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SUMMARY

This report describes a technique which combines theory and
experiments for determining relaxation times in gases. The technique is
based on the measurement of shapes of the bow shock waves of low-fineness-
ratio cones fired from high-velocity guns. The theory presented in the
report provides a means by which shadowgraph data showing the bow waves
can be analyzed so as to furnish effective relaxation times.

Relaxation times in air were obtained by this technique and the
results have been compared with values estimated from shock tube measure-
ments in pure oxygen and nitrogen. The tests were made at wvelocities
ranging from 4600 to 12,000 feet per second, corresponding to equilibrium
temperatures from 3590° R (1990° K) to 62006 R (3440° K), under which
conditions, at all but the highest temperatures, the effective relaxation
times were determined primarily by the relaxation time for oxygen and
nitrogen vibrations.

INTRODUCTION

The effects of molecular vibration and dissociation upon the
thermodynamic properties of air (and its constituent gases) at elevated
temperatures have been extensively studied, and accurate tabulations of
the properties of air have been made at temperatures up to 15,000o L
assuming that the air is in chemical and thermodynamic equilibrium
(see refs. 1, 2, and 3). However, when the gas density is low and local
velocities are high, or when temperatures vary rapidly along streamlines,
the assumption of equilibrium can not necessarily be made, and the rate
of adjustment of the gas properties must be taken into account.

It is known that when air is heated suddenly in strong shock waves,
the translational and rotational degrees of freedom of the molecules
adjust to the new state with essentially no time lag, and that the
molecular vibration and dissociation adjust considerably more slowly
(ref. 4). When the latter type of adjustments require a time that is of



the same order as the time required for the gas particles to traverse a
flow field being studied, it may be important to know accurately the
magnitude of this time, since the flow can be significantly influenced
by it.

Theories for calculating the variations in gas properties in
nonequilibrium flow through normal shock waves have been investigated by
various authors: the relaxation of molecular vibrations in oxygen and
nitrogen in reference 5; and oxygen dissociation relaxation in references
6, 7, and 8. Reference 5 indicates that the mechanism of the relaxation
process for vibrational excitation in a pure gas can be described theo-
retically. Even for this comparatively uncomplicated process, however,
the existing theory does not provide complete information for calculating
numerical values of relaxation time, and experimental results are needed
to evaluate collision cross-section constants appearing in the theory.

At higher enthalpy, when the relaxation involves chemical reactions, and
when the gas is a mixture, as in the case of air, the theory is consider-
ably more complex, and is not generally sufficiently precise for use in
solving flow problems, where accuracy is essential. Consequently, it is
desirable to have available experimental results indicating relaxation
times for a wide range of enthalpies and gas densities, for use both in
solving engineering problems in gas flow and in evaluating the theory.

The technique that has been employed in obtaining practically all
existing relaxation time data at high enthalpy has been to measure in
shock tubes the variations with distance or time of the local gas prop-
erties in the region just behind the advancing shock wave (see refs. 5,
Oevemid 10) .

This report describes another technique for obtaining relaxation
times from experiments which, for certain test conditions, may be more
convenient than the shock tube tests. The technique consists in firing
from high velocity guns cone-shaped models of low-fineness-ratio and
recording the shape of the bow shock wave. Effective relaxation times
are then calculated from the wave shape data using a theory developed by
D. R. Chapman that is presented in this report.

Tests were conducted to obtain relaxation times in air. At the
model velocities of the tests, the enthalpy behind the bow shock waves
was such that the nonequilibrium effects were due primarily to the
excitation of oxygen and nitrogen vibrations. Relaxation times for
vibrations are available from shock-tube tests for these two gases
(ref. 5). In the present report, the results from the shock-tube tests
in pure oxygen and pure nitrogen were used to estimate effective relaxa-
tion times in air, and these times were compared with those determined
from the tests described herein.

A limited amount of data was obtained in which small effects of
oxygen dissociation could be observed on the bow wave shape. However,
such data were not sufficiently precise to permit the calculation of
relaxation times for the dissociation.
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NOTATTON
pressure coefficient
enthalpy
Mach number
pressure
radial coordinate parameter, #%f

(o)
radial coordinate

slant length of cone

Reynolds number, also gas constant for unit mass

model radius 8

temperature ratio across shock wave, %ﬁ, also time
absolute temperature

mean temperature, between frozen and equilibrium values
free-stream velocity

resultant velocity in region between solid cone and shock wave
average velocity behind shock wave

velocity components behind shock wave

maximum possible velocity, expansion flow

resultant velocity just behind the shock wave

distance between actual shock wave and reference shock wave
(see fig. 2(b))

distance from solid cone surface (see sketch (a))

distance between shock waves for frozen and equilibrium flow at
the distance r, along model cone (see fig. 2(b))

compressibility factor




streamline angle behind shock wave

h,/h
enthalpy ratio divided by temperature ratio, _27_&
BT
2 g 4

ratio of specific heats for ideal gas

effective ratio of specific heats (see eq. (A21))

yaw angle of solid cone

yaw angle of bow shock wave

boundary-layer displacement thickness

angular coordinate of bow shock wave

bow shock wave angle for equilibrium flow

bow shock wave aﬁgle for frozen flow

solid or model cone half angle

difference between shock wave angle and solid cone angle, 6y - 64
density

increase in apparent shock wave angle due to projection, ep - Oy

relaxation time
Subscripts

equilibrium

efflective

frozen flow

oxygen in equilibrium, nitrogen frozen
normal shock wave

nitrogen

oxygen
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P uncorrected for projection effects

s model cone surface

S constant entropy

5 parallel to shock wave

W bow shock wave

(o) standard air conditions (1 atm., 590 F), also reference conical
flow

i 3 free stream

2 behind the bow shock wave

METHOD OF EXPERIMENT AND ANALYSIS

The excitation of the internal degrees of freedom in a gas with high
total enthalpy is evident as an increase in the specific heat and, when
dissociation occurs, also as an increase in the compressibility. The
effect of the increased specific heat is to decrease the temperature in
the flow behind a shock wave compared with that of an inert gas at the
same enthalpy. The density then increases approximately inversely with
the temperature, while the pressure in most cases of flow through shock
waves is relatively unaffected by the excitation of molecular vibrations
and by dissociation. This increased density is opposed to a small extent
by the effect of the increased compressibility accompanying dissociation.

In the case of a two-dimensional oblique shock flow, in order to
satisfy continuity requirements, the increased density of real air behind
the shock wave results in a reduced total stream tube cross section
between the shock wave and the solid surface, so that for the same flow
turning angle, the shock wave must assume a more acute angle with the
flow direction. The same is true for a cone. The geometry of the bow
wave on a cone can thus be used as a measure of the state @f the air
behind the shock wave.

A cone of large included angle is a particularly advantageous model
for studying variations in gas properties, because the flow on a cone
with an attached shock wave is subject to considerably simpler and more
exact analysis than that on most other shapes adaptable to ballistic
types of tests, such as blunt bodies with detached shock waves.

A theory which relates the shock wave shape to the thermodynamic
properties of the gas is given for cones of large included angle in the
following section. It shows that in the case of such cones (selected so




that the flow is everywhere supersonic) the bow shock wave will be
conical if the gas is inert or is in equilibrium, and will be curved by
a predictable amount when nonequilibrium flow exists.

To provide the experimental shock waves needed for this investigation,
conical models of 52.50 and 55° half angle were launched from guns at
speeds up to 12,000 feet per second through still air at pressures selected
to give frozen, nonequilibrium, and equilibrium flows. The experimental
technique is further deseribed in a later section.

