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EFFECTS AT SUPERSONIC SPEEDS
DUE TO WING THICKNESS

By Kenneth Margolis and Miriam H. Elliott
SUMMARY

Expressions based on linearized supersonic-flow theory are derived
for the perturbation velocity potential in space due to wing thickness
for rectangular wings with biconvex airfoil sections and for arrow,
delta, and quadrilateral wings with wedge-type airfoil sections. The
coriplete range of supersonic speeds is considered subject to a minor
aspect-ratio—~Mach number restriction for the rectangular plan form and
to the condition that the trailing edge is supersonic for the sweptback
wings. The formulas presented can be utilized in determining the
induced-flow characteristics at any point in the field and are readily
adaptable for either numerical computation or analytical determination
of any velocity components desired.

INTRODUCTION

The increasing use of auxiliary bodies such as stores and missiles
on current aircraft has emphasized the need for reliable methods and
procedures for predicting the load distribution, forces, and moments
generated by such bodies and also the aerodynamic effects induced on
these bodies by neighboring airplane components. The total loading
and forces acting on stores, missiles, pylons, and so forth are required
in order to design supporting structures, to predict the performance
and stability characteristics of aircraft, to determine the jettison
characteristics of stores, and to compute the trajectories of missiles
when fired from parent aircraft.

Although considerable effort has been expended in the past in cal-
culating the load distribution, forces, and moments acting on isolated
aircraft components for the supersonic speed regime (e.g., refs. 1L to 3
and reports cited therein), somewhat less attention has been focused
on the equally important problem of determining the aerodynamic effects
induced by one body on neighboring airplane components. (See refs. U



to 6 and reports mentioned therein.) The problem of determining the
flow fields arising from airplane components undergoing various motions
becomes a prime consideration in calculating induced aerodynamic effects.
Some recent work pertaining to the calculation of flow fields at super-
sonic speeds may be found in references 7 to 9. In general, the avail-
able literature covers in adequate detail the flow fields arising from
flat wings at an angle of attack and flat wings undergoing steady
rolling or steady pitching motions.

The present paper concerns itself with the linearized-theory evalu-
ation of the effect of wing thickness and thickness distribution on the
flow fields generated by thin wings at zerc angle of attack. The pur-
pose 1s to present closed-form expressions for the perturbation velocity
potential which in turn may be utilized to calculate by either numerical
or analytical procedures the desired flow-fleld velocities and angular-
ities. Wings of rectangular plan form with symmetrical biconvex profile
and of delta and modified-delta plan forms with wedge-type airfoil sec-
tions are treated in detail. The complete range of supersonic speeds
is considered subject to a minor aspect-ratio—Mach number restriction
for the rectangular wing and to the condition that the trailing edge is
supersonic for the sweptback wings.

SYMBOLS
X,¥,2 rectangular coordinates c¢f field points
X,¥,Z nondimensional rectangulsr coordinates defined as

X y Z .
S and respectivel
cr ) b7—2 3 b7_2 3 P y

zy z-coordinate defining airfoil section

£,M rectangular coordinates cf source points

A free-stream or flight velocity

M Mach number

B Mach number parameter, JME -1

¢ perturbation velocity potential

¢I’¢II""¢IX specific evaluations of pertubation velocity potential

A sweepback angle of leadirg edge



m sweepback-Mach number parameter, B cot A

o] inclination of wing trailing edge, measured relative
to root-chord extended (see fig. 2)

root chord of wing

r

b wing span

S area of wing plan form

A wing aspect ratio, b2/S

A aspect-ratio—Mach number parameter, AB

t maximum thickness of local airfoil section

c local wing chord

A slope of wing surface, measured in stream direction

Fl’FEJ"'F6 functions that are given in appendix A for purposes
of evaluating perturbation velocity potential for
sweptback wing cases

Gl’GE"“GlM functions that are given in appendix B for purposes
of evaluating perturbation velocity potential for
rectangular wing cases

MgsMpr«*+ e specific values of variable 1 corresponding to

various locations where Mach forecone from field
point (x,y,z) intersects leading and trailing edges
of wing (see fig. 3)

