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ABSTRACT
This report investigates various methods of reducing the
cost in space transportation systems for human Mars
missions. The reference mission for this task is a
mussion currently under study at NASA. called the Mars
Design Reference Mission, characterized by in-Situ
propellant production at Mars. This study mainly
consists of comparative evaluations to the reference
mission with a view to selecting strategies that would
reduce the cost of the Mars program as a whole, One of
the objectives is to understand the implications of
certain Mars architectures, mission modes. vehicle
configurations, and potentials for vehicle reusability.
The evaluations start with year 2011-2014
conjuncuion missions which were characterized by their
abort-to-the-surface mission abort philosophy.
Variations within this mission architecture. as well as
outside the set to other architectures (not predicated on
an abort to surface philosophy) were evaluated. Specific
emphasis has been placed on identifying and assessing
overall mission risk. Impacts that Mars mission
vehicles might place upon the Space Station, if it were to
be used as an assembly or operations base, were also
discussed. Because of the short duration of this study
only on a few propulsion elements were addressed
(nuclear thermal, cryogenic oxygen-hydrogen,
cryogenic oxygen-methane. and acrocapture). Primary
ground rules and assumptions were taken from NASA
material used in Marshall Space Flight Center's own
assessment done in 1997

INTRODUCTION

This report was written in support of the Boeing
NASA/MSFC studies relating to Affordable In-Space
Transportation (AIST) concept definition in 1998.
Various methods of reducing the cost in space
transportation systems are investigated. The reference
misston for this task is a human Mars mission currently
under study at NASA. The current Mars Design Reference
Mission is used for reference purposes and as a basis for
comparison to alternative transportation systems and
architectures. One of the objectives of this report is to
understand the implications of certain Mars mission
architectures, transportation vehicle configurations,
mission enhancing technologies and mission modes.
The primary approach is to start with evaluations for
conjunction missions with abort to the Martian surface,
studying the 2011-2014 opportunity. Further
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evaluations were done for variations within this mission
set, as well as outside the set to other architectures that
are not predicated on an abort to surface philosophy.

STUDY OBJECTIVES

This short study centered mainly around the Mars
mission elements. The Mars Design Reference (DRM)
was used as a starting point. It will be described, along
with its significant elements, so as a fair evaluation and
comparison can be made to other missions. This is done
primarily with a view to determining cost savings that
may be made across the DRM architecture or by adopting
a different Mars mission architecture. Variations are
proposed at specific points as a means of contrasting the
relative cost of adopting new technologies into a
mission set. It is the goal of this study to focus on a few
significant transportation system elements (such as
propulsion type, use of aerocapture, abort philosophy,
capture orbits, etc). Primary ground rules and
assumptions were taken from NASA material used in
MSFC's own assessment of the DRM done in 1997,

MARS DESIGN REFERENCE MISSION DESCRIPTIONS
In the Mars DRM, an Earth return transfer propulsion and
habitat system is prepositioned on Mars and refueled by
methane and oxygen produced from Mars atmosphere
(with the aid of a modest amount of hydrogen brought
from Earth). The refueling process uses automated
propellant production and relatively simple robotics.
The mission crew transfers to Mars. bringing their
transfer habitat to Mars surface via aerobraking for use
on the surface during the 500-day stay. With a large
enough launch vehicle, no Earth orbit assembly is
required. Also, no Mars orbit operations are required.
Production of propellants from Mars’ atmosphere is a
greatly simpler proposition than production from Lunar
regolith. An adequately robust habitation facility on the
surface of Mars is more reachable as a safe haven than
return to Earth for some portion of almost any Mars
mission profile. The reference architecture employs three
launches from Earth; one to Mars orbit and one to Mars
surface for cargo delivery, and one to Mars surface for
personnel delivery. See Figure 1 for a graphical
representation of the three mission scenario. During the
crew mission launch period, two cargo launches to
support the following crew mission are also launched. In
addition to surface cargo, the cargo missions deliver the
crew ascent vehicle and the Earth return vehicle. The
former is fueled with in-situ propellants after landing

