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MEMORANDUM 2-I0-59L

A GENERALIZED HYDRODYNAMIC-IMPACT THEORY FOR THE LOADS

AND MOTIONS OF DEEPLY IMMERSED PRISMATIC BODIES

By Melvin F. Markey

SUMMARY

A theory is derived for determining the loads and motions of a

deeply immersed prismatic body. The method makes use of a two-dimensional

water-mass variation and an aspect-ratio correction for three-dimensional

flow. The equations of motion are generalized by using a mean value of

the aspect-ratio correction and by assuming a variation of the two-

dimensional water mass for the deeply immersed body. These equations

lead to impact coefficients that depend on an approach parameter which,

in turn, depends upon the initial trim and flight-path angles.

Comparison of experiment with theory is shown at maximum load and

maximum penetration for the flat-bottom (0 ° dead-rise angle) model with

beam-loading coefficients from 36.5 to 133.7 over a wide range of initial

conditions. A dead-rise angle correction is applied and maximum-load

data are compared with theory for the case of a model with 30 ° dead-rise

angle and beam-loading coefficients from 208 to 530.

INTRODUCT ION

Several theories exist for the prediction of hydrodynamic-impact

loads. A survey of the earlier theories which deal primarily with verti-

cal impacts is presented in reference i, together with an extension to

include the effect of velocity parallel to the keel. In reference 2 it

is shown that this modified theory can be expressed in generalized terms.

References i and 2 deal mainly with the impacts of lightly loaded bodies

having little or no chine immersion. In reference 3 the theory is

extended to include the prismatic body with immersed chines, a step-by-

step procedure being utilized for the determination of the important

impact parameters. It is the purpose of the present investigation to

provide a generalized impact theory for the case of deeply immersed

chines. The formulation of the theory is based on the assumption that
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the water-mass variation throughout the impact is the sameas that for the
case of deeply immersedchines. Of course, this assumption is not valid
whenthe nonimmersedportion of the impact is an important part of the
total impact, and hence a deeply immersedinpact, as far as this report
is concerned, is one in which the nonlmmersedportion plays a relatively
minor role. In actuality, this condition is approached with the impact
of a heavily loaded configuration, an important case since the present
trend is toward such design.

In the present analysis the equations Df motion are written in
general terms leading to expressions that are applicable to either
immersed or nonimmersedcases. The expressions are applied to the deeply
immersed case by the substitution of an assumedtwo-dimensional water-
mass variation, resulting in relations that allow such parameters as
acceleration, penetration, and time to be written in a coefficient form
that is dependent only upon the velocity ratio and an approach parameter.
This generalization reduces considerably th_ number of solutions necessary
to cover the entire range of impact conditions and also simplifies the
presentation of experimental results.

Theoretical and experimental curves of the acceleration and penetra-
tion coefficients are presented at maximumload and maximumpenetration
for the case of 0° dead-rise angle over a wide range of initial condi-
tions for bodies having beam-loading coefficients ranging from 36.5
to 153.7. For bodies having a 300 dead-rise angle and beam-loading coef-
ficients from 208 to 530, a correcting factor is applied and experimental
maximum-loaddata are comparedwith the theory. Also for the case of
0° dead-rise angle with beam-loading coefficients of 18.8 and 4.4, cor-
rection factors are applied to experimental results and these results
are comparedwith the present theory for the maximumacceleration
coefficient.

SYMBOLS

b

F

g

G

mw

beam

hydrodynamic force

acceleration due to gravity

constant (eq. (18))

wetted length along keel

two-dimensional water mass in trsnsverse plane
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t

V

W

x

z

P

T

distance along keel from foremost immersed station to flow

plane

velocity along keel

time after water contact

resultant velocity

weight

distance parallel to undisturbed water surface, positive in

direction of body motion

horizontal velocity

horizontal acceleration

immersion of keel at step_ measured normal to undisturbed

water surface, positive downward

vertical velocity

vertical accelerat ion

angle of dead rise

flight-path angle

distance from undisturbed water surface to keel in any given

flow plane_ measured normal to keel, positive downward

velocity normal to keel

acceleration normal to keel

ratio of length of keel below undisturbed water surface to
the beam

mass density

trim angle

aspect-ratio correction

mean aspect-ratio correction
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Subscripts:

o at water contact

s at step

x horizontal direction

z vertical direction

normal to keel

max max imum

Dimensionless parameters:

