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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 4-4-59L

EFFECTS OF FOREBODY DEFLECTION ON THE STABILITY AND

CONTROL CHARACTERISTICS OF A CANARD AIRPLANE

CONFIGURATION WITH A HIGH TRAPEZOIDAL

WING AT A MACH NUM_ OF 2.01"

By M. Leroy Spearman and Cornelius Driver

SUMMARY

An investigation has been conducted in the Langley 4- by 4-foot

supersonic pressure tunnel at a Mach number of 2.01 to determine the

effects of forebody deflection on the stability and control character-

istics of a canard airplane configuration. The configuration had a

high trapezoidal aspect-ratio-3 wing, a trapezoidal canard surface, and

a single swept vertical tail. Forebody deflection angles of 0 °, 2° ,

and 4° were investigated.

The results indicated that nose-up deflections of the forebody pro-

vided positive increments of pitching moment with little increase in

drag and hence would be useful in reducing the pitch-control require-

ments and the attendant losses in lift-drag ratio due to trimming.

Deflection of the forebody, however, aggravated the decrease in direc-

tional stability with increasing angle of attack by causing a loss in

tail contribution and by increasing the instability of the wing-body

combination.

INTRODUCTION

A research program is underway at the Langley 4- by 4-foot super-

sonic pressure tum]el to determine the aerodynamic characteristics of

several canard airplane configurations. Various phases of the program

are presented in references I to 7. As an extension to this program,

an investigation has been made at a Mach number of 2.01 to determine

Title, Unclassified.



the effects of forebody deflection on the aerodynamic characteristics
of a canard configuration.

As pointed out in references 5 and 8, the use of a deflectable fore-
body offers a meansof providing positive increments of pitching moment
with little increase in drag. This approach should be useful in reducing
the pitch-control trimming requirements and the attendant losses in lift-
drag ratio due to trimming. However, somechanges in the interference
effects of the forebody and canard-surface flow fields on the wing and
vertical tail might be expected as the forebody is deflected. It was
the purpose of the present investigation to determine the extent to which
the longitudinal and lateral stability and control characteristics of a
generalized canard configuration might be affected by changes in fore-
body deflection. The configuration investigated had a high trapezoidal
wing, a trapezoidal canard surface, and a single swept vertical tail.
Three different forebody deflections were investigated.

SYMBOLS

The results are presented as force and momentcoefficients with
lift, drag, and pitching-moment coefficients referred to the stability-

axis system and rolling-moment, yawing-moment, and side-force coeffi-

cients referred to the body-axis system. The reference center of moments

for the basic data was on the body center llne at a point 12 inches for-

ward of the base for all bodies.

CN

CL

CA

CD

Cm

CZ

Cn

Cy

q

normal-force coefficient, Normal force/qS

lift coefficient, Lift/qS

axial-force coefficient, Axial force/qS

drag coefficient, Drag/qS

pitching-moment coefficient,

rolling-moment coefficient,

yawing-moment coefficient,

Pitching moment/qS5

Rolling moment/qSb

Yawing moment/qSb

side-force coefficient, Side force/qS

free-stream dynamic pressure
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S

b

£L

_c

_n

L/D

Cn_3

CZ B

c-y 

_C m/_CL

Cry5 c

Components and subscripts:

V

max

trim

0

wing area including body intercept

wing span

wing mean geometric chord

angle of attack, deg

angle of sideslip, deg

angle of canard-surface deflection (measured from forebody

center line), deg

forebody deflection angle, deg

lift-drag ratio

directional-stability parameter (measured between _ _ 0 °

and 40), _CnIZ48

effective-dihedral parameter (measured between _ _ 0 ° and 4°),

ac_/a_

side-force parameter (measured between _ _ 0° and 4o),

longitudinal stability parameter (measure of static margin)

pitching effectiveness, _Cm/_ c

acteristics are presented in table I.

vertical tail

maximum value

value at Cm = 0

value of zero lift

MODELS AND APPARATUS

Details of the model are shown in figure i and the geometric char-

A photograph of the model is



shownin figure 2. Coordinates of the body are given in table II. The
various forebody deflections were obtained by using the sameforebody
with the addition of center-body adapters of different angles• The
canard-surface hinge-line location was fixed with respect to the fore-
body and hence the canard surface movedwith the forebody as the fore-
body deflection was varied• The canard surface was motor driven and the
deflections were set by remote control• Canard-surface deflections are
referenced to the forebody center line for each forebody deflection.

