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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 1-17-59A

ESTIMATION OF STATIC LONGITUDINAL STABILITY OF AIRCRAFT

CONFIGURATIONS AT HIGH MACH NUMBERS AND AT ANGLES

OF ATTACK BE_TEEN 0° AND ±180 °

By Duane W. Dugan

SUMMARY

The possibility of obtaining useful estimates of the static longitudinal

stability of aircraft flying at high supersonic Mach numbers at angles of

attack between 0° and ±180 ° is explored. Existing theories, empirical formu-

las, and graphical procedures are employed to estimate the normal-force and

pitching-moment characteristics of an example airplane configuration consist-

ing of an ogive-cylinder body, trapezoidal wing, and cruciform trapezoidal

tail. Existing wind-tunnel data for this configuration at a Mach number of

6.86 provide an evaluation of the estimates up to an angle of attack of 35 ° .

Evaluation at higher angles of attack is afforded by data obtained from wind-

tunnel tests made with the same configuration at angles of attack between

30 ° and 150 ° at five Mach numbers between 2.5 and 3.55. Over the ranges of

Mach numbers and angles of attack investigated, predictions of normal force

and center-of-pressure locations for the configuration considered agree well

with those obtained experimentally, particularly at the higher Mach numbers.

INTRODUCTION

The design of an aircraft which is required to leave and re-enter the

atmosphere poses a number of problems. For example, it is conceivable that

re-entry into the atmosphere may be made advertently or inadvertently at

any angle of attack between 0° and ±180 ° . An angle of attack of the order

of 30 ° or 40 ° may be desirable in order to decelerate rapidly without undue

heating, or to develop sufficient lift to skip out of the atmosphere.

Angles of attack between 0° and ±180 ° may also be encountered by air-to-air

missiles launched by high-speed aircraft.
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The purpose of this report is to explore the possibility of obtaining
useful estimates of the static longitudinal stability of aircraft configu-
rations at high supersonic Machnumbersand at angles of attack between 0°
and ±180° . To do this, existing theories, empirical formulas, and graphical
procedures are employed to predict the normal-force and pitching-moment
characteristics of a given airplane configuration over a range of angles of
attack from 0° to ±180° . The configuration for this study is shownin fig-
ure i. Wind-tunnel data for this airplane up to an angle of attack of 35°
at a Machnumberof 6.86 are available for limited evaluation of the
estimates. To obtain an indication of the accuracy of the predictions at
higher angles of attack, a model of the sameconfiguration is tested at
angles of attack from 30° to 150° at each of five Machnumbersbetween 2.5
and 3-55.

It should be noted that the specific theories and procedures employed
in this report are somewhatarbitrarily selected_ and other choices are not
precluded.

ANALYSIS

The aerodynamic characteristics of an aircraft configuration maybe
calculated by summingthe aerodynamic characteristics of the isolated
individual componentsand the effects due to the interference of one part
upon the aerodynamic characteristics of the others. Thus the equations

cN : CNB+CNW+CNT +aCNB(W)+aCNB(_)+aC_w(B)+aCNT(B)+ACNT(W)+aC_ (T)

(i)

Cm = Cm B + Cmw+ Cm T +ACmB(W) +ACmB(T) +ACmw(B) +ACmT(B) +ACmT(W) +ACmW(T)

(2)

provide a convenient framework for obtaining the static longitudinal

stability of aircraft configurations consisting of various combinations

of body, wing, and tail. The subscripts B, W, and T pertain to the

body, exposed wing, and exposed tail, respectively; the terms _CNB(w),

ACNw(B), etc., represent the interference effects of the exposed wing

upon the body, of the body upon the exposed wing, etc. The notation used

herein is given in appendix A.

The next several sections are devoted to developing procedures for

estimating over a range of angles of attack from 0° to ±180 ° and for high

Mach numbers the following: (i) normal forces and pitching moments of a

fuselage consisting of a pointed or rounded nose section followed by a



cylindrical portion; (2) normal forces and pitching momentsof an isolated
wing (or tail); and (3) effects of interference of one part of a body-wing-
tail configuration upon the normal forces and pitching momentsof the
others.

It should be clear that modification or extension of the procedures
used here might be required in assessing the aerodynamic characteristics
of configurations having features dissimilar to those of the one considered.
0%viously, a numberof the steps and calculations included in the present
study would not be required in the case of a more simple configuration
such as an all-wing configuration or a pointed body of revolution with
stabilizing fins.

Forces and Momentson the Body

At high Machn_r_ers, the flow about a body of revolution can be
approximated by the Newtonian concept which assumesthat the individual
particles comprising the fluid mediumpossess only translational velocities
in the direction of flow and lose all their momentumin a direction normal
to those surfaces on which they impinge. Based on this impact theory_ the
coefficient of pressure at any point on surfaces exposeddirectly to the
flow is given by (see ref. i)

CD : 2(sin _ cos _-sin _ cos 8 sin _)2 (3)

where, as shown in sketch (a) below,

e angle made by surface of body with body axis

angle of attack of body axis

polar angle of any point on body surface, measured from positive xy

plane and positive for counterclockwise directions when viewed from

rear
Z

Sketoh(a)
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The value of the pressure coefficient on shielded surfaces Cpu

would be zero in the impact theory. Consideration of gasdynamics indicates

that the value of C_ will vary between zero and -2/7M_ 2 depending upon
_U

the free-stream Mach number, shape of the body, and angle of attack. Accord-

ing to reference 2, the lowest pressure in the flow about bodies is, from

experimental evidence at subsonic and low supersonic Mach numbers, approxi-

mately 0.3 of the free-stream static pressure. In wind-tunnel tests (ref. 3)

of a circular cylinder at angles of attack from 0 ° to 90 ° and at a Mach num-

ber of 6.86 the lowest pressure measured on the lee surfaces of the cylinder

was approximately 0.34 of the free-stream static pressure. For a value of

7 equal to 1.4, then, the largest negative value I of Cpu appears to be of

the order of -I/M_ 2. The mean value of the pressure coefficient over the

shielded surfaces will thus be very small for large Mach numbers and can be

considered as zero without significant effects on the calculated values of

normal force and pitching moments.

For any portion of the fuselage sho_ in sketch (a), the normal force

is given by

N = -2q_I[ dx([_Uc_r sin _d_+]_/2Cpur sin _d_) 1
L_length \_'- _/2 z_ _u

or, with Cp given by equation (3), and _lith Cpu assumed zero,

-_ = -_- sin Is cos2# u + tan # + _ cos B ot _ tan2#+2 tan

(4)

where S is a reference area. Likewise, the pitching moment, taken about

the centroid of area of the base of the nose section for convenience, is

given by

M=-2 ZN- -r tan dx Cpr sin Idi+ Cpur sin _d_
L_lengthL\ /2

or

iValues of Cpu negatively greater than -I/M_ 2 have been observed

at supersonic speeds in tests of wings at moderate and large angles of

attack; however, the magnitude of the coefficient is generally closer to

-i/Moo2 than to -2/7M_ 2.
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dCm

dx 2r [(Z ) If( _ 5>S_ sin 2_ cos28 N-X -r tan 8 u + an 8 +

qI
_u(COt tan28 + 2 tan 6)|

COS (L
J

(7)

where _ is a reference length.

Equations (4) and (5) may be integrated analytically or numerically

to give coefficients of normal force and pitching moment for any arbi-

trarily shaped body of revolution. Calculations for a conical nose are

particularly simple, since 8 = constant = 8v, the semivertex angle of

the cone, and r is a linear function of x. For positive angles of

attack less than By, _u = _/2 and all surfaces are exposed to the flow,

(i.e., Cp is defined for all values of 9). For 8v _ _ _ _-Sv, por-
tions of the cone are shielded from the flow, and _u = sin-Z( tan ev/tan 6).