Theory
A
2
The theory on which the analysis of the tests is based was developed 2
at the Ames Research Center by Dean R. Chapman. Since it has not been 7

published elsewhere, it is presented in this report. This presentation

can conveniently be divided into three parts: (1) the calculation of the

bow shock wave cone angle for frozen flow, that is, for flow in which the
relaxation time is so long that none of the inert degrees of freedom *
(vibration and dissociation, in this case) are excited, so that the air
behaves like a perfect diatomic gas; (2) the calculation of the bow wave
angle for flow with the air in equilibrium behind the shock wave, corre-
sponding to a relaxation time of zero; and (3) the calculation of the bow
wave shape for nonequilibrium flow with various relaxation times between
zero and infinity.

Frozen flow.- Numerical solution of the Taylor-Maccoll equations for
flow on an infinite cone furnishes an accurate means of calculating the
geometry of the bow wave, as well as the various details of the flow field
between the bow wave and the solid cone for frozen flow. In reference 11,
such solutions are tabulated for cone angles up to 500. The approximate
method described in appendix A was used to obtain solutions for the
slightly larger cone angles required in the studies which are the subject
of this report. Figure 1 shows a comparison of the bow wave angles as
functions of Mach number calculated for frozen flow by this approximate
method and by the exact solution for two infinite solid cones, one having
a: half cone angle of 500 and on of 550. In this. figure the ordinate AD
is the diff¥frence between the shock wave semicone angle, 6y, and the solid
surface semicone angle, 65. It is evident that the bow wave angles
obtained in the approximate solution are very nearly the same as those
found from the exact calculations. ’

The exact solution for the 50o cone was obtained from reference 11 -
in which 7y is assumed to be 1.405, whereas for the 550 cone the exact
solution was carried out (by Chapmen) for a 7y of 1.400. The same values
of 7y were used in the approximate solutions to make these solutions -5
comparable with the exact solutions.




[l O 1 I =T

Equilibrium flow.- It is apparent from reference 11 that the
numerical solution for the flow on cones is lengthy and time-consuming
even when perfect gas relations are employed. If the actual thermodynamic
properties of air were included, solving the equations numerically would
be considerably more difficult? and the solutions would lack generality,
so that at any given Mach number, separate solutions would be required
for each combination of free-stream temperature and pressure. As a more
practicable approach to the problem of calculating the bow wave cone
angles and some of the details of the flow behind the bow wave, Chapman
investigated the approximate solution presented below. (Two other
solutions with similar objectives have been described in refs. 13 and 14.)
The solution is presented in terms of an "effective" ratio of specific
heats (7E) which is related explicitly to the thermodynamic properties of

the gas. The solid cones to which the calculations apply are chosen to
be as blunt as possible, consistent with the requirement that the bow
wave be attached and have a conical shape in equilibrium flow. This
bluntness leads to a flow which can be described to a high degree of
accuracy considerably more simply than the general cone flow. The
assumption is made that the temperature, density, and pressure behind the
shock wave are constant in the entire region ahead of the solid cone.

Expressions derived in appendix A relate the density ratio, the bow
shock wave angle, and the pressure coefficient behind the shock wave for
the flow of a hypothetical gas having a ratio of specific heats that is
constant across the shock wave and equal to T The expressions that

relate these variables are the same as those for a perfect gas. Because
of the way that 7g is defined, at any given temperature ratio +t, the

density ratio pl/p2 determined by equation (A22) for the hypothetical
flow is the same as that for the actual flow of the general gas given by
equation (A20). Equation (Al6), giving the shock wave angle, and equa-
tion (A23), giving the pressure coefficient, are the same for the actual
flow and the hypothetical flow, and so, since the density ratios are the
same, 6, and Cp are the same in the two flows (for the same solid cone
angles and temperature ratios). However, the enthalpy ratios are not the
same, and as a result, the Mach numbers of the two flows are different
and related by equation (A26).

As the first step in solving specific conical flow problems for the
general gas, the solution is obtained for the mathematically simpler
hypothetical flow, in terms of the effective y and the effective Mach
number. The solutions corresponding to semicone angles (GS) of 52.5%
and 55° are shown in figures 3 through 7. With these solutions in

lSubsequent to the derivation of relations and the evaluation of the
parameters for the cone flows pertaining to this report, reference 12
became available describing the numerical integration of the Taylor-
Maccoll equation for equilibrium flow which was programmed on an IBM TO4
computer. Such a solution, incorporating the proper free-stream conditions
and solid cone angles, had it been available could have been used to
obtain the cone-flow parameters required for the studies discussed below.




graphical form, as illustrated, for any assumed conditions which define
the states of the gas on each side of the shock wave, 4o is calculated

from equation (A21), and values of M, , 6y - g, and Cp are read from

E
the graphs. Then, from equation (A26) the free-stream Mach number of the
actual flow is obtained, and all of the required quantities have been
evaluated for the equilibrium flow.

Appendix B illustrates the calculation of the bow shock wave angle
and pressure ratio for a 52.50 solid cone at a free-stream temperature of
540° R at one Mach number and pressure. Results of this and similar
calculations for other Mach numbers and pressures are plotted in figure 8
which shows A6, the difference between the bow shock wave semicone angle
and the solid body semicone angle, as a function of Mach number. When
oxygen dissociation occurs, the equilibrium bow wave angle is a function
of the pressure, as indicated by the lower curves. The latter curves are
for constant pressure behind the shock wave.

Nonequilibrium flow.- In this section an expression is derived from
which the coordinates of the bow shock wave on a cone can be calculated
for nonequilibrium flow. This flow has the characteristic that the time
required for the gas to attain a density near equilibrium, after passing
through the shock wave, is of the same order as that required for the gas

particles to move a distance typical of the dimensions of the flow field
being studied.

In the following development, which first considers an infinite cone,

three assumptions are made: (a) the flow properties (p, u, h) between the
: bow wave and cone surface differ by
rse’f’:r'g:;e bg:nic';‘l"’eﬂo‘;f only a small amount from correspond-
/ ing properties in some reference

conical flow (py, Uy, hy); (b) this
reference conical flow (which could
be, e.g., either the frozen conical

Curved bow wave

corresponds to a cone angle 6g
sufficiently blunt that all proper-
ties pgy, Uy, hy are essentially
constant between the bow wave and

PpYy

O — 65 1s small compared to 6g

to the stream tube in sketch (a),
from the equality of the free-stream
mass flow in, Eﬁplulrw.singewdrw,
Sketch (a) and the flow out, 2wpur sin 6 4y,

and noting that pu may be expressed as a function of ry,

flow or the equilibrium conical flow)

cone surface; and (c) the free-stream
Mach number is sufficiently high that

(so that sin 6 = sin 64). Referring
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By applying this equation first to the nonequilibrium flow, then to the
reference conical flow, and subtracting (noting from assumption (c) that
sin 6 £ gin 6, = sin GWb) we have

p U - 4 pou, - pu
o <?w 3 Ywé) T \jf 'Eléif_—_'rwdrw (2)

U=, =dn 6
gt Yo o)

For a particle flowing along a streamline the flow properties are regarded
as a function of the enthalpy. From assumption (a) of small departures
from a reference conical flow,

ou = poig + |22 | (1 - 1) (3)
O

equation (2) becomes, upon disregarding second-order terms in the inte-

grand,
Polo Sh 1n < > fr hi- b e, ’
p U, [a(pu)]osin GWC ouo Ty (&)

The definition of relaxation time + dis taken as

he = h
%% == _— (5)