ANATYSIS

The analysis is based on supersonic thin-airfoil theory and on the
assumptions of small disturbances and a constant velocity of sound
throughout the fluid. These assumptions lead to the linearized equa-
tion for the perturbation velocity potential ¢:

(1 - M2)¢xx + ¢yy + @y =0 (1)



where M 1is the Mach number of the flow, and the derivatives are taken
with respect to the varisbles x, ¥y, and 2z of the rectangular coor-
dinate system. The general expression for the linearized perturbation
velocity potential in space due to a distribution of source and sink
singularities in the 2z = O plane is (see refs. 10 and 11)

B(x,y,2) = - L _ A(g,n) d& dn )
“fl?f\[(x - 1) - (2 - ) [(y - )%+ 22]

where x, Yy, and 2z are the rectangular coordinates of the field point
at which the potential is desired, and ¢ &and 1 are the rectangular
coordinates (analogous to x and y) of tle singularities. The func-
tion k(g,n) represents the particular distribution of singularities
for the wing under consideration and is thus, of course, dependent upon
the boundary conditions imposed. For wing-thickness distributions that
are amenable to thin-airfoill-theory calculations, the source-sink dis-
tribution function is related to the particular thickness distribution
involved and is given as

,M@M=E%@@ml (3)
: zB=O

The integration indicated in equation (2) is performed over the region R
that is enclosed by the traces in the =z = O plane of the Mach forecone
emanating from the point (x,y,z) and by the wing plan-form boundaries.
(See fig. 1.) For purposes of convenience, the Mach number parameter

B = M2 - 1 rather than M itself will te used in the expressions to

be developed; equation (2) may then be rewritten in the more familiar

form
Boe,y,2) = - L Mesn, 4 o (4)
. \/(x - £)% - By - n)® - P22

In order to obtain closed-form exprescsions for the potential func-
tion @(x,y,z), it is necessary to define the slope function A(%,7)
for the particular wing under consideratior. (see eq. (3)) and then to
integrate over the appropriate region R. The present paper considers




delta and modified-delta wings with wedge airfoil sections and rectan-
gular wings with symmetrical biconvex airfoil sectiouns. (See fig. 2.)
For the sweptback wings, the equation for the upper surface is given by

z = & x (5)

where x 1is measured positive rearward from the y-axis. (See fig. 3.)
The slope function K(g,n) is, of course, constant for the sweptback
wings and is given by

A== (6)

For the rectangular wings, the equation for the upper surface may
readily be derived as

z = 2t §<1 - %) (7)

where x 1is measured positive rearward from the leading edge. The
slope function K(g,n), which for the rectangular wings is independent
of 7, is found to be

Ae) = ”—tG - e> (8)
2\2

C

In order to determine the appropriate regions of integration, the
sweptback wings have been subdivided into nine cases (see fig. L), each
case being characterized by distinct Mach trace—plan-form-boundary
intersections. In an analogous manner, the rectangular wings have been
subdivided into eight cases (see fig. 5). Thus, if the perturbation
velocity potential is desired at an arbitrary point (x,y,z), the Mach
trace must be determined and then the appropriate integration performed
in accordance with equation (4). The sketches given in figures 4 and 5
cover all possible cases that are required to determine completely the
potential function for the wings under consideration. Note that the
only restriction applicable to the sweptback wings is that the trailing
edge is supersonic; for the rectangular wings, the side edges may not
interact (expressed mathematically by the condition AB 2 1). (See
fig. 2.) It is of interest to point out that cases VII, VIII, and IX
for the sweptback wings can occur only when the wing has a supersonic
leading edge.



