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SOME DIVERGENCE CHARACTERISTICS OF LOW-ASPECT-RATIO
WINGS AT TRANSONIC AND SUPERSONIC SPEEDS

By Donald S. Woolston, Frederick W. Gibson, and
Herbert J. Cunningham

SUMMARY

The problem of chordwise, or camber, divergence at transonic and
supersonic speeds is treated with primary emphasis on slender delta
wings having a cantilever support at the trailing edge. Experimental
and analytical results are presented for four wing models having apex
half-angles of 5°, 10°, 15°, and 20°. A Mach number range from 0.8
to 7.3 is covered.

The analytical results include calculations based on small-aspect-
ratio theory, lifting-surface theory, and strip theory. A closed-form
solution of the equilibrium equation is given, which is based on low-
aspect-ratio theory but which applies only to certain stiffness dis-
tributions. Also presented 1s an iterative procedure for use with
other aerodynamic theories and with arbltrary stiffness distribution.

INTRODUCTION

The current trend toward the use of thin, low-aspect-ratio, all-
movable control surfaces on aircraft and missiles has introduced the
possibility that divergence rather than flutter may be the primary
aeroelastic problem for such surfaces. This possibility results from
the fact that on all-movable surfaces the forward portion of the surface
may be supported from the rear rather than from the side. The resulting
chordwise divergence is characterized by a camber type of deformation
rather than a twisting or torsion of the wing span. The present paper
considers the problem of chordwise divergence at transonic and super-
sonic speeds and is principally concerned with the divergence of slender
delta wings having a cantilever support at the trailing edge.

The problem of chordwise bending in two-dimensional supersonic
flow has been treated by Biot (refs. 1 and 2) and by Miles, according
to reference 3. The three-dimensional case has also been examined by
Miles (ref. 3) and in the more recent investigations of references 4



and 5. The chordwise divergence of an all-movable control at transonic
and supersonic speeds has been treated in reference 6.

The purpose of the present paper is to give the results of a
reexamination and extension of the material presented in reference 5
which had only limited distribution. The authors of this paper, who
collaborated in preparing the results of reference 5, have obtained
additional results on the basis of lifting-surface theory for super-
sonic flow. The investigation includes the development of an iterative
solution to the equilibrium equation applicable to divergence studies
of configurations with arbitrary stiffness distribution and, also, a
closed-form solution applicable to certain special distributions of
stiffness. Experimental results are presentsd for a series of canti-
lever delta wings having apex half-angles of 5°, 10°, 15°, and 20° over
a Mach number range from 0.8 to 7.3. Comparative divergence calcula-
tions for these cases based on small-aspect-ratio theory, lifting-
surface theory, and strip theory are made.

SYMBOLS
Ajj curvature influence coefficient, (ft-1b)™% (eqs. (30))
anm weighting factor in series form of Ap(x,y) (eq. (3))
Bi j slope influence coefficient, 1b=1, (egs. (37))
EBi] matrix defined by equation (42), ft@
@2] matrix defined by equation (46), ft
Cp torsional spring constant, ft-lb/radian
co chord at wing plane of symmetry, ft
D] differentiating matrix, £e=1 (see 2q. (44))

E, E(x) modulus of elasticity, 1b/sq ft
F(x) local aercdynamic force per unit span, lb/ft

Fj concentrated aerodynamic load at Xq5 1b

h local vertical displacement, ft
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I(x) section moment of inertia, ft*

[Il] integrating matrix, ft (see eq. (32))

Jys Ju Bessel function of the first kind of order v and u,
respectively

K, K(M,k,x-x"',y-y") kernel function of integral equation, ££-2

Ko section moment of inertia constant (eq. (16))

LS Ké

k
Ky
Loms an(xs
M

MB(X)

W
\ 1
Xy¥s2,X ,Y

Xi,Xj

divergence constants, defined by equations (25) and (48),
respectively

reduced frequency

weight constant (see eq. (52))

y) lift function in series form of Ap(x,y) (eq. (3))

Mach number

local bending moment, ft-1b

dynamic pressure, pV2/2, lv/sq ft

dynamic pressure at divergence, lb/sg ft

area of jth wing segment, sq ft

local wing half-span, x tan €, ft
local thickness, ft

thickness at midspan of trailing edge, ft

velocity, fps
wing weight, 1b
Cartesian coordinates, ft (see fig. 1)

chordwise coordinates of centers of ith and jth segments, ft



Xp = cng

B = -1

Ap(x,y), ap(x',y') local pressure difference, 1b/sq ft

Ax chord of wing segment, ft

€ apex half-angle (see fig. 1)

8 angular spanwise variable defined by equation (1k4)

A characteristic parameter (see eq. (20))

= 3/(3-n)

v = n/(3-n)

E dimensionless chordwise variable, X/CO

gj dimensionless chordwise coordinate of midpoint of jth
segment, xd/co

gp dimensionless chordwise coordinate of wing support station

IILK definite integrals in the lifting-surface-theory problem
(see eq. (4))

Ilﬁg) integrals defined by equation (8), ft°

o fluild density, slugs/cu ft

R material density, 1b/cu ft

Superscripts:

n, m denote powers of the chordwise aid spanwise variables,

respectively, in the expressioa for the thickness distribu-
tion (see eq. (12))

Matrix notation:

[ ] square matrix

4

AVIRS AN oul



O o

row matrix

diagonal matrix

L]
{: }’ column matrix
[ ]

FORMULATION OF THE PROBLEM

The Equilibrium Equation

The problem at hand is that of the divergence of a delta-wing plan-
form, shown in figure 1, which is restrained along a section normal to
its root chord at some distance Xp from its apex. The wing is con-

sidered to be capable only of chordwise bending - that is, bending of
the mean camber line. The effect of spanwise variation of bending would
be expected to be small for the narrow models with the thickness distri-
butions studied herein. The wing in its neutral position is assumed to
lie nearly in the xy-plane of an x,y,z coordinate system which moves
with the planform in the negative x-direction at uniform velocity V.

