘
4 / / .
‘A
/ / /
8- = Bm\ . 7 /
v ="g 9°¢
’ / ! Y/
N /| (eo®jans Al o'
\momm.Sm pPaT00d g »Me / vmumHSmcCl\ ]
e0BJins pejzey o <Me | o =nmglio°T = "¢

Vv



L

Ao TTam au3 98 unorqoumy AdTeqyjzus ayg JO sanTrA qUB)S
-uoo 03 ¢ J3jouwsred quaTpsad aanssaad puB U  JIQUENT UOTFBTALIOD USIMRIQ UOTIBTIY -°f 3INBT4

]
0°2 9°1 't g n 0 a.m.u
/OO.H -
///
- /V/ e
///
ﬂ[/L///
- Lo
0 — N
T
u
_ll\.\.ll.‘.\ll“
0°T = Ag °
0T~
0°1
0
L - T
g -="s
yl
NQ




k5

1,000 X 10

8 £ Calculated by egs. (19) and (22)
approximate)

1
1
T

-
1T

L =

= Calculated by Pretsch (ref 8)
(*Bxact®)

1

‘o

HI

=

»n

1
‘bz 0 o’ oh . L1 1.0 1.2
B

Figure 5.- Dependence of Re’c on the pressure gradient parameter 8
for Me =0, Sy = 0.
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Figure 6.- Variation of critical Reynolds nurber with Mach number for
pressure gradient parameter § = 0.6 and insulated. surface. Sw = 0.
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