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PRELIMINARY SURVEY OF RETROGRADE VELOCITIES REQUIRED
FOR INSERTION INTO LOW-ALTITUDE LUNAR ORBITS

By Morris V. Jenkins and Robert E. Munford
SUMMARY

Closed lunar orbits are envisaged in lunar mission programs. The
study described herein was undertaken to obtain an appreciation of the
relevant fuel consumption requirements. The retrograde impulses nec-
essary for establishing the orbits were assumed to occur at the point
of closest approach of the main earth-moon trajectory; this point,
designated as the arrival position, was restricted to a lunar altitude
of 5,000 nauticel miles or less. The orientation of the arrival posi-
tion vector relevant to any coplanar radius vector is not constrained,
however, and similarly the scalar value of the arrival velocity is
unrestrained.

Since the arrival altitude is restricted to 5,000 nautical miles
or less, the perturbing accelerations of the earth and sun are suffi-
clently small that the vehicle and moon essentially comprise an isolated
two-body system; this is discussed in the report.

Retrograde velocities are determined for any required pericynthion
position. If the pericynthion orientation requirement is relaxed then
a smaller retrograde velocity is in some cases possible. A comparison
between minimum retrograde velocities and retrograde velocities neces-
sary for stipulated pericynthion positions is given. Arrival veloci-
ties are correlated with feasible earth departure conditions.

The equations developed for determining retrograde velocities for
desired pericynthion positions are considered useful for estimating
essential data for the preliminaxyy planning of lunar missions. Some
graphical representation is included hereln for immediaste familiariza-
tion with possible conditions.

INTRODUCTION

The study described in this report was initiated by the desire for
a preliminary assessment of various problems associated with local lunar



orbits as envisaged in lunar mission programs. Since 1t was known that
the lunar gravitational field would be dominant during low-altitude
orbits and that two-body solutions would be wupplicable, it was decided
to use a closed-solution approach. When satellites of a dominating
gravitational field are studied, velocities relative to the nonrotating
coordinate system, with origin at the gravity source, are treated as
inertial in order that Newtonian laws may apply. As an example, planet
velocities relative to the sun are considered inertial and yet the sun
is thought to be moving in space. For a lunar satellite, a perfectly
elliptical orbit cannot be achieved due to the movements of the sun,
earth, and moon relative to the vehlcle; however, for low-altitude lunar
orbits, the lunar gravitational field is dominant; hence, near elliptical
orbits may occur. Stability checks of the ellipticity were examined
from the output of a digital program employing the Encke technique of
integration with origin at the moon center. This was considered to be
sufficiently accurate and the checks confirmed the validity of the
approach taken.

Contained within this report is a method for determining the retro-
grade velocity necessary for establishing orbits with specific charac-
teristics. It is anticipated that the plane of the vehicle's lunar
arrlval velocity will, by guidance impulses, nearly coincide with the
Plane of the desired resultant orbit; hence, one constraint of this
study was that both the arrival velocity and resultant orbit be coplanar.
This report also indicates the correlation of arrival velocity with
specified earth departure conditions by mean: of a restricted three-
body mathematical model.

It is possible in many cases to reduce the magnitude of the retro-
grade impulse 1f the restrictions on the pericynthion orientation are
relaxed. Therefore, a method is presented wlereby the minimum retro-
grade impulse can be determined for an orbit with a specified peri-
cynthion radius with no constraint on orientetion. The methods of
determining minimum retrograde velocities anc. retrograde velocities
for required response are thought to be useftl in that they point the
way to a comprehensive quantitative survey program for assessing fuel
requirements for lunar orbits.

SYMBOLS
a semima jor axis of orbit, ft
c Jacoblan constant, rt2/sec?

D distance from center of earth tc center of moon, ft



Naperian logarithm base
universal gravitational constant, ftu-lb/secu
gravitational acceleration at earth's surface, ft/sec2
altitude, nautical miles

altitude at apocynthion, nautical miles

altitude at pericynthion, nautical miles

specific impulse of fuel, sec

mass of earth plus mass of moon, slugs

mass of earth, slugs

mass of moon, slugs

mass of lunar vehicle, slugs

distance from moon center to vehicle position, ft
apocynthion distance from moon center, ft

distance from barycenter to vehicle position, ft
distance from earth center to vehicle position, ft