It is assumed that the wing, so restrained, will obey the mechanics of

a simple beam and that the only external forces acting upon it are aero-
dynamic forces which arise when it is perturbed from its neutral posi-
tion. Under these conditions the state of equilibrium may be expressed
by the following differential equation:

2 2
Q—EI%(X)I(X) 9—%] = F(x) (1)

dx dx

where E(x) is the modulus of elasticity, I(x) is the section moment
of inertia, h 1is the vertical displacement of any section from its
neutral position, and F(x) is the aerodynamic force acting at

station x.

The present study includes several stiffness or thickness distribu-
tions, leading to different forms of I(x), and considers various linear
aerodynamic theories, from which are obtained different forms of F(x).
Some examples are treated in which the thickness distribution is
described by simple analytic functions of the chordwise coordinate, but
consideration is also given to the possibility of an arbitrary thickness
distribution.



When certain analytical expressions are chosen to represent the
thickness distribution and are used in combination with the aerodynamic
forces given by small-aspect-ratio theory or strip theory, closed-form
solutions of the equilibrium equation can be obtained. For other combi-
nations of thickness distribution and aerodynamic forces an iterative
procedure is developed. Before discussing the methods of solution, the
forms of F(x) and I(x) to be employed are considered.

The Aerodynamic Force F(x)

The forms of F(x) to be employed depernd on the Mach number range
to be dealt with and on the apex angle of the structure. If the wing is
very slender and if the Mach lines lie well shead of the leading edge
(B tan e « 1), small-aspect-ratio theory may be used. For Mach numbers
up to that for which the leading edge becomes supersonic, lifting-surface
theory based on kernel-function procedures is available. If the leading
edge is supersonic and if spanwise variations of deflections are neg-
lected, the loading based on linear theory is given exactly by strip
theory, which for sufficiently high Mach numters corresponds to first-
order piston theory.

In the present calculations, small-aspect-ratio theory and lifting-
surface theory are used at subsonic speeds, snd small-aspect-ratio
theory, lifting-surface theory, and strip theory are used at supersonic
speeds. Both small-aspect-ratio theory and strip theory are used for
comparison throughout the range of supersonic Mach numbers considered
even though the Mach number range in which the theories are valid is
exceeded.

Small-aspect-ratio theory.- An expressicn for the aerodynamic force
given by small-aspect-ratio theory for the case of steady flow can be
obtained directly from the work of Jones (ref. 7) or from Garrick's
results for unsteady flow (ref. 8). The force can be expressed in the
following form:

X tan €/.2 2
F(x) = —2pV2 Jf dh Jxetanee - y2 + %2 X ten"e dy
-x tan e\dx X V&EtanEe _ y2

or

F(x) = -2nq tanZe g&CKg %%) (2)

PN O



where

Lifting-surface theory.- In order to obtain an expression for the
force F(x) based on lifting-surface theory, it is necessary to deter-
mine first the chordwise and spanwise distribution of pressure acting
on the surface. For this purpose use is made of an integral equation
which, in steady flow, relates the slope of the wing surface to the
pressure distribution.

The integral equation can be written as

& —1—5 /f op(x',y ' )K(M, k,x-x',y-y')ax' dy'
LoV A

where K(M,k,x-x',y-y') is the kernel function. The quantity K/lmpV2
is the mathematical expression for the downwash induced at any point
X,y by a unit force acting at any other point x',y'. The area A over
which the integration extends is the portion of the wing in which a
pressure pulse must occur in order to induce vertical velocity at the
specified point x,y. In subsonic flow A corresponds to the entire wing
surface; in supersonic flow A 1is that portion of the surface bounded
by the planform edges and the forward Mach cone from the point x,y. A
numerical method of solving the integral equation for the subsonic case
is described in reference 9; the procedure for the supersonic case is
based on similar techniques but involves differences in the form of the
pressure distribution and in the kernel of the integral equation.

An approximate solution to the integral equation involves expressing
the unknown pressure distribution as a sum of chosen modes of 1lift func-
tions Ly (of forms appropriate to the planform and Mach number range
under consideration), each weighted by a constant coefficient to be
determined. The following expression is employed:

Ap(x,y) = 8ﬂq[an_| {anm} (3)

Through the use of this expression the integral equation can be repre-
sented as a summation of definite integrals and can be solved by numeri-
cal methods. The following matrix form of the integral equation can

then be written:
&) - [ (o “



where the elements of IILK represent the definite surface integrals
of the products of the functions an and the kernel function K and

the elements %E represent the wing slope at a number of selected
X

points on the wing surface. Equation (4) may therefore be regarded as
a set of simultaneous equations from which the values of the weighting
factors apy can be obtained once the definite integrals have been
evaluated. (The evaluation of these integrals constitutes the major
task in the kernel-function procedure and is accomplished by use of the
methods and the computing program described in reference 9; it is not

pertinent to the present discussion, however, and need not be considered

herein.)
A premultiplication of each side of equation (4) by the inverse

-1
matrix EiL%} gives the expression

o] - [r124 2 (5)

which can be used to obtain values of the weighting factors aym for

any prescribed slope distribution. Once these weighting factors anm

have been determined, the pressure Ap(x,y) associated with the pre-
scribed slope distribution is defined by equation (3).