For _ -8 v _ _ _ _, no surfaces of the cone are exposed to the flow and

_u = -_/2. In the above ranges of angles of attack the corresponding

normal-force and pitching-moment coefficients based upon the area of the

base and upon the length of the cone are

CNcon e = cos2evsin 2_; 0 <_ _ <_ 8v (6a)

CNcone - i cos28vSi n 2_ _u + _ +

qi
_u(cot tan 8v+2 cot 8vtan _)| ;

COS J
ev <___< _-ev

(6b)

CNcon e : 0 ; (6c)

and

Cmcone = _3 (i -2 tan2@y)cos28vsin 2_ ; o<_<_e_

F

_ 1 (l -2 tan28v)COS28vsin 2_/# u + _ +Cmcone 3_
L

q
i cos _u(COt _ tan 8v+2 cot avtan _)| ;
3 J

(7a)

ev < _ <___- ev

Cmcon e = 0 ; _-Sv S _ S _ (7c)
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From the above results, the location of the center of pressure of

the conical nose is independent of angle of attack; its distance from the

vertex is given by

Xc___pp=2 (i + tan28v) (8)
_N 3

Calculations for other nose shapes are more involved since r, 8,

and _u are all functions of the lengthwise variable x. Inasmuch as

the body-wing-tail configuration under consideration (fig. i) has an

ogival nose section, the integrations indicated in equations (4) and (5)

are carried out for the circular-arc ogive with the following results:

2 C2si n 2_{(i__2)2 2___2 + 2_ (l+sec _) -CNogiv e =

3-_ csc2_ sec - _ _

(9a)

CNogive : 3-_ C2sin 2_ i- _2) 2 + sin -l

3 sec _ sin -1 q + 3 _ 8 [sin------_ [ - ] csc2_ sec _ i-w_--_2 (i +k2)E(_,k

ev_< <_ -ev (gb

2 C2sin 2_{ 3 (l+sec c_)-2_-_ 2-CNog ive : 7

8csc2_3_ sec _ i_7_-_2 [(l+k2)E(k)-k'2K(k)l}; _-ev <c_<__ _

(9c

and



Cmogive 15_ _-_2 sin 2_ _ csc2_ - _ (3-sin2_) csc 2_-

_n(3+2n2)]JY-_2-1_sin4 2_+l_<sin-_q-_)+

0 < cL < 8v (lOa)

Cmogive

Cmogive

c2 <{- 9_ ___2 sin 2_ 24 csc2_[_ - tan-1(tan c_ cos <p)] -

16(3- sin2_)csc 2_-6_(3+_2)sin-1
tan _ i-_7_92 + 9+7 sin2_+

2(3 +n2)(1-3 sin2_)Jcsc

9 cos _ cot2_<cosh-lsec

6(3+sin2c_)csc 2cc+9 _ sin-l_ + F2 ;

s_o_ oo__-3_(3+2n_)_},/7-_-

- oosh-lsec_l-JTU_-_O+

(_o_)

c2 {69_ _-_2 sin 2_ (3

9 cos _ cot2cL cosh-_sec _-8[2(3-

9_
+sin2c_)csc 20_-9 [ sin 2_ + -_ (_-¢)-

sin2c_)csc 2c_+

-_ < _ _<_ (>oc)

In the above equations

fN ZN

_] C - R

R
C

d



R radius of generating arc of ogive

fN
IN

fineness ratio of nose --d

k sin

q_ sin -l sin

4N 4M
CN_Cm q_d2 ' q_d21N

and FI, Fa, and Fs are given in appendix B.

If fN = C = i/2_ we have the hemispherical nose, and the above
expressions for CN and Cm become

i (sin 2_+2 sin _) ;
CNhemisphere=

and

Cmhemisphere = 0 ; 0 ! _ !

In passing, it is interesting to comparethe initial normal-force
curve slopes of the cone and ogive for a given fineness ratio fN" From
the above results for the ogivej

_dCN_ 4ca (cos48v- 4 cos 8v+ 3)
- 3

and from equation (6a) for the cone,

S_CN_ 8fN 2

\-_)_=o : 2 cos% v - (l+4fN2)

The ratio of these slopes is

(CN_)cone

(CN_)ogive

lefN2(i+ 4fN2)

l + 8f_ + 48fN4



which is unity for fN = 1/2 and _, is greater than unity for 1/2 < fN < _,

and has a maximum value of only 1.06 when fN = i/2 I_-T _-_ = 0.777. For

angles of attack near zero, therefore, the normal force of an ogive can be

adequately obtained from the simple equation for that of the cone of equal

fineness ratio. For fineness ratios of unity or larger, calculations show

that the differences in CN for the cone and ogive are negligible at

angles of attack up to ev for the cone. At angles of attack somewhat

less than ev of the cone, the curves of CN versus _ for the two nose

shapes cross, so that at _ = ev, CN for the ogive exceeds that for the

cone.

No explicit expression for the location of the center of pressure can

be given for the ogive as in the case of the cone; computations have shown,

however, that for small angles of attack the center of pressure of the

ogive is nearer the vertex than that of the cone of equal fineness ratio

and moves rearward with increasing angle of attack.

The contributions of the cylindrical portion of the fuselage to the

normal force and pitching moment of the complete body when calculated from

equations (4) and (5) are

and

CNcy I = __163_-Ldsin2_; 0 _< _ _< _ (i!)

8 L L sin2_; O < _ < _ (12)
Cmcyl - 3_ d ZN -- --

where L is the length of the cylinder, and the coefficients are based

on the same reference area and length as in the case of the nose section

above.

Equations (ii) and (12) do not include the effects of centrifugal

forces in the flow about the cylinder, nor the effects of viscous forces

(skin friction). These effects tend to cancel each other as shown by
the results of tests on cylinders reported in reference 3. Equation (ii)

predicted normal forces in excellent agreement with the experimental
force data at small to moderate angles of attack and overestimated such

forces by only 5 percent near 90 ° . On the other hand, inclusion of the

effects of centrifugal forces in the impact theory (ref. i) gave values

lower than those obtained experimentally by approximately i0 percent at

the lower angles of attack and 5 percent near 90 ° .
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Forces and Momentson Isolated Wing and Tail

Forces and momentson the isolated wing and horizontal tail are
estimated over the range of angles of attack from 0° to 180° by a combina-
tion of two-dimensional shock-expansion theory (corrected for tip effects)
and the Newtonian impact theory modified as discussed below.

For angles of attack not too near nor beyond the angle at which the
bow wave of the wing or tail is detached, shock-expansion theory provides
a good approximation to the lifting pressures in the absence of tip
effects. The coefficient of normal force based on the exposedarea of
the wing is first calculated from two-dimensional shock-expansion theory
for angles of attack up to that for shock-wavedetachment. Next, if the
reduced aspect ratio _A is so small that tip effects becomeappreciable,
the two-dimensional results are multiplied by the ratio of the lift-curve
slope of the finite wing to that of a wing of infinite span, both values
being obtained from linearized supersonic theory. Values of lift-curve
slopes for finite wings maybe obtained readily from such sources as
reference 4. The values of CN thus obtained are plotted as a function
of the angle of attack. Forces on a tail in the wake of a wing and vice
versa are estimated subsequently in the section entitled "Interference
Effects."

To the writer's knowledge, no methods exist for successfully predict-
ing the lifting pressures on finite wings at angles of attack beyond that
for shock detachment. The Newtonian impact theory_ so useful in estimating
normal forces on bodies of revolution for all angles of attack and even at
comparatively low supersonic Machnumbers_is very inadequate in the case
of planar surfaces. Even at very large Machnumbersthe impact theory
grossly underestimates the lifting pressures on an infinite flat plate at
small to moderate angles of attack; on the other hand, the theory over-
estimates the force on a plate placed normal to the free stream according
to experimental evidence. In order to arrive at somelogical basis for
estimating the normal forces on a finite wing at angles of attack beyond
which the shock-expansion method is inapplicable_ the following approach
is adopted.