Pericynthion distance from moon center, ft

distance from earth center to barycenter, ft
distance from moon center to barycenter, ft

time, sec

velocity referred to the rotating coordinate system, origin
the barycenter, ft/sec

arrival velocity referred to the nonrotating coordinate
system, origin the moon center, ft/sec
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velocity referred to the nonrotating coordinate systemn,
origin the earth center, ft/sec

velocity referred to the nonrotating coordinate system,
origin the barycenter, ft/sec

velocity referred to the nonrotating coordinate system,
origin the moon center, ft/sec

orbit velocity referred to the nonrotating coordinate
system, origin the moon center, ft/sec

orbit apocynthion velocity referred to the nonrotating
coordinate system, origin the moon center, ft/sec

orbit pericynthion velocity referred to the nonrotating
coordinate system, origin the nmoon center, ft/sec

retrograde velocity, ft/sec

rotating coordinates, origin the barycenter

nonrotating coordinates, origin the earth center
nonrotating coordinates, origin the barycenter

nonrotating coordinates, origin :he moon center, X, and
Ym in the plane of the vehicl2's orbit

angle between vehicle velocity vzactor and local horizontal,
deg

ratio of fuel mass to gross mass at commencement of
thrusting for entry into local lunar orbit

overall ratio of fuel mass to gross mass required for both
entry into and exit from the local lunar orbit at the
same point of orbit

eccentricity

angle between r and rp at instant of retroimpulse

burnout, deg
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£ included angle between Vp and Vg, deg
w rotational velcecity of earth-moon system, radians/sec

A dot over a symbol indicates differentiation with respect to time.
DISCUSSION

Arrival Velocity

In lunar mission programs, it is assumed that one of the mission's
main objectives will be to make a close survey of the moon's terrain.
For a detailed survey, this requires the vehicle to establish an orbit
about the moon which will necessitate the application of a retrograde
impulse. Tt is assumed for this study that the impulse will be applied
at the instant of closest approach to the moon when the vehicle's velocity
vector is normal to the extension of the moon's radius. A conception of
the complete mission is shown in figure 1.

The vehicle's lunar arrival velocity and position can be correlated
with the earth insertion velocity and position by reference to a restric-
ted three-body mathematical model. In this model the moon and earth are
considered to rotate with constant radii and constant angular velocity
about their common center of mass. The earth and moon are considered
as point masses and the vehicle's mass is regarded as infinitely small
in comparison. Further information concerning the characteristics of
the restricted three-body mathematical model is found in reference 1.

The restricted three-body equations of motion as given in the
rotating coordinate system with the barycenter as origin are

¥ - oPx + ey o PL - DICERSY _ (X - %) (1)
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where <X - Xl) is the distance along the X coordinate from the earth

center to the particle and <X - X2> is the cdistance along this coordinate

from the moon center to the particle.

By writing
W(X,Y,2) = = w2<x2 . Y2> L M1 - ), GMu )
2 Tep -

then the equations of motion become
k= v 2ud (5)

oX
¥ - o - el (6)

oY

7 = =

xz (7)

By multiplying equations (5) to (7) by 2%, 2Y, and 27, respectively,
adding, and integrating, Jacobi's integral :.s obtained as

2R iR 2R y?) 2w 2 (8)
o}p

or

2(1 - p)GM . 2uGM
r

Ve (9)

C = ufry 2 +
bp ep T

where Tbp is in the earth-moon plane.
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If the earth departure velocity and position are known, the integra-
tion constant C can be determined. Once C 1is determined, it is
possible to calculate the scalar value of the lunar arrival velocity for
any given arrival position. The transformation of the velocity in the
rotating coordinate system, origin the barycenter, to the velocity in
the nonrotating coordinate system, origin the moon center, is

o - - -
Vm=V+(w><r (10)

The relationship between the velocities in the different coordinate
systems 1s illustrated in figure 2. A comparison between earth departure
velocities and lunar arrival velocities is shown in figure 3. The cor-
relation between arrival velocity and earth departure velocity is shown
for the condition of minimum earth-moon distance. The vehicle's arrival

velocity is in the (—cT))x ?) direction.

In acquiring a quantitative feel for lunar arrival velocities as
a function of earth departure velocities for a given earth departure
position, it is natural to think in terms of Ve rather than V. A
knowledge of the value of V does not immediately give the value of Ves;
however, for the departure position given in figure 3, it is known that
7 will be in the range of -2° to 25° in the case of coplanar trajectories.
Consequently, if the rotational rate of the earth-moon system and the dis-
tance between the earth center and barycenter are known, then, for a given
value of V, the associated range of Vo may be determined. Through
the Jacobian relationship, the corresponding value of V at the arrival
position, point of closest approach to the moon, may be established.
Since V at the arrival position is perpendicular to the polar position
vector from the moon center, Va referred to a nonrotating axis system

(origin the moon center) may be immediately determined.