For use in the influence-coefficient procedures to be described
subsequently, it will be necessary to obtain the forces acting on each
of the several segments (fig. 2) into which tre wing is divided; this
will require an integration of the pressure distribution over each
segment. The force on the jth segment FJ may be expressed as

Fy = ffsj Ap(x,y)dx dy (6)

or, applying equation (3),

ry = teal)| o) o

IIﬁi) = L[]; an(x,y)dx 1y (8)
J

and where Sj denotes the area of the jth segment.

where

N U
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Strip theory.- If the leading edge is supersonic and if there is
no spanwise variation of wing deflection h, the aerodynamic loading
is given exactly (within the limitations of linear theory) by strip
theory. (See, for evample, refs. 10 and 11.) The force F(x) for
usz in equation (1) is expressed as

2 X tan ¢
B -X tan € dx
or
F(x) = - 89  tan < 8 (9)
ff M> 1, F(x) can be expressed approximately as
F(x) = - 84 y tan e I (10)
M dx

which is the result given by piston theory (ref. 12) for the case of
zero thickness.

Area Moment of Inertia I(x)

The term I(x) in equation (l) is the section area moment of
inertia and is therefore directly related to the thickness by the
expression

X tan € 1#2 ) 1 x tan €
T(x) = / dy f z°dz = = f thy (11)

-x tan € -t/2 X tan €

where € 1is the apex half-angle.

As noted previously, it has been found that, when certain forms
of the thickness distribution are used in combination with aerodynamic
foreces based on small-aspect-ratio theory or strip theory, closed-form
solutions of the equilibrium equation are possible. A fairly general
form of the thickness distribution which leads to an exact soclution is
the following expression:
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o g2

t = to(—) - (12)
where tg is the thickness at the point x=cqy,y=0 and where m and
n are positive integers. This expression for t contains a chord-

wise variation of thickness given by the term in éi and a spanwise

0
variation in thickness given by the term involving %. It should be

remarked that for n > 3 the thickness distribution is characterized
by a cusp at the apex so that at the apex the leading edge is infinitely
sharp. Such thickness distributions are not considered herein since
linear beam theory would not be expected to epply.

In order to proceed toward an expression for the moment of inertia
I(x), equation (12) may be substituted into equation (11) to obtain

3
I(x) = t—g—(%)n fos(l - 3-2—) dy (13)

where s = x tan € 1is the local wing half-span and where symmetry
about the center line is assumed. The integral in equation (13) can
be expressed conveniently in terms of the garma function and for this
purpose” there is introduced the angular varieble 8 defined as

6 = sin™t % (1)

in terms of which equation (13) becomes

5 n

ty x n/2 (w2
I(x) = —g—(gg> X tan € \/; (cos 8) ae (15)

If the integral in equation (15) is denoted by Ky, it may be shown
that

m+ b

n/2 (2+m) /2 F( L
Ky = fo (cos 6) e = igl F(mz (16)

v oV H
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where T denotes the gamma function. The inertia term I(x) may
then be expressed as

I(x) = K, ———(3%>nx tan € (17)

Numerical values of the section moment-of-inertia constant Kb for

several values of m are given in table I. Included with table I are
sketches of the sections to which the various values of m pertain.

CLOSED-FORM SOLUTIONS OF THE EQUILIBRIUM EQUATION

Exact solutions of the equilibrium equation can be obtained for
a few special choices of the section area moment of inertia I(x)
given by equation (17) and for the aerodynamic-force distributions
F(x) given by small-aspect-ratio theory or by strip theory. These
solutions can be used to assess the accuracy of the more generally
applicable iterative procedures to be developed. Before considering
these solutions it is convenient to arrive at a nondimensional form of
the equilibrium equation by introducing the change of variable

X = cog
so that equation (17) becomes

4 3
¢ Kofto) ,nt+1
I(cot) = z (36) £7 “tan €

With this expression for I(cog), equation (1) may be written in the

desired nondimensional form as

3 o
é?(fg) tan ¢ $— E(cog)§n+l EEE = F(Coé) (18)

aee ae?

If the expression for F(cog) given by small-aspect-ratio theory
(eq. (2)) is employed and if E(cog) is taken to be constant, equa-
tion (18) can be written as



2 [n+l ¢%n\ .2 a :
(e —3) + A" 5‘(52 3—) = 0 (1) )
dg at<, AR
where
. + o ~
7\2 = lc_ﬂq wtd‘l’l S (r_:’O)
A2
0 :
0 D
8
Solutions to equation (19) will be obtained fcr valuee of n  of o, 1, 2

2, and 5 for two types of wing mounting.

First, however, 1t is noted that a solution of equation (18) can
alsc be obtained, provided n = 3, when the aerodynamic-force distribu-
tion is given by strip theory (eq. (9)). 1In this event equation (18)
becomes

or taking E(cog) as & constant and performirz the indicated diftferen-

tiations of the first term results in

b 3 5 g2 _
gt Dy gD ITh L g2 9-§.+ ae 2 g
aet ag” at g
in which
i
P

]

This form of the equilibrium equation is of th: form of Cauchy's equi-
dimensional linear differential equation, the sclution of which is
discussed, for example, in section 1.6 of refe -ence 13.
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Huact Solution for the Irailing-Bdge-Cantileveres Delia

Wiag Based on Small-Aspect-Ralio Theory

crpressed by equation (19), il Is necessary to impose certain condi-
tions at the apex and at the point of support. Conditions to be impoeed
cat the apex imply no bending moment or shear and are

\!
|

Ly onder to counplete the formulavior of the divergeince probem is

1im

gn%d“<i£h
£-0 4t

\ P

—
o
[

L/ 2
lim ﬁL gﬂ*l ah =0
£-0 db} ae® !

