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By Rcbert T. Jones
SUMMARY

The problem considered is that of rectilinear motion with varizble
velocity. The paper gives, by an elementary construction, a system of
coordinates which is conformal in the vicinity of the axis of motion.
By a particular choice of the scale relation, such restricted conformal
transformations can be made to reduce to the Lorentz transformation
everywhere in the case of uniform velocity and locally in the case of
variable velocity.

INTRODUCTI.ON

The uge of Lorentz transformations when the velocity v is a functicn
of the time leads to a nonuniform correspondence of events. between accel -
erated coordinate systems. A uniform correspondence can be achieved,
however, by a simple generalization of the Lorentz formula to a
transformation of the type known as conformal. -

Extension of the theory of relativity by conformal transformations
was considered many years ago by H. Bateman (ref. 1). Such transformations
preserve a constant velocity of light even during accelerated mobions.
It seems, however, that such transformations, if applied to the whole of
space, are consistent only with special types of motion. In the present,
paper an extension of the theory by conformal transformations of the
simplest possible type, restricted to the vicinity of the axis of motion,
is suggested. BSuch restricted conformal transformations can be made to
reduce to the Lorentz transformation everywhere in the case of constant
velocity, and locally in the case of variabie velocity.

The paper gives an elementary (though somewhat indirect) derivation
of the cocrdinates from the wave pattern Cormed by electromagnetic
signals. In view of the simplicity of the results it seemed unnecessary
to translate them into the more concise language of differential gecmetry.




CONSTRUCTION CF A CONFORMAL COORDINATE SYSTEM
BY MEANS OF INTERFERING WAVE SIGNALS

In the Michelson-Morley experiment, an electromagnetic oscillator
and a mirror are arranged on a rigid reference body B =20 as to produce
an interfering wave system. BSince the waves returned by the mirrcr are
of the sgame frequency as those emitted by the osciliator, a system of
standing waves results.

We may produce the same wave system by means of twe oscillators at
Xp and Xg on the x axis in an A system which moves relatively to B.
Here the waves returned by the upstream cscilllator may have a different
frequency than those emitted by the dowmstream oscillator. The inter-
ference pattern will then drift in the direction of the line joining the
two osgsecillators. BSuch an interference pattern moving at the velocity v
iz of course a standing wave in the B system. The difference in
frequency 1s then related to the Doppler shift as observed from system A.

If we imagine Einstein's clock synchronization experiments (ref. 2)
to be carried out continuocusly, then these experiments will again create
& standing wave system in which the phase of a clock is identified with
the phase of the electromagnetic wave and the length of a measuring rod
(or the spacing between the clocks) is identified with the wave length.

Figure 1 shows an x,t diagram of the clock experiments interpreted
as an interfering wave pattern. For convenience the x and t scales are
chosen so that the velccity of light is unity. The rectangular x,t
axes are those of system A, Maxims and minima of the downstream moving
waves are along lines sleping to the left with increasing t, or along
lines x + t = constant. The upstream moving waves are identified
gsimilarly with the lines x - t = constant.

The maxima and minima of the standing waves in the B system are
diagonals of the rectangles formed by the lines =x - t = constant and
x + t = constant. The Lorentz transformation is, in these terms,

yopt = fRY (xat
% 1+v (X )
, (1)
x' -~ 4! = [ (x.t)
L=-v

In system B (x',t') we may isolate two clocks C; and C,. A signal
from C, at ;' arrives at C, at the:time +%,' and is reflected




back to C,, arriving there at the time ta'. By setting C, to the
time t,' = % (t1' + ta') we express the constancy of the velocity of

light in the moving system.

Now it is clear that the velocity of light will remain constant and
that the Michelson-Morley experiment would show this result in any coor-
dinate system constructed from interfering waves of both families. Hence
as the equation of such a transformation we may write, disregarding for
the moment ¥ and =z,

x" + t' = PF{x+t)

(2)
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Figure 2 shows a curvilinear coordinate system constructed in this
way. By starting with the Dcppler variation of the frequencies received
at the points xp and xy we obtain a network of lines at L5°, but with

variable spacing. The interference pattern then forms a family of
"sloshing” waves with the velocity of the wave crests variable from point
to point. In a coordinate system tied to such wave crests the result of
the Michelson-Morley experiment is always the same. It is a simple matter
to verify that the coordinate system of figure 2 preserves a constant
velocity of light.