It may be shown that for a given value of C and arrival position
vector, regardless of the orientation of the Position vector, the lunar
arrival velocity is approximately constant. This assertion must be
qualified by restricting the altitude to the range considered in this
study. The justification for the approximation is given in appendix B.

Determination of Retrograde Velocities

This section contains a method for determining instantaneous retro-
grade velocities within certain constrained conditions. For the method
described herein, the plane of action is defined as the plane containing
the moon center and the arrival velocity vector. The retrograde impulses
will be applied in this plane and, therefore, the resulting orbits will



be in this plane. Also, since the retrograde impulse is to be initiated
at the point of closest approach to the moon, then the arrival velocity
vector will be normal to the position vector.

The method for determining an orbit with a required pericynthion
radius and orientation is now presented; the two-body relationships are
developed in appendix A. The following sketch depicts the vehicle's
arrival at the vicinity of the moon where the plane of arrival is denoted
as the XpYy Dplane:

Ym
A
Vb
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£
~ > Xm
~
/
19

where 0 § 180, measured clockwise or counterclockwise from the r vector.
By the law of cosines

VR2 = VA2 + Vo2 - 2VoVp cos (11)
where
rpVop
cos = —
4 Vg, (12)
and

Vo = GMm(g - l) (13)



Substitution of equations (12) and (13). into equation (11) yields

(2a - r) Va1V
VR2 _ GMpy + VAE _“'A'p'op (1)
ar r

It is seen from the relationships in appendix A that

T
rp(—f- - cos e)
a = (15)
Ip
2 —-1-cos 6
T
Tt also follows from the relationships in appendix A that
1/2
1l - 0
y M- (1 - cos (16)
op I.P \
TP<T - cos 8/
Substitution of equation (15) into equation (13) yields
2 GM _ T
Vo=rm';—l cos 9 +2<_I_g_) (17)
p Pl1 - L cos 0
Tp
Now, let
T
P_
== ) (18a)
Gl
@ _ 2 (18b)
¢rp
L-cos9 _g (18¢c)

l-lcose
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2GM

_Erﬂk¢ - 1) =K (184)
P

Substitution of identities (18a) to (184d) into equation (17) yields
the following equation:

Vo2 = A%B + K (19)

Equation (11) may now be written as

2 2

= VA2 + 428 + x - 2vygant/?

VR (20)

Equation (20) is the general equation which determines the retrograde
velocity for the required conditions.

Transforming equation (12) yields

y = *arc COSC¥9<;22> (21)

By determining 9 then £ can be calculated from the law of
sines. Thus,

v
¢ = arc sin{-2 sin v (22)
VR

Equations (20) and (22) determine the required retrograde velocity
vector. However, it should be noted that the rasultant trajectory could
represent any type of conic orbit depending on the arrival conditions
and the required characteristics of the resultiang trajectory. It is
assumed that an elliptical orbit is desired; hosever, it does not nec-
essarily follow that the retrograde impulse will yield an elliptical
orbit. The classification of the conic orbit c.in be found by determining
the eccentricity where for an elliptical orbit 0 < e < 1, for a parabolic
orbit € = 1, and for a hyperbolic orbit e > 1.

Although it 1s not envisaged that it will =ver be desirable to
arrive at a certain pericynthion position on a ayperbolic trajectory,
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it is possible to determine the necessary retrograde impulse vector
which will accomplish this. If equation (20) is modified to

2 2

Vg~ = VA2 +A°B + K + 2vA¢ABl/2 (23)
then solution of this equation (23) will yield the necessary velocity.
The orbit velocity vector in this case will be opposite in direction

to that which would be determined if equation (20) were utilized.

In order to obtain an insight into the quantitative values of
retrograde velocity, refer to figure 4 and table 1. Figure L4 shows the
retrograde velocities necessary for various combinations of arrival and
required conditions and the orbit reference table defines the orbits
established as a result of these retrograde impulses. As an example,
suppose it is desired to establish an orbit with a pericynthion altitude
of 100 nautical miles with the pericynthion radius oriented 150° from
the insertion radius. Assume that the vehicle arrives at an altitude
of 1,000 nautical miles with a velocity of 6,500 ft/sec. Reference to
figure 4 shows that this will require a retrograde impulse of
3,360 ft/sec. Reference to table 1 shows that the established orbit
will have an apocynthion altitude of 1,128.6 nautical miles, an apocyn-
thion velocity of 3,031.5 ft/sec, a pericynthion velocity of
6,036.9 ft/sec, and the time required for one complete orbit will be
3.8 hours.

It has been determined that the preceding equations will yield the
retrograde impulse for any specified values of pericynthion radius and
orientation. However, it is possible in many cases to reach these peri-
cynthion altitudes with smaller retrograde velocities if the restric-
tions on the orientation of pericynthion are relaxed. The determination
of minimum retrograde velocity for a given scalar value of pericynthion
altitude is given in appendix C.