For the trailling-edpe-contileve - oa delta wings, the conditions o
laposced imply that there is no dicpla
edge and arc

e
rement or slope at the built in

: i L;:}

Aioer one integration and the lmposition of the apex conditinns

cgnation (19) becomes

(ir/n#ﬂ’l dd}'-i\ PN dn

- e = 0
ae dga/f de

AN

d /ol ar 2.2,
S =11 + A =0
d&(g d@) :

Thic may be recognized as a special form of Besszel's eqguatin
) - - - . o ! ;
for example, eq. (123e), p. 167, of ref. 1%.) Tf n #3, a

aoli
undee the conditicns imposced by eg

wrion (21) is found to be
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h=0C ‘/ﬂg'n/er[gg%—H §(5_n)/§}d§ + Cp (23)

where Jv is the Bessel function of the first kind of order v
(v=n/(3-n)) and C; and C, are constants. (If n = 3, the

problem is soluble as an equidimensional equation (sec. 1.6, ref. 13).
From equations (22) and (23), the eigenvalues for the cantilevered case
(n £ 3) are the roots of

3

In order to assess the accuracy of the iterative procedures to be
discussed subsequently, solutions to the differential equations have
been obtained for constant E and for a thickness distribution defined
by setting m = O in equation (12) so that

/3

t = to(@)n

and for n =0, 1, 2, and 3. For n =0, I, and 2 the roots of the
Bessel functions in equation (24) and the corresponding values of A
are as follows:

SR R w0 N S L
0 0 JO(%}> =0 2.4048 3.6072
1 1/2 Jl/g(x) =0 x x
2 2 Jy(2n) =0 5.1356 2.5678

For n = 3 there is found a corresponding value of A of 1.499. The
quantity A2 in equation (19) may be used to form a convenient diver-
gence constant Kl defined as

2 q., tan €
K = A _d — (25)

sl

Values of K; for the foregoing examples are listed in table II.
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Exact Solution for the All-Movable Control
Based on Small-Aspect-Ratio Theory
An alternative configuration which might be treated is the all-
movable control attached to a torque rod at ¢ = gp where gp is the

chordwise coordinate of the pitch axis and is referred to cy as unit

length. For this case the conditions to be imposed at the section of
support would be

h(tp) = ©
an (26)
Ma(tp) = CS(codg)
gP
where
1
Mp(tp) = co2 /; (& - &)F(e)ae
or, from equation (2),
1
_ 2 .2 _ e\ 4 /2 dhy, 2
MB(ép) 2rq tan“ec ./; (§ §p)d§<§ dg) 3 (27)

is the total aerodynamic moment about the pitch axis ¢ = gp and

where CB represents the torsional spring constant of the torque rod.

In order to obtain an expression for the eigenvalues for the all-
movable control attached to a pitch spring, the expression for h
given by equation (23) must be substituted into equation (27); after
the resulting expression is integrated, the expression which defines
the eigenvalues is

2 (f0Y 2\ 2 22 (3-n)/%]
-A EKO(E%) tan € [(l- gp) J,,(5 ~ n) -7\]: J“(ﬂ)j = 6CBJV[5 = n(gp) -

where u = 3/(3 - n) and, as stated previously, v = n/(3 - n).
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ITERATIVE SOLUTIONS OF THE EQUILIBRIUM EQUATINN

The exact sclutions of the equilibriur equations which were out-
lined in the preceding section are applicable only to calculations
based on certain aerodynamic-force representations and thickness dis-
tributions. For other cases it is necessary to seek an approximate
solution; in the present investigation an iterative procedure hased on
influence coefflcients is employed.

No proof of convergence of the iterative procedure is attempted.
In the calculations described in reference 5 for the case of an all-
movable control with the hinge axis not at the trailing edge, some
difficulty with convergence was experienced in a few cases for which
the control surface was very stiff and the torque rod was very weak.
It was found, however, that by averaging th= results of two successive
cyeles of iteration and employing the averaze to start the next cycle
convergence could be obtained. No such difficulty was encountered in
the present caleulations for the delta wings with a cantilever support
atl the trailing edge.

Formulations of the equilibrium equatin based both on curvature
inflience coefficients (eq. (31)) and on slspe influence coefficients
(eq. (34)) will be given. FEither formulatisn may be used, the choice
being dictated by convenience In obtaining the necessary structural
and aerodynamic data.

Influence-Coefficient Forms of the 3iquilibrium Equation

As is the usual practice, the wing is :onsidered to be made up of
a finite number of segments (fig. 2). In tie calculations for super-
sonic flow, 10 segments were used and comparcisons with exact results
(to be discussed in a subsequent section) siowed this number of seg-
ments to be adequate. 1In the calculations Tor subsonic flow, first
10 and then 16 segments were used; the addi:ional segments were added
near the apex between O and 0.3 chord. The results were not changed
by the addition of these segments.