Force and momentmeasurementswere madethrough the use of a six-
componentinternal strain-gage balance. The model wasmounted in the
tunnel on a remote-controlled rotary sting•

TESTSANDCORRECTIONS

The tests were madein the Langley 4- by 4-foot supersonic pressure
tunnel at a Machnumber of 2.01, a stagnation pressure of i0 pounds per
square inch, and a stagnation temperature of i00 ° F. The stagnation
dewpoint was maintained sufficiently low (-25 ° F or less) so that no
significant condensation effects were encountered in the test section•

The angles of attack and sideslip were corrected for deflection of
the balance and sting under load. The base pressure was measuredand
the axial force was adjusted to a base pressure equal to free-stream
static pressure.

The estimated variations in the individual measuredquantities
based on zero shifts and repeatability alone are as follows:

CN " • • • • • • • • " • * * • • • • • • • • • • • • " • • •

CA • ° • • ' • • * • • • • * • • * • • • • • • • • • , • • •

Cm * * • • • .... ° • • • • • • • • • • • ° • • • • • • •

C_ • • • ° • • . • • • . . • • • • , • • • • . ° • • • • • •

Cn ° • • • * • • • • • • ° • • • ° • • • ° • • * • • * • • •

Cy ............. • , . • . • ..........

±0.0003

±0.0010

±0.0004

±0.0004

±o.oooi

±o.oo15

The maximum probable error in angle of attack and sideslip is ±0.2 ° .

The canard-surface deflection angle is set within ±0.i ° and the Mach

n_mber variation is within ±0.01.
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Longitudinal Stability and Control

The effects of forebody deflection on the aerodynamic characteris-

tics in pitch for various combinations of component parts are presented

in figure 3. For a constant lift coefficient, the effect of nose-up

forebody deflection is to provide substantial positive increments of

pitching moment with a small decrease in angle of attack and only a

small increase in drag (figs. 3(a) and 3(b)). The addition of the

canard surface at 5c = O° provides a further positive increment in

pitching moment and an additional increase in drag (fig. 3(c)).

The effects of canard-surface deflection on the aerodynamic char-

acteristics in pitch for forebody deflections of O °, 2° , and 4 ° are

presented in figure 4. Deflection of the forebody has little effect on

the stability level _Cm/$C L or on the pitching-moment effectiveness

of the canard control Cm_ c. However, because of the positive incre-

ment of Cm, O provided by forebody deflection, progressive increases

in trim lift are obtainable for a given canard-surface deflection as

the forebody is deflected. For some stability levels, deflection of

the forebody might provide sufficient pitching moment so that it would

be possible to trim with negative canard-surface deflections; thus, the

drag generally associated with canard-surface deflection might be

reduced. This characteristic is indicated for the configuration with

the 4 ° forebody deflection (fig. 4(c)) wherein the maximum value of

L/D increases with negative canard-surface deflection. Neglecting any

upwash flow around the forebody, the angle of attack of the canard sur-

face for (L/D)max with $c = O° is about 8.5 ° ($n = 4o and

= 4.5°). With b c = -5 ° , the angle of attack of the canard surface

at (L/D)max is about 3.5°; with $c = -i0°' the angle of attack of

the canard surface is about -1.5 °. Thus, the increase in (L/D)max

with negative control deflections is a result of the reduction in local

angle of attack of the canard surface. Presumably a control deflection

that exactly alined the canard surface with the local stream direction

(Sc : -8"50 for 5n : 4o) would provide a still higher (L/D)max

since the canard surface would be adding only its minimum drag.

Inasmuch as the present investigation was limited to a maximum

forebody deflection angle of 4° , it may be possible that additional

trim-drag benefits could be obtained with greater forebody deflections.

This would be particularly true if sufficient upwash is developed

around the deflected forebody to provide a local positive angle of
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attack at the canard surface while the canard surface is set for trim

at a negative deflection with respect to the free-stream dlrection.

Under these conditions_ the canard surface would not only provide a
positive lift increment but the lift vector would be inclined forward

so as to provide a negative drag increment.

The basic data of figure 4 have been used to determine the effects

of forebody deflection on the trim longitudinal characteristics for a

constant stability level. (See fig. 5.) The primary effect of nose-up

forebody deflection is to decrease the control deflections required to

trim for a given lift and hence decrease the drag due to trimming. As

a result, with increasing nose-up forebody deflection, there is an

increase in maximum values of L/D and in L/D at the higher lift
coefficients.

The variation of (L/D)max, trim with stability level has been

determined for forebody deflections of 0 ° and 4 ° . These values were

obtained from the data presented in figure 4 by using various moment

centers to provide various arbitrary stability levels. (See fig. 6.)

Higher values of (L/D)max, trim were obtained for the 4 ° deflected

nose than for the undeflected nose.

