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SUMMARY

The low-speed aerodynamic and hydrodynamic characteristics of a

proposed multijet water-based aircraft configuration for supersonic

operation have been investigated. The design features include upward-

rotating engines, body indentation, a single hydro-ski, and a wing

with an aspect ratio of 3.0, a taper ratio of 0.143, 36.9 ° sweepback

of the quarter-chord line, and NACA 65A004 airfoil sections.

For the aerodynamic investigation, with the flaps retracted, the

model was longitudinally and directionally stable up to the stall. The

all-movable horizontal tail was capable of trimming the model up to a

lift coefficient of approximately 0.87. All flap configurations inves-

tigated had a tendency to become longitudinally unstable at stall. The

effectiveness of the all-movable horizontal tail increased with increasing

lift coefficient for all flap configurations investigated; however, with

the large static margin of the configuration with the center of gravity

at 0.25 mean aerodynamic chord, the all-movable horizontal tail was not

powerful enough to trim all the various flapped configurations investi-

gated throughout the angle-of-attack range.

For the hydrodynamic investigation, longitudinal stability during

take-offs and landings was satisfactory. Decreasing the area of the

hydro-ski 60 percent increased the maximum resistance and emergence

speed 40 and 70 percent, respectively. Without the jet exhaust, the

resistance was reduced by simulating the vertical-lift component of

the forward engines rotated upward. However, the jet exhaust of the

forward engines increased the maximum resistance approximately 60 per-

cent. The engine inlets and horizontal tail were free from spray for

all loads investigated and for both hydro-ski sizes.

*Title, Unclassified.
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INTRODUCTION

The present investigation is part of a general research program
undertaken at the Langley Aeronautical Laboratory to evaluate the aero-
dynamic and hydrodynamic capabilities of high-speed aircraft configura-
tions suitable for supersonic flight and capable of operating from
water bases. These configurations were charac!_erized by low maximum
cross-sectional area, high fineness ratio, and smooth area distribu-
tion to insure low subsonic and supersonic drag levels and a delayed
drag rise. A description of the program and the design procedures
used for one of these configurations is presented in reference i. The
results from wind-tunnel and tank investigations of the other configura-
tions included in this research are presented [n references 2 to 6.

The present configuration has a delta horizontal tail mountedhigh
on the vertical tail and a midposition wing with an aspect ratio
of 3.0, a taper ratio of 0.143_ and 36.9° sweepbackof the quarter-
chord line. This wing-tail combination was found (ref. 7) to provide
satisfactory aerodynamic stability characteristics over a wide range
of lift coefficients. Two engines of the present model were mounted
in pods under the leading edge of the wing. This engine location was
selected on the basis of recent investigations which indicate an increase
in flight lift-drag ratio at supersonic speeds (refs. 8 and 9) with
the engines located so that they exhaust near the undersurface of the
wing. The engines were rotated upward above the wing to provide neces-
sary clearance while on the water.

The low-speed static aerodynamic longitudinal and lateral stability
of the present configuration with several high-lift devices was deter-
mined in the Langley 300-MPH7- by 10-foot tunnel. The hydrodynamic
resistance, dynamic longitudinal stability during take-off and landing,
and the spray characteristics were determined in the Langley tank no. 1.
The effects of the hydro-ski size, engine rotational position, wing
fuel tanks, and the jet exhaust of the forward engines upon the hydro-
dynamic characteristics were investigated.

COEFFICIENTSANDSYMBOLS

Aerodynamic

The static longitudinal aerodynamic data are referred to the wind
axes and the static lateral aerodynamic data are referred to the body
axes (fig. i). All momentsare referred to the wing 0.25 meanaero-
dynamic chord projected to the plane of symmetry.
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drag coefficient, Drag
qS

lift coefficient,
Lift

qS

slde-force coefficient,
Side force

qS

rolling-moment coefficient, Rollin_ moment
qSb

yawing-moment coefficient, Yawin_ moment
qSb

pitching-moment coefficient, Pitchin 6 moment
qS_

wing chord, ft

b/2
2 f c2dy, ft

wing mean aerodynamic chord, _ J 0

wing span, ft

wing area, sq ft

free-stream dynamic pressure,

free-stream velocity, ft/sec

pV2/2, ib/sq ft

air density, slugs/cu ft

angle of stabilizer incidence referred to hull baseline,

positive when trailing edge down, deg

angle of attack of hull baseline, deg

angle of flap deflection, positive deflection when trailing

edge down, deg

angle of vane deflection, positive deflection when trailing

edge down, deg

angle of leading-edge-flap deflection, measured in plane

perpendicular to 0.20c line, deg



_N wing-engine-nacelle angle of rotation referred to hull base-
line, positive when engine is rotated upward, deg

angle of sideslip, deg

vertical distance, ft

x longitudinal distance, ft

Y lateral distance, ft

Yi

b/2
inboard end of flaps

YO

b/2
outboard end of flaps

C_ = per degree
B

= per degree
Cn8

= per degree
Cy_

Abbreviations:

W wing

F fuselage

V vertical tail

horizontal tail

b

o

Hydrodynamic

hydro-ski beam, ft

gross-load coefficient, Z_/wb 3



w specific weight of water (63.3 ib/cu ft for these tests)

A 0 gross load, Ib

angle of trim, angle between fuselage baseline and horizon-

tal, deg

6e angle of elevator deflection, referred to stabilizer chord,
positive when trailing edge down, deg

a s angle of stabilizer incidence, referred to fuselage baseline,

positive when trailing edge down, deg

r rise, vertical distance of center of gravity from free water

surface set at zero with trailing edge of hydro-ski touching

water surface when trim is zero; positive upward, ft

R total resistance (including air drag), Ib

Abbreviations:

c.g. center-of-gravity location (0.25g for these tests)

L.W.L. load water line

GENERAL CHARACTERISTICS OF CONFIGURATION

A general-arrangement drawing of the configuration and of the fuse-

lage layout are presented in figures 2 and 3, respectively. Pertinent

characteristics and dimensions of the proposed full-sized aircraft are

presented in table I.