The force acting on each segment is assumed to be concentrated at
the midpoint of the segment and the slope o curvature is measured
there. The analysis proceeds from the fundimental beam relation between
curvature and bending moment, namely,

d2h MB(X) (29)
dx2

where MB(X) is bending moment.

AT e
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Curvature equation.- For arbitrary distributions of stiffness,
equation (29) can be used directly to formulate an iterative procedure
based on curvature influence coefficients. If Aij denotes the curva-

ture produced at x4 by a unit load Fj at X35 there can be obtained

from equation (29) the relations

<d2h>
2
dx ¥ Xy - X3

Aij = Fj = = E(Xi)I(xi) (xi > Xj) (50&)

and

A

Ay =0 (g Sx5)  (300)

Equations (30) are used to evaluate the curvature influence coefficients
Aij and also to provide the following matrix form of the equilibrium

equation:
QEE \g = [A,]/F; (31)
) o Py >
X:EJ

The aercdynamic forces Fj acting on the various segments can be

expressed as functions of the curvature to obtain a form of the equilib-
rium equation which may be iterated until convergence upon a curvature
distribution is obtained. The manner of doing this for the various
aerodynamic theories is indicated in the next section.

Slope equation.- A matrix form of the equilibrium equation based
on slope influence coefficients may be obtained directly from equa-
tion (31) by the introduction of a suitable integrating matrix EQ@

which gives the results

(d—h> (32)

and

2] Pag] = Py 2
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where an element Bij denotes the slope produced at x4 by a unit

load at X3

A sample integrating matrix appropriate to the lO-segment system
and the trailing-edge-cantilevered models treated herein is given in
table IITI. Multiplying both sides of equation (31) by the matrix [11]

leads to the following expression:

{%L;=[Hﬂﬁﬂ@§=[%ﬂ@§ (34)

This expression provides the basis for iteration on the slope distribu-
tion for a structure with arbitrary stiffness.

For the special cases for which the thickness distribution is
specified by equation (12) and for which the material is homogeneous,
equation (29) can be integrated in closed form to obtain an analytic
expression for the slope influence coefficients Bij' For such cases

I(x) 1is given by equation (17) in terms of the dimensionless variable

£ = x/co as

3

Koto
6

I(x) = (€)7ot tan e (35)

By substituting this result into equation (3Ca) the following expres-
sion is obtained for the curvature at & due to an arbitrary load Fj

at 53 where ¢t > gjz

a2 = CFy  E- &y
b - —— (36)
dx KoEto3tan e (&7

This result can be integrated to obtain the following expressions for

Bjy for n = 0,1, 2, and 3 and for §&; 2 §j:

N oW
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For

and

For

as

n =0,
(&)
a
* 51 6C0
Big=—F— ~ 1- &g+ &y log k)
3 KoEtgotan €
l,
6CO g‘j
Byjy = ———o—|&; - log &; - -2
1 KoEto tan e(J 1 §i>
2)
6 3 3
Bij = _____SQ____ -1 + _i + j; - _Jl_
KoEtgotan € 2 B 2P
n =3,
6c 3 3
Byy = 0 1.2 1 _ 23
Y g Etydtan 273 T 52 5
Kb (o} € 251 3§i

Solutions Based on Small-Aspect-Ratio Theory
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(37a)

(37p)

(37c)

(373)

(38)

Equation (2) can be used to express the aerodynamic-force distribu-
tion given by small-aspect-ratio theory in terms of slope and curvature

F(x) = -2nq tan26<%x %% + x° 932)

axe

(39)
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If the force is evaluated at X3, the center of the Jth segment, and is
considered to be constant over the segment, the matrix of aerodynamic

forces {?é} for use in the equilibrium equation may be then written

as

. 2
<?- = -2nq Ax tan%e k.2 LR) 4 oy (BB (40)
J J 2 J\dx )
ax~/y Xy
d

where Ax 1is the chord of the (equal) segments.

Curvature equation.- For use in equaticn (31) it is desired that
j be expressed as a function of curvature only. For this purpose

F

equations (32) and (40) can be used to write

{FJ> = -2nq AX[B]_] (Zi?) (k1)

3

where

[Blj - tange[[xji + 2[xj] [Il]] (42)

Substitution of equation (41) into equation (31) yields

{(%)Xi = -2nq Ax[Aij] [h}{(%)xj (43)

which may be solved by iteration upon the curvature to obtain the value
of dynamic pressure at divergence.

Slope equation.- It is possible to obtain the matrix {?i} of

equation (40) in a form which involves only the slope and which can
therefore be used with slope influence coefficients in equation (54).

For this purpose a differentiating matrix [D] is needed to yield

N oo H
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d°n dh
(—1;-2-} = [n] {i_x} (44)

A suitable differentiating matrix for use with the 10-point system of
the present study was obtained in reference 6 and is given in table IV.
The use of this differentiating matrix in equation (4L0) gives

N an)
{FJ} ong AX[BE] {(dx>xj} (45)
where
[Bg] = tange[[xjgl[D] + 2[&;]] (46)
Equation (45) may be substituted into equation (34) to obtain the fol-

lowing expression:

{(%)X} = -Beq ox([Byy] [P {%)xj} oo

1

which may be solved by iteration upon the slope to cbtain the value of
dynamic pressure at divergence.

Numerical results.- In order to help determine the accuracy of the
iterative procedure, solutions to equations (43) and (47) have been
obtained for the thickness distributions for which closed-form solutions
were obtained.