CA beam-loading coefficient,
W

pgb 3

C a

Cd

sin T COS(_ + 7o)approach parameter, sin 7o

acceleration coefficient,

penetration coefficient,

time coefficient,

zb ,_W sin v cos T\I/2-

sin T COS TI

t_oi_.G 9(hl) _gb3 ]1/2

-_-_W sin T _'S T/

vertical-velocity ratio

THEORY

General

The basic theory follows closely that of references i to 3. It is

based on the idea that the flow about a slender immersing body occurs in

transverse planes oriented perpendicular t( the keel. The motion of the

fluid in each plane is treated as a two-dinensional phenomenon and an

aspect-ratio correction is applied for the three-dimensional case. The



effects of buoyancy, viscosity, and trim changes are neglected and the
reaction in a given flow plane ds (fig. i) is written as

By integrating equation (2) over the wetted length
for the hydrodynamic force is given as

(1)

(2)

the expression

Io _ an'k,r _o $ ""F = [ _q-ds + m{ ds (3)

By using Newton's second law and an aspect-ratio correction _(h) for

three-dimensional flow, equation (3) may be written

(Jo' s)- _ "_= _(_,) _ ds + _'_ (4)

Since

_,_ _ _ _ _ _ (_)
_t _ _t d_

and

d_ = tan T ds (6)

the first term on the right-hand side of equation (4) may be integrated

and the results rearranged to give

w _ d = g _(_) _2W tan T mw's (7)

where mw, s is the two-dimensional water mass evaluated at the step.
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To obtain the equation of motion (7) in terms of the vertical com-

ponents, the following substitutions are m_le:

and

(8)
/ - COS T

COS T
ta_ "r (9)

Equation (7) may then be written

mw_ s

z sin r

(6, _ sin T)2 Z

g _(x_ + mw es

Multiplying equation (i0) by dz, substitt.ting _ dz = _ d_, and inte-

grating gives

(io)

or

mw_ s

--"
z sin r dz

: - (Ii)

w fo_

+ _ m_,s

_0z -- dz

_'o _ _ sin I"
log + - (12)

i+_ £ i+_
-- + _ W --fl

£o g m-(-?T+ J0 mw as

where _ = s sin T _ sin T cos (T + 7o ) and its variation with trim

Zo sin 7o

and flight-path angles is shown on figure 2. Equation (12) is general

in that it may be applied to impacts with chines either immersed or non-

immersed upon proper substitution of the swo-dimensional water-mass

variation and the aspect-ratio correction. If, for instance, the water-

mass variation is considered proportional to the penetration squared

and the aspect-ratio correction is taken _s a constant, the equation



can be integrated directly, leading to the equations of reference 2.
In reference 3 an equation similar to equation (12) is derived and applied

Zf_

to the immersed-chine case. In the application the term ,]m mw ds is

eventually neglected and the equations of motion are solved by a step-

by-step procedure involving the Pabst aspect-ratio correction and various

water-mass variations throughout the impact.

In equation (12), if it is assumed that _(_) can be approximated

by a mean value and taken as a constant with respect to the integration,

the expression may be integrated directly. The right-hand side of

equation (12) is of the d__uuform since
U

Tz _(h)+ _ d dZ _,s= d-_ m_, s - sin T

where _(hl) is a representative mean value for the aspect-ratio

correction. Carrying out the integration of equation (12) leads to

log

£

Ao

l+ _
+ _ _ - I- l°glg W___ + _ i + _ _(hl)

£o

Z

Ioz 1̧+ mw_s dz
sln T

0
(13)

Evaluation of the right-hand side of equation (13) gives

log -- + - log +
i + _ ____+ _ I + • W sin T

_o

which can be written

g _(_1)_ozm_,sW sin T

i+_
.---+_

dz 1 + _ Zo- e - 1 (15)
£__+_

Equation (15) relates the penetration to the velocity ratio.
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An expression relating the acceleration, velocity, and penetration

can be obtained by dividing equation (lO) ty _o2

The result is

• 2

Z o

17o )2g+ _ WE inT

g r
1 + W Jo sin-----_

dz

and solving for z
• 2
Z o

(16)

If the mean value of the aspect-ratio correction can be successfully

approximated and expressions for the two-dimensional water mass are avail-

able, equations (15) and (16) can be applied in general to get the loads

and motions of the hydrodynamic impact. It, is interesting to note that

_(h) is taken as a constant for the nonlmmersed-chine case of reference 2

and it also approaches the constant 1 for the deeply-immersed-chine case
to be treated.

