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ABSTRACT

This report documents the full details of the condensed journal article by Ashpis &

l_eshotko (JFM, 1990) entitled "The Vibrating Ribbon Problem Revisited". A revised

formal solution of the vibrating ribbon problem of hydrodynamic stability is presented.

The initial formulation of Gaster (JFM, 1965) is modified by application of the Briggs

method and a careful treatment of the complex double Fourier transform inversions.

Expressions are obtained in a natural way for the discrete spectrum as well as for the

four branches of the continuous spectra. These correspond to discrete and branch-cut

singularities in the complex wave-number plane. The solutions from the continuous

spectra decay both upstream and downstream of the ribbon, with the decay in the

upstream direction being much more rapid than that in the downstream direction.

Comments and clarification of related prior work are made.



• Preface

This report documents the full details of the concise article entitled "The Vibrating

Ribbon Problem Revisted" by Ashpis & Reshotko which appeared in the Journal of Fluid

Mechanics (1990), vol. 213, pp. 531-547. This report constitutes the full manuscript that

was originally submitted for publication, but had to be shortened and condensed due to

space limitations. It is based on Ashpis & Reshotko (1986), a work principally supported

by the US Air Force Office of Scientific Research. The present report was written after the

first author joined NASA. Some typographical errors of the prior work were corrected and

comments of the journal reviewers were implemented. There has been recently renewed

interest in the continuous spectrum in context of its relationship to the new concepts of

transient growth in hydrodynamic stability theory and its role in receptivity to freestream

disturbances. Therefore it was felt that the details and the structure of this report make

its documentation in form of a NASA report a valuable complement to the journal article

and an accessible text to non-specialists.
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1. Introduction

The vibrating ribbon became a common experimental device in hydrodynamic stability

research since its first use by Schubauer and Skramstad (1947) to excite TS waves in

boundary layer flow. The importance of this fundamental device goes beyond this

practical application. The vibrating ribbon problem serves as a simple example of

receptivity problems, which express the effect of imposed disturbances on the flow, and

are significant in describing the onset of instabilities leading to transition from laminar

to turbulent flow.

This problem, also known as the signaling problem, was initially treated by Gaster

(1965), whose analysis verified Schubauer and Skramstad's observation that in the time-

asymptotic (long time) limit the ribbon excites the spatial eigenmodes of the flow at its

own frequency. Additional analytical work is reported in Russian literature (e.g. Tumin

and Federov, 1984). In free shear layers the signaling problem was treated by Huerre &

Monkewitz (1985) for the inviscid case. We found Gaster's solution incomplete. Mainly

missing are the continuous spectra. Therefore we provide here a corrected and complete

solution.

Gaster's initial formulation of the problem is followed: the model, the formulation

as an IBVP (Initial Boundary Value Problem), and the application of a double Fourier

transform (or Laplace-Fourier transform), are essentially similar, but we proceed with

a different solution procedure. We use the Briggs method (Briggs, 1964) to obtain the

time-asymptotic solution. Common for long time in plasma physics (see review by Bets,

1983), this method was first used in fluid mechanics by Tam (1971, 1978). It became

more established in this field following a large number of its applications in later years.

For example it was used by Huerre _z Monkewitz (1985), Ashpis & Reshotko (1985),

Leib & Goldstein (1986), Pierrehumbert (1986), Monkewitz & Sohn (1986), Hultgren

& Aggarwal (1987), Monkewitz (1988), Lin & Lian (1989), Yang & Zebib (1989), and

was reviewed by Huerre (1987). The Briggs method requires an accurate account of the



singularities in the transformed planes which is performed here in a methodical way. As

a result the continuous spectra are included in our solution, and various related topics

are illuminated.

The continuous spectra were addressed by Case (1960, 1961) _. A compehensive

treatment was given by Grosch & Salwen (1978) and Salwen & Grosch (1981), who

extended the classical normal mode formulation. They identified the one branch of

continuous spectra in the temporal case, and the four branches in the spatial case, but left

unsettled a difficulty in the physical interpretation of two of the branches in the spatial

case.

Continuous spectra were obtained also in formulations of linear stability problems as

IVP (Initial Value Problem) and IBVP: When solved by Fourier or Laplace Transform

methods, the continuous spectra emerge from branch-cuts in the complex transform

planes. The temporal continuous spectrum was obtained by Gustavsson (1979) who

formulated an IVP. His work was used by Salwen & Grosch (1981) to prove completeness

of the temporal eigenfunction expansion. Tsuge & Rogler (1983) treated a forced problem

formulated as IBVP and obtained two branches of the spatial continuous spectra, but

dismissed one of them as nonphysical. They ignored an inconsistency in their solution,

which yielded a branch-cut singularity in a region of the complex transformed plane that

should be analytic. The same branches were obtained also by Aldoss (1982). A similar

forced problem for compressible flow was also treated as an IBVP by Tumin & Fedorov

(1983), who found seven branches of the spatial continuous spectra. They recognize the

same inconsistency, proposed a method to resolve the difficulty, but which does not seem

to be a practical one.

In the solution here presented, the continuous spectra emerge in a natural way as

part of the complete solution and the solution is mathematically consistent. The solution

After completion of this manuscript the authors have found that the continuous spectra was also

addressed by Murdock & Stewaxtson (1977) and Hultgren & Gustavsson (1981).
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procedure is applicable to a wider classof problems, and clarifies the prior difficulties.

The outline of this work is asfollows: The problem is formulated in Section 2 and

the solution in the transformed domain is presentedin Section 3. Referenceis made to

necessarydetails which are given in Appendices A and B. The inversion to the physical

domain is performed in Section 4, which includes description of the singularities and

the application of the Briggs method. The physical meaning of the results is described

in Section 5. The discussion in Section 6 includes a comparison to Gaster (1965), and

comments about related topics. It is found necessary to include an outline of Gaster's

solution in Appendix C in order to simplify the comparison. The present work is based on

unpublished work by the authors, Ashpis & Reshotko (1985,1986), where further detail

can be found.
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2. Formulation of the problem

The physical problem is modeled as shown in Figure 1. Two-dimensional

incompressible boundary layer flow over a flat plate is assumed, and the ribbon is

modeled as a line source of disturbances imbedded at the wall at the origin O of the

cartesian coordinates x, y. The longitudinal and normal velocity components are U and

V, respectively, and the freestream velocity is Uoo. We are interested in the response

of the boundary layer to two-dimensional harmoni'c excitation of the ribbon starting at

t--0.