Values of the divergence parameter K;, equation (25), obtained

from a 10-station representation of the wing are compared in table II
with values from the closed-form solution and are seen to be in very
good agreement, which indicates that 10 stations are adequate. It is
noted that the force distribution, and consequently the divergence
parameter, determined by low-aspect-ratio theory is independent of Mach
number.

One further check on the accuracy of the iterative solutions based
on partitioning the wing into discrete segments was carried out by
assuming a polynomial expression for the displacement that satisfied
the end conditions and by applying the method of Stodola and Vianello
(sec. 5.5, ref. 13) to the loading equation (18). The strip-theory
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representation of the aerodynamics was used. With this representation
of the loading, another convenient divergence constant Ké can be

defined as
Ky = — > (48)
£ \D
BE(-2
o
Iteration on the loading equation with the polynomial expression for
the displacement led to a value of K, of 60.594%. Iteration on the

slope equation for the 10-segment, partitioned wing gave a value of
K5 of 60.241.

Sclutions Based on Strip Theory

The forces on the various wing segments glven by strip theory,
equation (9), may be written for use in the slope-influence-coefficient
equation (34) as

G = - g < {(E), ]

the substitution of which in equation (34) ylelds

(&

(&) ) foem ple(E))

|

Alternatively, equation (32) may be usel to express the forces in
terms of curvature as

7 = - -.qu tan efx;] [1; Jf
&3 [][J{ue)

so that equation (31) becomes

2 2
(gx—glcj = - %qu tan G[Aij} [xjj][llj (;—g)xj (50)

N o\ H
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Either equation (49) or equation (50) may be iterated to convergence
to obtain the critical value of q. Results obtained for the flat-plate
delta wings of the present study are given in a subsequent section.

Solutions Based on Lifting-Surface Theory

The aerodynamic forces given by lifting-surface theory have been
used to develop an iterative solution of the equilibrium equation based
on slope influence coefficients. It could be readily modified for use
with curvature influence coefficients.

It is recalled that the pressure distribution over the wing is
given by a series expression with arbitrary weighting factors appy

which are defined by equation (5) for any specified slope distribution.
In concept, one uses equations (5) and (7) to obtain the forces Fj as

{FJ> = 8nq[:[1r(]ﬂ @nm} (51a)

9 3
iy = bra [Ilgii [IILK] l{‘;}(—h} (51b)

and substitutes this result into equation (34). This provides a form
of the equilibrium equation upon which iteration to convergence can be
performed.

or

In practice, it is usually necessary to employ several steps in
each cycle of iteration. This is brought about by the fact that the
inverse matrix in equation (5) is developed for a particular array of
control points which do not, in general, coincide with the midpoints
of the segments used in the iterative procedure. To perform one cycle
of iteration the following procedure is used: first, assume a set of
slopes at the control points and use these slopes in equation (5) to
obtain a set of weighting factors a,n; next, use these weighting fac-

tors in equation (51a) to obtain the forces FJ; and, finally, substi-

tute the values of the forces into equation (3%) to obtain the slopes

at the midpoints of the segments. To begin the next cycle of itera-
tion, slopes appropriate to the control-point locations are sorted out
of the results of equation (34) and are used in equation (5), and so
forth. Usually, convergence is obtained after about four or five cycles
of iteration.
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DIVERGENCE EFFICIENCY OF A CANTILEVER DELTA WING

As a matter of interest it is noted thai. one can determine the
thickness distribution of the family of distributions expressed by
equation (12) for a solid cantilever delta wing that will produce the
highest dynamic pressure at divergence for a given total weight.

The weight W of a solid delta wing is found by integrating the
thickness distribution and combining the result thus found for the
volume with the density © of the material to give an expression of
the form

where the form of the constant k, depends on the form of the thick-

ness distribution. This result may be used together with the closed-
form result for the divergence parameter given by equation (25) to
obtain the expression

b & B
W k2 FeStante

Expressions of the same general form are obtained from the iterative
solutions and from the various aerodynemic theories.
Values of qd/w5 obtained with low-aspect-ratio theory and with

piston theory are shown in figure 3 for the thickness distribution
given by equation (12) for m = 0. The values of qd/w3 have been

normalized to the value for the constant-thickness wing (n = 0). The
thickness distribution for maximum mass efficiency could be determined
by variational procedures; however, the maxinum value of qd/w5 and

the associated thickness distribution would rot differ apprecisbly from
the results for n = 1.

APPARATUS AND TESTE

Models

A series of delta-wing models of constant thickness and of apex
half-angles of 59, 10°, 15°, and 20° were constructed. A sketch of the
various model configurations is presented in figure 4. The thickness

N oWt
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at the base of the delta wing before attachment to the wind-tunnel sting
was increased to simulate cantilever base boundary conditions with a
minimum of aerodynamic interference. For the transonic tests, two

model configurations were used. Both configurations had a 10-inch chord
with one model constructed of 0.048-inch-thick aluminum alloy and the
other of 0.0385-inch-thick aluminum alloy. TFor the supersonic and
hypersonic tests, wings of 0.0k8-inch-thick aluminum alloy with a

6-inch chord were used.