In order to define mathematically tle required regions of integra-
tion, the 1 ccordinate of the point of intersection between the Mach

forecone & = x - B\/(y - n)2 + 22 and each plan-form boundary must be

obtained. The specific intersection poirts are indicated by the filled-
in circles shown in figure 3, and the ascociated 1 values are readily
found by simple algebraic processes to be

|

Ny = ___EEE_Q;__i:x - B%y cot A + B \kx cot A+ y)° + 22(1 - B2cot2Ai]
1 - B2cot?n
(9)

= _%[x - P2y cot A - B\/(x cct A - y)° + Z2(1 - BzcotEA)i]
A

T}b =
1 - Bgcot
(10)
2
Ne = _2_tanT6__ X=-cpt B2y tan & -BW:(X_ cp)tan 6+y] +22(1 - p2tan2d)
B~tan<d - 1L -
(11)
2
ndz__JEEEL_cr-x+ﬁ%ytm16+BVBx-cth15-ﬂ +22(1 - pPtan2s)
Betangb -1 -
(12)
tan 9 ! 2
Ne = eno Cp —x+52y tan 8- B [(x- cp)tan S—y] +22(1 - Bgtangﬁ)‘J
Bgtangﬁ— 1L
(13)
g = ___SZEIL__J; - B2y cot A + B\kx:cct A -3)2 + 2201 - Bgcot2A)1
1 - 62cotaAL
(14)

For the rectangular wing (A = 0° and & = 90°), Ne end np are
the same as 1, and 1, respectively, and considerable simplification

results in equations (9) to (12). The simplified expressions for ng
to ng are as follows:



By - \[x? - p2z?
Mg = (15)
B
\Vx2 - g2z2
ﬂb _ By + X Bz (16)
B
- o2 2,2
Mo = by \jzx ) i (17)
B
_ &)e - 2,2
ny - By + \/(x c)” - pez (18)

B

The integral expressions for the perturbation velocity potential
corresponding to the nine cases for the sweptback wing (see fig. L) and
the eight cases for the rectangular wing (see fig. 5) may now be explic-
itly determined. For purposes of convenience appendixes A and B present
for the sweptback wings and rectangular wings, respectively, the various
conditions associated with each potential function as well as the spe-
cific formulas (F and G functions) required to define the potential.

The following equations result for the nine sweptback-wing cases,
where the slope A 1is constant and defined by equation (6):

Case I:
b1 ¢I(X)Y; z)
SEL A D,
TSERYE 1 (19)
Case II:
P4 ¢II(X;Y;Z)
- =F, + F 20
VA b/2 172 (20)
Case III:
T ¢III(X:y)Z)
-— == =F1 + Fp + F 21
™ /2 1+ Fo+F3 (21)
Case IV:
x Pry(x,y,2)
-2 . =P, +F, - F 22
VA b/2 L3 5 (22)



Case V:
x Pvix,y,2)
- = -F, -F 23
VA 1b/2 Lo (23)
Case VI:
¢VI(x)sz)
—%—W——=F1+F2+F3+Fh (2’4’)
Case VII:
P ¢VII(X:Y:Z) _
ey F3 - F5 + Fg (25)
Case VIII:
- x Fvrrrlxy,z) Fg - F (26)
VA b/2 >
Case IX:
1 Px(x,¥,2)
-—_ - = F
N 6 (27)

For the eight rectangular-wing cases, the following formulas
result:

Case I:
_ 614 ¢I(X)Y:Z) _ 3G1+ + G5 (28)
2V<E> b/2
¢
Case II: 3
(x,¥,2)
For y<B - " P11 =Gy - G3 + Gy + Gg
2 2vk%) b/2
) (29)
For y > E, - 2 Py, =G2 - Gz + Gy
2 2v(3> o/2
c /
Case III:
T ¢III(X:Y:Z) =G +Go -Gz + Gy + Gs (30)

) 2V<E> b/2

c



Case IV:
_ P14 ¢IV(X)Y)Z) -0 (51)
2v<3> n/2
c
Case V:
_ 7 ¢V(x,y,Z) - Gl + GlO - G5 + Gll + G5 - G6 - G12 + G8 - GlB - Gl)_&
2V<t> b/E
c
(32)
Case VI:
(X) :z)
_ Kt ¢VIb/2y = Gy + Gio - GB + Gy - 2Gy (35)
2V<E>
Case VII:
b ¢VI (X)y Z) )
For y <3 —2Vn§> Ib/e, =Gy - Gg - Gz + Gg + Gg
c
> (34)
(X:Y)Z)
For y > %, - ﬂt ¢VIIb/2 =Gp - Gy - Gz + Gg - Gy
2V(E) )
Case VIII:
R Pyrr1(x,y,2) =Gy - Gz - Gy (35)
" e 1 3
s
c
DISCUSSION