Basic Assumptions

The normal gross weight was assumed to be 180,000 pounds. A wing

area of 2,000 square feet resulted in a wing loading of 90 ib/sq ft

for the normal-gross-load condition. The addition of external wing

tanks to provide additional fuel capacity and extended range increased

the gross load to 200,000 pounds. Four turbojet engines, producing a

total maximum sea-level thrust of 94,000 pounds, were selected. The

bomb load was assumed to be I0,000 pounds.
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Engine Location

The forward-engine nacelles were located in pods ahead of and below

the wing. The two rearward engines were moun°_ed in a single nacelle on
the vertical tail and exhausted behind the tall surfaces. The two

forward engine pods could be rotated upward to) an angle of 45 °. The

axis of rotation passed through the center of gravity of the airplane

to eliminate any change in thrust moment with engine rotation.

The location of the rearward engines afforded a favorable engine-

inlet position from both aerodynamic and hydrodynamic considerations.

The rearward location of the engines on the vertical tall also provided

the weight distribution necessary for the longitudinal and vertical

balance of the configuration.

Aerodynamic Considerations

The wing had an aspect ratio of 3.0, a taper ratio of 0.143, and

36.9 ° sweepback of the quarter-chord line. The wing had zero twist,

an angle of incidence of 1.5 °, and NACA 65AOOh airfoil sections parallel

to the free stream. The horizontal and vertical tails had NACA 65A006
airfoil sections.

Conventional double slotted, 30-percent-(hord flaps extending from
the 40-percent-semispan station to the tip were assumed for the basic

configuration. Details of the flap (in cross section) are shown in
figure 4.

The average cross-sectlonal-area curves for a Mach number of 1.4

for the complete configuration and for the various components are shown

in figure 5. The method for obtaining the sulersonic-area distribution

was similar to that used in references lO and ll. The longitudinal

distribution of the components permits reduction in the cross-sectional

area and also provides a smooth longitudinal @Istribution of this cross-

sectional area with minimum fuselage indentation.

Hydrodynamic Conslderat_ons

No chines or chine strips were incorpora±ed in the basic forebody

to keep it as aerodynamically clean as possible. In order to provide

a rearward hydrodynamic lifting element, a vee-bottom planing surface

with an angle of dead rise of l0° and sharp chines was faired into the

afterbody (fig. 5). The angles of the afterbody keel and chines to the

forebody were kept small so that they would fcllow, as nearly as pos-

sible, the airstream flow lines and minimize the aerodynamic drag.
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The single retractable hydro-ski was located with the trailing

edge 2.0 feet forward of the center of gravity (0.25_) and lO.O feet

below the fuselage baseline (fig. 2). The center section of the hydro-

ski conformed to the fuselage in cross section in the region of the

retracted position and would retract flush with the fuselage bottom

(fig. 6). The two outboard sections had an angle of dead rise of -lO °

which produced an effective angle of dead rise of approximately 0°.

The hydro-ski size was determined for an emergence speed of 50 knots

and an angle of trim of 2° . Data presented in reference 12, for a flat

plate, were used to compute the required area of 227 square feet. The

hydrodynamic lift of the wing and fuselage was neglected for computing

the size of the basic hydro-skl (fig. 6).

Conventional tip floats were not necessary for this configuration,

inasmuch as transverse stability at rest and at low speeds is provided

by the wing. Tip skids might be required at intermediate water speeds

if aileron control is inadequate.

MODELS

Wind Tunnel

A photograph of the model mounted on a single strut in the Langley

500-MPH 7- by lO-foot tunnel is presented in figure 7. The wing was

equipped with either trailing-edge single slotted or double slotted

flaps or both of various spans, leading-edge slats, and leading-edge

flaps (see fig. 4 for details). The various double slotted flaps that

were investigated had spans and deflections as follows:

Yi

b/2

0.074

•074

•397

.397

Yo

b/2

0.397

.751

i. 000

•751

5f, deg

40 to 60

40 to 60

42 to 53

42

Flap designation

Short span inboard

Medium span inboard

Medium span outboard

Midspan

A single slotted flap having a deflection of 31 ° and extending from

0.074b/2 to 1.O00b/2 and a combination of a single slotted and a double

slotted flap were investigated (flap deflection of 26 ° for single slotted

flap extending from 0.074b/2 to 0.397b/2; flap deflection of 53 ° for

double slotted flap extending from 0.397b/2 to 0.751b/2.
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For a few tests, wing fuel tanks were mounted on pylons underneath

the wings and the wing-engine nacelles were pivoted about the point

shown in figure 2. The model had an all-movable horizontal tail which

pivoted about the 50-percent-chord point of the tail root chord.

Tank Model

Photographs of the 1/15-size dynamic model used for the hydrodyna-

mic investigation in the Langley tank no. I are presented in figure 8.

The fuselage was constructed of plastic-inpregnated fiber glass and

the tail surfaces were of conventional wood and silk construction. The

hydro-ski, wing_ and flaps were made of wood and were covered with a

heat-resistant plastic-impregnated fiber glass cloth. The lenticular
hydro-ski struts were made of aluminum.