Wind-Tunnel Tests

Transonic tests.- Divergence data were obtained at transonic speeds
with the models mounted on a sting in the Langley 2-foot transonic
aeroelasticity tunnel with Freon-12 as a test medium. The tunnel Mach
number was held constant and the test-section density, and hence dynamic
pressure, was slowly increased until divergence occurred. Occasional
adjustments in the sting angle of attack were required to correct for
changes in tunnel-flow angularity so that the model would remain at zero
1ift until the divergence dynamic pressure was reached. Small, rela-
tively high-frequency oscillations of predominantly the apex region of
the delta wing usually occurred at low dynamic pressure and continued
intermittently as the dynamic pressure was increased up to the diver-
gence condition. These oscillations were believed to be associated with
flow separation or with flow irregularities in the tunnel stream and
with low structural damping of the models. The divergence dynamic pres-
sures were very sharply defined and were marked by one or two large
excursions of the tip of the model just prior to divergence. The high-
frequency oscillations of the tip region usually continued intermit-
tently during the preliminary excursions and during the divergence. It
was not determined whether these oscillations had any effect on the
divergence characteristics of the models; however, the data faired
fairly well with the supersonic data where the oscillations were not
apparent. The model motion, when divergence was reached, was very
rapid, with the deflection increasing until the model was bent past 90°
to the airflow. BSome of the models after testing are shown in figure 5.

Supersonic and hypersonic tests.- The supersonic tests at M = 2.0
and M = 3.0 were conducted in the Langley 9- by 18-inch supersonic
aeroelasticity tunnel with air used as a test medium. The hypersonic
tests at M = 7.3 were made in the Langley hypersonic aeroelasticity
tunnel which uses helium as a test medium. The test procedures at
supersonic and hypersonic speeds were the same. The models were mounted
on a sting and the tests were made at a fixed Mach number. The stagna-
tion pressure was increased until the model diverged. A strain gage
on each model was used to correlate the time of divergence with the
recorded tunnel dynamic pressure. Each complete test lasted from 4 to
10 seconds. There was insufficient time to adjust the model angle of




26

attack during a test and several models that were not alined properly
slowly loaded up and failed. They were discarded and the tests were
remade with new models.

RESULTS AND DISCUSSIOHN

The transonic and hypersonic divergence data of the present inves-
tigation are presented in figures 6 and 7. Experimental results are
compared with results of calculations based on small-aspect-ratio theory,
lifting-surface theory, and strip theory. A nondimenslonal divergence

q

- =2
()
o
gence, is employed in presenting the results. In figures 6(a) to 6(e),
the divergence parameter is plotted as a function of the apex half-
angle for the different Mach numbers. In figure 7, the divergence
parameter is plotted as &a function of Mach number for the four different
apex half-angles used. In figures 6 and 7 the solid portions of the
curves indicate the range of Mach numbers or apex half-angles for which
the theories might be expected to be valid. Thus, for small-aspect-
ratio theory the solid curves denote conditions where the Mach angle is
at least twice the apex half-angle, and for strip theory the solid lines
denote conditions where the component of stream velocity normal to the
leading edge is supersonic.

parameter in which qQy denotes the dynamic pressure at diver-

Examination of the experimentally determined values of the diver-
gence parameter shows that for a given Mach number (figs. 6(a) to 6(e))
qq Iincreases with decreasing apex angle and t'or a given apex angle

(fig. 7) ay

the various analytical approaches to be consicered, the figures illus-
trate the following facts: Small-aspect-ratic theory is independent

of Mach number and inversely proportional to tan €; strip theory is
independent of apex angle and directly proporiional to fB; and lifting-
surface theory is a function of both Mach numtier and apex angle.

increases with increasing Mach rumber. With regard to

At M = 0.8 (fig. 6(a)) lifting-surface theory and small-aspect-
ratio theory give very similar results. For € = 200, both indicate
values of a4 well above that found experimerntally and become increas-

ingly high relative to experiment as ¢ decreases. Several approaches
were taken in trying to improve the results given by subsonic lifting-
surface theory. 1In obtaining the aerodynamic forces three different
arrays of control points were used, including one distribution based

on Gaussian techniques. In performing the iterations on the equilibrium

N oo\
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equation the 16-segment system shown in figure 2, with close spacing
near the leading edge, was used to examine the possibility that the
chordwise centers of pressure might be too far removed from the centers
of the forward segments in the 10-segment system. The results were
essentially insensitive to these changes.

For the ranges of Mach number and apex angle for which small-
aspect-ratio theory might be expected to apply in supersonic flow,
values of dynamic pressure at divergence predicted by this theory are
generally above the experimentally determined values. When applied
beyond the range of expected validity, small-aspect-ratio theory pre-
dicts values of qd well below experiment.

For Mach numbers above asbout 2.0 lifting-surface theory (and strip
theory for supersonic leading edges) predicts the experimental trends
quite well except for the wing having an apex half-angle of 50. For
this case none of the theoretical approaches used gives adequate agree-
ment, possibly because viscous effects may be quite strong. When strip
theory is applied for subsonic leading edges, the predicted values of
divergence dynamic pressure are generally quite conservative; first-
order piston theory would yield values higher by the factor M/B.

CONCLUSIONS

The results of the analysis of the static divergence of low-aspect-
ratio triangular wings and the comparisons of these theoretical results
with the experimental data lead to the following conclusions:

1. A general iteration procedure is developed for computing diver-
gence dynamic pressures for delta wings using aerodynamic forces given
by small-aspect-ratio theory, lifting-surface theory, and strip theory.
The procedure can be extended to arbitrary planforms and other aero-
dynamic representations.

2. Certain special thickness distributions led to closed-form
solutions for the divergence dynamic pressure when the aerodynamic
forces were given Ly small-aspect-ratio theory. The closed-form solu-
tions were useful for evaluating the numerical procedures.