If we denote
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then the velocity v of B relative to A is given by

(g-% =v=% (1)
x'=const g*




and is variable from pocint to point. We require that if B moves at v
relative to A, then A moves at the velocity -v relative to B. The
calculation shows

gx_' ='f|__g:_
dt') f+g v (5)

x=ccnst

For the law of composition of wvelccities we need three coordinate
systems A, B, C. If B moves at v, relative to A, and C moves at
Vy relative to B, then we write

gl-fl
gl+fl
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There results

glge'flfa (7)
818+, Ty

<
[#]
1]

for the velocity of C relative to A. The latter formula reduces to
the law of composition of velocities in special relativity, namely,

Vi+vs
Va = L+vyv, (7a)
along each single line X' = constant. Hence this law depends only on

the constancy of the wvelocity of light.

DETERMINATION OF THE SCALE FACTOR fg

If we select one of the curvilinear x' lines as the origin of the
primed system, then we may identify this line as the world track of a
particle B im the A system. Fcr the rste of increase of the proper
time along this track we compute




(68") 1 gonet = N 1-v2 W Eg dt (8)

This relation leads to the well-known time paradox of special relativity.
Similarly, for a distance paradox, we may write

= JI52 JTg ax (9)

T
(dx )t’=const

In our case the displacements following a variable motion are not
the same for all clocks of the moving systenm, but are functions of posi-
tion. However, if a system moves but later comes to rest, the residual
space and time displacements eventually become the same for all clocks
within light cones originating at the disturbance.

Thus far the functions F and G, or their derivatives ¥ and g, are
undetermined functions. If we adopt a certain curvilinear line in the
x',t' system as the path of a particle, or as the spatial origin of the
moving system, then the functions £ and g will be partly determined by
the veloeity along the path, that is, through equation (4). However,
since equation (4) involves only the ratioc of f to g there remsins a
scale factor, or gauge Ffactor, to be determined.

For the case of uniform motion the scale factor of the Lorentsz
transformation is so adjusted that the direct and the inverse transforms -
tions indicate the same change of x and t dimensions. The transformation
and its inverse are then indistinguishable, except for the sign of the
veloeity. This condition is satisfied by making the quantity fg equal
to unity throughout.

In the case of variable motion such s reciprocal sgcale relation.
cannot be maintained everywhere, nor can it be maintained uniformly
between any two points of the systems A and B. It becomes necessary
then to mske a distinction between the two coordinate systems. To make
thig distinction in the customary way we shall suppose that A i1is an
inertial system. Then our transformation will approach the Lorentz
transformation in the vicinity of the moving crigin of B. This condition
requires that fg = 1 along x' = O and is, together with equation (L),
sufficient to determine the functions f and g.

The requirement of the reciprocal scale relation f = l/g along
¥x' = O imposes a®t each instant a relation of symmetry between this single
point of the B system and = succession of different points of the A
system. As a consequence this relation cannot be maintained between
discrete points of the two systems which become separated. Hence the
relation of kinematic equivalence demanded by Milne (ref. 3) is not




satisfied. Bvidently Milne's relation cannot be maintained by conformal
transformations that are locally tangent to the Lorentz transformation,
except in the case of uniform wvelocity.

Figure 3 illustrates the application of the present method to a
problem of accelerated rectilinear motion. If the path of a particle B
is given then it is only necessary to lay off from this path lines at
h50, spaced at equal intervals of the proper time as given by the
velocity v in conjunction with the restricted theory of relativity.
The intersections of these characteristic lines then determine the con-
tinuation of the coordinates throughout the x,t region.

Thus far our considerations have been restricted to the single space
direction x parallel to the direction of the veloecity. If the constancy
of the velocity of light is to be maintained in all directions, then the
differential form of the transformation must remain.

-deg'® = 7\2(x,y,z ,t) (dx2+dy2+dz2-dt2) (10)

Generelization of the theory of relativity by transformations of the
group satisfying equation (10) was considered by Bateman (ref. 1} and
more recently by Infeld and Schild (ref. &), Littlewood (ref. 3),

E. L. Hill (ref. 6), and others. It seems that the transformations of
this group are essentially limited in such a way that only certain
motiong are consistent with a constant velocity of light throughout
space. However, if we restrict our attention to a small region in the
vieinity of the =x axis, we may write

y' = Nfgy (1)
11
z' = Jfg z
and then
(-ds'E)y2+22¢O = fg(ax2+dy2+dz2-at2) (12)

Hence a constant velocity of light can be maintained in the vieinity of
the axis throughout a variable motion.




It is interesting to note (see fig. 3) that the coordinate distor-

tions or "gravitational waves" associated with the acceleration of
system B ultimately propagate away from the origin with the velocity
of light. The interpretation of these waves, as well as other dynamical
gquestions, will reguire an extension of the considerations given herein.

Ames Research Center

National Aeronasutics and Space Administration
Moffett Field, Calif., Apr. 9, 1959
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Figure 3.- Continuation of Lorentz transformation along straight
characteristic lines.
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