Deeply Immersed Ch:mes

In the application of equations (15) _md (16) to deeply immersed

chines, it is necessary to select a variat:.on of the two-dimensional

water mass mw, s. In reference 3 the variation suggested is

B s tan B 8 > 0o; _ s > _ (17)
mw, s = pb 2 (f(_) tan _)2 + _ 2 -_-- 2

where _'s represents the normal penetratLon at the step, including the

effect of a water rise, and B is a theor,_tical constant which varies

with dead-rise angle sometimes called the J_obyleff or Kirchhoff

coefficient.

In the present investigation, as an _)proximation the nonimmersed-

chine portion of the impact is disregarded and the expression for the

two-dimensional water mass is written simply

pb2G _s pb2G z (i8)
mw's = -b-= b cos _-

It may be noted that this expression is ba_ed upon the penetration

measured from the undisturbed water surfae_ and thus neglects the effect

of water rise.
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Substituting equation (18) into equation (15) and integrating gives

K

l+K
---+_

- e (19)
2W sin T COS T Z

z o

Similarly, equation (16) becomes

-2{.z-- +
\Zo 2W sin T cos T

{o2 a  gbz2
l+

2W sin T cos T

(2o)

Generalized parameters.- Equations (19) and (20) are similar in form

to those derived in reference 2 for the nonimmersed-chine case. As in

reference 2, the equations are written in terms of generalized parameters.

If, for instance,

z<2 _(_l)pgb' 11/2Cd = [ sin T cos T] (21)

then from equation (19)

_T1 _ _ _i/2

i+_ __ ÷_

Z o
C d = ---+ _ e - (22)

\_+_
_o

and if an acceleration coefficient is defined as

Ca - zb 12_ sin T COS TII/27o2 _(h)ogb3

then equation (20) may be written

(23)

Ca +

o 1 + Cd 2

(24)
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or, in terms of velocity ratio and _,

z__+_ _ _ + _

Zo _o _'o
e e

[+ K
_I] I/2 (25)

A time coefficient C t my also be defined as

Ct .....tz°Q2W_(hl)b szn T cospgbSm/11/2

Cd dCdfo-
z___

zo

(26)

or

• /,

F z/z° 1 zCt = -
Ol C-a'acL --_'o

(27)

Equations (21) to (27) are the generalized equations of motion for the

deeply immersed impact. Writing the generalized coefficients in terms

of the approach parameter _ and the vertical-velocity ratio T--, as

Z o

indicated, reduces the number of parameters necessary to describe an

impact.

Maximum acceleration.- To obtain the conditions at maximum accelera-

tion, equation (20) may be written as

(i + Kz2)z " + 2Kz(£ + <_o)2 = 0 (28)

where

o
2W sin m cos T

Equation (28) can then be differentiated tc give

•_'(_+ Kz2) + _(_z) + _Kz_'(_+ _o) + 2K_(_+ _o) 2 = 0 (29)
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At maximum acceleration the differential of the acceleration with respect
.,.

to time, z , is equal to zero; therefore,

or

2K_{z+ 4Kz{({+ _o)+ 2_(_+ _{o)2 =0

_{z_+ _)2
Z 0 \Z 0

Zo z +2 + a

\Zo

(30)

(31)

Equation (31) gives a relationship for the velocity, penetration, and

acceleration at maximum acceleration. If equation (31) is written in

coefficient form and combined with equation (24) to eliminate the accelera-

tion coefficient, the following expression is obtained for the penetra-

tion coefficient at maximum acceleration:

I_ L 11/2
_o

Cd = _ + 4_

Zo

(32)

In a similar fashion equation (32) can be used with equation (31) to give

for the acceleration coefficient:

-- --_--+ K

z o \z o

Ca,ma x =

z° 3 u'-+ 2_

_+ 4 Zo
_'o

(33)

Equations (32) and (33) can be combined to give the relationship between

the penetration and acceleration coefficients as

i - Cd

2_ 2Cd _d 2
\

Ca,max = 2 (34)

l+C d
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The relation between _ and z-- at maxim_ acceleration is obtainable
Ao

from equations (32) and (22). Combining thc_se two equations to eliminate

Cd leads to

)
Zo _ K Klog l + log (35)

i + K 5 ___+ 4 _ i + _ ___+ _

Zo ZO

In order to obtain the various generalized coefficients as a function

of _ at maximum acceleration, it is necessary to make a trial-and-error

solution of equation (35) and then eliminate the velocity ratio from the

expressions for the generalized coefficients. However, this need be done

only once.

