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SUMMARY

Local turbulent heating rates were obtained in the vicinity of sur-

face protuberances mounted on the cylinder section of a cone cylinder

model at a Mach number of 3.12. Data were obtained at Reynolds number

per foot of 4.5 and 8 million for an unswept cylinder_ a 45 ° swept cylin-

der_ a 45 ° elbow_ and several 90 ° elbows.

The unswept cylinder and the 90 ° elbows increased the local turbu-

lent heating rates in the vicinity of the surface protuberances. The

data of the 45 ° swept cylinder and the 48 o elbow resulted in heating

rates lower than those observed without surface protuberances. In gen-

eral_ sweeping a surface protuberance resulted in heating rates compar-

able or lower than those measured without surface protuberances.

INTRODUCTION

The design of high-speed vehicles requires a knowledge of the aero-

dynamic heating that will be encountered. In most cases maximum local

heating rates will occur in the vicinity of the leading edge. However,

the possibility of local hot spots at wing or control-surface body junc-

tions and other types of surface protuberances necessitates studies of

these shapes. For example_ recent experimental studies presented in

reference i revealed heating rates in the immediate vicinity of a cylin-

drical protuberance that are four to five times greater than those that

would exist without a protuberance.

The present investigation determined to what extent the heat-transfer

rate in the vicinity of a surface protuberance would be altered by sweep

and other basic modifications. This investigation is limited to a few

specific protuberance configurations and is not intended to be of a com-

prehensive nature.



SYMBOLS

Cp specific heat at constant pressure

h local heat-transfer coefficient

k thermal conductivity

q local heat-transfer rate per unit area

Re unit Reynolds number, _, ft-1
V_

U
XRe x length Reynolds number_

r body radius

St undisturbed Stanton number

St' disturbed Stanton number

T temperature

t time

u velocity

x axial distance

Taw - T

recovery factor, .To T

e meridian angle

kinematic viscosity

p dens ity

wall thickness

Subscripts :

aw adiabatic wall

b model material
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W

0

model wall

free-stream static conditions ahead of the shock

stagnation value

o

!

O

APPARATUS AND PROCEDURE

The investigation was conducted at the Lewis laboratory in the l-

by 1-foot supersonic wind tunnel which operates at a Math number of 3.12.

Tests were made at free-stream Reynolds numbers per foot of 4.5 and 8.0

million. The stagnation temperature of the inlet air was approximately

65 ° F and the tunnel stagnation dew point was -35 ° F. Further details

concerning the facility may be found in reference 2.

The dimensions and instrumentation locations of the 20 ° cone-

cylinder test body are shown in figure 1. The dimensions of the five

protuberance shapes tested are given in figure 2. _le model was fabri-

cated from monel with a wall thickness of 0.050 inch. Model installation

in the tunnel was the same as described in reference 2. The conical

portion of the model was sandblasted for a majority of tests in order to

insure turbulent flow in the vicinity of the protuberance. In these

tests transition occurred between 2 and 4 inches from the leading edge

of the test model. In one of the tests reported herein the model was

not sandblasted and transition occurred at approximately 6 to 8 inches

from the leading edge.

The protuberances were mounted on the cylinder portion of the model,

that is, 14 inches back from the leading edge. The method of mounting

the protuberances is shown in figure 3. All the protuberances tested were

fabricated from plastic.

Precooling the model was accomplished by enclosing the model (pro-

tuberances included) in a set of shoes, similar to those used in refer-

ence 2, and by passing liquid nitrogen into the shoes and over the model.

When the desired wall temperature was obtained (-340 ° F), the shoes were

removed and transient temperature measurements were obtained on a

multiple-channel recording oscillograph. A description of the transient

technique can be found in reference 2 in greater detail.

DATA REDUCTION

The general equation describing the transient heat transfer to the

thin skin cylindrical portion of the model is



or

qtotal = qconvection + qconduction + qradi_,tion + qconduction to

along the the inside

skin of the model

_(pcp)b _-_ - h(Taw - Tw) \r 2 _-_ + kb_ _x 2 / +

qradiation + qconductJon to

inside c,f model (i)

The magnitude of the radiation and conduction terms in equation (i)

was less than 2 percent for tests in which the model was free of protu-

berances and also in the tests of the 45 ° elbows and swept-cylinder pro-

tuberances. However, in the tests of the cylinder protuberances and the

90°-elbow protuberances, the axial conduction term kb_ _2Tw was large
8x 2

enough to underestimate the total heat input by as much as 15 percent.

The axial conduction error was determined by numerically taking the

second derivative of a curve faired through the experimental temperature

distribution. A typical axial temperature distribution for a cylinder

protuberance is shown in figure 4(a). Since there is a reasonable amount

of uncertainty present in the proper fairing of the temperature distri-

bution data, no attempt was made to correct the data for conduction errors.