The assumption is that the vibrations of the ribbon are infinitesimally small,

justifying use of linear stability theory. The velocity is split into basic (U, V) and

disturbed (u, v) parts, and the standard procedures of linear stability theory are applied.

Assuming parallel flow, V = 0, i = if(y) , the nondimensional equation for the normal

disturbance velocity v is

where R is the Reynolds number based on U_o and on the displacement thickness 6* ,

-ff_, d2-ff(y) V2 0 2 0 2
= dy 2 , = cox----_ -t- _y2 , and v = v(y; ¢, t). The independent variables are

used in the order y; x, t throughout this paper for convenience.

The effect of the ribbon is formulated as a wall boundary condition on the normal velocity

v(0;x,t)- cosw0t _(z) H(t) (2a)

where w0 is the real frequency of vibration of the ribbon, $ is Dirac's Delta function,

which expresses the modelling of the ribbon as a line disturbance, and H(t) is the unit

step function, which indicates that the motion starts from rest at t -- 0. The second

boundary condition at the wall, from continuity, is

0v(0; x,t) -0 (2b)
Oy



As y _ _ it is required that

v(y;x,t) y--.oo "-_ 0 (3a)

°v(Y;x'_) I -_0 (3b)
Oy _-.oo

We use the generalized double Fourier transform defined as

/?/?• (y; a,_) = dt dxv(y;x,t)e -i(==-_t) (4)
(X) OO

where a is the complex wave number and w is the complex frequency. The lower limit

of the time integration can be replace by 0, because v is a causal function in t ( v -- 0

for t < 0). The Fourier transform on time is then identical to the Laplace transform on

time, with the transform variable S related to w by the relation S - -iw. Thus (4) may

also be referred to as a Laplace-Fourier transform.

Transforming Equation (I) yields the Orr-Sommerfeld equation

{ (D 2 _ a2)(D2 _ f_2)+ iaa'_'}{_} = 0 (5)

where

p2 = as + iaR g(y) -
d

D-
dy

- ¢(y;a,_)

(6)

(I) is considered a function of y, with (_ and _ as parameters. R is also a parameter, but

omitted from the list of independent variables throughout this paper.

Transformation of (2), the boundary conditions at the wall (y = 0), yields

iw

4(0; _,_) - w_ _ w°_ (7a)

0_(0;_,_) -0 (Tb)
Oy



Transforming (3), the boundary conditions as y --. oo , results in the requirements

¢(Y;_,_)] -*0 (8a)
y---* oo

0¢(v;0v_'_) _-.oo_ o (8b)

Equations (5) to (8) form a non-homogeneous system, where the nonhomogeneity appears

in the boundary condition (Ta).

The solution of the equation is

¢ = _ c_¢j (0)
j--1

where ¢j _= Oj(y; 4,w), (j = 1,..., 4), are the four fundamental solutions of the Orr-

Sommerfeld equation. Cj - Cj(a,w) are constants with respect to y, to be determined

by applying the boundary conditions.

The outline of the formulation to this point is similar to Gaster's (1965), except that the

latter is done in terms of the disturbance stream function (see Appendix C and Section

6).



3. Solution in the transformed domain

The fundamental solutions of the Orr-Sommerfeld equation need to be used in order

to find the constants Cj from the boundary conditions. However, exact closed-form

solutions of the equation for a general profile U(y) are not known, except for its asymptotic

solutions as y ---, c_. These solutions will be used when applying the boundary conditions

(8) , and ¢ will then be expressed in terms of the fundamental solutions and their

derivatives at the wall as follows.

3.1. Asymptotic solutions of the Orr-Sommerfeld equation as y _ cx_

As y --* _,

takes the form

where

if --+ U_ and U" _ 0. Taking Uoo = 1, the Orr-Sommerfeld equation (5)

{(D 2 _ _2)(D2 _ p2)}{_} = 0 (10)

and

/22 = e_2 + iR (c_ - w) (11)

_j = ¢j y-"_ (12)

= (123)

Equation (10) is the asymptotic form as y ---. c_ of the Orr-Sommerfeld equation, and

can be solved exactly. Its four solutions _j are the asymptotic forms as y _ cx_ of the

four solutions ¢j of (5) , and are of the exponential form

_ = e rj_ (j = 1,...,4) (14)

where rj are the four solutions of the characteristic equation

(r 2-Ot2)(r 2-/2 2 ) = 0 (15)

9



Let rl and r3 be the solutions of r 2_#2 = 0 , and r2 and r4 be the solutions

of r 2- c_2 - 0. Therefore solving for the rj's requires taking the square root

complex functions a 2 and /_2. To emphasize this point,

r3,1----±(_t2)I/2

r4,2= +(a2)I/2

of the we write rj as

(16)

(17)

Evaluation of the complex square root requires compliance with a convention for making

the square root function single valued, and construction of branch-cuts in the a and w

planes. It seems that this point, although elementary, has been somewhat overlooked in

prior work. The evaluation is detailed in Appendix A, where use of a mapping to an

auxiliary plane yields clear definitions of the branch-cuts and a demonstration of their

properties. It is shown there that

r3,1 = :1:# (18)

where # is the complex square root of (11), properly defined as a single valued function

by the convention specified in Appendix A.

The function # depends on the three parametes a, w, and R. As shown in Appendix A,

at fixed w and R, the branch-cuts for # in the a-plane take the form of two hyperbola

sections (Figures 2b and 6). In the w-plane , at fixed a and R , the branch-cut for # is

a straight line section (Figures 2a and 7). The choice of the branch-cuts in either case

ensures that

Real(#) > 0 for allaandw (19)

This property will be exploited when applying the boundary conditions.

To assist in the evaluation of r4,2, we define the function ( as

¢ = [(a- ie)(a + ie)] 1/2 (20)

where the convention for the complex square root function is in effect. It is shown in
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Appendix A that

Let

r4,2 -- 4- lim ( (21)

a : _r + i_i (22)

where the subscript r indicates the real part of a, and i indicates its imaginary part.