3. At a given Mach number the experimental divergence dynamic
pressures of the cantilever delta models of uniform thickness, which
were tested, increased with decreasing apex angle; for a given apex
angle the experimental divergence dynamic pressures increased with
increasing Mach number.
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4, In subsonic flow lifting-surface theory and small-aspect-ratio
theory give very similar results but predict dyneamic pressures at diver-
gence which are high relative to experiment.

5. Values of dynamic pressure at divergence given by small-aspect-
ratio theory vary from generally above experinent in the ranges of Mach
number and apex angle for which the theory is expected to be valid to
well below experiment for conditions outside this range.

6. For Mach numbers sbove about 2.0 lifting-surface theory (and
strip theory for supersonic leading edges) predicts the experimental
trends gquite well except for the wing with an apex half-angle of 50 for
which viscous effects may be important.

Langley Research Center,
National Aerocnautics and Space Administration,
Langley Field, Va., June 9, 1960.
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TABLE I.- SECTION MOMENT-OF-INERTIA CONSTANT K, FOR

VARIOUS SPANWISE SECTIONS

I(x) = -:éL- _/;x o € t2(x,y)dy = L fg—j(c}-)nx tan €
n/3 5 m/12

when t(x,y) = to(—6> (1 - ;.2_)
- Ko Spanwise section
0 1.0000
1 8740 C
L L6667 —
12 4571 — T
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TABLE II.. COMPARISON OF RESULTS OF

SXACT AND ITERATIVE

SOLUTIONS FOR VARIOUS CHORDWISE SECTIONS AND

CONSTANT SPANWISE SECTION

) = cof&)Y
O -
K = Q3 tan €
E toY’
(2
n
Tteration on | Iteration on
Exact
solution curvature slope .
equation (31)|equation (34) Chordwise
section
0] 49.5 49.2 49 .4 { 1
7]
1| 37.7 57.3 37.3 ~ ;
»—_-~#___ﬂ_____,__~——————~1
2| 25.08 2k L9 2k .48 C\J
3| 858 8.5 8.k2 <~
i
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-0
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.0250

.0265

.0259

0263

.0259

L0265

.0250

0329

9126

L6105

2446

L2671

.2602

.26h2

L2604

2662

.2510

.331h

TABLE IIT.- INTEGRATING MATRIX [?i] FOR

-1.

-0.

-1.

3974

-1557

7912

.2230

1758

.1982

.1788

.2072

1355

.5058

.0090

Jh101

6389

L1415

.2299

L1662

.2513

LOkT2

0660

-6

-4

.

-b

-5.

[Common factor,

L6564

.2750

8225

.5240

.1803

. 7500

.5893

7678

3753

.2368

9.4773

T.6157

8.0083

7.8297

7.990k

7.4208

6.764L

7.0629

6.5154

8.8969

o

-5.

-4

="

-4

-4

EQUATION (32)

7545

L1357

.9398

L8547

9184

. 8299

3273

.0985

k926

6975

.8079

L35

.5092

.4808

.5003

L779

5250

.0932

L1463

6994

-0.4640

-0.3837

-0.3988

-0.3930

-0.3968

-0.3928

-0.3998

-0.3772

-0.7431

-2.0k52

L3115

.3036

.3051

.30L6

3049

.3046

-3051

3036

3115

.0246
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TABLE IV.- DIFFERENTIATING MATRIX [r] FOR EQUATION (44)

48

-10

[Common factor,

-36

18

-8

16

-6

-8

-1

.
12/x

-8

-16

-18

36

10

-48

-1

2>
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Figure 1.- Coordinate system.
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—— Small-aspect-ratio theory
Strip theory
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Exponent of chordwise variable, n

Figure 3.- Divergence efficiency factor.
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Figure 4.- Sketch of divergence molels on sting.

e86-1



39

*90UsBILATD a93J8 sTopow TBOTAAL --C sandt g
T°699L-6¢-1

cgs-1 . .



Lo

L-582

'3 STfuB-JTBY

xads JO SanTBA SNOTJIBA J0OJ ono\OPVM\@d JoqouweIed 90USBISATPD

oYy} Jo sanTeA TeBluswiasdxs pus TeOI3}8I09Yy3} JO uostIedwo) -9 oan3Tg

bap ‘3 ‘a3buo-jjoy xady

S Ol
T

S

K103y} 01D~ }23dS0 - ||DWS

awuadxy O

)

GO'1=N

K109y}

20pans -Buy

o

(q)

02

bap ¢ 3 ‘abuo-joy xady

Sl Ol S
T T

T

. 80=WN

o

K103y} 01D
-}39dsD - | pwS

K02y} 920pNs—Buyy —

wawnadx3y O

(o)

001

002

oo¢

00b

00s

009

£%7%3 /946 Sajpwniod  dduatuang



6X

41

TPINUTIUO) - g 3INITH

Bsp '3 ‘abup-jioy xady

Gl ol G
T I 1
'0g=WN (p)
~ fioayy duys =

Kio3yy
0D)uns ~ DUl jIT

K109y} 01401 - |03dsSD- ||DWS

juawnadxy O

Q61

6ap ‘'3 ‘abub-jpy xady

02 Sl ol S 0
L] ) T T
‘02=NW (9)
fio3yy dwys
|||||||||||||| A 001
O/
002
[SLETTH
200uns - bul 1T
00¢
fo) 100} 4
K109y} ©014DJ-}03dSD - )DWS —
00¢s
uawnadxy O
009

‘13jawaind  3uabuaaig

(%3 /P



4

Divergence parameter, %/E(to/co)‘
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