A comparison between minimum retrograde velocitlies and retrograde
velocities for constrained conditions is shown in figure 5. For the
construction of this figure, the vehicle is assumed to arrive at an
altitude of 1,000 nautical miles with an arrival velocity of 7,000 ft/sec.
Figure 5(a) shows rp/r, where r 1s the arrival radius, plotted against

8 which will yield the minimum retrograde velocity. Figure 5(b) shows
rp/r plotted against the required minimum retrograde velocity and the

comparison (dashed) curve shows the retrograde velocities which yield
a pericynthion orientation of 150°. Figure 5(c) shows rR/r plotted

against the resultant orbit apocynthion radius for the case where the
retrograde impulse is a minimum and for the comparison case. It can be
seen that over a large range of rp/r, the minimum retrograde impulse



will offer some fuel savings without influencing the resultant orbits
significantly. In the range of rp/r where the fuel savings are con-

siderable, however, the resultant orbits have the following undesirable
features: large apocynthion radii, large pericynthion velocities, and
large orbit periods.

In order to improve the quantitative feel for retrograde velocities
as a function of free-coast earth-moon trajectories, retrograde velocities
for 6 = 180° are plotted against arrival velocity and altitude for a
fixed earth-moon distance and earth departure position vector in fig-
ure 6; in sequence (figs. 6(a) to 6(d)) the value of the departure veloc-
ity V 1is varied. On the assumption that the departure angle 7y is
between -2° and 25° the normally referred to earth departure velocity

Ve may be quickly determined within the limits of 13% ft/sec and in

some cases direct reference may be made to figire 3.

Fuel Requirements

The fuel required for instantaneous retrograde impulse for estab-
lishing lunar orbits can be calculated from th: equation

5.1 o VBT (24)

where & 1s the ratio of the fuel mass at comnencement of burning to
the gross mass. Shown in figure 7 are the rat_os of fuel mass to gross
mass necessary for establishing the orbits shown in figure 6. The fuel-
consumption values as shown are considered to e absolute minimums since
the impulses are assumed to be instantaneous. Fuel-consumption values
for corresponding finite impulses, however, will differ little from

the given values. In all cases where thrust i; acting against a
resolved weight component, there is a loss in officiency, and this to

a small degree would be the case with correspoiding impulses of finite
duration.

As an example of the use of this graph, consider a lunar vehicle
with an earth-surface weight of 10,000 pounds containing a fuel of
250 seconds specific impulse. From the graph it will be noted that,
within the conditions considered, the earth-su-face weight of fuel
required for inserting the vehicle at a lunar altitude of 5,000 nautical
miles into an orbit with a pericynthion altitude of 100 nautical miles
is 3,200 pounds.

O+ W
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In order to obtain the total fuel requirement for orbit entry and
exit, the following considerations are taken into account. The retro-
grade velocity required to insert into the orbit is assumed to equal
the posigrade velocity for exit. This assumption is made since the
velocity requirements relative to the center of the moon of the ma jor
earth-moon trajectory will not have substantially changed after a
restricted number of lunar orbits. The total fuel requirement is found
from the equation

e-EVR/IgO

5=1 - (25)

or

5 =25 -8 (26)

where & 1is the ratio of total fuel mass to gross mass required for
orbit entry and exit. Shown in figure 8 are the ratios of total fuel
mass to gross mass necessary for orbit entry and exlt for the orbits
shown in figure 6. As an example of the use of figure 8, consider a
lunar vehicle with an earth-surface weight of 10,000 pounds containing
a fuel of 250 seconds specific impulse. From figure 8(c) it can be
deduced that the earth-surface weight of fuel required for both entry
and exit, at an arrival altitude of 5,000 nautical miles for an orbit
with a pericynthion altitude of 100 nautical miles, 1s approximately
5,400 pounds.

Orbit Stability

The simplest and possibly the best method of considering the sta-
bility of the vehicle's orbit about the moon is to consider the vehicle
as a satellite of the moon where the following effects are considered
to be the major perturbation effects:

(1) the earth's gravity field

(2) the sun's gravity field

(3) the moon's potential distribution

(4) the lunar librations

By stability it is implied that successive orbits have repetitive
characteristics.
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A brief analysis of the individual gravitgtional effects of the
earth, sun, and moon show the possibility of a highly stable orbit.
The order of magnitude of the gravitational effects of the earth, sun,
and moon on the vehicle are shown in the following table:

Gravitational effects, expressed In ft/sec2, for -

Zero lunar altitude Lunar altitude o 5,000 nautical miles

Moon 5.31 0.13
Sun .02 .02
Earth .01 .01

If for a short duration there is insignificant difference between
the effects on the moon and the effects on the vihicle due to the
gravity fields of the earth and sun, then the moon and vehicle will
tend to behave as a two-body system with a resuluant stable orbit.
Should the apocynthion altitude of the vehicle's orbit never be greater
than 5,000 nautical miles, then the scalar accelzrations of the vehicle
and moon due to the sun never have a greater ratio than 1.000147 or the
inverse. The directional difference in the acceleration vectors is
negligible since the sun is approximately 80,764,000 nautical miles
away. The corresponding ratio due to the earth is never greater than
1.0647 or the inverse and the directional differ:nce is small. Viewed
in this manner, the sun's gravitational effect is very small. The moon
and vehicle acceleration vectorial difference duz to the earth appears
to be more significant, but due to the oscillatory nature of the dif-
ference (since it is periodic with the vehicle's orbit), the effect is
small over a restricted number of orbits.

Other perturbation effects of interest are the librations of the
moon about its center of gravity. The apparent librations as viewed
from earth are of no concern in this study. There is a small real
libration in longitude due to the eccentricity of the moon's orbit
about the barycenter but the period is a month, and hence this libra-
tion does not present a problem. If any high-fraquency librations
exist, they are thought to be insignificantly small.

The main changes in orbit characteristics with time are anticlpated
to be changes in the inclination of the orbit ani regression of the nodes
relative to the lunar equator.

Several stability checks have been conducted by a comprehensive
simulation incorporated in a digital mathematical model which includes
earth, sun, and lunar potential distribution effects.
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This model is particularly attractive in that the origin of integra-
tion is the moon for the conditions considered and the round-off errors
are those involved 1n the integration of perturbations from reference
ellipses. The checks added confidence to the preceding discussion of
stabllity.

CONCLUSIONS

In a preliminary study of retrograde velocities required for
insertion into lunar low-altitude orbits, the following conclusions
were reached:

1. At low lunar altitudes, say less than 5,000 nautical miles, the
lunar vehicle in free-coast conditions will essentially behave as a
satellite of the moon and, hence, the trajectory will be conical with
the center of the moon mass as a focal point. Depending on the velocity
imparted by the retrograde impulse, the trajectory will be elliptic,
parabolic, or hyperbolic. Elliptical trajectories are of interest in
that closed orbits about the moon are required for survey purposes.

2. A simple thrusting logic may be introduced for obtaining a
required pericynthion position, the only requirement being that the
insertion velocity is that which would be yielded by the classical two-
body solution for the required conditions.

3. The lunar arrival velocity increases with increase in earth
insertion velocity and this entails heavier fuel expenditure for inser-
tion into a local lunar orbit; however, there is the possibility that
the trajectory associated with a higher earth insertion velocity will
require less fuel expenditure for guidance before the arrival phase.

L. For a given arrival altitude, the nearer the required orbit is
to a circular orbit, the lower the required retrograde velocity. Further-
more for a given pericynthion altitude, the nearer the associated orbit
is to circular, the smaller the pericynthion velocity.

5. For an elliptical orbit with pericynthion altitude and orienta-
tion stipulated, there is a unique retrograde velocity. If the restric-
tion on the orientation of the pericynthion is relaxed, then in many
cases it is possible to determine a smaller retrograde impulse which
will yield the desired pericynthion altitude.
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6. There are cases when the resultant pericynthion of a minimum
retrograde impulse does not occur directly oprosite the point of appli-
cation. Utilization of a minimum retrograde impulse in these circum-
stances may produce an orbit with an excessive apocynthion altitude,
pericynthion velocity, and period. It is possible to minimize these
adverse features, at the expense of fuel, by orienting the pericynthion
away from the point of minimum retrograde impulse to a point where
the orbit characteristics become more desirable.

Space Task Group,
National Aeronautics and Space Administreation,

Langley Field, Va., June 12, 1961.
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APPENDIX A

TWO-BODY EQUATIONS

In order to maintain continuity in the body of the text, transposes
of well-known two-body relationships are immediately used. This appendix
is included to indicate the derivation of these relationships.