Aluminum leading-edge slats were used to prevent premature wing

stall that is usually encountered at the low Reynolds numbers of the

tank tests. Medium-span outboard flaps were u_ed for the tank model.

The flaps could be fixed at deflections of 0°, 30 ° , 40 ° , and 50 ° .

Details of the leading-edge slats and trailing-edge flaps are shown in

figure 4. The horizontal tail and elevators c}uld be fixed at angles

of 5° to -15 ° and 20 ° to -20 ° , respectively.

The forward-engine pods could be rotated upward to angles of 45 °

during the test by means of an electric motor Located within the model.

Thrust for the two forward engines was provided by hydrogen peroxide

decomposition-type motors. The motors and app_ratus necessary for the

operation of the motors were the same as those used in reference 6.

The two rearward engines were unpowered.

Electric contacts were located on the mod,_l at the sternpost

and the trailing edge of the hydro-ski to indicate when these portions

of the model were in the water. These electri,_ contacts also were used

to release the trim brake during the landing t,_sts.

APPARATUS AND TESTS

Aerodynamic

The tests to determine the static longitu([inal and lateral aero-

dynamic characteristics of the model with the hydro-ski removed were

made on the single-strut support system in the Langley 300-MPH 7- by

lO-foot tunnel. Longitudinal aerodynamic test_, and the lateral aero-

dynamic tests at 8 = ±4 ° , with the flaps retracted were made at a
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dynamic pressure of approximately 45 Ib/sq ft, corresponding to an air-

speed of about 194 ft/sec. The lateral tests with the flaps extended,

the lateral test through the sideslip-angle range with flaps retracted,

and the longitudinal tests with the flaps extended were made at a dynamic

pressure of approximately 28 ib/sq ft, corresponding to an airspeed of

about 153 ft/sec. Reynolds numbers for these airspeeds of 194 and

153 ft/sec, based on the wing mean aerodynamic chord, were approximately

2.37 X 106 and 1.84 × 106 , respectively. The angle-of-attack range for

the flaps-retracted configuration was from about -4° through the stall,

and for the flaps-extended configuration it was from about -8 ° through

the stall.

Hydrodynamic

The hydrodynamic investigation was made in Langley tank no. i,

which is described in reference 13. The apparatus and procedure used

to investigate the hydrodynamic characteristics of the model are similar

to those described in reference 14. A photograph of the setup of the

model on the towing apparatus is presented in figure 9.

The model was free to trim about the center of gravity and to move

vertically, but it was restrained laterally and in yaw and roll for all

the tests. Slide-wire pickups were used to record the trim and rise.

Trim was referenced to the fuselage baseline and the undisturbed water

surface. Rise of the center of gravity was set at zero with the hydro-

ski touching the water with the fuselage at zero trim.

The resistance of the complete model, including air drag, was

determined with and without power (with and without the effects of the

jet exhaust simulated) at constant speeds up to the take-off for a range

of tail settings and two flap positions. Without power, the thrust

moment was simulated by a static moment and the vertical-thrust compo-

nent due to the forward-engine rotational position was simulated by a

reduction in the gross weight. In addition, for some power-off tests

the effect of the model trim on the vertical-thrust component was con-

sidered in order to compare it with the effect in power-on tests.

During tests with power, scale thrust for the forward engines was pro-

vided by the hydrogen peroxide rocket motors. The thrust moment and

lift component of the unpowered rearward engines were simulated as befor

Photographs and observations were made of the spray patterns during

these tests.

Take-off stability was determined during constant-speed and accel-

erated tests with and without power at a weight corresponding to the

design gross load of 180,000 pounds. Without power, the forces and

moments were simulated in the same manner as those of the power-off
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resistance tests. Th_ load on the water was corrected for an average
trim during the acceleration to take-off speed. A maximumconstant
acceleration of 4! ft/sec 2 was used for the tak_-offs. During the take-

2

off the engines were held in the 30 ° up position with the flaps retracted

until a speed of 70 knots was obtained (full-size). Above this speed

the engines were lowered to the flight position and the flaps were

extended.

Landings were made with the flaps extended and the engines down.

All landings were assumed to be power off and nc forces or moments were

simulated. The model was fixed in trim at the desired landing trim at

speeds greater than the flying speed of the model. The carriage was

decelerated at a uniform rate and the model glided onto the water. Upon

contact with the water surface the trim brake was released to permit

freedom in trim. The engines were rotated upward and the flaps retracted

during the landing runout. Slide-wire pickups _ere used to obtain records

of the trim and rise, and motion pictures were ±aken during the landings.

CORRECTIONS

Aerodynamic

The aerodynamic values of angles of attack, drag coefficients, and

pitchlng-moment coefficients which were obtained in the Langley 500-MPH

7- by lO-foot tunnel have been corrected for Je_-boundary effects by the

method of reference 15.

The data have been corrected for tunnel air-flow misalinement,

tunnel blockage, and longitudinal pressure gradlent in the tunnel. Tare

corrections for the single-support strut have net been applied to these

data.

Hydrodynamic

The hydrodynamic resistance data presented are the net resistance

with the drag of the towing staff and power leads subtracted as a tare.

RESULTS AND DISCUSSION OF AERODY_AMIC DATA

The basic aerodynamic data for the model ale presented in figures i0

to 15 for the flaps-retracted condition and in figures 16 to 24 for the

flaps-extended condition.
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Static Imngitudinal Stability Characteristics

Trailing-edge flaps retracted.- The static longitudinal stability

characteristics in pitch of the model with trailing-edge flaps retracted

at several stabilizer incidences are given in figure i0. No abrupt break

in lift curve was noted for the model, the model was longitudinally

stable, and the all-movable horizontal tail was capable of trimming the

model up to a lift coefficient of about 0.87.