Since dh/dt = u dh/dr along a streamllne, this equation for constant T
and constant u = u, (assumptions (b) and (a)) mey be integrated between

gl o ang = r ‘Lo obtain

he= h = (Her= hw)e_(r - ry)/mio (6)

This equation shows that at r = o, h = hg, as should be the case, and
at r =ry, h =h, (by definition of h,). By noting that
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h ='hy = he - by - (b - h)

W
= hg - hy - (hg - b)e Tlo (7)
; u ; __rW Hcy
It follows from equation (4) that, with x = T and P = oo
¥ ¥ 2 =
I T o x-P
6 - 6o o AU IR0 £%\jp 1- %5———%E S x ax (8)
5 P= Yy e = o

Applying this now to the case of a nonequilibrium flow near a reference
frozen flow, hy = he, and hy will everywhere be nearly he so that

equation (8) integrates to

6 - 6, = CF(P) (9)
T (he = hy) pyu; sin O

2 <"f““f>2 [a?ﬁqu

F(E) =i -2 (e FPap-1) (10)
e

where C€C is a constant equal to

and

In the limit of frozen flow T - o, P » 0, and F(P) » (1/3)P, which gives
in the limit, F(0) = O, thus satisfying equation (9). We have

6 -0f  cR(P) (11)

e — 0 B¢ - Of

so that in the opposite limit of equilibrium flow, Tt = 0, P = ;ﬁg - oo,

and 6 must approach 6. We use this requirement to evaluate C from
the above equation (noting that F(w) = 1).

&
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consequently,
g .~.8
- f_F(E)=1-2 (¢ +P-1) (13)
e~ O P
or
i
SR B T (14)
(R Ere, P

This furnishes an expression from which the coordinates of the bow shock
wave on an infinite cone can be calculated when the gas behind the shock
wave is not in equilibrium.

Oy =~ 6e _ 2 <e—r/'ruo S > 05
Qf = ee (r/Tuo)2 s T, ( )

In this equation 6, 1is the angular coordinate and r is the radial
distance to points on the shock wave. Also, u, 1is the average velocity
in the flow behind the shock wave, and T 1is the relaxation time. In
the derivation presented, T is the time required for the enthalpy of the
gas to reach a specified fraction of its total variation from frozen to
equilibrium. If + 1is assumed to be a constant during the relaxation,
this fraction corresponds to the state when the value of the state param-
eter deviates by l/e times the initial deviation from the equilibrium
vallpes

It is convenient to alter the form of equation (15) slightly in
applying it to the case of finite cones. In this altered form, the
distance ratio y/y, 1is calculated as

B Moy~ el 2

b O - O/ Tp
As indicated in figure 2(b), y is the distance measured from the equili-
brium shock wave to the curved shock wave at radial distance r, and ¥,
is the distance between the frozen and equilibrium shock waves at radial
distance 1. This distance ratio y/yb has been calculated and is shown
graphically in figure 9 as a function of the radial coordinate r/rb for
values of the reciprocal relaxation distance ratio rb/Tuo from zero to
infinity. At the extreme values of this ratio, zero and infinity, the
solutions coincide, respectively, with the solutions for frozen and
equilibrium flow behind the shock wave.
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Experiments

The theory presented in the preceding sections shows that, from
information on the included angle of the bow shock wave of low-fineness-
ratio cones, the state of the gas behind the shock wave can be deduced,
and in cages where the relaxation adjustments in the gas occur in a
portion of the flow which is comparable in size with the region of flow
on the conical portion of the model, the relaxation time in the gas can
be estimated from the contour of the (curved) shock wave. Experiments
were undertaken in which the state parameters of the gas would vary
appreciably between the equilibrium and frozen states, and test conditions
were selected for which it was expected that nonequilibrium flow would
occur. The experiments consisted of launching conical models (of 52.50
and 550 half angle) in free flight at high velocity in the Supersonic
Free-Flight Wind Tunnel. The following information was required from the
experiments: (1) well-defined pictures of the bow wave from which the
wave shape or wave angle could be measured and (2) measurements of the
free-stream air properties and the total velocity with which the measured
wave geometry could be correlated.

Apparatus and models.- The pictures of the bow waves were provided
by spark shadowgraphs which are obtained at each of nine instrumented
stations in the wind tumnel test section (see ref. 15). For the tests
reported, three smooth-bore guns were used to launch the models: a
l—3/h-inch—bore powder gun, a 37-mm light-gas gun, and a caliber 50 light-
gas gun. The latter two used helium (compressed in a shock-tube reservoir)
ag Sthe“propeliliant; as‘deseribed in: referenee 15.

The models, examples of which are shown in figure 10, were short
blunt cone-cylinders, the forward portions of which were machined from
aluminum alloy and were bonded to the cylindrical nylon rear portion with
an epoxy resin. (It appeared that screw fastenings between the parts
would often promote model breakage in the gun, as a result of stress
concentrations.) The flared afterportions of two of the models in
figure 10 (which were for use in the light-gas guns) sheared off before
the models left the launch tubes.

The models were accurately measured and inspected with a contour
projector (at 20x magnification), and only those models were used which
had exact straight-sided cones without bluntness or concavity. Slight
variations of the included cone angle from the nominal angle were noted,
amounting to a maximum of 0.2°, but because of the way in which the data
were analyzed, these variations had no effect on the results of the tests.

Tests.— The majority of the data presented in this report has been
obtained by firing the models into still air at pressures ranging from
1 atmosphere to 0.057 atmosphere, and at velocities between 7,260 and
12,000 feet per second. In these tests the static temperature of the air
was about 530O Re .

v
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Tests were also conducted by firing into a supersonic air stream of
Mach number 3 in the Supersonic Free-Flight Wind Tunnel, which is
described in reference 15. In these tests, for which the air stream
static pressure was approximately 0.10 atmosphere and the static tempera-
ture was approximately 1900 R, data were obtained at Mach numbers from
6.79 to 13.55, corresponding to equilibrium temperatures behind the bow
shock wave ranging from 1510° R to LL60° R.

A relatively large number of rounds were fired in the test program
but the amount of data obtained was not large, primarily because of two
problems: breakage of the model in the launch tube, and oscillations of
the model attitude in flight. The oscillations were particularly trouble-
some when the models were fired into a partial vacuum. In this case the
gun muzzle blast often produced a large disturbance to the model attitude,
and periods of oscillation were so long that at the instants when the
shadowgraphs were recorded, the probability that the model would be at a
small angle of attack was low.

Reduction of data.- The data obtained in the tests consisted of the
time-distance histories of the model flights, together with spark shadow-
graphs at the nine instrumented stations. With (the Mach number 3) air
flow in the test section, the free-stream conditions were determined from
measured temperatures and pressures in the settling chamber in conjunction
with the wind-tunnel calibration.

At each station the angles of yaw and pitch of the models were
measured from the shadowgraphs and plotted to reproduce the pitch and yaw
historieg of the flights. These plots were inspected in omder to select
the shadowgraphs in which the model was at a sufficiently low angle so
that the measured bow wave shapes would be very nearly the same as those
for the model at exactly zero angle of attack. As a guide to the maximum
permissible angles of attack, the effect of yaw on a conical bow wave was
considered. According to references 16 and 17, the bow wave of an infinite
cone in flow with constant ¥ (7 = 1.405) remains a circular cone with
wave angles unchanged even at relatively large angles of yaw. Only a
second-order solution indicates a small eccentricity to the circular cone
wave shape. Reference 16 also shows that when the solid cone is yawed,
the axis of the bow wave cone is generally no longer coincident with the |
solidicome axig. This is dllustrated in figure 1l where ithe ratiogiof ‘
the yaw angles of these axes are plotted as functions of the solid cone |
semivertex angle 6g. |

When yawing of the model is moderate and occurs only in the plane
parallel to one shadowgraph film plate, the included angle of the bow
wave in the shadowgraph is (according to the solution in which y is
constant) the same as that for zero yaw angle.