The formulas presented in the previous section enable the direct
evaluation of the perturbation velocity potential in the vicinity of
rectangular wings with symmetrical biconvex airfoil sections and the
corresponding perturbation velocity potential for delta and modified-
delta wings with wedge airfoil sections. For the sweptback-wing cases
with airfoil sections of arbitrary thickness distribution, the well-
known superposition procedure can be employed by using the given formulas
with appropriate values for the parameters substituted therein. A graph-
ical presentation of the mechanics involved in superposing the basic
solution is given in figure 6. Note that each component part may be
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directly evaluated from the expressions presented in equations (6) and
(19) to (27) and those given in appendix A.

In connection with the formulas applicable for the sweptback wings,
it should be pointed out that for the special conditions of B cot A =1
(sonic leading edge) and P tan ® = o (unsvept trailing edge) the func-
tions of appendix A are simplified to consilersble extent by conventional
procedures. The following relationships should be used in the event
certain terms (for convenience denoted by N) take on imaginary values:

For |N|<1,

cosh—lN = i cos™IN
(36)

cos~1N = -i cosh™*y

and, for lNl > 1,

cosh_lN = ~i cos'lN
(37)
cos™N = i cosh™IN

Care should be exercised in extracting only positive roots from radical
terms. To minimize the possibility of errcrs in the final formulas, all
derivations have been checked analytically by independent means and also
checked numerically by graphical integraticn procedures.

The formulas presented for the perturbation velocity potential may
be differentiated by either numerical or analytical procedures to cbtain
the various velocity components which in turn will enable the direct
evaluation of flow-field effects on neighbcring airplane or missile
components. An approach that has proved tc be very efficient consists
of computing the potential function and 1te variation along a given
direction and then measuring the slopes either graphically or numerically
to obtain the desired velocity component.

CONCLUDING REMARKS

Expressions based on linearized supersonic-flow theory are derived
for the perturbation velocity potential in space due to wing thickness
for rectangular wings with biconvex airfoil sections and for arrowhead,
delta, and quadrilateral wings with wedge-type airfoil sections. The
complete range of supersonic speed is considered subject to a minor
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aspect-ratio—Mach number restriction for the rectangular plan form and
to the condition that the trailing edge is supersonic for the sweptback
wings. The formulas presented can be utilized in determining the induced-
flow characteristics at any point in the field and are readily adaptable
for either numerical computation or analytical determination of any
velocity components desired.

Langley Research Center,
National Aercnautics and Space Administration,
lengley Field, Va., December 24, 1958.
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APPENDIX A

MATHEMATICAL CONDITIONS AND FUNCTIONS PERTINENT TC EVALUATION
OF VELOCITY POTENTIAL FOR SWEPTBACK-WING CASES
In order to determine the specific sweptback-wing case applicable

for a given point (x,y,z), the following mathematical conditions may be
utilized:

Case I:
Mg < 0 < T
e and ng are imayrinary
Case II:
—%<nc<0
g < g
Case III:
- g < Ne <0
ng > %
Case IV:
0 < Ne < b« u
2
Case V:

0 < Ne < N4 < h
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Case VI:
b
< -2
U™ 5
b
> =
o 2
Case VII:
O< o< . <2<
e Ne > Mg
Case VIII:
O< Ne< . < ny <l
U3 Ne Ma 5
Case IX:

O< < < %
Me 8&nd 7y are imaginary

The various 17 functions referred to in the preceding conditions are
defined by equations (9) to (14) in the text.