The effect of leading-edge-flap deflection and wing-engine nacelles

on the pitch characteristics of the model are presented in figure Ii.

The addition of the wing-engine nacelles at 0° caused a slight decrease

in longitudinal stability; when the leading-edge flaps and wing-engine

nacelles were deflected (an = 5° and 8N = 15°), longitudinal instabil-

ity was noted at the stall. The basic wing and fuselage became longitu-

dinally unstable at the stall; however, defl_cting the leading-edge flaps

with the addition of wing-engine nacelles resulted in longitudinal stabil-

ity throughout the angle-of-attack range.

Trailing-edge flaps extended.- Increasing the span of the inboard

double slotted flap from short span (fig. 16) to medium span (fig. 17)

resulted in an increase in the maximum untrimmed lift coefficient

from 1.30 to 1.43. The maximum lift coefficient occurred at a lower

angle of attack (_ _ 13 ° as compared with _ _ 7o), and much higher

values of lift coefficient in the negative and small angle-of-attack

range were obtained (CL of 0.72 at _ = 0° as compared with 1.17).

Larger nose-down pitching moments and a reduction in longitudinal sta-

bility (reduction in static margin of about 5 percent) resulted from

the increase in flap span; however, longitudinal instability was noted

for both spans of the flap at the stall.

When the medium-span outboard double slotted flap was used on the

model, the lift curves became nonlinear and longitudinal instability

was noted at a lift coefficient of about 0.9 with slats off (fig. 18).

These nonlinearities probably were caused by an earlier stall of the

outboard portion of the wing resulting from the added load from the

double slotted flap. As the wing tip stalled, the center of load moved

forward and the model became longitudinally unstable. The linear-lift-

curve range was extended and the longitudinal stability was relatively

unaffected when leading-edge slats were installed on the model; however,

longitudinal instability was still evident at a lift coefficient of

about 1.17. A midspan double slotted flap was tested at a flap deflec-

tion of h2 ° with the slats installed (fig. 19). The lift curve for this

configuration was linear up to a lift coefficient of about 1.2, and the

model showed a longitudinal instability tendency at a lift coefficient

of about 1.2.
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Whenfull-span single slotted flaps and a leading-edge slat were
used (fig. 20), the lift curve was more linear up to the stall than the
lift curve of the aforementioned medium-spanoutboard double-slotted-
flap arrangement (fig. 18), and a lift coefficient of about 1.34 was
reached before longitudinal instability was evmdent; however, the static
margin was reduced about 7 percent.

A combination of a double slotted flap, a single slotted flap, and
a leading-edge slat was investigated that gave a fairly linear lift curve
(fig. 22). The maximumuntrimmed lift eoefficLent for this configura-
tion was on the order of 1.5, and the model becamelongitudinally unstable
as the model stalled.

Someevidence of the all-movable horizont_l-tail effectiveness
-dCm/dit is shownin figures 19 to 22 for the model equipped with mid-
span double slotted flaps, full-span single slotted flaps, medium-span
outboard double slotted flaps, and a combination of double slotted and
single slotted flaps. The effectiveness of the all-movable horizontal
tail -dCm/dit increased with increased lift coefficient. For the
configuration consisting of a combination of a double slotted and single
slotted flap, however, it is evident that at low angles of attack the
horizontal tail has stalled; in order to trim this configuration about
the center of gravity (0.25g) at low angles of attack, modifications
to the horizontal tail would be in order - el±her enlarge the tail,
relocate the tail, or equip the tail with high-llft devices. It should
be noted, however, that the static margin for these tests was on the
order of 13 to 21 percent, and if a lower static margin was assumed
(movecenter of gravity rearward), the horizoztal tail could possibly
trim all the configurations tested.

A comparison of the estimated trim lift coefficients for the basic
model and for the model with various flap configurations is made in
figure 25. These data indicate that the comb!nation of double slotted
and single slotted flaps would give the largest value of maximumtrim
lift coefficient (CL, trim= 1.35).

Static Lateral Stability Char_Lcteristics

TrailinG-edge flaps retracted.- The stat_c lateral stability char-

acteristics of the trailing-edge flap-retracted model at several angles

of attack are presented in figure 12. The va_iation of Cn, Cy, and

CZ with _ was linear from about _ = ±5 ° . The directional stability

decreased with increased angle of attack_ and a small decrease in direc-

tional stability resulted from deflection of the leading-edge flap and
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the wing-engine nacelles. The model became directionally unstable beyond

a sideslip angle of about 15°. The side-force coefficient Cy increased

in magnitude with increase in sideslip angle.

The rolling-moment coefficient increased negatively with increase

in sideslip angle over the angle-of-attack range from 0.2 ° to 8.6 ° , and

a slight decrease in rolling moment was noted because of deflection of

leading-edge flaps and wing-engine nacelles. As the angle of attack was

increased to 16.9 ° , the magnitude of rolling moment was decreased.

The data of figures 13, 14, and 15 are in the form of slopes obtained

from values of Cn, Cy, and CZ at _ = ±4 ° as the model is tested

through the angle-of-attack range. The variation of side-force coeffi-

cient with sideslip angle Cy_ remained about constant through the angle-

of-attack range for all configurations tested, except for the configura-

tion with wing-engine nacelles removed which showed a decrease in Cy8

beyond the stall.

The directional stability Cn_ decreased as the angle of attack

was increased for all flaps-retracted configurations tested (fig. 13).