First, the assumption is madethat the variation of normal force on
a flat surface at angles of attack in the immediate neighborhood of 90°
is that given by the Newtonian concept; that is_ the force varies as the
second power of the sine of the angle of attack. Next, the impact theory
is modified by replacing the factor 2 in the equation CN = 2 sin2_ by
a factor in accord with experimental results for flat surfaces placed
normal to the free supersonic stream. The third step is to fair an
interpolating curve from the curve obtained above from considerations of
shock-expansion theory (with any corrections necessary for tip effects)
to the curve based on the modified Newtonian impact theory. This latter
procedure will be discussed more in detail subsequently when an application
to the wing of the example body-wing-tail configuration is made.
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The choice of a factor to replace the factor 2 in the impact theory
is madefrom the following considerations. Experimental measurements
(refs. 5, 6, and 7, and unpublished data) of the pressure over the face
of right circular cylinders with axes alined with the free supersonic
stream indicate that the pressures remain nearly constant at the value
given by gasdynamics for stagnation pressure Ps over approximately half
the distance from the center of the face to the edges_ and thereafter
decrease to a value Pso corresponding to sonic velocity at the edge.
The variation of the ratio of local pressures p to stagnation pressure
Ps with fractional distance _ from center to edge is shownin figure 2
for faces of cylinders of various diameters at several Machnumbers.
Also shownin the figure is a plot of the equation

Ps° (1P _ Pso + _ _4)
ps ps J

1/3

which appears to fit the data within a few percent. The corresponding

expression for the coefficient of pressure on the windward face is

CP Z 7M 2 (_- i_ = Cps[Cps + C-_s J - _4)

where

ratio of distance from geometric center to distance from center to

edge

Cpso

Cp s

Cps o

CP s

Pso

Ps

coefficient of pressure corresponding to sonic velocity

coefficient of pressure corresponding to stagnation conditions

0.528 for 7 = 7/5 in air

The coefficient of normal force for the windward face of the cylinder

CNz based on the area of the face is then

i p2_ _o lCNz = _Jo de Cpz_ d_
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0 Cps°"_: Cps + o.i 8 .]

A comparison of the last equation with integrated experimental pressure

distributions from several sources is presented in figure 3. Inasmuch as

the distribution of pressure over a flat surface normal to the free super-

sonic stream is apparently determined primarily by the acceleration of the

air from rest at the geometric center to sonic velocity at an edge, the

equations given above for the flat face of circular plan form may be

expected to serve as reasonable estimates for a variety of plan forms.

Now consider the pressures on the lee surfaces of flat plate shapes

normal to the free stream. If viscosity is ignored, a Prandtl-Meyer

expansion from sonic velocity would, of course, result in zero pressure

over the lee surfaces, giving a pressure coefficient Cpu = -2/yM 2. As

noted in an earlier section, there exists a limit pressure coefficient

in air which has been found experimentally to have a value close to

-I/M_ _. The latter value is adopted here as the average pressure coeffi-

cient on the lee surfaces of flat shapes normal to supersonic flow. The

total maximum normal-force coefficient is then

0 Cpsohi__cNm = Cps .842+0.178c- -J+ (13)

Figure 4 shows a comparison of the above equation with experimental data

obtained in ballistic firings and in wind-tunnel tests over a wide range

of Mach numbers. These data are taken from references 8, 9, i0, and ii,

and from unpublished results of tests in the Ames i0- by 14-inch wind

tunnel. The data obtained in the Ames i0- by 14-inch wind-tunnel tests

at nominal Mach numbers 3, 4, 5, and 6 indicate that the plan form of a

flat wing at an angle of attack of 90 ° has but little effect on the total

streamwise force. Pressure measurements made on the lee surfaces of the

wings in the same tests substantiate the choice of -i/Y£o2 as the average

value of Cpu. From figure 4 it is concluded that the empirical equation

derived here satisfactorily predicts normal-force coefficients for wings

of various plan forms at _ = 90 ° not only at large Mach numbers but at

Mach numbers as low as 2. No reasons can be suggested here for the

occurrence of a minimum value for CN between Mach numbers 3 and 4 as

indicated by the data; in any case_ the discrepancies between predicted

and experimental values of CN are not so large, percentagewise, as to

preclude the use of the empirical equation. The variation with Mach

number of the stagnation pressure coefficient used in the equation is

shown in figure 4 for comparison.

For the present purpose, the variation of the normal-force coeffi-

cient of an isolated wing or tail at angles of attack in the immediate
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neighborhood of 90 ° will be estimated as CNmaxSin2_ , with CNmax given

by equation (13). There remains the problem of estimating the normal

forces in the angle-of-attack range between angles of attack near shock

detachment and those near 90 ° . As noted earlier, graphical interpolation

is used in the absence of theory or experimental data. Experimentally

obtained variations of normal force with angle of attack up to and beyond

shock detachment may serve as guides. For example, figure 5 presents the

normal-force characteristics of a rectangular wing of aspect ratio 3 at

angles of attack well beyond shock detachment for three different Mach

numbers (ref. 12). Also shown in the figure are the modified impact

values at _ = 90 ° for each of the Mach numbers, together with interpolat-

ing curves. It is noted that at angles of attack well below those for

shock detachment, the normal-force curves become increasingly concave with

increasing Mach number as would be expected from predictions of two-

dimensional shock-expansion theory; at angles of attack in the neighbor-

hood of shock detachment, however_ the curves are nearly linear, and

become definitely convex at still larger angles. The above observations

may also be made in the case of the normal-force characteristics of a

triangular wing of aspect ratio 4 presented for two Mach numbers in fig-

ure 6 (ref. 13). The modified impact-theory values and interpolating

curves are again drawn. Also shown in the figure is the variation of

normal-force coefficient with angle of attack at M_ = 6.86 for the wing

of the example configuration as calculated from two-dimensional shock-

expansion theory. Although the profile of this wing has a rounded leading

edge and a blunt trailing edge, for the purpose of calculation it was

assumed that the profile was a symmetrical wedge-slab-wedge with sharp

leading and trailing edges. The angle of attack at which shock detachment

theoretically occurs is indicated in each case. The above angles were

calculated according to the method presented in reference 14, which takes

into account both the thickness of the profile and the leading-edge sweep

of the wing. With the curves of the delta wing serving as qualitative

guides, an interpolating curve for the example wing was drawn as shown.

Values of normal-force coefficient for the isolated wing at angles of

attack between 0 ° and 180 ° can then be obtained from the composite curve.

In the case of the tail of the example configuration, the wedge pro-

file_ although rounded, was assumed to be sharp-edged for purposes of

calculation by means of two-dimensional shock-expansion theory. For rear-

ward flight, because of the high Mach number, the shock wave was assumed

to be effectively attached to the lower surface until the angle of flow

deflection was equal to the angle calculated from two-dimensional shock-

wave theory for shock detachment. The modified impact theory was based

upon the angle made by the lower surface of the wedge with the free

stream rather than the angle of attack.

To estimate the contributions of the isolated wing or horizontal

tail to the pitching moment of the configuration, the center-of-pressure

location is calculated by shock-expansion theory for angles of attack at



14

which the bow wave remains attached, 2 and thereafter extrapolated to the

value given by impact theory at _ = 90 ° . In figure 7 the variation with

angle of attack of the distance of the center of pressure from the leading

edge of the mean aerodynamic chord of the exposed wing is plotted up to

the angle at which the bow wave detaches. As in calculating normal forces

above, the wing profile is assumed to be sharp-edged and symmetrical with

respect to the midchord. Therefore, the center of pressure of the wing

at _ = 90 ° is at the centroid of area of the exposed wing, or at midchord

of the mean aerodynamic chord. Since the tail of the example configura-

tion has a wedge profile, the center of pressure is assumed to be at the

centroid of area of the exposed tail at all angles of attack.

x=By

/
i
i

iii

i iIiIli

cJ2

Sketch (b)

x- .8 y + cr

Interference Effects

In this section estimates are

made for the effects upon normal

force and pitching moments of (i)

the wing and tail upon the body;

(2) of the body upon the wing and

tail] and (3) of the wing upon the

tail (and vice versa) for angles of

attack between 0 ° and 180 °. In

most cases only first-order effects

are considered] that is, the fact

that the influence of the wing

upon the body, for example, would
affect the net influence of the

body upon the wing which in turn

would affect the influence of the

wing upon the body, and so on, is

neglected here since the extra

labor involved would not be justi-

fied in the present method of esti-

mation (cf. ref. 15). In assessing

the influence of the horizontal

tail upon the body in the case of

the body-wing-tail configuration, however, the normal forces on the tail

in the wake of the wing rather than in the free stream are used since no

extra labor is involved and the effect upon the pitching moment of the

configuration may be appreciable in some applications.