The formulas for the perturbation velocity potential ¢ are pre-
sented for the various cases in equations (19) to (27) in the text.
The functions F; to Fg are used therein for purposes of simplifica-

tion and are defined as follows in terms of the nondimensional space
coordinates X, ¥y, and z and the plan-form—Mach number parameters A

and m (where A = AB and m = B cot A):

- —_ - - - - - —2( -~ -
F, = hmx - Ay cosh~! Lbx + Ag - % ten~t szl6x2 - A\(y2 + 22) +
Kﬂl - o (bmx + B5)° + B 22(1 - n2) K(iz + 72) + gy
- - - - _ - 2 =2 -2
k% - Ay cosh-1 bz - Amy -~ 5 ten-l m%\(l6x - A (y2 + Z ) (A1)

AlL - w? \](umz - F)F + B2 - n2) K(iz * 52) - bmky



1k

bm(x - 1) + (& - 4m) W& - 1)(F - bn) + B

Fp cos-1 N
¢m2<§2 - 16) + 8w - K K\/[hm(i S1) e g(E - )] © - ZE{mz(;ge - 16) + O - Ke]
Z tan-l “‘Evls("‘ -1 -\KQGE v28) L mz\[l_az - 1) - NCGREII
& - (3% + %)+ milx - 1) & - (57 + i) - gl 1)
Mm% - 1) - §(& - 4m) 6% - 1) - tm) - Booy
Vma(ﬁe - 16) + 8 - K K\jfhm(z 1) - 3 - )] - 22{}12@2 - 16) + &m - xﬁ]
o b o Ey o bak - R+ &P() - §) + tanl \ﬁmx B - el - 9« P
5 = - cos + Al .
Kvl -l mvi‘rsmi - Ky)e + K'?ZQ(l - m2) Kl:zz - y(l - y)] + bog(l - §)
bm(x - 1) - (K - 4m) .1 (E - bm)(bmg - K) + Bu2(l - §) .
deK_Q S 16) ¢ B - B To|fin(x - 1) - §(F - ) © - zE[mz(r? - 16) + 8 - x‘?Jl
L Zﬁmi -B° - K%E[(l S 59}
Z tan”
(K - w22 - 51 - 9)] + dm(z - DL - 9)
. € )+ 3(E-bo) oo (K - dm)(box - K) + En2(1 + 3) ]
{n2(& - 16) + 6Fm - ¥ Fol|[im(% - 1) + 9(& - bm) © - 22[m2(\}.'2 - 16) + 8Fm - 1@]
E\khmi S1? - Bl e 502+ 2] m: + Ky L bR - KRR+ )
z tan-1l - — cosh™
(X - l&m)[ig + ¥1 + S')] + (X - 1)(1 + §) KV, - me mV(um;( . 527)2 . 3252(1 - m?)

o i\j(T' CB)2 - P [(1 c 524 22]

K[ae + 31+ y)} + hmi(1 + §)
Fs = bo(% - 1) - §(E - bm) |
Jm (Ke - 16) + 8Fm - K¢

bux - AF -
Fg = _ 3lx

4

3

tan

+

(A2)

(ak)

(A35)

(a6)
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APPENDIX B

MATHEMATICAL CONDITIONS AND FUNCTIONS PERTINENT
TO EVALUATION OF VELOCITY POTENTIAL FOR
RECTANGULAR-WING CASES
In order to determine the specific rectangular-wing case applicable
for a given point (x,y,z), the folloving mathematical conditions may be
utilized:

Case I: Xx<c+ Bz

b b
" 5<Ma<m <3

Case II:
b b
For x < c + Bz, -3 < Mg < 5 < T
b b
For x> c + Bz, "3 < g < > < Me
Case IIT:
b
na<-'2_
For x < c¢ + Bz,
b
> 2
o 2
b
< -2
Na 5
For x > ¢ + Bz,
b
>2
Ne >
Case IV:

X > c + Bz

b
T2 M < <3
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Case V:
b
< - 2
Me 5
b
ng > =
4”5
Case VI:
< - E < < < <
Mg <~ 5<Me<Mg<3<My
Case VII1:
b b
-3 < Mg < Me < 5 < g
Case VIII:

The various 7 functions referred to in the preceding conditions are
defined by equations (15) to (18) in the text.