This notation applies also to other complex variables throughout this paper. Then (21)

can also be written as

r4,_ = +sign(at) • c_ (23)

The branch-cuts which make _ single valued are sections of the imaginary a-axis, from

the branch-points +is to +i_ (Figures 2b and 8). As _ _ 0 the branch-points approach

the origin, and the branch-cuts span the whole imaginary s-axis, excluding the point of

origin o_ = 0, which stays a regular point. By the choice of these branch-cuts it is ensured

that

Real(() > 0 for all a (24)

This property will also be exploited when applying the boundary conditions.

The asymptotic solutions are obtained by inserting rj

_1 "- e-PY

_3 "-- e+PY

_2 = lim e -;y
_--_0

_4 "-- lime +;u
e--* [:)

from (18)and (21) into (14),

(25a)

(25b)

(25c)

(256)

3.2. Application of the Boundary Conditions

To apply the boundary conditions at y _ co let p - #r + ipi and write (25b) as

_3 "- ePrYeig'_Y

11
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The second exponential in (26) represents a pure oscillation, and the first is its amplitude

modifier. Since y > 0, growth or decay are determined by the sign of #r. Since

/_r > 0 for all c_ and w, as follows from (19), the solution _3 is unbounded as y --, _,

requiring C3 -- 0. By using a similar argument, following (24), it is concluded that _1

is unbounded as y _ _, requiring C4 = 0 . _1 and _2 decay as y --_ c_, therefore _1

and ¢2 are acceptable solutions.

The two remaining constants C1 and C2 are determined by applying the boundary

conditions (8) at the wall. The result for ¢ is

iw A
(27)

¢ = _(y; a, w) = w2 _ _2 A0

_jo ----¢./(0; a,w)

d

()'-- dy

A - A(y; a,w) = V_V_0 - ¢10¢2'

A0 - A(0; a, w) = ¢_0¢_0 - _10¢20'

(j = 1,2)

(j= 1,2)

where

(A at y = 0)

(Oj at y = 0)

(28a)

(28b)

(2s )

(28d)

(2Se)

It is important to emphasize the role of the particular choice of branch-cuts in this process.

If different branch-cuts would have been constructed, then the growth and decay of the

solutions as y ---, c_ would depend on subdomains in the a and w planes, making the

solution more complicated, if not impossible.
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4. Inversion to the physical domain

,4.1. The singularities of

The function (I) posesses continuous and discrete singularities which are important for

the inversion to the physical domain. The continuous singularities are the branch-cuts in

the complex a and w planes which are discussed in in Section 3.1 above and in Appendix

A. The discrete singularities are the zeroes of the two terms in the denominator of (27):

(i) The zeroes of (w 2 - w02) yield two poles at w = =l=w0 along the real axis of the the

w-plane; and (ii) the zeroes of A0 yield additional poles in both the w-plane and in the

a-plane. These latter pole singularities (ii) are discussed in the remainder of this section.

These discrete singularities (ii) are obtained by solving

=0 (29)

For fixed R the expression (29) yields

a = aj(w) (j = 1,...,N)

The expression (30) represents N w-dependent poles in the c_-plane .

poles trace trajectories there. Alternatively, (29), can be solved for w to yield

w = wj(c_) (j = 1,...,M)

(30)

As w varies, the

(31)

which corresponds to M Q-dependent poles in the w-plane, which form trajectories in the

o_-plane as a varies.

Both a and w are complex in the expression (29), which can be considered as the

generalized form of the dispersion relations which are obtained in the spatial or temporal

normal mode analysis of linear stability theory. The eigenvalues in the spatial formulation

are a special case of (30) with real w, and the eigenvalues in the temporal formulation

are a special case of (31) with real _.

13



A complete description of the discrete singularities is needed in order to perform

the inversion. The suitable form of this description are fixed Reynolds-numbermaps of

families of constant wi and w_ trajectories of aj(w) in the a-plane, for all the j modes;

or, alternatively, similar maps of constant ai and a_ trajectories of wj (a) in the w-plane.

It is to be noted that negative frequencies and wave numbers need also to be included.

It is, however, sufficient to specify in the a-plane only trajectories of aj(w) for w's with

positive real frequencies wr > 0, because it follows from the symmetry property (B4)

(Appendix B) that constant wi trajectories of aj(w) for w_ > 0 are symmetric, with

respect to the imaginary a-axis, to the ones for wr < 0. Similarly, it follows from (B5)

that constant ai trajectories of wj(a) for ar > 0 are symmetric, with respect to the

imaginary w-axis, to the ones for ar < 0, and it is therefore sufficient to specify in the

w-plane only trajectories of wj(a) for positive wave numbers.

We attempted constructing the required trajectories for boundary layer flow based on

data from the open literature, but found that the available data are not sufficient for

that purpose. The only reported computations known to us when both a and w are

complex are by Gaster & Jordinson (1975) and Koch (1986). Some trajectories aj(w)

can be derived from the data presented in those works, but unfortunately they are limited

to negative values of wi, a range which is not useful for the present analysis. The rest of

the reported computations for boundary layers are of either the spatial or the temporal

modes, where either a or w is pure real. These computations (e. g. Mack (1976)) show

that for finite R the number of eigenmodes N and M is finite, and that there is only

one unstable mode. The only theoretical proof is by Miklav_i_ & Williams (1982) and

Miklav_i_ (1983) for the temporal case at finite R. This problem is not addressed here

and we assume that N and M are finite. (1982) and Miklav_i_. (1983) for the temporal

case at finite R. The problem of the number of modes is not addressed here and we

assume that N and M are finite. For clarity we designate this mode with subscript j = 1

and refer to it as the unstable Tollmien-Schlichting (TS) mode. We attach the subscripts

14



j = 2,...,N (or M) to the other modes, and refer to them as the higher, or stable,

modes.

Although the TS mode itself has been extensively investigated computationally, there is

still lack of sufficient data to obtain the complete trajectory maps even for the spatial

and temporal cases, because much less detailed data exist for the higher modes.

It is, however, known that the trajectories of the higher modes wj(ar) and aj(w,.)

(j = 2,... ,N or M) , are in the lower half w-plane and in the upper half a-plane,

respectively, for all R. In comparison, accurate trajectories of al(w,.) (w; = 0), and of

wl(ar) (ai = 0), can be constructed for a wide range of a_r and at, respectively. At

R > Rcr the trajectory of wl (a_) crosses the real w-axis and has a maximum in the upper

half w-plane, and the trajectory of al(w_) crosses the real a-axis and has a minimum in

the lower half a-plane.