Body in presence of wing or tail.- In order to estimate the inter-

ference effects of the wing and tail upon the body, linearized supersonic

theory is employed. The method of approximation outlined in reference 16

is adapted to the present problem. Sketch (b) above shows the essential

mThese calculations can be used subsequently in determining the

characteristics of the wake of the wing.
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feature of the procedure in the case of a trapezoidal wing or tail of

large span mounted on a cylindrical body. Note that for simplicity the

cylindrical body is approximated by a plane surface of the same plan form;

thus, the Mach cones which define the region of influence of the wing

intersect the body in straight lines. The ratio of the normal force on

the body due to the wing to that of the isolated exposed wing is given by

(for 0° S_ < 900 )

N_ 1 8qam I_d_ F_y+Cr
KB(W) - NW NW _2m---_-i L_o dy y cos

J
i _y _(y+mx) _x

-i x +m_2y
dx+

which becomes

KB(W):
h

_e_mr - __h_ 1 - i;-

_d /
_2m2-1 (1 +_e) _r <_- 1)_CN_ {_l_m_l <_2 Cr

h

[ ]2 (l+m_) _r - m_m_(l+m_) _. l+m_ cos =I
1 h 1 cos -I -i +

h _3d2

i _d 2 m_ hr_2h 2 -i cos-l<l - _)+ _< Cr<_-r_J_2_2 + cos h _d2
m_ _Tr+ c--7

_2m2 - i cos-1 _d__._a+
h

(_)

where

J_o2 -l

m cotangent of sweep angle of leading edge of wing

length of cylindrical portion of body from juncture of body and wing

leading edge to base or _d+ Cr_ whichever is smaller

cr root chord of exposed wing

_e

ct
taper ratio of exposed wing, _rr
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semispan of wing-body combination

c_ normal-force curve slope of exposed isolated wing from linearized

supersonic theory (see ref. 4)

Equation (15) is in its most general form. If d2 = h/6 (the case shown

in sketch (b)), the equation is somewhat simplified since the last two

terms vanish. Likewise, if h = _d + Cr, then d I : d2 : d, and the

equation reduces to that given in reference 16.

The point at which this additional body normal force may be considered

to act, _/c r measured from the juncture of the leading edge of the wing

and body, is found from

MB(W) _ (W)

Cr NB(w)Cr
KB( W)CNcqc_dcr2(l +R e)<_- i)

(16)

where MB(W) , the moment of the induced normal force on the body about the
juncture of the leading edge of the wing and the body, is calculated to be

generally

h

= 4q_mcrS {[ 2mP+5 c--_- l.IJ2 h i -MB(W) 3_B 3(i +m_) 2 + 3(i+ m_) Cr

i [2(i + m_ )<_Os _ 3<_r_ 24_2m2 -1
+

h

i ] -l (l+m_) _ - m_
(l+m_)e cos (l+m_) h _ 1

] i h s

(1+m_)2Jc°s _ +
2m_+5

3(i+_) 2
+

i 2m_ +

4_2m 2 - 1 cr m-_"_\Cr / j

h _d 2
c--_+ m6 Cr

h _d 2
m_ _Vr+ c-7-

32 -i _d2 i
cos _ - m-_ k_7-rJ_k_r] - k_7-rJ +

i 3cosh- i h
m2_ 2 \Cr / ; 0 <_ _ <

(17)

and CN_ is obtained as above from linearized supersonic theory.
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If, as shown in sketch (b), d2 = h/p, the last four terms in equa-

tion (17) vanish. If h = _d +Cr, then d I = d2 = d, and equation (17)

reduces to that given in reference 16.

The interference effects of the wing (or tail) upon the body in

reversed flight (90 ° < _ _ 180 ° ) are found in the same manner as above with

the proper values of m and h.

The interference normal forces and moments will be given by

_CNB(W : KB(w)CNw (18)

ACNB(T = KB(T)C_T
(19)

SCruB(w : aCNB(w)[X}g _zkB(W)]Z (20)

and

ACmB (T)= ACNB (T)IX_ g XABz(T ) ]
(21)

where

CN W

_w
, coefficient of normal force of the exposed wing as

estimated above from shock-expansion theory and modified impact

theory

CN T

NT
coefficient of normal force of the isolated tail in the

q_S
case of wingless configurations as estimated above from shock-

expansion theory and modified impact theory

C_T(w)
NT(W coefficient of normal force for the tail in the wake of

q_S '
the wing for 0° < _ < 90 ° in the case of body-wing-tail

configurations as estimated below

reference area

Xcg

_AB (W)

distance of moment reference from nose of fuselage

distance from nose of fuselage of the cp of the additional

normal force on the body due to the wing
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distance from nose of fuselage of the cp of the additional

normal force on the body due to the horizontal tail

reference length

Obviously, the above method cannot be used for angles of attack for

which the shock wave is detached from the wing or tail. At an angle of

attack of 90 °, impact theory implies no interference of the wing or tail

upon the body; at finite high Mach numbers for which the detached bow wave

at angles of attack near 90 _ clings closely to the wing or tail, the assump-

tion that the above interference is negligibly small appears reasonable from

consideration of gasdynamics. In order to arrive at some estimate of the

additional forces and moments on the body due to the wing and tail over the

ranges of angles of attack from 0 ° to 180 °, resort to graphical interpolation

is again made as shown in figures 8 through 13, where the procedure is

applied to the example configuration at a Mach number of 6.86. In these

figures_ the curves for the aerodynamic characteristics of the body includ-

ing wing or tail interference are faired smoothly into the corresponding

curves of the body alone. The normal-force and pitching-moment coefficients

of the body alone were calculated by adding the contributions of the ogival

nose and of the cylindrical portion of the body obtained as discussed in the

preceding section. The interference effects were obtained as indicated by

equations (15) through (21), with _CN_ = 4 as for a two-dimensional super-

sonic wing. If it is assumed that the above interference is given closely

by linearized supersonic theory for angles of attack not too near that for

detachment of the bow wave and decreases gradually and monotonically toward

zero as the angle of attack approaches 90 °, then the difference between any

two interpolating curves which might be employed to join the pairs of curves

representing the aerodynamic characteristics of the body with and without

interference is not likely to cause more than slight differences in final

results for the complete configuration.

Wing and tail in presence of body.- As pointed out in reference 17,

at very high supersonic speeds the normal force on a cylinder-wing combina-

tion (neglecting wing interference on the body) is approximately equal to

the normal force of the wing alone if that portion of the wing covered by

the cylinder is included. Here the covered portion of the wing is con-

sidered to be an extension of the root chord of the exposed wing through

the cylinder in a diametral plane. The additional normal force on the

exposed wing is, therefore, the difference between the normal force which

would be carried by the portion of the wing covered by the body and that

carried by the cylinder having a length equal to the root chord of the

exposed wing.