In addition to the possibility of an aerodynamic effect of yaw, an
optical effect is present such that in a plane normal to the plane of
yawing, a shadowgraph plate will record the projection on that plane of
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the bow wave which has an apparent angle Gp larger than 6,; according
to the relation

cos 8 Neot®e,, - tan"d

tan ep =

8in®d - cos®d cot26W

where O 1is the yaw angle of the bow wave. The difference between the

actual shock-wave cone angle, 6, and the projected angle, Gp, o= ep - Oy

is plotted in figure 12. By the use of figure 11, extrapolated to include
model cone angles of 52.5° and 55° and figure 12, it was generally possible
to select shadowgraphs from most of the test flights in which the effect
of this type of distortion would be less than 0.10°. A correction to the
data was applied when the effect of this distortion was significant.

Spark shadowgraphs which showed well-defined bow waves and met the
requirements that the model yaw was small were selected and accurately
measured. Typical shadowgraphs are shown in figure 13. The coordinates
of a series of points along the front of the bow wave image were read
parallel and perpendicular to the bisector of the bow wave. A film-reading
machine fitted with a microscope was used to measure the coordinates, -
which could be read to an accuracy of 0.001 inch in the streamwise direc-
tion and to 0.005 inch laterally. Figure 14(a) shows an example of the
bow wave contour that was read from a shadowgraph in this manner and
plotted.

The bow shock waves in the shadowgraphs were not always symmetrical
about a bisecting axis, but instead had different curvatures on the two
branches. Sometimes the reasons for this asymmetry were not evident, but
in other cases it could be attributed qualitatively to the effect of a
small yaw angle, which would, in nonequilibrium flow, produce different
rates of excitation of the vibrations and dissociation on the two flow
regions, the higher temperatures and pressures on the windward side causing
a decrease in the relaxation time. Because the theory that has been devel-
oped required the assumption that the wave angles are symmetrical, when
the bow wave was not symmetrical the curve was oriented symmetrically
about the outer portions of the curve (just inside the estimated position
where the model shoulder would influence the flow).

To calculate the relaxation time from the bow-wave data, the
procedure described below was employed. This calculation is slightly
indirect, but it tends to smooth errors in the location of individual
points on the bow wave. Coordinates of the points read from the original *
shadowgraphs were transferred by simple rotation of the axes, so that the
outer portion of the bow wave would be symmetrical about the horizontal
axis. Polar coordinates of each point were calculated based on a location
of the origin at the apex of the bow wave cone. An exact determination
of the location of this apex sometimes proved to be the prinecipal factor
in limiting the accuracy of the final results. Although the models were
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all examined carefully before firing to see that they were truly conical
and not blunted or excessively pointed, some of the shadowgraphs evidenced
local distortion, refraction effects, fuzziness or other causes of indis-
tinet definition near the apex which would introduce errors. When it
appeared that such an error might be large, the shadowgraph involved was

not used.

The polar coordinates of the points on the bow wave then were plotted
as 0Oy as a function of radial distance, r/rb. This type of plot, shown

in figure 14(b), was generally erratic near the origin, at r/rb less
than sbout 0.3, but became relatively smooth and consistent as the radial
coordinates increased to unity. A curve was faired through the portion
of the plotted points that defined a consistent relation, treating the
upper and lower branches of the bow wave separately. From these two
curves, a single mean curve was drawn to represent the best symmetrical
average bow wave contour. At two or three values of r/rb between 0.6

and 1.0, the polar angle 6,, was read from this single curve and y/yb
was computed from the relation

FL P Bein
Yp Of - B Tp

This value of y/yy, together with the corresponding coordinate r/ry,

locates a point in the graph, figure 9, which determines a value of the
parameter rp/Tu,. The relaxation time then is

Eafipns
Tp/Tuo/ o

In this relation u, is the average particle velocity along a streamline,
starting at the shock wave and extending downstream to a point where the
gas is close to equilibrium or is leaving the region being considered.

The calculation of an accurate value of u, 1is complicated by the

necessity of knowing the details of local variations of the state of the
air which in turn are functions of relaxation time. Preliminary calcula-
tions indicated that the value of u, obtained assuming that the air
reached equilibrium with no time lag would not be greatly different from
the value obtained assuming frozen flow with a bow wave angle equal to
that for the equilibrium flow. Thus the calculation for the case of
frozen flow would correspond to a solution for a more slender solid cone
than that of the actual model, but for the same free-stream Mach number.

It was estimated that the value of 158 determined in this manner would

be aceurate within 5 percent. ZFrom this it appeared that the degree of
approximation involved in using this value of wu, would be well within
the accuracy of the measurements for determining values of T; therefore,
this wvalue of u, Wwas used in reducing all of the data.
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Boundary-layer effects.- The possible effects on the bow shock wave
shape of the boundary layer on the conical model surface were investigated.
In appendix C results of calculations are presented and discussed which
show the maximum magnitude of the boundary-layer displacement thickness
and the estimated effect on the bow wave angle in conical flow. On the
basis of these estimates, it was concluded that the boundary layer had
only a very small effect on the bow wave shape in practically all of the
tests from which data were derived, and so no correction for this effect
was made.

RESULTS AND DISCUSSTION

Figures 15(a) through 15(d) show the experimental data that were
used in the calculation of the relaxation times. In these figures, as
in figure 8, the ordinate A9 is the difference between the angular
(polar) coordinate of points on the shock wave and the half angle of the
solid cone. Each pair of symbols Jjoined by a solid line corresponds to
a separate shadowgraph. When the two symbols are not coincident, the
bow wave had curvature and the wave angle was measured on the shock wave
at locations ranging from a point near the apex to a point near the
maximum model radius. A total of 20 model shots is represented by the
data shown in figure 15.

In addition to the experimental data, figure 15 shows (as in fig. 8)
the curves calculated from the theory for frozen flow, flow with the
oxygen vibrations fully excited, flow with dissociation frozen, oxygen
and nitrogen vibrations fully excited, and flow with vibrations and
dissociation in equilibrium.

Figure 15 shows that most of the data lies in the region between the
curves for frozen and for fully excited equilibrium flow. From this it
is inferred that a major portion of the data contains regions of non-
equilibrium flow. Since the data shown were obtained at various free-
stream pressures, and since the relaxation time is a function of the
local pressure (and the local pressure is a function of the stream pres-
sure), it would not be expected that the data would lie on a continuous
curve, unless the flow were either frozen or in equilibrium (without
dissociation). The bow wave shapes predicted from the theory and shown
in figure 9 indicate that all of the bow waves for nonequilibrium flow
become coincident with the wave for frozen flow as the apex is approached.
Such coincidence of the maximum values of the wave angles with the values
corresponding to frozen flow is not generally evident in the experimental
data, primarily because accurate measurement of the wave angles could not
be made from the shadowgraphs in the region near the apex (see fig. 14(b)).

In most of the tests, the effect of dissociation was slight, and even
at the highest temperatures (i.e., at the highest velocities), dissociation
would produce less than a third of the possible variation of 6. between

=~ NN
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frozen and equilibrium at the available range of pressures of the tests:

60 to 5.7 atmospheres behind the shock wave. It became evident that this
limited amount of data applicable to oxygen dissociation would be inade-—

quate for the determination of the relaxation time for this process.