Computation of the generalized trajectories, when both a and w are complex is

beyond the scope of the present work, however, a qualitative investigation of the relative

location of these trajectories for the unstable TS mode was performed in Ashpis &

Reshotko (1986), based on the known spatial and temporal cases. It is shown there that

the constant wi trajectory of al(w) shifts upward with increased wi, and is completely

above the real a-axis for some positive wi - a. Similar qualitative conclusions regarding

the trajectories of the higher modes cannot be drawn due to the unavailability of extensive

computational results . In particular it is not known if trajectories can coalesce.

Attention needs to be given also to the left-half complex planes, where the poles have

negative real parts. The existence of eigenvalues with negative real parts, corresponding

to waves moving in the upstream direction, has never been reported in literature. These

are spatial eigenvalues aj(w,.), for positive w,, corresponding to poles in the left half

a-plane, and temporal eigenvalues wi(a,.), for positive at, corresponding to poles in

the left half w-plane. It is not clear if researchers have searched the left half-planes for

eigenvalues without success, or if this search was not attempted at all. The implication

15



to the presentwork is that the existenceof trajectories for wr > 0 in the left half a-plane,

and the existence of trajectories for ar > 0 in the left half w-plane is unknown.

16



4.2. Inversion formula

Inversion of • to the physical domain is obtained according to the inversion formula

v(y;z,t)= (2r) 2 _(y;a,w)ei(a_-°_t)docdw (32)

where F is the inversion contour in the a-plane, and L is the inversion contour in the

w-plane. The inversion contours lie in the region of analyticity of _ in the respective

planes, as shown in Figure 2, which incorporates results of the discussion of the previous

section.

Based on causality, the region of analyticity is an upper half-plane in the w-plane, with

all singularities of • lying in the remaining lower half-plane. Therefore L is a line passing

above all the singularities of ff in the w-plane.

Since v is defined for -_ > z > c_ there is a strip of analyticity in the a-plane which

includes the real a-axis. The strip is confined between q-i_, and all of the singularities

of ff are located above and below it. As _ --_ 0 the strip degenerates to the real a-axis,

allowed by the fact that the origin remains a regular point. Therefore F can be taken

along the real a-axis, conveniently making a in (32) pure real.

The two inversions in (32) are interelated. It means that if the w inversion is made

first, a serves as a parameter whose value is taken along F. Since F coincides with the

real a-axis, the singularities of interest in the w-plane are the ones for pure real a. The

discrete ones are by definition the temporal eigenvalues, and the continuous ones are

along the w's defined by the straight-line branch-cut for a = a_, as shown in Figure 2a.

Since this branch-cut is always below the real w-axis (Appendix A), L lies in the upper

half w-plane above the maximum point of the temporal TS trajectory wl (oct) (ai = 0). If

L is the line w = ia, then _ is positive. This conforms to the analyticity properties in the

w-plane which were discussed above. If the a inversion is made first, the interdependence

of the two inversions requires the singularities in the a-plane to be taken for values of w

on L, meaning for w's with wi = a. The previous discussion showed that for these w's

17



the poles are located in the upper half a-plane, and that the branch-cuts do not cross

the real a-axis (Appendix A), which conformsto the requirementfor existenceof a strip

of convergencethere.

At this point the inversion contours are determined and the inversion according to (32)

can, at least in principle, be performed.

4.3. The time-asymptotic form

The present interest is principally in the time-asymtotic form of the solution, v as t _ co.

For this purpose we apply the method of Briggs (Briggs 1964) (see Section 1). When

using this method, the inversion is made first from a to x, to obtain _ as

1 /_r" _(y; a'w)eiC'Zda (33)

followed by inverting _ from w to t according to

(34)

The method of Briggs requires deflecting the contour L towards L1, which is located

slightly below the real w-axis (Figure 3a). The exponential term in (34) will make the

integrand vanish along the straight portions of L1 as t _ oo, leaving the time-asymptotic

form to be determined by the singularities of O(y;x,w) above L1. Simultaneously the

contour F in the a-plane has to be deflected around constant wr trajectories of aj(w)

which cross the real a-axis as wi ---* 0. The trajectory of the TS mode displays this

behaviour, therefore F is deflected to F1 , as shown in Figure 3b. The branch-cuts in

the a-plane do not interfere with this process, because as was shown in Appendix A,

the upper hyperbola branch-cut does not cross the real a-axis as long as wi > 0, the

lower hyperbola branch-cut is below the real a-axis for all w, and the imaginary axis

branch-cuts do not depend on w at all.

18



Finally, the Briggs method requires one to check the possibility of the coalescing of

constant wr trajectories originating at opposite sides of the real a-axis. Such an

occurrence would be sufficient for the existence of a branch-cut of 9 in the w-plane,

which corresponds to an absolute instability. Investigation of this possibility requires

knowledge of all the trajectories aj(w). As discussed in Section 4.1 above, from spatial

stability calculations it is only known that for wi = 0 all of the higher modes are above

the real a-axis. The possibility that their trajectories move into the lower half plane as

wi is decreased from its value on L, and coalesce among themselves or with the trajectory

of the TS mode, cannot be excluded a priori, without performing extensive numerical

calculations. This is left for future work, and at the present we make the assumption

that coalescing of poles does not occur. The fact that absolute instabilities in boundary

layer flow were never observed experimentally supports this assumption hueristically (it

was not shown by the Briggs method that an absolute instability is sufficient for coalescing

of trajectories).

This assumption leads to the conclusion that 73has no singularities above the real w-axis,

and L can then be deflected to L1 with the proper deflection of the contour around the

poles :kw0.

4.4. Inversion from oc to z

First the inversion from a to x is performed according to

= (35)
1

To evaluate the integral we construct closed contours in the o_-plane and apply the residue

theorem. Two different contours are used, one for the domain x > 0, downstream of the

ribbon, and the other for x < 0, upstream, as shown in Figure 3b.