From consideration of impact theory alone (M_), the normal force

on a flat plate wing having an area crwd is

NWc = 2q_sin2C_rw d
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where

Crw

d

root chord of exposed wing

diameter of cylindrical body

Likewise, the normal force of the cylindrical body of length Crw
diameter d is

4

Ncy I = _ q_sin2_Crw d

and

The interference normal force on the exposed wing due to the presence of

the body is then

2

Z_Nw(B) : ] q_sin2_Crw d

or

where

CNcyl

I Crw
ACNW(B) - 2 L CNcyl (22)

Ncyl coefficient of normal force of cylindrical portion of body
_sB

with length L as estimated in a preceding section

In the same way, the interference normal force on the tail is estimated as

i crT (23)
mCNT(B) - 2 L CNcyl

According to reference 17, these additional forces are concentrated

in narrow regions adjacent to the wing-body and tail-body junctures. The

pitching moments resulting from the interference normal forces on wing

and tail due to the presence of the body can, therefore, be approximated

by assuming that these forces act at the midchord position of the respec-

tive root chords of the exposed wing and tail.

The above estimates of interference effects are considered applicable

in the present case over the entire range of angles of attack from 0° to 180 ° .

Tail in wake of wing.- In order to estimate the loads on a horizontal

tail in the wake of the wing of a configu_ .tion flying at high supersonic

speeds, the angle of flow_ Mach number, and dynamic pressure of the wake

must be determined. The procedure adopted here to obtain the above charac-

teristics of the wake is described below as applied to the body-wing-tail

configuration of figure i.
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Sketch (c)
_D

Sketch (c) showsthe salient features of inviscid supersonic flow past
a two-dimensional flat-plate wing of chord length AB at an angle of attack
_. In the region ABC the fluid is compressedand turned to flow parallel
to the lower surface; in the region CBF it next undergoes expansion and a
turning back toward free-stream direction, and crosses the final expansion
ray BF at an angle _ with respect to the chord plane. In general, the
angle _ is larger than the angle of attack _. Beyondthe point of inter-
section with the ray BF, the fluid eventually returns to free-stream direc-
tion. Above the wing, in the region ABG,the fluid is expandedand turned
to flow parallel to the upper surface; as it crosses the terminal shock
wave BHG,the fluid undergoes recompression and is turned toward the free-
stream direction again, although its angle with respect to the wing chord
as it crosses BHG is generally larger than _. Right at the trailing
edge B, the fluid adjacent to the upper and lower surfaces of the wing
leaves at the angle _ and follows the streamline BE. This streamline
is often te_med a "slip line" since there are discontinuities in velocity,
Machnumber, temperature, etc., (but not in pressure) across it. Reflec-
tions such as JK of the expansion waves between AHand AG from the
shock wave BHG serve to return the streamline from the trailing edge to
the free-stream direction at somepoint E as shown.

Although upwashoccurs right at the trailing edge of the wing, the
flow in the region GBC aft of the trailing edge maybe characterized as
either upwashor downwashdepending upon the location in the region, upon
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the free-steam Machnumber_and upon the angle of attack of the wing. The
other characteristics of the flow such as Machnumberand dynamic pressure
also dependupon the sameparameters. The dynamic pressures of the wake
decrease from comparatively high vslues in regions adjacent to BC to
relatively low values above BF, while the Machnumberof the wake increases
with increasing distance from BC toward BE. Hence, as has been pointed
out elsewhere (e.g., ref. 18), the effectiveness of a horizontal tail
placed in that region of the wake above the chord plane of the wing will
be generally less than that of one located below. In what follows, the
horizontal tail is assumedto be located on or below the chord plane of
the wing.

The pertinent characteristics of the flow behind the trailing edge of
a two-dimensional wing at angles of attack less than that for shock detach-
ment are estimated here on the basis of shock-expansion theory. For a
given free-stream Machnumber_the characteristics of the flow along any
ray of the expansion fan CBF (sketch (d)) maybe found conveniently by a

A

Sketch (d)

graphical procedure as follows: For a given angle of attack _, plot a
curve of e versus _v with the latter as the independent variable from
the relation

(9: Av+_ l- _e

where



22

/_V V 2 - V 1

VI,V 2

_i,_2

angle through which air at M = i must turn in Prandtl-Meyer flow

to accelerate to MI,M e

Mach angles, sin -1 1 i
M-_' sin-1

The value of _v for the flow across any ray is then read from the curve

at the value of e for the ray in question. Since Ml, Pl/P_, and v I are

known s for each angle of attack _, the value of v2 is determined and

hence M e and Pa/Pl may be found from Prandtl-Meyer relationships (most

conveniently from tables of compressible flow such as are included in

ref. 19). The ratio of the dynamic pressure of the flow at any point along

a ray to that of the free-stream may be computed from

q2 _M2_2_p2_ P<_

For a tail whose chord plane is alined with one of the rays in the expansion

fan CBF, the direction, Mach number, and dynamic pressure will be constant

along the chord. For other orientations of the tail, the above characteri-

istics of the flow will vary along the chord of the tail; in such cases cal-

culations for the forces at any spanwise station of the tail may be simpli-

fied somewhat without appreciable error by using the average of the flow

characteristics at the leading and trailing edges, or by assuming that the

flow calculated at the midchord is constant over the entire chord of the

tail. For tails with zero dihedral angle, the spanwise distribution of

pressure will be constant (excluding tip effects); for tails with positive

or negative dihedral, the pressures will diminish or increase toward the

tip, respectively, and graphical or numerical integration may be necessary
to determine the total normal force on the tail.

At some Mach numbers and at small angles of attack, the tail may be

outside the expansion fan CBF. In this case the flow approaching the tail

will have completed its expansion and turning, and is then subject to

recompression and a deflection in the opposite direction (toward free

stream) through the influence of reflected disturbances from the flow over

the upper surface of the wing such as the wave KL shown in sketch (c).
However, for small angles of attack the above effects of the flow will not

be large and in the few cases for which this situation exists the flow may

be regarded as having the characteristics it had at the terminal expansion

ray BF. The latter ray may be determined graphically from the stipulation

that the common direction of the flow at the trailing edge coming from both

lower and upper surfaces must be such that the recompression of the air

passing over the upper surface and the expansion (in general) of the air

from the lower surface result in the same value for the static pressure.

3These three quantities can be readily obtained from previous

calculations for the center of pressure of the wing.
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Certain aspects of the flow behind a wing at high supersonic speeds

have been discussed in references 18 and 20. As noted in such references,

the nature of the flow in the wake of a wing is determined to a consider-

able extent by the thickness of the wing; consequently, the direction,

static pressure Pl, and Mach number M l used in the above procedure are
calculated for the actual profile of the wing rather than for a flat plate.

The characteristics of the flow behind the wing of the configuration

of figure i in the region of the tail were calculated according to the

above procedure and are presented in figure !4. The profile of the wing

was considered to be a wedge-slab-wedge for these calculations. The odd

variation with angle of attack noted for the dynamic pressure in the wake

is due to the combination of nonlinear relationships among the various

parameters involved in shock-expansion theory. The final static pressure

of a high-speed gas which is first subjected to a nonisentropic compression

and then expanded isentropically depends in a nonlinear fashion upon both

the extent of the compression and the amount of expansion. At angles of

attack near that for shock detachment (40 ° in the present case) the increas-

ing losses in total head across the oblique shock wave from the leading

edge of the wing combined with increasing expansions in the wake were

apparently sufficient to produce the downward trend in the variation of

qT noted in figure 14 at angles of attack near 40 ° .