Copyright 1998. The Boeing company. All rights reserved. Published by the American Institute of Aeronautics and

Astronautics, Inc. with permission. Work reported in this
under Contract number NASS-5000"Schedule F TOF-028.
*Systems Configuration Designer

paper was performed for the NASA Marshall Space Flight Center



(but prior 10 the crew departing Earth) and the latter 1s
parked in Mars orbit, fully fueled. awaiting use at the
completion of the crew mission. Both the crew ascent
vehicle and the Earth return vehicle use methane and
oxygen propellants. Methane was selected for the Earth
return for engine / propulsion commonality with the
ascent vehicle and because the storage temperature for
methane is about 70 K warmer than for hydrogen. The
manned mission transfer module also goes on a direct
trajectory to a Mars landing. The mission vehicle
includes an aerobrake for Mars arrival, a transfer / surface
habitat, other small surface cargo such as a rover. and a
descent stage. The transfer habitat becomes part of the
surface infrastructure.

The habitat for the return transfer is already
parked in Mars orbit before the crew leaves Earth because
it is part of the Earth return vehicle. The Earth return
vehicle and the ascent vehicle for the subsequent mission
opportunity are delivered to Mars as cargo, armving
about the same time as the current crew. These are
available as backup for the return trip. Several variations
on this reference architecture have been described. but all
are operated on this same basic concept. Inherent in the
concept is the idea of a robust and redundant surtace
architecture that can be depended on as a safe haven.
However, the arrangement of the architecture eliminates
several abort modes. These will be detailed in a later
section. The architecture introduces severaj new
technologies at one time which must be regarded as risky
from the program management point of view:

(1) Aerocapture at Mars

(2) In-situ propellant production

(3) Robotic assembly of the initial base under
conditions of severe communications delay
(4) Nuciear thermal propulsion

Mars atmosphere consists mainly of carbon dioxide.
Three means for propellant production are possible. One
is to dissociate carbon dioxide into carbon monoxide and
oxygen. Both can be liquefied and burned in a rocket
engine with an estimated specific impulse of about 250
seconds. The second is to use the oxygen from this
dissociation process with hydrogen or other fuel brought
form Earth. The third is to react hydrogen brought from
Earth with carbon dioxide to produce methane. Oxygen is
a byproduct, and additional oxygen can be produced to
obtain the optimum mixture ratio for an oxygen-methane
rocket engine. These process have been demonstrated in
the laboratory environment, and some are industrial
processes on Earth.

MSFC MARS DESIGN REFERENCE MISSION DATA
Mission ground rules and assumptions as proposed by
MSFC are given in Figs. 2-5. Fig. 6 lists MSFC DRM
vehicle weights (from Ref. 1) for the two 2011 cargo
flights and the single 2014 crew transfer flight.

BOEING MARS DRM DATA COMPARISON TO MSFC
DRM DATA

Boeing vehicle design and weights estimating was done
to match this 2011- 2014 mission set. Boeing vehicle
weights data for the major vehicle elements are listed
along side the MSFC estimates. Fixed payload values are
circled. The Boeing generated values are given in bold
print. For the transfer vehicles the Boeing values are
only slightly higher (due to a more conservative
allotment of propellant reserves), the Boeing ascent and
descent stage dry mass estimates are heavier however
(see “Mission 2" column of Fig. 6). The difference lies in
the fact that the Boeing weights code sizes the ascent and
descent stage load bearing structure (frame and landing
legs) to support the in-siru ascent stage after ir is fully
fueled on the Martian surface. (Its fully fueled weight is
four times its empty weight.) Figure 7 illustrates the
2014 piloted vehicle with the surface habitat module
integrated into the descent vehicle.