Therefore, in calculating the local heat-transfer coefficients the follow-

ing expression was used for all the data

dT w

h = m(pcp)b _-_ (2)

Taw - Tw

The time rate of change of the temperature was found from temperature-

time curves faired by the method of least squares and differentiated nu-

merically using a five-point method. Fitting cf the data by the method of

least squares and numerical differentiation was accomplished with an IBM

650 computer.

The adiabatic wall temperature Taw was usually obtained from the

following equation using experimentally determined recovery factors

= % + n(To -

A typical distribution of the experimental recovery factor in th<

vicinity of a cylinder protuber_:ince is shown in figure 4(b). Ln some

instances, however; experlmental recovery factors were not available. Iz±

these cases the adiabatic _a]l temperatures were obtained in bhe fcil,:_wi_Lg



manner. Temperature data were plotted against the reciprocal of time and
extrapolated to the point where i/t = O. The temperature calculated in
this mannerwas considered the adiabatic wall temperature. In all cases
this extrapolation was a straight line parallel to the inverse time axis,
because temperature-time histories were available close to adiabatic wall
condit ions.

Evaluation of the heat-transfer coefficient requires a knowledge of
the variation of specific heat of the model material with temperature.
The specific heat of monel has been measuredover the temperature range
of this investigation in reference 3.

Whenthe experimental values of the local heat-transfer coefficient
were determined, the corresponding values of free-stream Stanton numbers
were computedfrom the following expression

st - h (4)
D_U_Cp,

The accuracy of the experimental Stanton numbers was estimated to

be _16 percent for the clean model, the 45°-swept-cylinder and 48 °-

elbow protuberances. Since the conduction error is important for the

cylinder and 90°-elbow protuberances, the relative error of the Stanton

number in these cases becomes +16 and -31 percent. However, since a

Stanton number ratio is presented, the error in this ratio should be

less than +16 and -31 percent.

As in reference i the model was subjected to two condensation films.

However, the calculations of reference 4 indicate that condensation did

not have an appreciable effect on the determination of heat-transfer

coefficients.

RESULTS AND DISCUSSION

Experimental turbulent Stanton numbers are presented in figure 5

for the model without protuberances at an average wall-to-free-stream

temperature ratio of 1.5 and free-stream Reynolds numbers per foot (Re_)

of 4.5 and 8 million. For both Reynolds number conditions, transition

was fixed between 2 and A inches on the cone by sandblasting the conical

portion of the model. Also included in figure 5 is the turbulent flat-

plate theory of reference 5 at a wall-to-free-stream temperature ratio

of 1.5. Free-stream conditions w_re used to obtain the theoretical

flat-plate Stanton numbers since the local conditions on the cylinder

are approximately those of the free stream.

The data presented in figure 5 represent the undisturbed Stanton

numbers St®. These data are compared with the measured Stanton numbers



in the vicinity of the various tested surface ?rotuberances in figures 6
to 7. In order to determine the effect of the protuberance ratio of the
disturbed to undisturbed Stanton number_St'/S_ is formed, and in order
to decrease the scatter in the Stanton number zomparison_aleast square
fit of the undisturbed Stanton numberdata wasused.

The ratio of the disturbed to the undisturbed Stanton number St'_/St_
for a cylinder protuberance (shape A) is plotted in figure 6. Since the
position of transition may influence the heat-transfer measurementsin
the vicinity of the protuberance, transition was fixed between 2 and 4
inches on the cone. Fixing transition on the cone yielded well estab-
lished turbulent flow at the protuberance and ,_liminated the length of

turbulent run as a variable in the tests. In _iubsequent measurements

discussed later, transition was also fixed on _he cone unless otherwise
stated.

In figure 6(a) the values of St'/St® are presented for a Reynolds

number per foot of 8 million. The largest values of St'/St®, approxi-

mately 1.5 to 1.7, were measured in the vicinity of the protuberance on

the 0° and 22.5 ° generator. The limited results obtained on the 45 °

generator show no appreciable rise over the un(Listurbed Stanton number

value. In order to investigate a possible Rey_Lolds number effect, data

were obtained at a Re® of 4.5 million per fo()t. These results are

plotted in figure 6(b). With the exception of a few points these data

are quite similar to those of figure 6(a). It appears that there is no

Reynolds number effect over the Reynolds numbez per foot range investi-

gated. Similar results, not presented here, were also obtained for all

other protuberances tested.