Since the calculations for the normal force on the tail in the wake

of the wing cannot extend beyond that angle of attack for which the shock

wave detaches from the leading edge of either the wing or the tail, some

means of estimating the force on the tail for the larger angles must be

devised. At angles of attack near 90 ° , the wing will not appreciably

affect the tail behind it. This fact suggests the use of graphical inter-

polation to approximate the force on the tail at large angles of attack

as illustrated in figure 15. As indicated, the variation with angle of

attack of CN for the tail in the wake of the wing determined from shock-

expansion theory is plotted up to the angle of attack for bow wave detach-

ment. Also plotted in the figure is the same variation for the isolated

tail in the free stream computed as explained in an earlier section from

a combination of shock-expansion theory and modified impact theory. A

third curve is then drawn to effect a transition from one computed curve

to the other. The composite curve then represents the sum of the normal

force of the tail and the interference normal force due to the wing and

will be related to the term CNT +Z_CNT(w ) of equation (i) in final
calculations_

The contributions of the tail to the pitching moment of the body-

wing-tail configuration will be based on the normal force of the tail in

the wake of the wing and on the assumption that the center of pressure of

the tail remains at the centroid of area of the exposed tail.
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Wing in wake of tail.- The effects of the tail upon the aerodynamic

characteristics of the wing (disregarding effects of the tail tips) may

be estimated in much the same way as above. Inasmuch as the span of the

tail is generally considerably less than that of the wing, the effect of

the wake may extend over only a portion of the wing; consequently, the

net effect on the normal force of the configuration may be comparatively

small and the effect upon pitching moment is likely to be negligible for

body-wing-tail configuration in which the wing is located close to the

center of gravity.

The effect of the flow around the tail tips is confined within narrow

Mach cones originating at the tail tips, so that at large Mach numbers the

portion of the wing affected by such flow is likely to be comparatively

small. In addition, the portion of the wing affected by the tail tip

vortices will be divided into nearly equal regions of upwash and downwash,

so that the net effect upon normal force and pitching moment of the complete

configuration will generally be negligibly small.

Since for the present body-wing-tail configuration the effects of the

wing upon the tail were not large (fig. 13), the effects of the tail upon

the wing in reversed flight were judged to be too small to justify the

calculations involved and were thus ignored.

COMPARISON BET_EEN PREDICTED AND EXPERIMENTAL

RESULTS FOR THE AIRPLANE CONFIGURATION

An evaluation of the foregoing estimates of normal-force and pitching-

moment characteristics of the airplane configuration selected for this study

is now made. Unfortunately, experimental data available at any given Mach

number for comparison with the estimates do not extend over the complete

range of angle of attack from 0 ° to 180 °. The airplane configuration con-

sidered here has been tested in the NASA Langley ll-inch blow-down wind

tunnel at a Mach number of 6.86 up to angles of attack of 35 ° . (Results

up to _ = 28 ° are published in ref. 21.) Figures 16, 17, and 18 give the

comparison between predicted and experimental variations of normal force,

pitching moment, and center-of-pressure location with angle of attack at

M_ = 6.86, not only for the complete airplane but also for the body alone

and the body-wing and body-tail combinations. As far as the experimental

data permit comparison, the estimated results are in satisfactory agreement

with the wind-tunnel tests in each case. A comparison between the results

both with and without the inclusion of interference effects (fig. 19)

indicates that inclusion of such effects should be made at the lower hyper-
sonic Mach numbers such as 6.86.

To obtain an indication of the accuracy of the estimates at higher

angles of attack the following procedure was followed. Available wind-

tunnel facilities enabled testing of a model of the example configuration
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over a range of nominal Mach numbers between 2.5 and 3.5. Accordingly_ a

model was constructed and tested at five Mach numbers in the given range at

angles of attack between 30 ° and 150 ° in the test section of the Ames 8- by

7-foot Unitary Plan wind tunnel. The tests are described in appendix C

of this report. The basic data obtained in the tests_ normal-force coef-

ficients and center-of-pressure locations, are presented in figures 20

and 21. The procedures described in the preceding sections were then

applied to the complete configuration to give the estimated variation of

normal-force coefficient and center-of-pressure location over a range of

Mach numbers from 2.5 to i00. Predicted and experimental results (from

faired curves of figs. 20 and 21) for a number of angles of attack between

30 ° and 150 ° are shown as a function of I/M_ in figures 22 and 23. In

general, the agreement between the estimated and experimental variation

of normal force and center-of-pressure location with Mach number is good,

not only qualitatively but quantitatively. However, at angles of attack

near 90 ° (75 ° to 105°), the experimental variation of normal force differs

somewhat from that predicted. Whereas a monotonic decrease of normal-force

coefficient with Mach number is predicted at all angles of attack, the

present data suggest that the coefficient may have a minimum value in the

neighborhood of M_ = 3.5 for angles of attack between 75 ° and 105 °. It

may be recalled that, similarly, an apparent minimum in the normal-force

coefficient of wings at _ = 90 ° was indicated between Mach numbers 3 and

4 by the data presented in figure 4. As a matter of interest, averaged

experimental values of CN from figure 4 were used for the wing and tail

to calculate the normal-force coefficient of the complete example configura-

tion at an angle of attack of 90 °. The results are shown as the dotted

curve in figure 22. Although the agreement between the calculated and

experimental variation of normal force is generally improved by using

experimental values for the wing and tail in this case, it is obvious

that other factors are involved. Quantitatively, the discrepancies between

the estimated and the present experimental values of CN for the configura-
tion at angles of attack between 79 ° and 105 ° are generally less than

5 percent except at angles near i00 ° where they are of the order of i0 per-

cent. There is reason to believej moreover 3 that the accuracy of the

estimates of normal force for this configuration at angles of attack near

90 ° may be expected to improve with increasing Mach number beyond a Mach

number of approximately 3.5.

Another phenomenon observed in the present tests which is not fully

understood may be seen in figure 20. The abrupt decrease in normal force

as the angle of attack increases from 90 ° to i00 ° is certainly not pre-

dicted as shown in figure 24 where the predicted variation of normal-force

coefficient with angle of attack at a Mach number of 2.5 is compared with

experimental data. The corresponding discrepancies between predicted and

experimental pitching-moment curves are shown in figure 25. That the

nature of the flow about the model changes as the attitude of the model

changes from forward flight to rearward flight can be seen in a typical

series of scnlieren pictures taken during the present tests and presented
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in figure 26. It is also possible that the shrouded sting and balance

case attached to the lee side of the model in the tests may have contrib-

uted to disturbances in the flow over portions of the model in the subject

angle-of-attack range more than anticipated. Whatever the causes, the
data in figure 18 suggest that the distortion noted in the normal-force

curves diminishes with increasing Mach number.

CONCLUDING REMARKB

Existing theories, empirical formulas, and graphical procedures have

been employed in an attempt to predict normal-force and pitching-moment

characteristics of a given airplane configuration at high supersonic Mach

numbers and at angles of attack ranging from 0° to 180 °. Availability of
wind-tunnel data at a Mach number of 6.86 provided an evaluation of the

predictions up to an angle of attack of 35 °. To obtain an indication of

the accuracy of the estimates at higher angles of attack, wind-tunnel

tests of the same configuration were made at angles of attack between 30 °

and 150 ° over a range of Mach numbers from 2.5 to 3.55.

From a comparison between predicted and experimentally obtained values

of normal-force coefficients and center-of-pressure locations over the

range of Mach numbers and angles of attack investigated, it is concluded

that for Mach numbers of the order of 5 and larger, close estimates of

these characteristics are possible up to at least 150 °. At Mach numbers

between 2.5 and 3.55, the estimates agree well, in general, with the

results of the wind-tunnel tests at angles of attack from 30 ° to 150 ° .

From the manner in which the estimates are obtained here at large

angles of attack, application of the present procedures does not appear

practical for Mach numbers much lower than 2.5, particularly for angles
of attack larger than 90 ° .