Either addition of the external mounted wing fuel tanks or the deflec-

tion of the leading-edge flaps generally caused a slight increase in

the directional stability of the model. At angles of attack below the

stall, the addition of wing-engine nacelles caused a decrease in direc-

tional stability. The basic model (trailing-edge flap retracted) with

or without the horizontal tail was directionally stable up to the stall

(fig. 15); however, the horizontal tail added appreciably to the direc-

tional stability of the model because of the end-plate effects of the

tee-tail. The basic fuselage and the wing-fuselage combination with

or without the wing-engine nacelles were directionally unstable.

The effective dihedral CZG for all flaps-retracted configurations

tested increased negatively as the angle of attack was increased from

about -5° to about 70; above _ _ 7° up to the stall, a decrease in

magnitude of CZ8 was noted. The rather large values of effective

dihedral -Cz_ in the low and moderate angle-of-attack range as indi-

cated in figures 13, 14, and 15 for the complete model were caused by

the empennage. (See fig. 15.)

Trailing-edge flaps extended.- The static lateral aerodynamic char-

acteristics of the combination of a double slotted and single slotted

flap at several angles of attack are presented in figure 23. The data

of figure 24 are in the form of slopes obtained from values of Cn, Cy,
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and CZ at _ = ±4 ° as the model is tested through the angle-of-attack

range. The variation of slde-force coefficient with sideslip angle Cy_

increased negatively as the angle of attack was increased. The directional

stability Cn8 increased as the angle of attack was increased from

_7! ° 0° = 0°to and remained constant from _ to beyond the stall. The

effective dihedral CZp increased negatively with angle of attack up to

about 7O and then decreased as the wing stalled.

RESULTS AND DISCUSSION OF HYDRODY%_MIC DATA

Resistance

Power off.- The power-off total resistance, trim, and rise for a

normal gross load of 180,000 pounds is shown in figure 26 with the flaps,

stabilizer, and elevator set at zero deflection. Also presented are

several other load conditions for speeds up through the emergence speed

of the hydro-ski. These loads correspond to the gross load corrected for

the vertical-lift component of the forward engln_s when rotated upward
1o

22_ , 30 °, and 45 °. The total resistance and emergence speed were reduced
1o

by rotating the engines 22_ . Further rotation, to angles up to 45 °,

reduced the resistance only slightly below that obtained at 22l° and had
2

practically no effect on the trim, rlse, or emer_;ence speed. After emer-

gence, with the normal gross load (no llft comporent due to engine rota-

tion), the resistance increased with speed up to 70 knots. This increase

was caused by heavy spray from the chines of the hydro-ski striking the

under side of the wing and fuselage. For speeds greater than 70 knots,

the resistance and trim decreased with speed. A small oscillation in

trim was noted between 75 and lO0 knots.

The total resistance, trim, and rise with external wing tanks and

a gross load of 200,000 pounds are presented in figure 27. This configu-

ration is compared with the configuration without wing taD_ks at

180,000 pounds. The wing tanks, with the associated increase in gross

load, increased the resistance and trim prior to the emergence but

decreased the emergence speed. After emergence, the wing tanks were

clear of the water and the only penalty to the hylrodynamlc character-

istics would be that associated with the increase in gross load.

The emergence speeds shown in figures 26 and 27 were lower than

those calculated on the basis of hydro-skl lift a_ a result of the hydro-

dynamic lift of the wing and fuselage. The effec-_ of a 60-percent
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reduction in the area _f the hydro-ski, therefore, was investigated by

removing 22.5 feet of the length from the constant center section of

the hydro-ski. By reducing the hydro-ski area in this manner, the same

beam and beam loading were maintained for the two hydro-skis. After

emergence the short hydro-ski would, therefore, exhibit the same resist-

ance and stability as the original large hydro-ski, since the longitudi-

nal position of the trailing edge was held constant.

The total resistance and trim for the large hydro-ski and for the

short hydro-ski with chine strips (fig. 3) on forebody are shown in

figure 28 with the lift component of the thrust simulated as before.

Without the forebody chine strips, a considerable increase in the emer-

gence speed and an increase in spray and forebody wetting were noted

with the short hydro-ski. In order to alleviate this wetting and conse-

quent increased resistance, spray strips were added to the forebody.

The addition of the spray strips increased the trim and decreased the

resistance with the short hydro-ski. It is seen that the maximum resis-

tance and emergence speed of the short hydro-ski are greater by approxi-

mately 40 and 70 percent, respectively, than those of the large

hydro-ski.

Power on.- The effect of the jet exhaust of the forward engines on

the total resistance and trim of the configuration with the short hydro-

ski is presented in figure 29. For comparison, power-off data with the

vertical component of the thrust due to engine rotation and the thrust

moment simulated also are presented. Flaps deflected 0° and 50 ° and

two stabilizer-elevator deflections are shown for both the power-off and

power-on conditions.

At speeds prior to emergence, the principal effect of the jet was

to accelerate the spray under the wing and increase the maximum resis-

tance approximately 60 percent. The trims just prior to emergence were
io

decreased about _ and the emergence speed was increased approximately

5 knots. Attempts to direct the jet in a more horizontal direction by

canting the tailpipe had little effect on the trim or resistance.

After emergence, the power-on resistance (with the flaps retracted

and 0° tail setting) was only slightly greater than with power off. The

effect of the forward jets would be expected to be small at these speeds

since wing wetting was reduced after emergence by the clearance provided

by the hydro-ski. A small-amplitude oscillation in trim was noted at

some speed intervals between emergence and 120 knots as indicated by

crosshatching.

With the flaps deflected 50 ° , greater stabilizer-elevator settings

were used (-I0 °, -20 ° , respectively) to overcome the usual bow-down
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moment produced by flap deflection. Deflecti(_n of the flaps increased

the total resistance for both the power-off a_d power-on conditions.