For x > 0 the contour is closed in the upper half s-plane with the semicircle 1"1 of radius

r, deflected around the two branch-cuts. The closed contour consists of the section of
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F1

branch-cuts, marked with the Roman letters I to IV (Figure 3b).

from -r to +r, of the sections of the semicircle F1, and of the four sides of the

N O, )

j--1

The residue theorem yields

(36)

where the integrand has been omitted, and N(") is the number of poles above F1. The

first integral represents integration along the section of F1 from -r to +r. The rest of

the integrals represent integration on the sides of the branch-cuts, and the the right hand

side is the sum over the residues at the N (u) discrete poles cu(w), designated with the

superscript (u).

For the domain x < 0 a similar semicircle F_ is constructed in the lower half a-plane,

deflected around the branch-cuts there. Similar application of the residue theorem yields

j=l

The roman lettersdesignate the sides of the branch-cuts as marked in Figure 3b and the

residues are calculated at the N (1)poles below FI ,designated with the superscript (_).

As r -+ oo the firstintegralin the the lefthand sideof (36) and (37) approaches the

integralin (35) . The integralon FI vanishes for x > 0 as r -+ oo, and the integralon I_2

vanishes for x < 0 as r -+ oo. Assuming allpoles are of firstorder the following resultis

obtained

(38)=,,,.,)= + 9c(u;=,o.,)

wherein ?)D is the discrete spectrum in the w-plane, given as

N (_)

a'u)'w"w'("( ] ) eiaJ ")(_)= ,' x>O (39a)
A(y;02

=-
0a

N'" w A(Y;a_')(wl'w) e'°'_ ')(_)= x < 0 (39b)

_a
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and _)care the continuous spectra

_c(u;x,_)= _cl(y;x,_)+ _c_(y;x,_) (40)

where subscript 1 designates spectra originating from integration around the imaginary

axis branch-cut, and 2 designates the spectra originating from the hyperbola branch-cuts

as follows:

_cl(y; _,_) = ---1 fI 1 fI _(Y;a,w)e ic'_da,2_" (I)(y; a, w)eiaXda - _ I

x>0 (41a)

1/,¢_c2(Y;Z"°) = -2_ ii 1 f ¢(y;a,w)eiO,:_da,¢(Y; a'w)eiC':_ dc_ - _ v

x:>0 (41b)

(I)(y; c_, w )eiaZ da ,

x<0 (42a)

^ 1 '_(Y;a'w)eiaZda- _ ill

(42b)

4.5. Inversion from w to t

Next 9 is inverted from w to t according to

v(y;x,¢) = [ _(y;x,w)e-i_'dw (43)
JL 1

The integral vanishes on the straight section of L1 for t _ co, leaving v to be calculated

by integrating around the circles surrounding the poles _w0. Using the residue theorem,

v(y; x,t) = E Res [,)(y; x w)e -i_'] (44)
/ J w"-=[=Wo
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Detailed evaluation of (44) is given in Ashpis & Reshotko (1986) and is outlined in the

following.

By observing (39) , (41) and (42) , it is seen that _) consists of sums and integrals of

functions of the form

e - (45)

It is found that

_d

- x,:i=wo) (46)

Using the symmetry property of g,

g(y;_,_0)= 0(y;=,-_0) (47)

where the overbar represents the complex conjugate, it is obtained that

E Res[G]_=+_o - Real[g(y; x,w0)] (48)

Applying these results in (44) leads to the final result for the time-asymptotic form of v

as follows

,,(y;=,t) = v,o(y;=,t)+ vc(u;=,t)

vc(u;=,t)= vc,(y;=,t)+ vc=(_;=,t)

(49a)

(49b)

where the various terms are detailed in the following. The added superscripts (u) and

(£) designate the downstream (x > 0) and the upstream (x < 0) regions, respectively.

The discrete part of v, designated VD, is:

N(,,)

x > 0 (50a)

(l)(_o),_o)

N (t)
A(y; °9 ei[_ _ )(,,,o)=-_ot]

v(_)(Y;x't) "_ E Im OAo(o_,)(wol,wo )
j=l

Oo_

, x<0

(_ob)
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where the "~" sign designatesthat this is the time-asymtotic limit. A non-zerovaluefor

(50b) is contingent on existenceof poles in the left half-plane as discussedbefore.

The continuouspart of v originating from the imaginary-axis branch-cut, designated vcl,

is:

-1--2 Im([/0
_(y;_.t) ~ 2--;

A_U)(y;a.wo)e-_:da]e-i_°t}. a:>0 (51a)

Ai')(v;.. _0)e+=ao.]e-'_o'}. _<0 (slb)

where

A_,)(y;a, wo) = A(y; io'+,wo) _ A(y; ia-,wo) (52a)
Ao( io.+,wo) Ao( io.-,wo)

A_t)(y;o.,wo ) _ A(y;--io.+,wo) A(y;--io'-,wo) (52b)
h-3-0(-i-TA-.J_-A0(-io.-._0)

wherein

io"± = lim (c + io')
_.-.0+

The :h signs correspond to the sides of the imaginary axis branch-cuts, as shown in Figure

3b.

The continuous part of v originating from the hyperbola branch-cuts, designated vc2, is:

v(")r., x, t)C2 kY, 1 { /5~ _ Real e -_1(_°)_ A_U)(y; o., wo)e -v:: e i[6_ (a'_°):_-'_°t] do.},

x > 0 (53a)

v(t)ry; x, t)
C2 k 1 { /5~ _ Real e +_2(_°)_, A_t)(y; o., wo)e +vr e i[62(a''_°)_-'_°t] do" },

x<0 (53b)

where

[061(o.,w0)
A(_')(y;o.,w0) -- [ LAo(,_,,(o.,_o),_o)

A(y;-_(_,_o),_o) _
(54a)
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Ai')(y;_,o30)=
"A(y;._:(_,o3o),o3o)

- A(Y;a+2(a'°°°)'w°)] (54b)

a is an integration variable, subscript B1 designates the upper hyperbola branch-cut,

B_. the lower one, the superscripts 4- designate the side of the respective branch-cut, as

marked in Figure 3b.

61,2 and al,2 are the coordinates of the branch-points O_Bp1, _

and are given by the following equations

- (61,2 + ierl,2) for o3 -- o30,

(55)

61,2(_o)=
o30

(56)

OJ0
For _ << 1 it is obtained that

R

_rl (o3o) _ w°2
R

_2(_0) _ -_ + R

61(o30)_ _0

(57a)

(57b)

(5w_)

6_(_o)_ -_o (57d)
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5. Description of the results

The expressions (50) to (56) show that the vibrating ribbon excites discrete and

continuous spectra, whose frequency in the time-asymptotic limit is equal to the frequency

of the ribbon.