In assessing aerodynamic characteristics of configurations having

features dissimilar to those of the one considered, it should be clear

that modification or extension of the procedures used in this report might

be necessary. Obviously, a number of the steps and calculations included

in the present study would not be required in the case of a more simple

configuration such as an all-wing configuration or a pointed body of

revolution with stabilizing fins.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Oct. 17, 1958
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APPENDIX A

NOTATION

mean aerodynamic chord of entire wing or tail

root chord of exposed wing or tail

maximum diameter of nose section; diameter of fuselage

fineness ratio of body of revolution

modulus of elliptic integrals (sin _)

reference length

cotangent of angle of sweepback of leading edge of wing or tail

pressure at a given point on surface of body, wing, or tail

static pressure in free stream

yM2p
dynamic pressure, 2

local radius of body of revolution

semispan of wing or tail of complete configuration

longitudinal, lateral, and vertical coordinates of a right-hamd

Cartesian coordinate system

R
caliber of ogive of revolution,

coefficient of pitching moment, based on reference area S and

on reference length Z

coefficient of normal force, based on reference area S

p - p_
coefficient of pressure,

Ps -P_
stagnation pressure coefficient,

9_
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CPso

CP u

E(qO,k)

E(k)

F(_,k)

K(k)

_B(W)

M

N

R

S

Voo

<L

7

q

ACmB(W)

ACmB(_)

AC_c(B)

AC_¢(W)

coefficient of pressure corresponding to sonic velocity

coefficient of pressure in expansion regions of flow

incomplete elliptic integral of second kind

complete elliptic integral of second kind

incomplete elliptic integral of first kind

complete elliptic integral of first kind

length of cylindrical portion of fuselage

ratio of normal force on body due to presence of wing to normal

force of exposed wing alone

pitching moment; Mach number

normal force

radius of generating arc of circular-arc ogive

reference area

velocity of free stream

angle of attack of body axis

radial angle of a point on surface of body of revolution;

cotangent of Mach angle

specific heats, } for airratio of

ZN
ratio of length to radius of ogive, _-

additional pitching-moment coefficient of body due to presence

of wing

additional pitching-moment coefficient of body due to presence
of tail

additional pitching-moment coefficient of tail due to presence

of body

difference between pitching-moment coefficient of tail in wake

of wing and that of isolated tail
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SCrew(B)

ACmw(T )

Ac% (w)

ACNB(T)

_CNT(B)

ACN_(W)

ACNW(B)

AC_w(T)

8

Ov

additional pitching-moment coefficient of wing due to presence

of body

difference between pitching-moment coefficient of wing in wake

of tail and that of isolated wing

additional normal-force coefficient of body due to presence of

wing

additional normal-force coefficient of body due to presence of

tail

additional normal-force coefficient of tail due to presence of

body

difference between normal-force coefficient of tail in wake of

wing and that of isolated tail

additional normal-force coefficient of wing due to presence of

body

difference between normal-force coefficient of wing in wake of

tail and that of isolated wing

taper ratio of wing or tail

angle made by surface of body of revolution with body axis

semivertex angle of nose section

argument of elliptic integral, _ _si_

Subscripts

B

C

cg

cp

cyl

e

body or fuselage

cone

moment reference

center of pressure

cylinder

exposed wing or tail
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N

T

W

OO

lower surface of wing or body

nose section of body

horizontal tail

wing

free-stream conditions
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APPENDIXB

DERIVATIONSOF FI, Fs_ Fs

The expressions F1, F2, and Fs of equation (I0) in the text are the
result of applying the method of integration in series to one intractable
integral. The integral in question is

I :f_l -t 2 sin -I
t

tan _-t 2
dt

f<l t2 t4 1"3t6 l'3"StS )<s t= - _ - 2-4 - 2 4.----62.4 6.8 "'" in-_ _t
• " tan _l_-7-_-tm

where 0 _ t2 _ _Ne/R 2 _ i. For most applications, only four terms of the

series expansion above are necessary for good accuracy. Based upon the

above approximate evaluation of the integral_ the terms Fl, F2_ and F s
are

Fz - 2 sin _ 1680- (280+42 sin e 4

1343 _-sin _ cos _1337+(38+8 sin2_)sin2_]

_ 7

= _ Ii680 _ (280 j_ 42_2 __ 15_4) _21sin -I _ _Fa L J tan _ i_------__2

1343 -tan-i cos -sin _ cos _ 337+ (38+8 sin2<_)sin2c_ +

cos _(337+ (8 sin2_+38+4N2)sin2_+ (3_ a+19)_2]$sin2a,-N2

L J

and

sin _(280Fs - 2 + 42 sin2_ + 15 sin4_)sin2_ - 1680] +

1343(_-_)-sin _ cos _[337+(38+8 sin2_)sin2_]
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APPENDIXC

EXPERIMENTALINVESTIGATIONOFTHESTATICLONGITUDINAL
STABILITYOFTHEAIRPLANECONFIGURATIONAT ANGLES

OFATTACKBETWEEN30° AND150° ANDAT MACH
NUMBERSBETWEEN2.48 AND3.55

As was stated in the text of this report, wind-tunnel data for the
body-wing-tail configuration considered extend to only approximately 35°
angle of attack at a Machnumberof 6.86. To obtain an indication of the
accuracy of the estimates at larger angles, the present investigation was
conducted over a range of angle of attack from 30° to 150° . Inasmuch as
the Machnumberrange of the available testing facility does not extend
beyond 3.55, measurementswere madeat five different Machnumbersbetween
2.48 and 3.55 in order to determine the trend of normal force and center-
of-pressure travel with Machnumber.

Apparatus

The tests were conducted in the 8- by 7-foot test section of the Ames
Unitary Plan wind tunnel. This wind tunnel is a continuous-flow, single-
return type. The stagnation pressure can be held constant at values
between 5 and 56 inches of mercury, and the Machnumbercan be varied dur-
ing operation between nominal values of 2.4 and 3.5. The sting support
has a range of ±14.65° in the pitch plane. Further details of this facility
maybe found in reference 22.

The model was a 4/3-scale replica of the airplane model tested in the
Langley facilities. Figure i and table I give the essential features of
the Langley model. For testing at angles of attack between 30° and 60° ,
the model was mounted from the downstreamend on a 45° bent sting; for
angles between 75° and 105° , it was supported by a straight sting attached
dorsally at the midlength of the fuselage; for angles between 120° and 150°,
the model was mounted as for the previous angle range except that a 45°
bent sting was used in place of the straight sting. Each model sting was
supported from a cylindrical balance case housing a six-component strain-
gage-type balance. The balance itself was supported from the tunnel sting
support. Both the balance case and model sting were shrouded to prevent
aerodynamic forces other than those acting on the model from affecting the
balance readings. A fouling indication system was provided to insure that
the data would not be affected by mechanical interference between the
shroud and model, sting or balance case.
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In order to take into account any increments in the angle of attack

of the model due to aerodynamic loads during the tests, a cathetometer was

used to view the model through a window in the test section of the wind

tunnel. By means of this instrument, the vertical distance between two

points marked near either extremity of a midmeridian of the model body

could be determined, and hence the actual angle of attack could be
calculated.

Testing Procedure

For each of the three combinations of model and stings described above,

readings of the fore-and-aft normal-force and of the axial-force balance

gages were recorded by a strain-gage printer at each of several angular

settings of the turmel sting support for each of the five Mach numbers

2.48, 2.77, 3.07, 3.30, and 3.55. Several readings were repeated. The

Reynolds number, based upon the mean aerodynamic chord of the model wing_

varied from 240,000 to 510,000 during the tests.

Reduction of Data

The balance forces were resolved into the normal force on the model

and into the position of the center of pressure. The model normal force

was then reduced to standard NASA coefficient form based on the area of

the entire wing of the model. The location of the center of pressure was

referenced with respect to the nose of the model and made dimensionless

in terms of the body length.