COMPARATIVE EVALUATIONS

This DRM vehicle set and payload delivery capability
form the baseline from which alternative concepts and
approaches are presented in the remaining portion of
this document. Understanding and quantifying the
implications of other Mars mission architectures in
relation to the DRM is important to identifying cost
reduction techniques. Finding ways to reduce mission
risk and to increase vehicle robustness is also a an
objective. This study investigated vanations to ascent
vehicle propulsion type, mission mode type, transfer
vehicle propulsion type, transfer vehicle configuration
type. and propulsive vs aerocapture at Mars. Transfer
vehicle recapture at Earth for reuse was also evaluated. A
comparison was made of abort strategies. The topic of
Mars vehicle on-orbit assembly is addressed. as well as
potential impacts to the ISS, should it serve as an on
orbit support station for assembly. The task work
statement stipulates that NTP be used for the reference
mission. Alternate systems offering potential for reduced
risk, lower cost, lower mass, simplified operations. or
some other benefit were considered. For this short study,
the overall goal was to understand what elements
constitute a flexible, cost effective, evolutionary in-
space transportation program for NASA, and provide
information necessary to proceed with initial system
definition and planning. Only one Mars mission
opportunity was evaluated, the year 2014 opportunity
for the manned portion with 2011 being the date for
launch of cargo flights for preemplacement of surface
infrastructure. No trajectory optimizations were done to
those supplied by NASA; all vehicles were sized based on
the same mission delta velocities, trip times, boiloff
rates, engine specific impulse, etc.

Varniations to the Mars DRM included
evaluating three other ascent propulsion systems vs the
baseline in-situ O2/CH4 system. Another option
considered the compression of the reference fleet size
from 3 transfer vehicles to 2. The current DRM is not



well surted to reuse. so an aliermauve mission mode was
selected for reusability evaluations. Some of the
concepts and descriptions are taken from the authors
work on Boeing's Space Transfer Concepts and Analvses
Sfor Exploration Mission study. (Ref. 2)

ASCENT STAGE TRADE
The utlization of in situ propellant production (ISPP) for
reducing the total payload mass required in Earth orbit
has been advocated for Mars exploration missions since
the 1970's (Ref. 3). ISPP received renewed interest in the
early 1990°s (Ref. 4, 5) and is a prominent feature of the
present DRM. In the ISPP scenario, iiquid oxygen
propellant processed out of Martian atmospheric carbon
dioxide (CO2), and liquid methane (CH4) propeilant
formed by combining the carbon extracted from the
atmospheric CO2 separation process with H2 carried
with the vehicle, would be supplied to an ascent stage on
the surface. This vehicle would be deployed previous to
the arrival of a crew on a separate lander stage. Once
fueled autonomously on the surface. the vehicle is to be
used to return the crew after their surface stay to Mars
orbit for rendezvous with a Mars-Earth transfer stage.
Since no ascent stage propellant need be transported
from the Earth, the total payload required of ETO and
Earth-Mars transfer systems can be reduced. Other
variations to this scheme have been considered,
including those in which only O2 is produced at Mars as
oxidizer to supply vehicles utilizing Earth supplied
hydrogen, hydrogen-beryllium. monomethyl hydrazine
or other fuel. Elements necessary for processing the 02
and CH4 out of the atmosphere include the in-situ
propellant plant. surface power for the plant, seed H2 for
CH4 production, tanks for the seed H2. and support
structure for these elements on the descent stage. The
estimated weight for these elements are given in Table [l
below.

TABLE Il IN SITU SYSTEMS

1. In Situ plant =43 mt
2. Seed H2 for CH4 prod =45mt
3. Seed H2 tanks = 0.4 mt
4. Lander support struct =04 mt

Once in Mars orbit, the crew and surface payload is
emplaced on the surface by one or more landing craft. All
but about 1000 m/s of the descent maneuver AV can be
taken out aerodynamically by the aerobrake. The only
large AV maneuver remaining to be considered is the
Mars ascent AV it is the most energy intensive of all the
Mars maneuvers. requiring 5625 mvs to ascend to a 250
km periapsis by 1 Sol parking orbit for rendezvous with
an orbiting transfer stage. This dV value exceeds the
1deal escape velocity (5000 m/s) for Mars due to the
excess velocity needed to offset gravitational and
atmospheric drag losses. Ascent and descent stage
performance and mass as a function of a variety of
mission, vehicle, and subsystem related variables were
estimated for five different ascent propulsion systems.