The differential equations of motion are

2 2 G
] r(éﬂ) = - Mo (A1)
at2 dat re
and
md (od8) _
. dt(r dt) 0 (A2)

From these equations and a knowledge of conic geometry, the following
equations can be evolved. The general conic expression for the semilatus
rectum is

p =r(1l + € cos 8) (A3)
and when r = Tp, then 6 = 0 which yields
P = rp(l + €) (AL)

The expression for the angle 7 which is the angle between the
velocity vector V, and the normal to the vector r 1is from integra-

tion of equation (A2)

WV
cos 7 = —ﬁ-f"—P (a5)
(@]

The expression for the semimajor axis which is evolved from equa-
tion (A3) 1is
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)
= —_ A6
&= (46)

Substitution of the values of p and € from equations (A3) and (Al)

yield
T
rp<;£ - COS 8)

- I
2 2. 1l - cos B
r

(AT)

For a hyperbola since € > 1 1t can be seen from equation (A6) that the
numerical value of a will be negative. The orbit velocity is

V.2 = GMm<% - §> (A8)

Substituting equation (A7) into equation (Af) yields

G r
Vo2 = rMm %; 1 - cos @ + 2<7£ - 1) (A9)
P |"Pi1 - =X cos o
Ip

The pericynthion velocity 1s

a

P

Substitution for a from equation (A7) in equation (Al0) yields

Vop© = GMm<}2— .0 (A10)

2 l - cos 8
Vop~ = GMy > (A11)
rpl= - o8 9)
r

oW
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APPENDIX B
ARRIVAL VELOCITY APPROXIMATIONS

This appendix is presented to show that for a given value of C(C
the arrival velocity is almost entirely dependent on lunar altitude,
within the limits of this study. This is succeeded by a derivation of
an approximation of the variation of arrival velocity with lunar altitude.

Arrival Velocity at Constant Lunar Altitude

The Jacobian velocity relationship is as follows:

2(1 - w)GM . 2uGM
V2=w2PbP2+( M)GM | 2uGM

Tep T (B1)

For convenience, equation (Bl) is rewritten so that the terms independent
of the orientation of E? appear on the left-hand side as

oy GM 2.2 . 2(1 - p)oM
v _9;_+c_wrbp +T (B2)

Upon utilizing the law of cosines, the followlng equation is evolved:

[“’zrbpe + ﬂl—rp“—)GM = of [(Rme +12) + 2Ry(X - Rmﬂ

2(1 - p)oM

1/2

(Re+an)2+r2 +2(Re+Rm>(x-Rm>

(B3)
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Since
~
(Rm2 + r2> >>> 2R, (x - Rm>
and > Ry >>> r; [X - le <y
(&n + Re)2 + 2| >>> 2<R[n + Re)(x - Rm)
v
Therefore,
[uﬁrbp?- . &l_;tl_)ﬂ] < R (a2 ¢ 12) + — B0 - o .

[(qm . Re)2 N 12]1

This allows equation (Bl) to be modified to a close approximation for
the range of altitudes studied as follows:

Ve ~ wg(ng + r2> + 2(1 - p)GM ¢ M (BY)

[(Rm + Re>2 + rgl e ’

Consequently, it can be seen from approximatisn (B4) that if r 1is

constant, then the orientation of r will no: affect the value of V,

- — - o - -
Vmp =V +wx r) where w 1s a constant vec:or and r has a constant

scalar value. If trajectories in the earth-m>on plane are being con-
sidered, then V, =V * or where or 1s a constant.

Variation of Arrival Velocity With lunar Altitude

The trend of the arrival veloclity with iicrease of altitude above
the lunar surface may be more clearly underst>od by the following con-
siderations. Substitution of equation (B3) iato equation (Bl) ylelds

€8]
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Ve - UQ[RHF +r2 + 2Rm(X - Rm>] + 2(1 - ) ;
1/2
[(Re + Rm)2 + 2<Re + Rm><X - Rm>:l
s 2. (BS)
I
Differentiation of this equation with respect to r yields
2 | 2uPT - 2(1 - p)(aM)r L 2uGM
r 5 z/2 re
[(Re + Rm) + 12 + 2(Re + Rm>(X - Rm>]
however,
~ 3
<2w2r ) 2(1 - p)(oM)r > e 2uGM
5 3/2 re
[(Re + Rm> + 12 + 2<Re + Rm)(X - Rm>]
\

Therefore, it is possible to reduce equation (B6) to the approximation

32 -3.5 x 1014

ft/sec? (BT)
or

This expression gives a good approximation for the trend of the arrival
velocity with altitude. Although this approximation applies for a
velocity V, which is referred to the rotating axis system with origin
at the barycenter, it is now shown that with little loss of accuracy \Y
may be regarded as Vp. Given that

Vp2 = v2 £ 2anV + aPr? (B8)
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then,
MW, 2 ey s ) (29)
= e—t — . - 20rV B9
or or Br( > or
which yields
N e
==+ o2 + oy (B10)
or or V or
and upon collecting terms
NE a2
= =1+ &\, 2o(awr * V) (B11)
or or v