Maximum penetration.- The expressions Chat apply at maximum penetra-

tion are easily obtained since at this time the vertical velocity ratio

is equal to zero. Substituting this value into equation (22) gives for

the penetration coefficient:

Ii 1 )1/2- + _ e i+_ - i (36)
Cd,max

and for the acceleration coefficient:

eDTI] (37)i+ K

Limiti_ conditions.- Since the approach parameter _ may range

between 0 and _, it is of interest to investigate the values of the

coefficients at these two conditions. In the foyer case the fli_t path

at initial contact is normal to the keel an_ the momentum of the body is

absorbed entirely by the flow planes normal to it. For this condition

equation (22) for the penetration coefficient reduces to

1i -=
Z o

Cd = (58)
L
z o /
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From equation (25) the expression for the acceleration is found to be

Ca = 2_____/2 __._._i/2
t_'o) /1 - _oi

(39)

Combining equations (38) and (39) gives the relationship between the

acceleration and penetration coefficients:

2C d
ca : (40)

(i + Cd2 )'

For the condition of _ = 0 a time coefficient can also be found directly

by solving equation (38) for __, substituting into equation (26), and

zo

integrating. This gives

Ct = Cd( I + -13Cd2) (41)

or, in terms of the vertical velocity 3

' 1I--ct: + 5_

Zo / _o

(42)

The equations for the various coefficients at maximum acceleration

can also be determined for the case of _ = O. From equation (32) it is

found that

Cd 2 _ i _ 0.2
5

This value represents the ratio of the virtual mass to the total mass of

the body. For the nonimmersed-chine case of reference 2, a value of 2/7

or 0.286 was obtained for this ratio. Using the value of Cd2 = 0.2 in

conjunction with equation (38) gives the value of _ at maximum acceler-

zo
ation:

5- - 0.834
_o 6
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Reference 2 gives a value of 7/9 = 0.778 fDr the nonlmmersed-ehine case.

The other coefficients may be evaluated as follows:

cd = o_o.2: 0.448

Ca = 2(O.448) = 0.519

(i + 0.2) 3

C t = (0.2)i/2(i + _-_) = 0.478

From equation (36) it can be seen that the maximum penetration

corresponding to the case of _ = 0 is never reached as a consequence of

the neglect of the buoyant forces in the theory. This may be noted also

from equation (38), since letting the vertlcal-velocity ratio approach

zero gives a value of the penetration coefficient approaching _.

As K approaches infinity the other end condition is approached,

that of pure planing. In this instance, the coefficients approach the

following values:

lira C d = 0

lim Ca =
_ --) oo

lim Ct = 0
K --_ oo

These results are for the case in which the wing lift is equal to the

weight.

For the planing condition with partial wing llft the relationship

among the variables may be calculated by setting the left-hand side of

equation (4) equal to the load on the water, letting _ = O, and proceeding

as previously. It should also be noted that z = 0 for this case. Sub-

stituting the above conditions leads to the following result:
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where

CA,p

L

CV

z

b

CA_p

Cv2G _(X) sin T

planing beam-loading coefficient,

load on the water

speed coefficient,

DISCUSSION

The basic theory is believed to be adequate over the entire range

of initial flight conditions, provided the proper two-dlmensional water-

mass variation is used. Since the water-mass variation of the present

application is for deeply immersed chines, the application is limited to

heavily loaded models having substantial chine immersion. Impacts with

nonimmersed or moderately immersed chines have been analyzed in refer-

ences i to 3-

In application of the present theory, it can be seen from equa-

tions (21) and (23) that the value of G _(hl) must be obtained in order

to evaluate the coefficients from experimental data. This value depends

upon the depth of immersion at the point of interest and the dead-rise

angle. In the present application it is approximated by a constant.