The increase in the total resistance with fla_ deflection was due primar-

ily to the aerodynamic drag of the flap since adequate spray clearances

for the 60-percent-span, 30-percent-chord fla_s were provided by the

hydro-ski. After emergence, the increase in resistance due to power

was slightly greater with flaps deflected than with the flaps retracted.

A small decrease in trim due to power is show_ throughout the speed

range. Since the total resistance increased with flap deflection, it

would be desirable to deflect the flaps as lace in the take-off as prac-

ticable. The full-span, small-chord flap (fig. 25) would provide greater

lift for take-off and landing than the partial-span flap_ and the addi-

tional inboard portion of the flap would be relatively clear of spray

at high speeds.

Stability

Trim limits.- The power-off trim limits cf stability are presented

in figure 30 with no thrust moments or forces simulated. The lower trim

limit of stability which is shown for the basic hydro-ski would be the

same for the short hydro-ski in the region of speeds shown. The calcu-

lated minimum trim at which the hydro-ski lift would support the load

on the water is shown for both hydro-skis. As the aircraft is trimmed

down from the stable planing region_ the lower limit of stability would

be encountered before the minimum planing trim; but should the amplitude

of porpoising be allowed to increase until the minimum planing trim was

reached_ the hydro-ski would submerge. The maximum attainable trims

for a center-of-gravity location of 0.25_ and the maximum stabilizer-

elevator deflection are shown. No upper stability limit was found below

these trims.

Smooth-water take-offs.- Variations in trLm during acceler-

ated smooth-water take-offs are presented in fLgure 31 for several

stabilizer-elevator deflections with flaps deflected 0° and 50° with

power on and power off. The vertical componen_ of the thrust due to

engine rotation was simulated for power-off co:_ditions. The variations

in trim for two rates of longitudinal acceleration through emergence

are shown to illustrate the effect of accelera;ion on the tendency for

the model to oscillate in trim at emergence. "#ith the lower rate of

forward acceleration, the model emerges onto tile hydro-ski more gradually

with less vertical motion than with the higher rates of acceleration;

thus, a smaller trim oscillation is induced as the hydro-ski seeks a

trim equilibrium after emergence. Once on the hydro-ski_ the trim remained

high until a speed of approximately 95 knots w_Ls attained at which speed

aerodynamic control became effective. A wide range of trims was avail-

able for take-off.
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With the model planing on the hydro-ski, a small-amplitude trim

oscillation of relatively high frequency (i cycle/sec) may be noted at

trims near the sternpost angle where the afterbody contacts the water

surface during the oscillation. The jet exhaust appeared to increase

slightly the amplitude of this oscillation at high speeds. This oscil-

lation was not divergent and did not appear at angles of trim lower than

the sternpost angle with the afterbody clear of the water surface.

At speeds greater than 95 knots, with 0° flap deflection, the model

could be trimmed below the sternpost angle. In this same speed region,

deflection of the flaps to 50 ° imposed a nose-down pitching moment which

resulted in trims below the sternpost angle for all stabilizer-elevator

deflections. A long-period oscillation of amall amplitude was noted in

this region of trims and speeds.

Smooth-water landin6s.- Smooth-water landings were made over a range

of landing trims from 7° to 15 ° at a normal take-off gross load of

180,000 pounds. The variations in trim and rise for two typical smooth-

water landings at trims greater and less than the sternpost angle are

presented in figure 32. At landing trims less than the sternpost angle

(fig. 32(a)), very little change in trim or rise was noted. As the

model trimmed about the sternpost at the initial impact at landing trims

greater than the sternpost angle (fig. 32(b)), a pitching oscillation

was induced which damped out during the runout and the landing appeared

stable. The pitch oscillation damped in a manner similar to the pitching

oscillation encountered during take-offs at trims near the sternpost

angle.

Spray Characteristics

Photographs of the spray for the configuration with the short hydro-

ski are presented in figures 33 and 34 for conditions without and with

power, respectively. The engines were rotated 30 °, since at preemergence

speeds the afterportions of the nacelles were heavily wetted by spray

at smaller angles of rotation.

Power off.- With the power off (fig. 33), the trailing edge and

outboard portions of the wing were under water in the static condition.

At low speeds, the wing was heavily wetted; a spray blister which ema-

nated from the leading edge of the wing was thrown over the top and

outboard portion of the wing. At speeds greater than 50 knots, the

model was planing on the under surface of the wing with the leading edge

clear of the water surface (fig. 33(d)). At speeds up to the emergence

speed, the forebody sides were heavily wetted by flow clinging to the

sides and flowing back over the fuselage and wing. However, the addition

of chine strips reduced this wetting. The sharp increase in trim and
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rise at emergence (characteristic of hydro-ski_) caused the flow to break

clear from the forebody and afterbody sides ab(ve the chines.

A similar spray pattern was observed with the large hydro-ski.

greater hydro-ski area increased the trim at t_e lower speeds before

emergence and both the amount and duration of _he spray were reduced.

The flow clinging to the smooth forebody sides did not appear to be

excessive and spray strips were not used.

The

For both hydro-ski configurations, the un(er surface of the wing

was heavily wetted by the spray from the hydro-.ski just after emergence.

Flaps extended in this speed range would be s_,ject to the heavy spray

blister from the hydro-ski. At speeds greater than 85 knots, the wing

was free of the heavy spray blister, and the flaps were practically

free of spray at a speed of 92 knots (fig. 33(e)).