By inserting a relevant range of values into the equation it is found
that

X <1
v

and

av2

2o(ar * v)l<<<
or

Therefore, the following approximation is acceptable:

¥ w2 3.5 x 101k
P~ e~ . 't 2 B12
or or r2 /sec ( )
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APPENDIX C

DERIVATION OF THE MINIMUM RETROGRADE VELOCITY TO

OBTAIN A GIVEN PERICYNTHION SCAIAR VALUE

Upon referring to the following equation

2 2 . 2 1/2
VR® =V, +A°B + K - 2V,fAB / (c1)

and the identities (18a), (18b), and (184d), it is seen that the quan-

tities A, K, and ¢ are Ilndependent of 6; therefore, differentia-
tion of equation (Cl) with respect to 68 yields

3.2 Py
R _ _ -1/2\3B
=~ A<A V, @B )55 (c2)

and differentiation of identity (18c) yields

- (1 - %) sin ©

(c3)
99 (l _ cos e>2
o 2
A necessary condition for minimum retrograde velocity is that —SB— = 0,
9
and 1t is known that A # 0; therefore,
— -
( - l)sin 6
(A - VA¢B'1/Ej 4 =0 (ck)

( ) co; e)z

L gy




2k

Suppose, tentatively, that for equation Ch) to hold,

A - vpgB Y2 - 0 (c5)
therefore,
2
gL - _§—2 (c5a)
(V%)

Substitution of equation (C5a) into identity (18c) yields

2

1 - (ﬁr_
- A (c6)

cos 6 = >
(o)

Equation (CL) has two boundary conditions 6 = 0° and 6 = 180°.
When r = Tps then 8 = 0 by definition of tie two-body orbit and this

<4

AsS

O

is the unique value of 8 +to be considered. By reference to equa-
tion (C4), it is seen that 6 = 180° 1is an alternative solution to

BVRZ ) ( - %>sin 8 » o

8 < ) co; 9>2

Two conditions are now stipulated. For zondition 1 where 8 = 180°

2
v
and —Sg— = 0 let VR = Vgy. For condition 2 where 180 2 ]e] 20
Vg?
a.nd —529—- = O let VR = VR2-

The following analysis is to prove that when Vg, exists, it is a
minimm. Tentatively assume that Vgi° > Vgo> in which case the
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following equation is evolved from equation (Cl1):

A%B, - 2VA¢ABll/2 > 2B, - v, gany /2 (c8)

It is convenient to add 2VA¢AB11/2 - A2B2 to both sides. This

allows inequality (C8) to be rewritten as

(Bll/e i B21/2> (c8a)

/

A2<?11/2 . B21/2)<§1l/2 ) 321/2> > 2v,fa

_l-—cc_)s_e__.; therefore B

By definition, B =
1
1 - 5 cos B
1/2
1l/2 2
By /2 . (c9)
1+

For condition 2 equation (C6) yields
2

e
-1 ¢ -——_Xég_g (c10)

1

5 (i)

2
By introducing the value of (? ¢> from equation (C5a), inequality
A

(C10) simplifies to

(c11a)




26

and

Bp > - (c11b)

<0 (c12)

2

Inequality (C8a), which is the condition for Vgq 2 VR22 which

in turn implies that Vg, is a minimum, is nov divided by

(Bll/e - B21/2>A2, a negative gquantity which reverses the inequality,

and hence

B, 12 4 12 < G

A (c13)

From equation (C5a), both sides of which ire positive, it is seen
that

2Vpp 25,172

A (c14)

Therefore, substitution of equation (C1l4) into inequality (C13) yields
1l/2
B, /2 4 5 l/2 < 2m, / (c15)
1/2
Subtraction of 2Bp from both sides of inequality (C15) yields

<0 (C16)
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but from inequality (012), it 1s known that this is true; therefore,
when Vgp exists, it is a minimum. Tt must be noted that VR2 is a

minimum for a conic trajectory. For the trajectory to be elliptical,
two-body orbital equations yield equation (15) and for elliptical con-
ditions to exist

p
2—=-1-c088>0
r

or

2 -—=-1>cos 6 (c17)

r
Hence, when Vrp exists and 2 3? - 1 > cos 6, then Vgp 1is the minimum
retrograde velocity for an elliptical orbit.

In summation, if Vro does exist, it is a minimum and, of necessity,

When =1, 6 =0 1is the unique value which satisfies equa-
tion (Ck4).

If Vgo does not exist and @ £ 1, then Vg1 1s a minimum. If

3 2
Vgl is a minimum, 8 = 180° and, of necessity, -SB_ = 0; also implied
8

I
is that 2 ?? - 1 > cos 6, which is the condition for ellipticity.