Experimental Relaxation Time

Reference 5 presents a discussion of the caleulation of vibrational
relaxation time from the theory of Landau and Teller (ref. 18) based on
general quantum considerations. It is shown that Tp, the product of the
relaxation time and the pressure of the relaxing gas, is a function of
the temperature and of certain characteristics of the gases, including
the collision cross sections and the characteristic temperature for
vibration. For any one gas then, the theory shows that the relaxation
time can be presented as a single curve, Tp as a function of temperature.
When the results of the tests are presented and compared with shock-tube
results in this report, the product Tp is therefore used as the relax-
ation time parameter. In figure 16 it is plotted as a function of the
average temperature defined as follows,

'—'_Te+Tf

k-

where T, 1s the calculated equilibrium temperature behind the shock
wave and Tp 1s the temperature calculated assuming frozen flow in which

the shock wave angle is the same as the angle in the shadowgraph from
which the relaxation time is determined. The relaxation time parameters
were obtained from the shadowgraph data as described in the section on
reduction of the data. The circular symbols denote the tests in which

the models were fired into still air and the triangular symbols denote
tests with the models fired into the supersonic air stream of Mach

number 3. Symbols joined by vertical lines are from single shadowgraphs
which yielded different relaxation times depending upon the radial position
along the bow wave that was selected. The data shown were measured at
three such positions, at the distances O. 6rb, O.8rb, and ry from the apex

outward along the bow wave, Table I provides additional information (such
as the local pressures and the equilibrium temperatures) pertaining to the
data in figure 16.

The triangular symbols in figure 16 (representing data obtained when
the models were fired into the supersonlc air stream) shown at temperatures
of 1785° K, 1860° K, 2740° X, and 2830° X indicate somewhat longer relaxa-
tion times than those predlcted corresponding to larger angles of the bow
shock wave than those calculated from the shock tube relaxation time data.
A similar result is indicated in table I and figure 15(b) at a Mach number
of 6.79 (and a temperature of 830° K) for which the recorded bow shock
wave angles were everywhere greater than the cone angle for frozen flow.
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Apparently, when the models were fired into the supersonic air stream,
the data are influenced by factors other than just the relaxation time.

Data shown in figure 16 and table I at four temperatures (1860°,
2220°%, 3550°, and 4030° K) indicate that the value of Tp varied
considerably, depending on the choice of the portion of the bow wave
upon which the calculations were based. This large variation corresponds
to a large amount of curvature of the bow wave, the cause of which could
not be ascertained but which may be partly a result of large yaw angles
(up to about 4.4°) that were recorded when some of these shock waves were
photographed, and partly a result of inaccuracy due to poor definition of
the shock wave in the shadowgraphs. Contributing to the lack of definition
were: occasional underexposed pictures resulting in poor photographic
contrast; occasional fogging of the film plates by the gun muzzle flash;
finite light duration causing a blurred shock wave image; finite size of
the spark source which reduced image sharpness.

The remainder of the data obtained with the models launched into
still air and one set of data obtained using the supersonic air stream
(shown in figure 17 at a temperature of 2090° K), indicate reasonsably
consistent values of Tp as a function temperature.

Comparison With Results of Other Tests

Figure 16 also shows the vibrational relaxation times for pure oxygen
and pure nitrogen measured in the shock tube tests described in refer-
enee 5.,  Itrig scen that for nitrogen Tp is greater than for oxygen by
more than an order of magnitude. It would be expected from this that the
relaxation of air would not occur as a single process, but instead might
be two processes: Tfirst, the excitation of the oxygen and an approach to
a quasi-equilibrium state in which the nitrogen is almost frozen, and then
as the excitation of the nitrogen progressed, an approach more slowly to
complete equilibrium. If the processes actually took place separately in
this way and if the flow distances were of the proper length, the bow wave
shapes would show separate effects which could be identified with each of
the two processes. Attempts to identify such effects in the shadowgraphs
were not successful, however. The values of Tp shown in figure 16 for
the tests described in this report were calculated as if the relaxation
were a single process, and, therefore, Tp 1is an effective or apparent
relaxation time parameter which characterizes the combined process in air.
Since a comparison with shock tube results was considered one of the objec-
tives of the experiments, similar "apparent" relaxation times were calcu-
lated from the shock tube data. They are referred to in the following
discussion as the predicted relaxation times.

The predicted effective relaxation times in air have been calculated
by two methods; in both the air is considered to be a mixture of oxygen
(21.4 percent) and nitrogen (78.6), and the assumption is made that the

N N =
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variation of the state of the gas mixture in the relaxing process is the
sum of the variations of the states of component gases, as if they were

not mixed. In the first method, which does not depend on the gas flow,

the calculated relaxation time is defined as the time required for the
mixture to vary its temperature (and density) from frozen to a specified
fraction of the total change between frozen and equilibrium. In the

second method, the bow shock wave is constructed and an apparent relaxation
time is calculated from this shock wave.

In using the first method, it is assumed that the density variations
of the oxygen and the nitrogen can be expressed separately as exponential
functions of time, so that the variable density of the mixture is given
by the following equation.

<OM - Pey > > =t/Tq =t/
Pey Pr,/ \"em ~ Piy <peo & pfo> (pel\T iy pr>

where the subscript M refers to the gas mixture, O refers to oxygen
and N +to nitrogen. When t is equal to the relaxation time Tv?
(p - pr is equal to l/e(peM - pr), according to the definition of

(16)

that has been mentioned previously. Since the mass fractions of the two
component gases are constant, so that

peo = 0.21k4 peM, peN = 0.786 peM
P = 0.214 p 3 o) = 0.786 p
%o v Iy Ty
equation (16) may be written
0.21k4 <e_TMp / TOP) + 0.786 <e_TMp / TNP> = 0.368 (17)

If values for Top and typ are taken from the figure 16 (for oxygen
vibration and nitrogen vibration, respectively), noting that ToP is
approximately equal to 0.0k TP, €quation (17) reduces to the relation

o TP = 0.759 T.p (18)
M N

This is shown as the dashed curve in figure 16. Essentially the same
relation as equation (18) is obtained if the relaxation time of the
oxygen is assumed to be zero.




20

The predicted relaxstion time for air, calculated by the second
method is described in detail in appendix D. The shape of a bow shock
wave is calculated and from this wave shape, the relaxation time t and
the parameter 1p are determined in the same way as in the case of the
shock waves obtained experimentally. Results of the calculations are
presented in table I and are shown as the rectangular symbols in figure 16.
They may be compared with the experimental results shown in this figure at
the same temperatures. The variation indicated by the elongation of these
rectangular symbols results from calculating the effective 1p for several
points along the wave. As the location of the point on the shock wave
varies, the relative contribution of the oxygen and the nitrogen relaxation
processes changes so as to cause a variation in the effective relaxation
time parameter.

The shock-tube tests reported in reference 5 provide data for
vibrational relaxation time in oxygen only up to a temperature T of
3000O K. The results were extended to the higher temperatures indicated
in figure 16 by plotting the log of tp as a function of T~ Y/2 (as
suggested in ref. 5) and extrapolating.. At these high temperatures, the
predicted ‘values of Tp are quite insensitive to variations of the
relaxation time of the oxygen.

The apparent values of tp obtained from the tests would be
expected to have the same characteristic as the values predicted by the
method involving the construction of a bow shock wave, that is, a variation
with the location of the points selected on the shock wave. In addition,
these values are also to some extent functions of the pressure and the
magnitude of the characteristic flow dimension (i.e., the model size).