Precision of Results

Because of the manner in which the balance forces were resolved in

each of the three model-sting-balance configurations, and because of the

wide range in the magnitude of the forces on the model, the accuracy with

which the values of CN and Xcp/_ B could be obtained varied from one
range of angles of attack to another. On the basis of the sensitivity of

the instrumentation employed and upon the methods used to resolve the

balance forces, as well as from consideration of the repeatability of

results, the maximum errors in the measured quantities in the ranges of

angles of attack noted are estimated to be
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CN

30 ° _ _ _ 60 ° ±0.010

75 ° ! _ ! 105 ° ±0.012

120 ° _ _ _ 150 ° ±0.024

Xcp

ZB

30 ° ! _ J 60 ° ±0.027

75 ° _ _ ! 105 ° ±0.012

120 ° ! _ ! 150 ° ±0.025

I 30 o ! _ ! 60 ° ±0.15 o

75 ° ! _ _ 105 ° ±0.20 °

120 ° ! _ ! 150 ° ±0.15 °

It is not known just what effects the sting shroud had on the flow

over the lee side of the model; however_ it is believed such effects were

negligible with regard to total no_nal forces and relatively small as far
as the position of the center of pressure was concerned.
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TABLE I.- GEOMETRIC CHARACTERISTICS OF LANGLEY MODEL (REF. 21)

Wing

Area (including area submerged in fuselage), sq in ...... 6.240

Area (exposed), sq in .................... 4.402

Mean aerodynamic chord (entire wing), in ........... 1.713

Mean aerodynamic chord (exposed wing), in .......... 1.456

Span, in ........................... 4. 330

Root chord (entire wing), in ................. 2.530

Root chord (exposed wing), in ................ 2.133

Tip chord, in ........................ 0.354

Aspect ratio (entire wing) ................. 3.000

Sweep of leading edge, deg ................. 38.830

Sweep of c/4 line, deg ................... 29.000

Incidence at fuselage center line, deg ........... 0

Dihedral, deg ....................... 0

Geometric twist, deg .................... 0

Horizontal and vertical tails

Area (including area submerged in fuselage), sq in ...... 2.060

Area (exposed), sq in .................... 1.204

Span, in .......................... 2.690

Mean aerodynamic chord (entire tail), in ........... 0.853

Mean aerodynamic chord (exposed tail), in .......... 0.571

Root chord (entire tail), in ................. 1.214

Root chord (exposed tail), in ................ 0.950

Tip chord, in ....................... 0.317

Aspect ratio ...................... 3.520

Sweep of leading edge, deg ................. 22.63

Dihedral, deg ........................ 0

Fuselage

Length, in .......................... 7.500

Maximum diameter, in ..................... 0.790

Fineness ratio ....................... 9.500

Base diameter, in ...................... 0.790

Distance from nose to moment reference, in .......... 3.950

Maximum cross-sectional area, sq in ............. 0.490

Ogive nose length, in .................... 2.290

Ogive radius, in ....................... 6.850
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Figure 2.- Pressure distribution over flat faces of circular cylinders
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Figure 4.- Variation with Mach number of total streamwise force on bodies

having flat faces of various plan forms; flow normal to flat faces.



42

L
o

©

\

½

E
z

0

0,/

o
e-

_0 CO "_ '_

"8

0

o _ o
r'_ u3 e_l 0 1_.

_MS ®b

N

• c- 0
OJ -- o o.

"8 "8 o *-- __

O

O

o o-t- I
O_

O
t¢3

, N3

O u_ O

o _co
o

+_

o (u

cd +_

O o O

kO bO
_ +_

_3
%

m ©

+_ _
_ +_

_3

O O
% 4-_
O

O 4-_

c_
I

©
%

.,-4



43

D E
0

rr c

o

c

0
co

u_ 0 ll")
c_ _.

_MS "b _ N9
N

0

®

0

.a

o

0
co

o
Ol

-rq

0 -o

©oD

_kD

_, ._

_ °

o %

0 _

o

+_

o

0 o

-o
m

-o
r_

0 _

,.d

o
%

g
.,--4



44

O0

0

0
oo

4
t_

0

q_

c-
O

0
CL
x_

if)
cp

L..

o

t3_
t-

O
CL

/

o
0

(3

0

qJ

t-
O

0
CI
x

I

0
f-
(/I

0 _ 0 u'> 0

d0x
-- 'eSpa 5u!p0_l uJ0Jl emssaad ,10Ja%ue:> _0 a:)u0$s!O

0_0_

oO

oo

O0
u_ e_ o_

no

o"

0

c_
c-

O0

oo_0

0
o__

0
Oo0

0 -
r_

®

©

_J

-p

q-_
o

b_

._I

-p

0
q-_

_,.c;

r+_ II
0

4D °_

© ©

o _3

_ 0

.r-t

©

0

0

+_

r_

!

©
%

.r-t

r_



/

I
!

i
i

/

0 0

oO

oo

s8

oO

0
O_

0

No

o

@

o

©
4S

.H

s
@

Q

@

_0cO

%'.D

II

®

+_

o

o N

@ ©
o _

N

o 4-_

©
rq
+_

©

O

4-_
_3

._

+_
r_

I

o5
®
%



46

u_
oJ

oo

O0

/

5_ go
A

V °°
u

L/ \ °
I 0 O°

_o

_o8

o_
O O4 _

I" I I

m_gs'b 'uJ:3 _ua!3!_j.ao3 _uausoLu-6u!q0_!d

_J

cd
(J

®

+_

-r-I

bO

°H

_J

q_
o

(J

o II

°r-¢ o_

_o

o4_

4J ._
_H

© O

4_
_ e

N
N) ®

• H _

-o

_o

©

o
°_

c_

+__
u_

I

d,
o
%

,,--t



_T

/
O

i

I

_s'b 'NO luaa:)0_ao:) aOJO_-IOLUJON
N ' "

c_

,-_

0
N

,,-t

0

© rl

03 *_
m _
® 0

4-_

0

_3
_ 4o

_ 0

_ 0

(1) ©

(D 4-_

© o

o_

.,--t

r/?

I

o



48

o,J

Q)

-I

c

..--°'-"-_°'°_///

oi//.
_w

O

E

l/ -

o

//
/

/
/ A

E
m

E

"lJ.

m

E

j/
Od if)

I I"

,_ua!0!,l,_ao_ _.uauJo_u-6u!q35, d

o o
o__O0

_o

8_

'1o

o o .E

U
o

o

c

oo

oO
-O

o

I"

_3
+-_

o
N
._

o

_J_,.c;

o

U_ o,-,

% o
f_ -,--4

+_

_o

o

._

_+_

o o

-o

N
boo

•r-4 _)

o +_
-o
•,-i r_

O

O ®

©

-t_ .,--i

r_

i

%

°_



49

Lr)

/
0
u_

u_ Q u_
__ _o

es'b cN_) |ual0t_(_a00
N

(__

/

0
Lr_

"0

{3

qJ

oO
CM

_o8

0

u_ o
C_J

aoJo._- IOWJON

°_1

.4o

0
N

o,.c;

®,.c;
-0 II

0

(1) ._
m -0
G) _3

40
0

_._

0

bD

i

©
©

¢.)
% ©
© r---I

+_

4o 0

0 ca

0
•_ (1)

m

I

d
,-t

%

.r4



9o

c_J

j/,//
/

/
I

m

E

o

E d

m

E

<1

-t-
in
E

o u_ o

I I"

ere s
W b'ujo _.ua!0!jleo:_ ,luawow-Ou!q0_!d

_2

98

o_

I

_u

u_

2
o

¢.-

,-I

_d

o
N
.,.-_

0

_0

+_
II

o#

® o
u3 ._1

_g

_ o
•r4 o

o _
_ +_

I

°_

o_--_

_ N
•_1 (1)

•_ 4-_

r_
_ c6

_ o

•_1 4-_
4__

.rt
+_
u?

I

(1)
%



_Z

0
OJ

o

i

(

\

\

\
\

\

i

\

/



52

18

f

12 t

O

- Interpolating curve
I0

:c,_

° /Isolated -taiI-

- /

-_ -Tailin wake of wing
0

4

/

i

0 I0 20 30 40 50 60 70 80 90

Angle of attack a,deg

Figure 15.- Estimation of the normal force of the tail in the wake of the
wing in the case of the example configuration; M_ = 6.86.
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= 75 °
= 120 °

c_ = 90 °
= 135 °

= i0_ o _ = 150 °

Figure 26.- Scb_lieren photographs of example airplane configuration indicating

change in nature of flow with attitude of the model; M_ = 2.77.

NASA - Langley Field, Va. A-122
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