The method for determining the minimum retrograde velocity for a
glven set of conditions is outlined as follows:
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Step 1:

Determine from the following equation 1f Vg, does exist:
2“
s
1 Vaf

1o (AN
" ()

_

8 = cos”

(c18)

If there is a solution to equation (C18), then Vg, does exist and the

determined value of 8 will yield the minimum retrograde impulse.
Should the equation have no legitimate solutisn, then Vi, does not

exlst and, therefore, 0 = 180°, which is the value of 8 for Vg1,
will yield the minimum retrograde impulse.

Step 2:

The eccentricity of the orbit should now be determined. By using
the value of 8 as found from equation (C18), the eccentricity can be
determined from

-1 (c19)

Step 3:

The minimum retrograde velocity for an elliptical orbit can be
ascertained by using the determined value of 6 1in equation (20) which
is

2 2

Ve = V2 + A28 + K - ov,pant/2

If the resultant orbit is not elliptical, the minimum retrograde velocity
can be determined from equation (23) which is

1/2

2 4+ APB + K + 2V,faB

VR2 = Vy

w0
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TABLE 1

ORBIT REFERENCE

0T-8

9 = 120° 8 = 150° 1 8 = 180°
Arrival altitude, 1,000 nautical miles
For hp = 50 nautical miles,
hg, nautical miles . . . . 1,914.0 1,143%.6 1,000.0
: Voa, ft/sec . . . . . . . 2,263.8 2,953.8 3,146.1
Vop, ftfsec . . . . . .. 6,535.5 6,244.9 6,171.7
| Period, hr . . . . . . . 5.3 3.8 3.5
For hp = 100 nautical miles,
hg, nautical miles . . . . 1,788.0 1,128.6 1,000.0
Voa, ft/sec . . . . . .. 2,397.1 3,031.5 3,197.5
Vop, ftfsec . . . .. .. 6,296.8 6,0%6.9 5,970.9
Period, hr . . . . . . . 5.1 3.8 3.6
For hp = 200 nautical miles,
hg, nautical miles . . . . 1,593.0 1,102.9 1,000.0
Voa, ft/sec . . . . . .. 2,638.5 3,156.7 3,293.2
Vop, ft/sec . . . . . . . 5,868.9 5,6651.8 5,608.7
Perlod, hr . . . . . . . 4.9 4.0 3.8
Arrival altiiude, 3,000 nautical miles:
For hp = 50 nautical miles,
he, nautical miles . . . . a8ik,339.7 b,c7l.3 3,000.0
Voa, ft/sec . . . . . .. 8.8 1,236.0 1,701.0
Vops ft/sec . . . . . .. 7,578.9 6,551.0 6,780.4
Period, hr . . . . . . . 17,330.2 10.3 7.7
For hp = 100 nautical miles,
ha, nautical miles . . . . 856,562.3 3,638.0 3,000.0
Voa, ft/sec . . . . . .. 132.3 1,416.6 1,734.6
Vop, ftfsec . . . . . .. 7,333.1 6,724 4 6,582.3
Period, hr . . . . . . . 315.3 10.2 7.8
For hp = 200 nsutical miles,
ba, nautical miles . . . . 820,965.9 3,645.1 3,000.0
Voa, ft/sec . . . . . .. 357.9 1,510.8 1,798.3
Vop, ft/sec . . . . . .. 6,889.2 6,25.8 €,223.8
Period, hr . . . . . . . 77.9 10.1 8.0
Arrival altitude, 5,000 nautical miles
For bp = 50 nautical miles,
hg, nautical miles . . . . Hyperbolic 8,235.5 5,000.0
Voa, ftfsec . . . . . .. Trajectory 751.9 1,168.2
Vop, ft/sec . . . . . .. 7,299.1 7,021.7
Period, hr . . . . . . . 23.1 12.8
For hp = 100 nautical miles,
hg, nautical milee . . . . Hyperbolic 8,044.8 5,000.0
Voa, ft/sec . . . . . .. Trajectory £39.3 1,193.0
Vop, ft/sec . . . . . .. 7,035.4 6,826.5
Period, br . . . . . . . 22.3 13.0
For hp = 200 nautical miles,
hg, nautical milea . . . . Hyperbolic 7,18.9 5,000.0
Voa, Tt/sec . . . . . . . Trajectory £€36.6 1,240.0
Vops ftfeec . . . . . .. 6,€36.5 6,472.8
Period, bhr e e e e e 21l.1 13.2

8Tn the solar system the assumption of elliptical charecteristics in these
cases 18 not valid.
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- Jacobian constant F
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Figure 6.- Concluded.
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