The effect of sweeping the cylinder to 45 ( is presented in fig-

ure 6(c). These data are for protuberance shale B at a Re_ of 8 mil-

lion per foot. Sweeping the protuberance yields values of O.V to 1.0

for St'/St® on the 0° and 22.5 ° generators. The values of St'/St®

on the 45 ° generator are 0.6 to 0.7. Thus, the 45 ° swept cylinder yields

values of St'/St® 40 to 50 percent lower that the heat transfer measured

in the vicinity of an unswept protuberance. F_rthermore, the swept cylin-

der heat-transfer measurements are lower than the undisturbed heating

rates.

Presented in figure 6(d) are data obtaine_ with the 90°-elbow pro-

tuberance at a Re of 8 million per foot. This protuberance is of the

same diameter and height as the unswept cylinder protuberance. As in

the case of the cylinder protuberance# figure E(a), the heating rates in

the vicinity of the 90 ° elbow are greater than the undisturbed heating

rates. However, the largest values of St'_St_ are definitely less than

those for the cylinder of figure 6(a). In fact, the values of St'/St

on the 45 ° generator in the vicinity of the 90 ¢ elbow are less than the

undisturbed heating rates.



A difference in the Stanton number ratio upstream of the two pro-

tuberances is noted in comparing figures 6(a) and (b). Although these

protuberances are of the same height and diameter, the difference in the

downstream shape of the protuberance must alter the subsonic flow field

sufficiently upstream to change the heating rates ahead of the protuber-

ance. Thus, the heating rates ahead of protuberance C are appreciably

less than those ahead of protuberance A.

The data for the 45 ° elbow are presented in figure 6(e). A com-

parison of figure 6(e) with figure 6(c) reveals that the heating rates

measured in the vicinity of the 45 ° swept cylinder and the 45 ° elbow are

similar. Values of St'/St of 0.6 to 1.0 are obtained. The data meas-

ured on the 45 ° generator are again lower than the undisturbed values.

The effect of protuberance diameter and height on the heat transfer

in the vicinity of the protuberance is of considerable interest. Data

obtained in the vicinity of two 90 ° elbows are presented in figure 7.

Since the conical portion of the model was not sandblasted for shape D,

transition from laminar to turbulent flow occurred at approximately 6 to

8 inches from the leading edge of the model.

Protuberance shape D had a diameter of 0.498 inch and a height of

0.598. The data of protuberance C, presented in figure 6(d), are also

included here for comparison purposes. Shape C had a diameter of 0.545

inch and a height of 0.441 inch. The effect of protuberance size on the

local heating rates for this study can be obtained by examining the data

of figure 7. This comparison indicates that the larger protuberance had

the greatest effect on the local heating rates.

Another effect which would be of considerable interest but has not

been examined here is the effect of mounting the protuberances on a flat

plate rather than on a cylinder. It is probable that the heat-transfer

measurements presented here would differ from those found on a flat plate

with the same protuberances and local conditions. This fact might be

especially true for those stations on the plate which would correspond

to the 22.5 o and 45 ° generators of the cylinder. Of course_ a change in

the heat transfer would not be too surprising since the flow field in

the vicinity of the protuberance would be altered.

SUMMARY OF RESULTS

Heat-transfer measurements made in the vicinity of surface protuber-

ances yield the following results:

i. Unswept cylindrical surface protuberances can increase the local

heating rates in the vicinity of the protuberance by as much as 70 per-

cent over the undisturbed heating rates.
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2. Sweepingcylindrical surface protuberances by 45° resulted in
local heating rates in the vicinity of the protuberance slightly lower
than the undisturbed rates.

3. Local heating rates measuredin the v_cinity of 45° and 90° elbows
did not increase over those measured in the vicinity of 45° and 90°
cylinders.

4. In somecases, heating rates measuredon the 45° generator were
as muchas 40 percent lower than those observed without protuberances.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland, Ohio, July 15, 1958
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Cylinder

0.542" _0._42"

Diam.-/_

Protuberance shape A

45 ° Swept cylinder

0.54_"

Diam .__0. _46"

Pro_ uberance shape B

90 °

90 ° Elbow

Y

Protuberance x, in. y, in. An_:le

shape

C 0.545 0.096 90 °

D 0.498 0.091 90 °

45 ° Elbow

/

__ Y

Protuberance x_ in. y, in. An

shape

E 0.542 0.090 41

Figure 2. - Protuberance shapes tested.
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Figure 4. - Concluded. Typical distributions in the vic

of a 90° protuberance.
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(a) Cylinder protuberance; Reynolds number per foot of 8×106.

Figure 6. - Local turbulent heat-transfer coefficients in the

vicinity of a protuberance.
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Figure 6. Continued. Local turbulent heat-transfer co-
efficients in the vicinity of a protuberance.
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