It appears that for the majority of the points shown, the values of the
relaxation time parameter determined experimentally agree fairly well with
values calculated by either of the two methods described, in which the
results of shock-tube tests in pure oxygen and pure nitrogen are combined
to furnish values for relaxation times in air.

In common with most experimental techniques that have been employed
to measure relaxation times at high enthalpies, the results obtained in
the tests described in this report do not provide precise numerical values
for Tp. However, in view of the very large differences in the values of
this parameter that have resulted from use of various theories for calcu-
lating relaxation times for some of the processes involving adjustment
rates of the various internal degrees of freedom of a gas, in particular,
for dissociation and the other chemical reactions, an experimental method
which yields values of tp even within an order of magnitude can be of
considerable value. The results shown in figure 16 indicate a mean varia-
tion of Tp with temperature from which numerical values cen be specified
well within an order of magnitude.

The tests reported in reference 5 indicated that the vibrational
relaxation time of oxygen in a nitrogen mixture was increased because the
oxygen-nitrogen collisions are only about 4O percent as effective in
transferring energy as are the oxygen-oxygen collisions. If this factor
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is included in calculating the effective relaxation times of air, the
values of T for oxygen in air would be about twice those shown in

figure 16 for pure oxygen. All of the effective values of T calculated
from the shock-tube results would be increased slightly, but the general
comparison of such values with the values obtained from the tests reported
herein would not be significantly different from that shown in figure 16,
because oxygen is a minor constituent (21 percent) of air.

Results of the tests 1n still air which covered a range of tempera-
tures (T) from 1990° to 4260° K and velocities from 7,260 to 12,000 feet
per second, indicated values of 1p from 60.T to 0! 78 mlcrosecond—
atmospheres, corresponding to a range of relaxation times from 4.34 to
0.16 microseconds. At the highest velocities, about 30 percent of the
change in bow wave angle between frozen flow and equilibrium is caused by
oxygen dissociation, and the relaxation time for the dissociation would
have some influence on the effective relaxation time for air calculated
from the experimental data. The results thus far obtained, however, are
not sufficiently precise to be used to calculate a relaxation time for
oxygen dissociation.

Effect of Water Vapor

The effective relaxation time for air is undoubtedly influenced by
the presence of gases other than oxygen and nitrogen. Reference 4 indi-
cates that water vapor in ambient air can have an important effect on the
relaxation time for oxygen vibrations, because of the much greater effec-
tiveness of oxygen-water molecular collisions compared with oxygen-oxygen
and oxygen-nitrogen collisions. The absolute humidity of the air in which
models were flown was always about equal to that of ambient air, when the
tests were conducted in still air. In these tests it was not feasible to
use dry air because there was always some leakage of ambient air into the
test section whenever the test section was partially evacuated. It is
indicated in reference 5 that an amount of water vapor up to 3 parts in a
thousand did not have a measurable effect on the relaxation time in oxygen.
In the present tests the amount of water vapor was as much as four times
that in the tests reported in reference 5 and may have had some effect.
The data have been examined for any consistent relation between the
absolute humidity of the ambient air and differences between the predicted
and experimentally determined relaxation times. No consistent correlation

was evident.

CONCLUSIONS

Conical models of low-fineness-ratio have been tested in free flight
at velocities from 4,600 feet per second to 12 ,000 feat per second, in
which the calculated equlllbrlum temperatures behlnd the shock wave ranged
from 1510° R (840° K) to 6200° R (34L40° K) and temperatures in frozen flow
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ranged from 1580° R (880° K) to 9140° R (5070° K). Analysis of the
results of these tests has led to the following conclusions:

1l. The shape of the bow shock wave can be used to calculate a
relaxation time in a nonequilibrium flow in the heated region behind the
shock wave.

2. Comparison of the relaxation times in air calculated from the
present tests with effective relaxation times estimated from results of
shock-tube tests with pure oxygen and pure nitrogen indicated that in the
temperature range where vibrational relaxation would be expected, these
two experimental techniques yield results that agree within the experi-
mental scatter.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., May 9, 1960

N
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APPENDIX A

DEVELOPMENT OF APPROXIMATE THEORY FOR CALCULATING

EQUILIBRIUM FLOW ON BLUNT CONES

The basic equations of axisymmetric cone flow from reference 11 may
be written, with the notation indicated in figure 2(a),

du 5
TR (A1)
dv L dp _
® Tt ova T g (82)
J% (pv sin 6) + 2pu sin 6 = O (A3)

Since flow along streamlines is isentropic behind the shock wave, the
sonic velocity given by the relation a2 = (ap/ap)s, mey be expressed in
the relation

a

9 st S8
® - % B o

The following expression is obtained by combining the above relations.

20
= < > > o d62 %% cot 6 + 2u (A5)

At the solid cone surface, designated by the subscript s, vg = 0, and
so from equation (Al), (du/de) g = 0. Equation (A5) at the solid cone

surface then becomes
< > -2ug (A6)

Expanding v in a series referred to its value on the cone surface, and
dropping the higher order terms (assumlng d u/dB constant)

( > (6 - 6g) (A7)
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From equations (A6) and (A7)
v = —2us(9 - QS) (48)

Comparison of values obtained from this approximate relation with
values given by reference 11 indicates good agreement for the blunt cones
considered here. It was noted that even better agreement results if the
local radial velocity u is used in equation (A8) instead of the velocity
ug on the surface; that is, defining A6 = 6y - fg

Vi = —2u A8 (A9)

If the velocity ahead of the shock wave, U,, 1s resolved into its
normal component Un, and tangential component Ut and the velocity

behind the shock wave into components up, and ug_, eguation (A9),

together with oblique wave relations, provides the following:

Since utl = utz and vy = —un2 = —2u A

Up, = 2ug A9 (A10)
Un Un

tan Gy = — = —% (A11)
utl utz

If o is the angle of the streamline deflection through the shock
wave,

U
tan (64 - @) = -u% (A12)
2
2ut AP
= uiz = 2(6w ¥ eS) (Al?))

from equations (A10) and (Al2). Also, from equations (All) and (Al2)
tan (6 y et o (ALL)
an ( W—' a —-1—1-;]‘-1-: an w

Then, from equations (Al3) and (ALk)

Un, ¥
u_né ten By = 2(0,~ 65) (A15)

3 0N
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Inserting the relation from continuity requirements
llil-g - ﬁ
unl P,
equation (Al5) becomes
i
5= ) tan 0y = 2(0y - 05) (A16)

Equation (Al6) relates two of the variables we are most interested in,
the wave angle 6y and the density ratio pl/p2' Since both are unknow

we require another relation between them and for this purpose write the
momentum and energy equations for flow through the oblique conical shock
wave using the normal component of the Mach number M, and assuming the

gas in the free stream is ideal,

b
§§=1+<1——§—1> PMn” (AL7)
X 2

2
hy Py ¥ =gl atd 8
31=1+[l—<5?>J e &

The equation of state may be written

pZ th
= Z,, (A19)

where t = T,/T, and Z, is the compressibility, p,/o,RT,. Equations
(A17), (A18), and (Al9) may be combined to give the relation

Y L Pl 2y 1 £, & 1ef < ST R0 (A20)
<T’Z> +5§[7-l(ﬁt_)-(2— e

where B = (hy/h;)(T,/T,). If an effective ratio of specific heats, 7g,
is defined by the relation

gt L 1 t 2 P
E ¥ ¥ 2
7E—l=7—l+t'l[(ﬁ—l)7‘1_(Zz—l)<l+ﬁ—l>] (A21)
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equation (A20) becomes