Lateral and Directional Stability

The effects of forebody deflection on the sideslip derivatives

are presented in figure 7. Results for the complete configuration

(fig. 7(a)) indicate a decrease in Cn_ with increasing angle of attack

that becomes progressively worse as the forebody is deflected. This

decrease in CnB due to forebody deflection is probably associated in

part with an interference effect of the forebody and canard wake on the

vertical tail since a progressive decrease in -Cy_ with increasing

forebody deflection is also indicated.

A comparison of figures 7(a) and 7(b) indicates that the presence

of the canard surface has a slight destabilizing effect on the varia-

tion of Cn_ with angle of attack. The results presented in figure 7(b)

indicate that deflection of the forebody not only causes a loss in tail

contribution throughout the angle-of-attack range but also causes a

destabilizing increment of Cn_ with increasing angle of attack for

the wing-body combination. This decrease in Cn_ with the vertical

tail removed is accompanied by an increase in -Cy_ which indicates

that deflection of the forebody causes a destabilizing force over the
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forebody region. However, both the level of Cn_ and the variation of

Cn_ with angle of attack could be improved through the use of ventral

fins or twin vertical tails and possibly through the use of forebody

strakes (ref. 5).

CONCLUSIONS

An investigation has been made in the Langley 4- by 4-foot super-

sonic pressure tunnel at a Mach number of 2.01 to determine the effects

of forebody deflection on the stability and control characteristics of

a canard airplane configuration with a trapezoidal wing.

The results indicated that nose-up deflections of the forebody pro-

vided positive increments of pitching moment with little increase in

drag and hence would be useful in reducing the pitch-control require-

ments and the attendant losses in lift-drag ratio due to trimming.

Deflection of the forebody, however, aggravated the decrease in direc-

tional stability with increasing angle of attack by causing a loss in

tail contribution and by increasing the instability of the wing-body

combination.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., January 9, 1959.
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TABLEI

GEOMETRICCHARACTERISTICSOFMODEL

Body:
Maximumdiameter, in ..................... 3.33
Length, in .......................... 37.0
Base area, sq in ....................... 8.71
Fineness ratio ....................... ii.i

Wing:
Span, in ........................... 24
Root chord at body center line, in .............. 12.8
Tip chord, in ........................ 3.2
Area, sq in ......................... 192
Aspect ratio ........................ 3
Taper ratio ......................... 0.25
Meangeometric chord, in ................... 8.96
Sweepangle of leading edge ................ 30° 58'
Sweepangle of 75-percent-chord line, deg .......... 0
Thickness ratio, percent chord ............... 4
Section ........................ Circular arc

Canard:
Total exposedarea, sq in .................. 13.59
Ratio of exposedarea to wing area ............. 0.0707
Section ......................... Hexagonal
Constant thickness, in .................... 0.1875
Leading-edge angle normal to leading edge, deg ....... i0
Trailing-edge angle normal to trailing edge, deg ...... i0
Sweepangle of leading edge, deg .............. 38.6

Vertical tail:
Total exposed area, sq in .................. 23.42
Sweepangle of leading edge, deg .............. 60
Panel aspect ratio ..................... I.ii
Taper ratio ......................... 0.314
Section ......................... Wedgeslab
Leading-edge angle normal to leading edge, deg ....... 10.6
Constant thickness, in .................... O.1875
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TABLEII

BODYCOORDINATES

Body station
(measured along center line),

in.

0
.297

.627

.956

1.285

1.615

1.945
2.275

2.605
2.956

3.267
3.598
5.929

4.260

4.592

4.923

5.255

5.587
5.920

6.252

6.583

17.75

57.00

(normal

Radius

to center

in.

0

.076

.156

.235

.507

.578

.445

.509

.575
.627
.682

.7.52

.780

.824

.865

.903

.940

.968

.996

1.020

i .042

i .667

1.667

line),
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(a) Wing-body configuration.

Figure _.- Effect of forebody deflection on the aerodynamic character-

istics in pitch for various combinations of component parts.
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Figure 3.- Continued.
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(b) Wing--body--vertical-tail configuration.

Figure _.- Continued.
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Figure _.- Continued.
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Figure 4.- Effect of can_rd-sumf_ce deflection on the &erod_vnamic char-

teristics in pitch for various foreboQv deflections. Complete model.
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Figure 4.- Continued.
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Figure 4.- Continued.
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Figure 5-- Effect of forebody deflection on trim longitudinal charac-

teristics for complete model. _Cm/$C L = -0.24.
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(a) Complete model.

Figure 7.- Effect of forebody deflection on sideslip derivatives.
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Figure 7.- Concluded.
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