The discrete spectrum consists of the spatial eigenmodes of the flow. These are

discrete travelling waves with frequency w0 and wavenumber ajr(wo ). The phase velocity

of the wave is

The growth factor is e-_¢, (_°)*

which the mode is excited, is

(5s)
cs= aSr

, and the coupling coefficient, indicating the extent to

as ) (59)
Ks=

0a

The quadrant in which the pole is located then determines the properties of its

corresponding wave. Its region of influence is determined by its position above or below

the contour F1 The various possibilities are depicted in Figure 4. Poles in the right

half a-plane correspond to waves propagating in the positive x direction (positive phase

velocity), and the ones in the left half a-plane correspond to waves travelling in the

negative z direction. Growth in the region z > 0, downstream of the ribbon, is if the

corresponding pole is below the real a-axis; and in the upstream region , z < 0, growth

in the negative z direction is if the pole is above the real a-axis. The right half a-plane

was thoroughly investigated numerically by various researchers (see discussion in Section

4 above), and the cases described in Figure 4 (a-ii) and (d-i) where never found. The

cases (b-ii) and (c-ii) cannot be expected to be found when extending these computations

to the left half a-plane.

For x --_ c¢, the higher modes decay spatially, leaving the Tollmien-Schlichting mode

to be the dominant mode in the downstream region, and the summation in (50a) can be

omitted.
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The continuousspectraaffect the regionsupstream and downstreamof the ribbon. In

eachregion it consistsof two parts; the onedescribedby (51), consistingof a superposition

of standing waves,and the one given by (53) is a superposition of travelling waves. In

both casesthe wavesdecayawayfrom the ribbon asx --, =t=_, although growth is possible

for finite x close to the origin.
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6. Discussion

In the work presented here we have revisited the vibrating ribbon problem which

was first done by Gaster (1965). For the purpose of comparing the two works, we use

the notation G when referring to Gaster's work, and present its outline in Appendix C.

We have written the equations and the boundary conditions in terms of the disturbance

normal velocity, while G used the disturbance stream function. As shown in Appendix

C, the two formulations are equivalent and lead to the same equation and boundary

conditions. Except for this minor difference, we followed the formulation of G up

to the point where the double transform is applied (Equation (9)). From there on

our solution method differs considerably. We expressed the solution in terms of the

fundamental solutions of the Orr-Sommerfeld equation, exercised some care in the

evaluation procedure, and applied the Briggs method to obtain the time-asymptotic

solution. In G the solution is written in terms of a nonspecified complete solution of

the the Orr-Sommerfeld equation and boundary conditions, and the inversion contour is

not determined in a straightforward way (see Appendix C for details).

A significant outcome achieved by the present work is that the solution includes the

continuous spectra, which are missing from G. The wave components of these spectra

are identical to the spatial continuous spectra obtained in Grosch and Salwen (1978)

and Salwen and Grosch (1981) by looking for pure oscillatory eigenmodes of the the

Orr-Sommerfeld equation . Here these eigenmodes emerge in a natural way, simply by

constructing branch-cuts in the complex planes, as required whenever a complex square-

root function is encountered.

The discrete spectrum obtained in the present work is equivalent to the one in G,

with the exception of the factor of 1/2 which appears there ( compare (Cll) to (50a)). In

addition, the result in G depends on assumptions involving the sign of the group velocity

(see Appendix C). No such asssumptions are used in the present analysis. The reason

for the discrepancy by the factor of 1/2 is an error in the computation of the residue at
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w = w0: The inversion contour in G was taken along the real v-axis (Figure 9). In that

case the following expression, appearing in (C6) takes the form

lim _ _ _r
- i_[6(_ + _0) + _(_ - _0)] (60)

The contribution from the term containing the 8 functions, which is equal to the

contribution from term preceeding it, was not taken into account in G.

It was obtained here that the ribbon has a downstream influence by excitation of

both the discrete and continuous spectra. The new finding is that it also has an upstream

influence via the continuous spectra . It was shown that the possibility of an additional

upstream influence by excitation of the discrete spectra needs also to be considered. This

can be verified or excluded only by numerical search for poles in the left half plane, which

correspond to spatial eigenvalues with negative real parts for positive frequencies. The

spatial decay in the time-asymptotic limit of the continuous spectra is much greater in

the upstream direction compared to the downstream direction. This is concluded from

(57), showing that at large Reynolds numbers or2 >> or1, which affects the exponential

decay terms preceding the integrals in (53).

The distinction between singularities affecting the upstream region and the ones

affecting the downstream region is useful also in clarifying the difficulty expressed in

Salwen and Grosch (1981). They point out that the wave component of the continuous

spectra which propagates upstream from z = cx_ and the standing waves whose amplitudes

increase towards z = _ are not physically acceptable. This difficulty is resolved by the

analysis here, which shows that these waves are excited only in the upstream region of

the ribbon and therefore are physically acceptable.

Once solved systematically and correctly, the complex plane contains all the discrete

and continuous singularities, and the the solution can serve as proof of completeness of

the eigenfunction expansion in the spatial case. This is in analogy with the proof of

completeness for the temporal case done by Salwen & Grosch (1981) by comparing to the

solution of Gustavsson (1979). Although proof of completeness for this case is reported in
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an abstract by Salwen,Kelly and Grosch (1980), details were never published and could

not be obtained from the authors.

Our solution also shedslight on the difficulties in the IBVP solutions reviewed in

Section 1. In thesesolutions a Laplace transform wasapplied to the longitudinal spatial

coordinate x, which is equivalent to the Fourier transform of a function causalin z (A 90

degree rotation relates the Laplace S-plane to the Fourier o_-plane). Therefore, formally,

the application of the Laplace transform should yield the same discrete and continuous

singularities as the Fourier transform. However, the complex S-planes in the work of

Tsuge & Rogler (1983) and of Aldoss (1982) do not include the counterparts of the

imaginary axis branch-cuts. In addition there is an inconsistency in these works, as well

as in Tumin & Fedorov (1984), where branch-cut singularities protrude into what should

be a half plane of analyticity of the S-plane. As is shown, the disturbance introduced by

the vibrating ribbon has an upstream influence, at least through the continuous spectra,

and so will any disturbance introduced at x = 0. By applying the Laplace transform this

possibility is excluded, and it is suggested that this is the source of the mathematical

inconsistency, and that it is incorrect to use the Laplace transform in these problems.
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Appendix A. The functions p and _ and evaluation of rj

The essentials of the evaluation of the functions p and _ and the four solutions rj of the

characteristic equation (15) are contained in this Appendix. The detailed evaluation can

be found in Ashpis & Reshotko (1986).