2
P, P, [7gt+ 1
— e e B R = G )
<§2 * 55 [7E o ) 0 (A22)

It may be noted that in the special case of a perfect gas (B =1, Z, = 1),
the definition of 7y, equation (A21), reduces to 7g = 7. Neither B
nor Z appears in equation (A22), which is the same as the expression
for the density ratio in a perfect gas having ¥y = Vg and the same value
of t. :

A
An expression for the pressure is found by writing the momentum o
equation for the normal component across the shock wave o)
s

e 28 2

Py TP = Pi¥n T PoMn,

From continuity,

2
so that
P, = Py 3 .2
Plunl2 Po
Since, by definition,
p2- pl
Cp S —————-—2
(1/2)p, U

and

un, = Uy sin Oy
The pressure coefficient may be expressed as follows:
e
Cp = 2 sin“6y [1 = (pl/pz)J (A23)
In the hypothetical flow, the enthalpy ratio is equal to the

temperature ratio. Putting t = h2/hl and. MhE = MlE sin 6y into ;
equation (A18),
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My, 5100y = bl (a2k)
2
{l o/ J(I/E)(VE - 1)
Writing equation (A18) for the general gas with hy/h, = Bt,
M12s1n29W = B = (A25)

[l ny (01/92)2}(1/2)(7 T

The Mach numbers of the two flows are related by the following equation,
obtained by combining equations (A24) and (A25).

/2

My = My [(Bt — 3 et 1)] (26)

(t-1) (r-1)
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APPENDIX B
EXAMPLE CALCULATION

This appendix presents an example of the calculation of the bow
shock wave angle 6, and the pressure ratio across the shock for a
52.50 cone. The temperature and pressure behind the shock wave are
assumed to be, respectively, 3800° K (6840° R) and 10 atmospheres, and a
free-stream temperature of 300O K (5&00 R) is selected. The enthalpies
and compressibility factor for air obtained from references 1 and 3 were
as follows for the assumed conditioms.

h; = 3.83 RT,
h2 = '_('ll-.l RTo
2. =.17066

From equation (A20), pl/p2 = 0.1179. From equation (A21), assuming
y = 1.405, the value g = 1.24k is obtained. For this value of

ygp @nd 0.3t = 0.3(T5/T,) = 0.3(3800/300) = 3.8, figure 3 gives the
the effective Mach number

My = 11.62

With this My, equation (A26) gives the stream Mach number
M, = 11.29

From figure L4 and the above values of Vi and Mp,

NP = 5.50
The bow shock wave angle is
Oy = 6g + 19
= 52.5 + 5.50
= 58.00

Obtaining the pressure coefficient from figure 7,

CP = 1-266

~ M >
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This together with the assumed pressure behind the shock wave permits
the calculation of a pressure ratio and a stream static pressure

by CPM127
i iatede e g
(1.266) (11.29)7(1.%05)
=1 +
o
= 113.4
p, = p,/(p/p,) = 10/113.k

0.0882 atmosphere

M
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APPENDIX C
EFFECT OF THE BOUNDARY LAYER ON THE SHOCK-WAVE SHAPE

The magnitude of the change in the shock-wave shape due to the
boundary layer would depend on the condition of the boundary layer. In
some of the tests, it was possible to determine whether the boundary
layer was laminar or turbulent by inspection of the shadowgraphs. Such
tests indicated that in most cases the boundary layer was entirely laminar;
however, turbulent boundary layers were observed in a few cases, and the
possibility existed that the boundary layers were turbulent in some of the
tests for which it was not possible to determine their condition from the
shadowgraphs. 1In order to establish the limits of the possible effects,
the maximum effects of laminar and turbulent boundary layers on the shock
wave shapes were calculated.

From heat-transfer calculations (and also from experimental results)
it can be shown that the model surface temperatures in tests such as those
discussed in this report are always considerably lower than the adiabatic
wall temperature, because of the short duration of the tests and the high
conductivity of the model. In calculating the thickness of the laminar
boundary layer, the effect of heat transfer to the model surface has been
taken into account by use of the results presented in reference 19. In
this reference, theoretical results are given for an assumed ratio of wall
temperature to temperature outside the boundary layer of 0.25. In most of
the tests, the temperature ratio was estimated to be even smaller than
this, but this ratio is typical of the test conditions for which the
boundary-layer thickness was maximum. In addition to assuming that the
temperature ratio of 0.25 would be applicable, a combination of conditions
was selected in which other factors would cause the boundary-layer thick-
ness to be large, and the boundary-layer thickness was calculated for this
one case to determine the maximum effect of the laminar boundary layer.
For this combination of conditions, the Reynolds number behind the bow
shock wave was 0.9 million per inch, or a Reynolds number of one million,
based on the slant length of the cone. (The Reynolds number based on the
stream conditions was 1.7 million per inch.)

The thickness of the boundary layer on a cone was related to that on
a flat plate by the relation

8 cone = (93/2 > 8 plate

which results from the rule (given, e.g., in ref. 20) that the skin

friction on a cone is N3 +times the value for a flat plate. The
boundary-layer displacement thickness at the most rearward location on

=N Ve
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the conical surface was calculated to be 0.00053 inch, correspondlng to

an effective angular change in the model cone half angle of O. 025 This
change in the effective model cross section would produce a negligible
change in the shape of the bow shock wave. Although the way in which the
effect of heat transfer is taken into account is not exact insofar as the
surface temperature of the model is not known, if the effect were entirely
disregarded, the calculated thickness of the laminar boundary layer would
be no more than twice the value obtained when wall cooling was assumed
and might still be neglected within the accuracy of the measurements.

To estimate the maximum effect of a turbulent boundary layer, as in
the case of the laminar boundary layer, calculations were made for one
combination of conditions in which the displacement thickness might be
expected to be a maximum. The same Reynolds number was selected as in
the case of the laminar boundary layer. The thickness of a turbulent
boundary layer on a cone was calculated by an unpublished method in which
the efiffeect of heat transfer can be taken inte account if The effiect of
heat transfer on the skin-friction coefficient is known. The skin friction
for flow with heat transfer was computed by the method described in refer-
ence 21. For the conditions considered, the maximum calculated displace-
ment thickness was 0.0016 inch. The effective increase in the cross
section of the model cone corresponds to an increase in the solid cone
angle (in the region where shadowgraph data were measured) of about O. o
The influence of this incremental cone angle on the bow shock wave angle
is indicated in figure 17, which shows the bow wave angle as a function
of cone angle for frozen flow at Mach numbers of 6, 10, and infinity, and
for equilibrium flow at Mach numbers of 6 and 10. The maximum slope of
these curves, for the range of conditions of the tests, was 2.2. This
1ndlcates that the angular coordinate of the bow wave could increase by
0.26° , if the model has a turbulent boundary layer originating at the apex
of the cone. This increase would have some effect, such as to increase
the calculated value of the relaxation time, that would increase with a
decreasing difference between A9, for frozen flow and A6, for

equilibrium flow. The largest effect then occurs at the lower model
velocities, and for the smaller solid cone angles.

Because this value of the angular increment, 0.260, results from a
combination of assumed conditions such as to produce the maximum effect,
and because it is believed that in most of the tests the boundary layer
was partly or entirely laminar so that the effect would be much smaller,
no correction was made for the effect of the boundary layer on the shape
of the bow shock wave.