This approximation seems logical since the aspect-ratio correction for

deep immersions asymptotically approaches i. The value used to reduce

the data of the present investigation was empirically determined for best

fit; for the flat-bottom model having a range of CA from 36.5 to 133.7

the value of G _(hl) was found to be approximately i. The data of

references 4 and 5 obtained from tests at the Langley impact basin were

used for comparison with the theory. These data covered a range of beam-

loading coefficients CA from 36.5 to 133.7 for the model with a flat

bottom.

The agreement between the theory and experiment for the accelera-

tion coefficient is shown in figures 3 to 5- Figures 3 and 4 show the

variation of the acceleration coefficient with the approach parameter at

maximum load and maximumpenetration, respectively, and figure 5 shows

the variation of the acceleration coefficient with time. These figures

show fairly good agreement between the experimental results and the theory.
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The penetration coefficient at maxim_ penetration and maximum load

is shown in figures 6 and 7, respectively In general, the penetration

is overestimated by theory, especially at the higher values of K.

Considerable data for the body with _ dead-rise angle of 30 ° and

a CA range from 208 to 503 have been obtained at the Langley impact

basin (ref. 4). The trim angles ranged from 6° to 30 ° and the flight-

path angles from approximately 2° to 20 ° . These data are compared with

the present theory by using an empirically determined dead-rise factor

to correct for the dead-rise effect. Tha; is, the value for G _(hl)

was taken as 0.61 instead of the i used for the case of 0 ° dead-rise

angle. The results are shown in figure 8 for the maximum acceleration

coefficient, and the agreement suggests that the empirically determined

dead-rise constant is sufficient for correcting the data at the dead-

rise angle of 30 ° and high values of beam-loading coefficient. As a

first approximation, a linear variation of G _(hl) with dead-rise

angle could be assumed to determine the i_termediate values at these

high beam-loading coefficients. However, more data are necessary to
establish a function that will hold for all dead-rise angles.

To see how far the present application of the theory could be

extended to lower beam-loading coefficients, the data of references 4

and 5 were used. These data were for flat-bottom models with CA equal

to 4.4 and 18.8, flight-path angles from L.79 to 21.21, and trim angles

from 3° to 45 ° . It was found that fair a_reement could be obtained for

the maximum acceleration coefficient by a_ain merely using a different

constant for the value of G _(_i) with _ach of the lower beam loadings.

Figures 9 and i0 show the agreement for t_e beam-loading coefficients

of 18.8 and 4.4 when G _(_D is taken as 2 and 4, respectively. It

is difficult to visualize any increase in _(_i) over the value of i

in any case; therefore, it appears that as CA decreases to low values,

G is dependent on CA as well as on _. Of course, as CA approaches I

the theory as presently applied would be _xpected to show errors because

of the assumption of a two-dimensional water mass.

CONCLUDING Rt_._ RKS

A theory has been derived for the icads and motions of a deeply

immersed prismatic body throughout a hydrodynamic impa_t. The time and

motion coefficients are presented in a generalized form, similar to that

previously employed for the nonimmersed-chlne case, which involves the

use of an approach parameter _ that de_ends only on the initial trim

and flight-path angles. The use of this parameter reduces the number of

independent variables and thereby simplilies presentation of results.
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The theory is substantiated over a wide range of initial flight

conditions for bodies having a dead-rise angle of 0° and beam-loading

coefficients CA that range from 36.5 to 133.7. An empirically deter-
mined factor was used in comparing the theoretical and experimental

maximum impact loads for the body with a 30° dead-rise angle and beam-

loading coefficients ranging from 208 to 530. The comparison showed

good agreement. Fairly good agreement was also obtained for the maximum-

load data of bodies with 0 ° dead-rise angle and beam-loading coeffi-

cients of 18.8 and 4.4 by application of empirically determined correc-

tion factors.

Langley Research Center,

National Aeronautics and Space Administration,

langley Field, Va., November 4, 1958.
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rise angle of 30 ° • b = 5 inches; CA= 208 to 530; T = 6 ° to 30O;

W = 933 to 2,350 pounds; 7o = 2"22° to 20.91; Vo = 34.7 to 87.8 fps.
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Figure 9.- Theoretical and experimental variation of maximum accelera-

tion coefficient with approach parameter for CA = 18.8. _ = 0°;

b = 12 inches; W = 1,17 6 pounds.
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Figure i0.- Theoretical and experimental variation of maximum accel-

eration coefficient with approach parameter for CA = 4.4. _ = 0°;

b = 20 inches; W = 1,261 pounds.
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