A.1 The complez square root function

rj are evaluated as the complex square roots given in Section 3.1 as

r3,1 = 1/2

r4,2 = +(a2)1/2

(16)

(17)

We follow in detail the well known elementary steps to evaluate the square roots. To

excercise this extra care we first review the complex square root function F = Z 1/_. F

has two single valued branches F + and F-, which are related by F+= -F-. To make F

single valued, it is needed (i) to construct a branch-cut in the Z-plane, (ii) to characterize

F + and F- by a specified definition, and (iii) to select one of the branches F + or F- to

represent F.

These three steps are executed as follows: (i) Any line from the branch-point Z = 0 to

cx) is an acceptable branch-cut, and we select the negative real Z-axis as the branch-cut.

(ii) We define F + to be the branch of F that yields real positive F at real positive Z, F-

is then the branch that yields real negative F at real positive Z. (iii) Finally, we choose

the single valued function to be represented by the branch F +. This process establishes

a convention for defining the single-valued complex square-root function which is used

throughout this paper.

This convention ensures that

Real(F) > 0 for all Z (A1)
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The situation is illustrated in Figure 5 . It is easyto demonstrate that (A1) will not be

vMid for any other selectionof a branch-cut in the Z-plane.

A.e evaluation of rl and r3

Let Z be defined as

Z = a 2 + iR(a - ;o) (A2)

then, from (11)

p = Za/2 (A3)

where p is a single-valued function,

Following (16) it is obtained that

according to the convention described above.

rl = -p (A4)

r3 = p (A5)

Z depends on a, ;o and R. For fixed R, either ;o, or a, can be taken as a parameter.

A.2.1 p with ;o as parameter

The case where ;o is the parameter is discussed first. In this case p can be viewed as a

mapping from the a-plane to the p-plane via the auxiliary plane Z. The various planes

are illustrated in Figure 6.

The mapping from the a-plane to the Z-plane is investigated in the following.

Let

Z = Zr + iZ_ (A6)

a = ar + iai (A7)

;o = ;Or + i;oi (A8)
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Substitution into (A2) and equating the real and imaginary parts yields

(ai -_- _ ) - Zi -_"RA_)r2a,. (A9a)

ai + - a_ = _ + Rwi - Z_ (A9b)

which shows that constant Z, and Zi lines are mapped into hyperbolas in the a-plane.

(Aga) represents a family of canonical hyperbolas of the first kind, and (A9b) represents

a family of canonical hyperbolas of the second kind, both shifted to ai = -R/2. In

addition to the R-dependence, (A9a) depends only on wr, the real part of w. (Agb)

depends only on its imaginary part wi. The mapping is illustrated in Figure 6 for the

case of a pure real and positive w. The real Z-axis is mapped to the hyperbolas al and

a2; the imaginary Z-axis is mapped to the hyperbolas bl and b2 . The quadrants of the

Z-plane and the domains in the a-plane into which they are mapped are marked with the

roman letters I to IV. The branch-point Z - 0 is mapped to the points BP1 and BP2.

These points are the intersection points of the hyperbolas al with bl, and of a2 with b2 .It

then follows that the branch-cut in the Z-plane is mapped into the two marked sections

of the hyperbolas al and a2, from the branch-points BP1,2 to -4-_.

The coordinates of the branch-points and equations of the branch-cuts are given in Ashpis

& Reshotko (1986). The branch-points vary with w as follows: As wi increases the

branch-points move towards ±ic_ along the hyperbolas al and a2, respectively. The

upper branch-point BP1 is above the real a-axis for wi > 0. As wi decreases to negative

values BP1 moves below the real a-axis. The lower branch-point BP2 stays below the

real a-axis for all wi. For wr < 0 the picture is symmetric with respect to the imaginary

a-aJds.

It follows from the previous discussion that the auxiliary Z-plane, with the branch-cut

along the negative real axis is mapped into the right half/_-plane. Since the whole the

a-plane is mapped to the Z-plane, it follows that with the specified branch-cuts it is
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ensured that

Real (#) > 0 for all (_and w.

A practical formula for calculation of p is given by

where

(A10)

(All)

2 _ - R(oq - wi)gr "- _r -- OQ

Zi = 2o,io_ + R(o_ - w,.)

r = + z})

(A12)

(A13)

(A14)

The + sign is used in regions I and II, the - sign in III and IV of the R-plane (Figure 6).

A.2.2 # with _ as parameter

When a is taken as the parameter in (A2) with fixed R, # can be viewed as a mapping

from the w-plane to the p-plane via the auxiliary plane Z, as depicted in Figure 7 . We

obtain in a similar fashion

2 (A15)

1

wr "-- _(-Z, + 2aiar + R_,) (A16)

These expressions show that constant Zr and Zi lines in the Z-plane are mapped into

straight lines in the w-plane.

The branch-point Z - 0 is mapped into the
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WBVo = 710+ io'o (A17)

where

1 2

_o = -_[,_- (,_ + R,_)] (AlS)

,7o= ,_ (1 + _-_) (A19)

The branch-cut extends from BPo to -_ in the lower half w-plane parallel to the

1 2
imaginary axis. For cq = 0 the branch point forms the trajectory a0 = -_r/0, therefore

the branch-cut is always below the real w-axis.

This branch-cut is mapped into the branch-cut in the Z-plane therefore it follows that

Real (tt) > 0 for all w and a. (A20)

A.3 Evaluation of r2,4 and the function

A similar analysis is applied to (17) and (21). As noted in Section 3.1, it is useful to

avoid ambiguity by defining the function _ as

_2 = (o_ - is)(c_ + is) (A21)

(For a similar idea see Carrier et al (1966) pg 315, 346).