3P
APPENDIX D

PREDICTED EFFECTIVE VIBRATIONAL RELAXATION TIMES

BASED ON A CALCULATED SHOCK-WAVE SHAPE

The second of the two methods employed in this report to calculate
the predicted relaxation times for air is presented in this appendix.
First, relations are obtained from which the bow wave shape can be
calculated, and then the relaxation times are calculated from this wave
shape. Calculations are made for conditions selected so that the results
can be compared directly with each set of experimental results.

The following equation is assumed to specify the time variation of
temperature of the air as it approaches equilibrium after having been
heated as an inert gas by the shock wave.

-t/T -t/T
Do = (Tp- Tgde O+ (g - T)e N (D1)
where the subseript g refers to the state of the gas corresponding to

oxygen in equilibrium while the nitrogen remains frozen. Introducing the
density and pressure from the equation of state into equation (D1)

-t/ -t/T
..B.. -— ———P € = —pf —_ -j—p > (] v + <—g—p e —‘—pe e 4 ( D2 )
PR peR  \PrR  pgR PgR  PeR

At any given free-stream Mach number, it can be shown that the pressure
ahead of a blunt body is not a sensitive function of the gas state, in
which case it can be assumed that p, p,, and p, are equal. Also, with

no dissociation, the gas constants are equal. Equation (D2) can then be

written
shiingh g N "o, i T (53)

It is now desirable to relate the bow shock wave geometry to the
density. The shock wave angle is given as a function of density in
equilibrium flow by equation (Al6), which can be written

(Dk)

N>
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Putting equation (D4) into equation (D3) and observing that p,, the free
stream density, is the same in each term,

= i = <A6f i > e_ta/TO B <A9g NOe > e_ta/TN

ten 6, tan 6o \tem 6 tan G tan 65 ten 6
(D5)

For this expression to have a meaning, it is necessary to assume that an
average effective density can be defined which is related by equation (DL4)
to the angular coordinates of points on the shock wave in nonequilibrium
flow. This density is, in general, a function of the radial coordinate.
In equation (D5) the time +t5 is the time required for a small volume of
gas to attain the average effective density as it moves downstream from
the shock wave.

To determine whether it is possible to assume that an effective
average density and a corresponding flow time t5 can actually be
defined, equation (D4) was applied to a nonequilibrium flow, assuming
that the gas undergoes only a single relaxation toward equilibrium. The
result was compared with the result obtained using the derived relations
for nonequilibrium flow and figure 9., The purpose of this comparison
was to see if any value of tg would bring the results into agreement.

It was found that relatively good agreement is obtained (at least for the

case of model cone angles of 52.50 and 550) if bty 8 takcniEs O.Q(rb/uo).

Equation (D5) was then used with this value of tg to calculate
N9 /tan 6y for three radial locations on the shock wave, 0.6ry, 0.8ry,

and r,. For each of these values of N9 /ten 6y, the angular coordinate
6, was calculated and y/y, was computed:

y _Ow -~ Pe 2

N
The relaxation time ratio rb/Tuo was determined from figure 9 and

converted into the parameter +1p using the same values of Ty, U
as those used in reducing the corresponding experimental results.

o» and D




34

10%

11K

12,

13.

REFERENCES

Hilsenrath, Joseph, et al.,: Tables of Thermal Properties of Gases.
National Bureau of Standards Circular 564 (1955), Supt. of Documents,
Washington 25, D. C.

Hilsenrath, Joseph, and Beckett, Charles W.: Tables of Thermodynamic
Properties of Argon-Free Air to 15,000o K. AEDC TN-56-12, 1956.

Feldman, Saul: Hypersonic Gas Dynamic Charts for Equilibrium Air.
AVCO Res. Lab., Jan., 1957.

Bethe, H. E., and Teller, E.: Deviations from Thermal Equilibrium in
Shock Waves. Rep. No. X-117, Ballistic Res. Lab., Aberdeen Proving
Ground, Md., 1945.

Blackman, Vernon: Vibrational Relaxation in Oxygen and Nitrogen.
Jour. Fluid Mech., vol. 1, pt. 1, May 1956, pp. 61-85.

Wood, George P.: Calculations of the Rate of Thermal Dissociation of
Air Behind Normal Shock Waves at Mach Numbers of 10, 12, and 1kL.
NACA TN 363k, 1956.

Evans, John J.: Method for Calculating Effects of Dissociation on
Flow Variables in the Relaxation Zone Behind Normal Shock Waves.
NACA TN 3860, 1956.

Heims, Steve P.: Effect of Oxygen Recombination on One-Dimensional
Flow at High Mach Numbers. NACA TN L1kk, 1958.

Resler, E. L., Jr., and Scheibe, M.: An Instrument to Study Relaxa-
tion Rates Behind Shock Waves. Univ. of Maryland, Tech. Note BN-39,
Aug. 195k.

Camac, M., Camm, J., Keck, J., and Petty, C.: Relaxation Phenomena
in Air Between 3000° and 8000° K. AVCO Res. Lab. Rep. 22,
March 13, 1958.

Staff of the Computing Section (under the direction of Zdenek Kopal):
Tables of Supersonic Flow Around Cones. Tech. Rep. 1, Center of
Analysis, M.I.T., Cambridge, 1947.

Romig, Mary F.: Conical Flow Parameters for Air in Dissociation
Equilibrium: Final Results. Convair Res. Note 14, Jan. 1958.

Hayes, Wallace D.: Some Aspects of Hypersonic Flow. Ramo-Wooldridge
Corp, ,-0an. 4, 1955.

-~y




—~J O 1V &=

1L,

150

16,

1R

18.

19.

20.

2l.

30

Feldman, Saul: Hypersonic Conical Shocks for Dissociated Air in
Thermodynamic Equilibrium. AVCO Res. Lab., Rep. 12, May 1957.
(Also Jdet. Propulsion, vol. 27, no. 12, May 1957, pp. 1253-55.

Seiff, Alvin: The Use of Gun-Launched Models for Experimental
Research at Hypersonic Speeds. AGARD Rep. 138, July 1957.

Staff of the Computing Section (under the direction of Zdenek Kopal):
Tables of Supersonic Flow Around Yawing Cones. Tech. Rep. 3,
Center of Analysis, M.I.T., Cambridge, 1947.

Staff of the Computing Section (under the direction of Zdenek Kopal):
Tables of Supersonic Flow Around Cones of Large Yaw. Tech. Rep. 5,
Center of Analysis, M.I.T., Cambridge, 1949.

Landau, L, and Teller, E.: On the Theory of Sound Dispersion.
Physikalische Zeitschrift der Sowjetunion, v. 10, 1936, pp. 34-43.

Van Driest, E. R.: Investigation of the Laminar Boundary Layer in
Compressible Fluids Using the Crocco Method. NACA TN 2597, 1952.

Shapiro, Ascher H.: The Dynamics and Thermodynamics of Compressible
Fluid Flow. The Ronald Press Co., New York, Vol. II, 1953, p. 1067.

Sommer, Simon C., and Short, Barbara J.: Free-Flight Measurements of
Turbulent-~Boundary-Layer Skin Friction in the Presence of Severe
Aerodynamic Heating at Mach Numbers From 2.8 to 7.0. NACA TN 3391,

1955.




36

TABLE I.- TEST CONDITIONS AND RELAXATION TIME PARAMETERS
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Figure 1l.- Comparison of the calculated bow shock wave angles from approximate theory with the
wave angles from exact theory; frozen flow.
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Figure 10.- Photograph of three cone-cylinder models used in free-flight tests.
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