Power on.- Photographs of the spray with _e power on are presented

in figure 34. At speeds below emergence, power had no significant effect

upon the flow on the forebody sides. Spray wa:_ thrown against the under

side of the wing by the jet exhaust striking t_e water surface. After

emergence there was no apparent effect of powe]" on the spray (fig. 34(f)).

The horizontal tail and the engine inlets were free from spray

throughout the speed range for both hydro-ski configurations. The addi-

tion of wing fuel tanks for the overload condi-_ion of 200,000 pounds

produced no significant changes in the spray.

CONCLUDING REMARKS

Aerodynamic

In the aerodynamic investigation the longLtudinal and directional

stability characteristics were generally satisfactory for the basic

model (flaps retracted). The all-movable hori_ontal tail was capable

of trimming the basic model up to a lift coeffLcient of approximately 0.87.

All flap configurations investigated had :_ tendency to become

longitudinally unstable at the stall. A combi:lation of an inboard single

slotted flap, an outboard double slotted flap, and a leading-edge slat

gave the highest maximum lift coefficient, and the model in this con-

figuration was directionally stable throughout the angle-of-attack range.

The effectiveness of the all-movable horizontal tail increased with

increasing lift coefficient for all flap configurations investigated;

however, with the large static margin of the c)nfiguration with the center
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of gravity at 0.25 mean aerodynamic chord, the basic all-movable hori-

zontal tail was not powerful enough to trim all the various flapped con-

figurations investigated throughout the angle-of-attack range.

Hydrodynamic

In the hydrodynamic investigation the maximum take-off resistance

occurred just before emergence onto the hydro-ski. Decreasing the area

of the hydro-ski 60 percent increased the maximum resistance and the

emergence speed 40 and 70 percent, respectively. Without the jet exhaust,

the total resistance and emergence speed were reduced by simulating the

vertical-lift component of the forward engines rotated upward. However,

the jet exhaust of the forward engines increased the maximum resistance

approximately 60 percent by accelerating the spray which impinged on

the under side of the wing and fuselage. The addition of external wing

fuel tanks to increase the gross load increased resistance before emer-

gence but reduced emergence speed.

A wide range of stable trims was available for take-offs and

landings. The engine inlets and horizontal tail were free from spray

for all loads investigated and for both hydro-ski sizes.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., July 23, 1958.
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TABLE I

PERTINENT CHARACTERISTICS AND DIM_NSIONS OF

THE FULL SIZE WATER RASED AIR( RAFT

General:

Gross weight, Ib ................................... 180,000

Wing area, sq ft ................................... 2,000

Engines ....................................... 4

Take-off thrust (with afterburners), lh ....................... 94,000

Take-off wing loading, Ib/sq ft ........................... 90

Take-off thrust-weight ratio ............................. 0.52

Total surface area, sq ft .............................. 9,595

Wing:

Span, ft ....................................... 77-53

Wing area, sq ft ................................... 2,000

Airfoil section ................................. NACA 65A004

Aspect ratio ..................................... 3.0

Taper ratio ..................................... 0.143

S_eepback (0.25_), deg ................................ 56.9

Dihedral, deg .................................... 0

Length, mean aerodynamic chord, ft .......................... 30.67

Incidence, deg .................................... 1.5

Twist, deg ...................................... 0

Horizontal tail:

Span_ ft ...................................... 55.0
Airfoil section ................................ NACA 65A006

Area, sq ft .................................... 506.5

Aspect ratio .................................... 4.0

Taper ratio .................................... 0

Sweepback (0.25_), deg ............................... 56.9

Dihedral, deg ................................... 0

Arm, between 0.25_ of wing to 0.25_ of horizontal tail, ft .............. 47.68

Vertical tail:

Airfoil section ................................. NACA 6DAO06

Aspect ratio ..................................... 1.18

_gweepback (0.25_), deg ................................ 38.8

Fuselage:

Length, overall, ft ................................. 145.2

Width, maximum, ft .................................. 6.6

Height, maximum, ft ................................. I1.85

Afterbody dead rise, deg ............................... IO.O

Sternpost angle, deg ................................. 2.0

Center of gravity above fuselage baseline, ft .................... 8.15

Area curve:

Maximum net cross-sectional area, sq ft ....................... i00

Maximum diameter of equivalent body, ft ....................... 11.28

Length, ft ...................................... 145.2

Fineness ratio of equivalent body .......................... 12.9

Reduced
Basic

length

Hydro-ski:

Maximum length, ft ............................. 44.0 21.5

Maximum beam, ft .............................. 6.0 6.0

Length-beam ratio ............................. 7.33 5.58

Area, sq ft ................................ 227.4 _2._

Beam-loading coefficient, CO ....................... 13.i 15.1
V

Gross weight lh/sq ft 791-5 I_948.0, ............. o ............
Hydro-ski area

Incidence, deg ............................... 2 2

Distance of trailing edge below fuselage baseline, ft ........... i0.0 lO.O

Distance of trailing edge ahead of 0.25_, ft ................ 2.05 2.03

Sternpost angle, dog ............................ 10.75 10.75
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Z

(a) Body axis.

y

%

(b) Wind axis.

Figure I.- Systems of axes showing direction and sense of forces,

moments_ and angular quantities.
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BASELINE
z

440' _!

- ,o y - o,I

]

22.5' -i- 215' J-I

(a) Basic hydro-ski.

, I

ASSUMED RETRACTED

POSITION

.--6.o'-_

__,o °
SECTION A-A

I).8' i i

5.7 _5.0----
I

i BASEi]NE

(b) Short hydro-skl.