Three of these use only Eanth supplied propeliants and 3
utilize ISPP. Included in the first group are the nuclear
H2, the chemical 02/H2 and O2/H2-Be stages. In the
latter group are the O2/H2 3nd O2/H2-Be stages which
beneflit from ISPP O2 oxidizer. and a O2/CH4 stage
which utilizes ISPP oxidizer and fuel. These options are
listed in Table HI. Engine performance characteristics are
listed in Fig. 8 for each propellant combination. Other
assumptions are given below:

General Assumptions

* 5.5 mt ascent crew cabin mass

* 0.1 mt returned samples mass

* Aeroshell mass set to 16% (cargo) or 21%
(piloted) of the total decelerated mass

* Single stage

* Weight growth of 15% for stage dry mass

Nuclear Ascent Stage
* Single nuclear engine utilized with a | mt dedicated
radiation shield mass

* In line primary H2 tank configured for supplemental
shield radiation attenuation

* Engine jettisoned before rendezvous with orbiting
transfer vehicle; remains in long lived Mars orbit

In Situ Ascent Stages

* Propellant plant and seed H2 of 9.6 mt delivered with
the ascent stage. This mass is counted as part of the
descent stage in the weights calculations. Ascent tanks
are topped-off prior to lift off to negate boiloff.

* Ascent and descent stage load bearing structure (frame
and landing legs) sized to support fuily fueled vehicle on
the surface.

Ascent Stage Performance Results

Vehicle mass statements for the different ascent concepts
are listed in Figure 9. This data is shown graphically in
Figure 10, where the concepts are shown in ascending
order by total lander weight. Three NTP ascent stage
options are listed. showing stage weight variation with
engine t/w. The NTP concept described herein was only
analyzed utilizing H2; other propellants could be used,
including those that are in-situ produced. ISPP for NTP
ascent warrants further study. A 22.8 mt descent payload
was carried to the surface in addition to the ascent stage.
In Fig. 9, ascent stage weights are given at Earth depar-
ture and Mars liftoff (columns 9 and 10).

TABLE 0TI ASCENT STAGE TYPES

1. Earth Supplied Oxidizer And Fuel
Chemical H2 02
Chemical H2-Be 02

Nuclear H2 n/a



TABLE 11l ASCENT STAGE TYPES

[

ISPP Oxidizer and Earth Supplied Fuel

Chemical H2 02 ISPP

Chemical H2-Be 02 ISPP
3. ISPP Oxidizer and Fuel

Chemical CH4 ISPP 02 ISPP

ISPP offers significant mass savings over the Earth
supplied options when ascent stage comparisons are
made at the "Earth Departure” mass level (Column 9 of
Figure 9). Production of both oxidizer and fuel on the
surface would allow the O2/CH4 stage to be transported
to Mars with its propellant tanks empty, at one fourth
the mass of its fully fueled O2/H2 Earth supplied
counterpart. At 9.7 mt, this all ISPP concept proved to
be the lightest of all those ascent stages evaluated. After
fueling on the surface, however, the ISPP O2/CH4 craft
becomes the heaviest of those evaluated. weighing 47.9
mt when fully fueled, quintupling its empty delivered
mass (38 mt of this amount is propellant).

It is important to note that the ascent stage
load bearing and descent stage load bearing frame and
landing leg structure needed to support this amount is
heavy, even in the reduced gravity environment on Mars.
This additional descent stage structural mass, (along with
the 9.6 mts additional ISPP hardware and H2 seed
propeliant that must be carried to the surface), is enough
to change the rankings of the weights comparison when
the concepts are assessed at the “roral lander mass™ level
(last column of Fig. 9). The descent stage required for the
in-situ O2/CH4 ascent stage is as heavy as the descent
stage required for the all Earth supplied O2/H2 ascent
stage, and 10.3 mt heavier than that descent stage
required for the ISPP 02/ Earth supplied H2 ascent stage,
and 12 mt heavier than the descent stage required for the
nuclear ascent stage (eng tw = 9).