The formulas for the perturbation v:locity potential ¢ are pre-
sented for the various cases in equations (28) to (35) in the text. The
functions G; to Gpi are used therein for purposes of simplification
and are defined as follows in terms of tie nondimensional space coordi-
nates X, ¥, and Z and the aspect-ratio——Mach number parameter A
(where & = AB):

g
- J - -1 2%
Gy = (1 - 2%) (L - F)cosh -

Kwy- 1)2 + 22

1 2212 - 252) - (5 - 1)2(4z2 + 2:2)

z
— COSs -
2
(122 - 222) Bg - 1%+ 22]
- — /- 2 =2 w22
éé cos-1 2A°(y - 1) ——ex + A7Z (B1)
A kg2 - 22
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Go = (1 -2%) (1 - y)cosh-l 2X +
KW{; - 1)% + 2°
E gog-l 22(1+>‘<9 - K’EEQ) - (7 - 1)2(1+;'<2 + K222> .
: (15:2 - K‘?z?) [(y - 1)% 4 22]
) 2 2 .o . 2.0
% Cos_l EK (y - l) - hx + A Z (BE)
A 4z2 - 3552
] > 2.0 o
-7 - l\/u;@ - KE[(y -1)% z] GECET 1 B (a)
2A b2 - K5
-0 —2_2
[X “AZ (- 21)%1 (BY4)
o >
(1 - 2x)2ZX (85)
A
(1 - 28) {(1 - §)cosh™t 2(x - 1) -
K%& - l)‘2 + 22
Z ool 22@(2 - 1)% - 3222:\ - (5 - 1)2E+(i - 1)% A—2'Z2:|
— COS -
. E+(;c - 1)° - 2\'222] Ey - 1)+ 22]
- —2,_ 2 - 2 —2-2
x—lcos_la(y-l)-h(x—l) + A Z (B6)
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2(g - 1)

—_— +

Gy = (1 - 28) { (1 - §)cosh™t
. A3 - 1)2 + 22

. 22@(,-( - 1) —2-2] - (5 - E[h(i - 1)% 4 K222:| .

% cos”
E&(x—l) ‘22][(;-1) ]
-1 __ 1 oE°(§ - 1)° - k(% - 1)° + K%z (7)
A Wz - 1)° - E°z2
6g = Lo t\lhx - 1)2 - BP|(5 - 1)2 + 22| +
2
W% - 1)° - B%z2 el A&F - 1) (88)
2A VA(;( - 1)2 - 1%82
Gg = (1 - 25()% (B9)
Gip = (L - 2%) ¢(1 + §)cosh™1 2X -
I\/(Sr + 1)2 v g2

-1 zg(hx - A 22) - (¥ +1) (l&\c + A _222) }

%co
(hx - A% [(y+l 2]
- 2 D 2D
% goq-1 2E(g + 1)° - A2 (B10)
A Lge - Ez°
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sin-1 _A(_V_J“__ll_ (B11)

W2 - E°g2

[ep]
—
H
1]
<1
+
}_l
%
=
N
!
|
n
Py
<
+
'_l
A
AV
+
ST
LMy
+
-
E]
\V]
1
=g
o
o

Gro = (1 - 2%) ¢ (L + F)cosn™t 22X = 1)

KV(S’r + 1)2 + 3°

L7 E(i -1)2 - Txez2] -5+ 1)2[u(i - 1)2 4 1252]

Z o -
° [u(sc - 1)2 - KEEQ] [(& +1)% 4 'z'g]
X -1 o1 2K2(3‘r + l)2 - Mz - 1)2 + BonR (B12)
Wz - 1)% - B22
G5 = LT 1\/u(z IR S [C L] I
1% 5
Mz - 1)° - B°22 cin-1 A(y + 1) (B13)
2R ‘/h(}_c S 12 K252

Gyy = (1 - 2%)(x - 1)%T (BLY)
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