Figure 6.- Layout of basic and short hydro-skis.
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Figure 8.- Photographs of 1-_-size dynamic mo_el tested in the Langley

tank no. 1.
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Figure I0.- Effect of horizontal-tail incidence on static longitudinal

aerodynamic characteristics of model. _ = 0°; 8f = 0°; 5n = 0°;

wing nacelle at 0°; tanks off; q _ 45 ib/sq ft,
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Figure Ii.- Effect of leading-edge-flap deflection and wing-nacelle posi-

tion on static longitudinal aerodynamic characteristics of model.

= 0°; 5f = 0°; tanks off; q _ 45 ib/sq f_.
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Figure 12.- Effect of angle of attack on static lateral aerodynamic char-
acteristics of model. Sf = 0°; tanks off; q _ 28 ib/sq ft.
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Figure 13.- Effect of leading-edge-flap deflection and wing-nacelle posi-

tion on static lateral stability derivatives of model. _f = 0°;

i t = -4o; tanks off; q _ 45 ib/sq ft; _ = ±4 ° .
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Figure 14.- Effect of wing tanks on static isteral stability derivatives

of model. 8f = 0°; it = -40; 8n = 0°; wing nacelles at 0°;

q_45 ib/sq ft; _ :_+4 ° .
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it = 0°; 8 = 0°; Bn = 0°; tanks off; wing nacelles off;

q _ 28 lb/sq ft; flap span from 0.074b/2 to 0.397b/2.
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Figure 17.- Effect of medium-span inboard double-slotted-flap deflection

on static longitudinal aerodynamic characteristics of model.

it = 0°; _ = 0°; 8n = 0o; tanks off; wing nacelles at O°j

q _ 28 lb/sq ft; flap span from 0.074b/2 to 0.7_1b/2.
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Figure 18.- Effect of medlum-span outboard louble-slotted-flap deflec-

tion, with and without slats, on static longitudinal aerodynamic

characteristics of model, it = 0°; _ = 3°; 5n = 0°; tanks off; wing

nacelles at 0°; q _ 28 lb/sq ft; flap span from 0.397b/2 to

I. O00b/2.
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aerodynamic characteristics of model equipped with midspan double
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Figure 20.- Effect of horizontal-tail inciden(:e on static longitudinal

aerodynamic characteristics of model equipped with full-span single

slotted flaps. _ = 0°; 8n = 0°; wing nace:les at 0°; wing leading-

edge slats on; q _ 28 ib/sq ft; 8f = 31°; flap span from 0.074b/2

to l.O00b/2.
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aerodynamic characteristics of model equipped with medium-span out-
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wing nacelles at 0°; wing slats on; q _ 28 Ib/sq ft; flap span from
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Figure 22.- Effect of horlzontal-tall incicence on static longitudinal

aerodynamic characteristics of model e_Lipped with a combination of

single slotted and double slotted flaps, _ = 0°; 8n = 0°; tanks

off; engine nacelles at 0°; _Ing slats on_ q _ 28 lb/sq ft; 8f = 26°

for single slotted flap extending from 0.074b/2 to 0.397b/2;

8f = _3 ° for double slotted flap extending from 0.39713/2 to 0.751b/2.
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Figure 23.- Effect of angle of attack on static lateral aerodynamic char-

acteristics of model equipped with a combination of a single slotted

and a double slotted flap. 8n = 0°; wing nacelles at 0°; wing slats

on; q _ 28 lb/sq ft; 5f = 26 ° for single slotted flap extending from

0.074b/2 to 0.397b/2; 8f = 53 ° for double slotted flap extending

from 0.397b/2 to 0.751b/2.
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Figure 24.- Variation of the static lateral stability derivatives with

angle of attack of the model equipped wit_ a combination of a single

slotted and a double slotted flap. it = -16°; 5n = 0°; wing

nacelles at 0°; wing slats on; q _ 28 lb/3q ft; 5f = 26 ° for single

slotted flap extending from 0.074b/2 to 0.397b/2; 5f = 53 ° for

double slotted flap extending from 0.397b/2 to 0.751b/2; _ = ±4 °.



rz

49

Confi_,umt/on

Basic model 0

Shor_ inboard double slotted flap 55

Medima-span inboard double slotted flap 50

Medium-span outboard double slotted flap h9

Medium-span outboard double slotted flap 53

Midspan double slotted flap 42

Full-span single slotted flap 31

Combination of single slotted and double slotted flaps 26, 53

Slate

Off

Off

Off

Off

On

On

On

On

/5

/0

a, deg

5

0

CL,trim

Figure 25.- Variation of angle of attack with estimated trim lift coef-

ficient for basic model and for model with various flap

configurations.
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rise. Basic hydro-ski; 5f = 0°; 8s = 0°; 8e = 0°-
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Figure 28.- Effect of hydro-ski size upon total resistance and trim.

Gross load, 180.000 pounds; engines rotated 30o; 5f = 0°; 5s = 0°;

5e = 0°"
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Figure 29.- Effect of power upon total resistance and trim. Gross load,

180,000 pounds; short hydro-ski.
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(a) Speed, 11.5 knots.

(b) Speed, 25.0 knots.

(c) S-_eed, 5_.5 knots.

Figure 53.- Spray photographs of model with power off.

180,000 pounds.

L-58-2518

Gross load,



58

w

Speed, 57.5 knots.

(e) Speed, 92.0 knots.

(f) Speed, 138 knots.

Figure 33.- Concluded. L-58-2519
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(a) Speed, 11.5 knots. (b) Speed, 25.0 knots.

(c) Speed, _.5 knots. (d) Speed, 57.5 knots.

(e) Speed, 69.9 knots. (f; Speed, 115 knots.

Figure 5_.- Spray photographs of model with power on.

180,000 pounds.

L-58-2520

Gross load,

NASA - Langley Field, Va.