Then

a _ = lim _2
¢.-*0

We define z as

and it follows that

z -- (c_- is)(o_ + is)

--" zl/2

(A22)

(A23)

(A24)
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where ( is a single valued function subject to the previous convention regarding the

complex square-root. Therefore

r2 - - lim ( (A25)

r4 = lim( (A26)
¢---* 0

Similar to the treatment of/_, we view ( as a mapping of the a-plane, via the auxiliary

plane z (Figure 8). The process here is, however, simpler because ( does not depend on

Rorw.

As before, we select a branch-cut in the z-plane along the negative real axis, therefore

the whole z-plane is mapped into the right half (-plane.

The mapping from the a-plane to the z-plane is given by

where

2 2 e2 (A27a)a i -- a r "-- -- Zr

zil2
ai - (A27b)

ar

z = z_ + izi (A28)

(A27a) shows that constant zr lines in the z-plane are mapped into a family of canonical

hyperbolas of the second kind in the a-plane. (A27b) shows that constant zi lines are

mapped into a family of canonical hyperbolas of the first kind. The branch-point z = 0

is mapped to the points +is in the a-plane, and the branch-cut is mapped to the sections

of the imaginary a-axis, from the branch-points to ±oo, as shown in Figure 8. Selecting

these sections as branch-cuts ensures that

Real(() > 0 for all a (A29)

A working formula for the calculation of ( is given as

_=V_[v_+z-iq-i_a (A30)
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where

2 2 ¢2 (A31)Zr "- O_r -- O_i -_-

zi = 2a,.ai (A32)

a- (z2r + z_) 1/2 (A33)

and the + is taken in the quadrants (1) and (3), and the - in qudrants (2) and (4) of

the a-plane, as marked in Figure 8.

As E --+ 0 the two branch-points approach the origin c_ = 0. This point, however remains

a regular point of _. Therefore in the limit e --+ 0 the branch-cuts coincide with the

whole imaginary a-axis, with the exlusion of the point of origin.

Also as ¢ ---+0 (20) can be written as

= sign(a,.), o_ (A34)
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Appendix B. Symmetry properties

The function • exhibits the following symmetry properties

v(y; _, _) = 4(y; -_, -_) (B1)

where the overbar designates the complex conjugate. This property follows from the

Orr-Sommerfeld equation and also from the properties of the double Fourier transform

of a real function.

The single Fourier transform of the real function v has the property

_(u;x,_) = _(y;x,-_) (B2)

It follows that

ao(,_, ,,,) = _o(-_, -=) (B3)

and that

(B4)

wj(a) = -_./(-_) (B5)

Additional details related to these properties are given in Ashpis & Reshotko (1986).

It is demonstrated there that the symmetry properties are not valid with a choice of

branch-cuts other then those specified in Appendix A.
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Appendix C. Outline of Gaster's solution (1965)

Gaster's formulation and solution of the vibrating ribbon problem ( Gaster (1965)) is

summarized in this appendix. For brevity we here refer to Gaster (1965) as G.

We found some details in G somewhat difficult to follow, mainly due to to the lack

of accompanying figures describing the complex planes. It was also noted in private

communication (Gaster, 1984) that G contains some printing errors and has an omission

of a short paragraph. For the purpose of comparison between G and the p_esent work, we

find it useful to outline the solution of G in this Appendix and to provide a supplementary

figure.

Let us designate the disturbance stream function as ¢(y; x,t) and its double transform

as q_(y;a,w), and use the notations of the present work: Then the disturbance stream

function • in G is • in our notation; the frequency _ in G is w in our notation; and the

frequency of the ribbon w in G is w0 in our notation. The other pertinent notations are

identical.

The formulation of the problem in the present work follows the one in G, except that in

G the formulation is in terms of the disturbance stream function ¢, while here it is done

in terms of the disturbance normal velocity v.

After a double transform, G obtains the Orr-Sommerfeld equation for

(G(y) _ _/_)(i,, _ _21) _ _,,(_)_ = (_i/_R)(isv _ 2_2_,, +_4_) (c1)

subject to the boundary conditions

at y=0:

1 W

• (0;_,_) = (C2a)
_2 __ _g02

0_(o;_,_) =0 (c2b)
Oy
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since

then

From (C2a)

as y --+ co:

Oql
,,Y,

Oy
-+ 0 (C3a)

O_

v = - 0--'_ (C3b)

v(u; = (C4)

w 1

which yields after substitution into (C4)

iw ql(y;a,w) (C6)
• =

The inversion to the physical domain in G differs from the one performed in the present

work in the way the inversion contours are determined, and in the use of the symmetry

of @ with respect to a and w.

Two possible inversion contours in the a-plane are considered by G, and the correct

contour is selected based on results of the next inversion from w to t. The inversion from

a to x is essentially similar to the one done here, although G uses the symmetry property

of @ with respect to real a and w, but the inversion from w to t is different than the one

used here. The closed contour constructed by G for application of the residue theorem

is shown in Figure 9. We drew this figure based on the description in G, and provide it

here for illustration. It is argued in G that the inversion integral vanishes for _ --+ co on

the section A2 of the contour. This argument utilizes assumptions which involve the sign

of the group velocity.

The result for the dominant TS mode obtained in G is

i _t(y;a(wo),wo) ei[.(_o)__o,l} (C7)v(y;x,t)--Im _ O--_(O;a--_oi,-_o)

Oa
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is a linear combination of the fundamental solutions of the Orr-Sommerfeld equation.

The constants, correspondingto the Cj's of (9) in the present work, were not evaluated

in G.

In order to compare the results we write (C7) in terms of the fundamental solutions _j

and A (see (9) and (28)), as follows:

Using (C4) for the _-ratio in (C6) yields

_(0;,_,_)
= _(u; _'_) (c8)

• (0; _, _)

substitution of (27) into (C8) yields

• (u;_,_) _(_; _,_)
= (c9)

• (0;_,_) _0(4,_)

then (C6) is

iw A(y; a, w)

¢(u;_,_) = _2__0_ A0(_,_) (C10)

and (C7) takes the form

v(y; x, t) = -Im {

1 zx(u;_(_o),_o)_[_¢_o)-_o,]
2 OZXo(a(_o),_o)

04
} (Cll)
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Figure 1. Model of the vibrating ribbon problem.
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Figure 2. Undeflected contours for the inversion integrals (schematic).

The points marked with m in (a) indicate poles for the a_ marked

with m in (b). The curves passing through these points are
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