Consequently, the total lander mass (ascent,
descent and surface cargo) associated with the nuclear
ascent system (eng tw=9) is only 4.1 mt more than that
of the ISPP O2/CH4 system (91.0 vs 86.9 mt), though
its ascent stage mass (at Earth departure) is 15.9 mt
heavier. This total lander mass value is more relevant to
this investigation than merely the ascent stage value, as
it is the complete lander system that must be boosted to
Mars. At 81.8 mt, the total lander vehicle associated
with the ISPP O2/Earth supplied H2 ascent vehicle is the
lightest overall. The NTP ascent stage is illustrated in
Figure 11.

Minimum mass, however, cannot be treated as
the only criterion for evaluation; operational differences
must also be assessed. In this regard there exits a notable
difference between the Earth supplied and the ISPP
vehicles. The former do not require the additional
complexity associated with autonomous vehicle
predeployment and operation on the Martian surface
previous to crew arrival.

Also. the non-ISPP landers have the capability to effect
an abort during the descent burn if necessary. In such an
event the ascent stage can separate from the descent
stage and bumn its propellant to retumn to Mars orbit. The
ISPP vehicles are delivered to Mars with their ascent
tanks empty and inherently have not this capability.
However, the ISPP strategy does offer a secondary
benefit for scenarios in which extensive use is made of
surface rovers. If an ISPP system is emplaced and
operational, additional propellant beyond that required
for the ascent craft can be used for powering rovers and
other surface base vehicles.

NUCLEAR PROPULSION ASCENT STAGE

Recent work in the nuclear thermal propulsion field
(Ref. 6. 7) indicates that both a high engine t/w and Isp
performance leve!l from a relatively small. 20 kIbf thrust
class engine is possible for the short burn time required
of a Mars ascent maneuver. For a vehicle capable of
ascending to a 250 km by 24 hour period orbit. the
nuclear ascent stage (25.7 mt for an engine tYw of 9, 27.8
mt for an engine Uw of 6) provides a sizable reduction in
mass as compared to a chemical 02/H2 vehicle of the
type typically utilized in Mars mission studies. The all
ISPP O2/CH4 ascent stage provides the lowest delivered
mass of the concepts considered. However, other factors
raise its descent stage mass to a level such that the total
lander mass associated with the ISPP 02/CH4 ascent
stage is only slightly lighter then the lander mass
associated with the non-ISPP nuclear ascent systems.
What is noteworthy here is that the nuclear stage is
compelitive with the ISPP concepts without requiring
autonomous pre-deployment and fueling at Mars
previous to crew arrival, and without sacrificing descent
abort capability. This single tank, single propellant
system requires no ignition or combustion, and without a
throttling, gimbaling or engine restart requirement could
be made highly reliable. The complication imposed by
its radiation source can be countered by shielding, which
involves the addition of no moving parts.

The nuclear engine is basically a heat ex-
changer and not a combustion device. Mixing of oxidizer
and fuel in an injector is unnecessary, and neither
ignition nor combustion take place within the reactor.
Typically, propulsion system reliability is achieved
though engine redundancy; contemporary man rated
vehicle concepts are in most cases designed with an
engine out margin. The relative operational simplicity
of the nuclear engine allows for an exception in this
case, however. Though not a nuclear stage, the Apollo
Lunar Module ascent stage can be cited as an example of a
single engine manned ascent stage; high confidence in
this propulsion system was achieved through simplicity;
no igniter was used (hypergolic, or self igniting fuels
were used), and no engine throttling, gimballing or
restart was required. These simplifications reduced the
number of credible failure modes and justified the choice
of a single engine. Likewise, a single engine nuclear
system would require no igniters, nor would it have a



throttling, gimballing or restart requirement. Unlike the
Apollo system. however. the nuclear system would
require a hydrogen turbopump, which represents an
additional failure mode. The utilization of dual
turbopumps, however, would allow continued operation
in the event of a single pump failure. Rocketdyne
designed. built and tested a dual turbopump system tor
the NERVA series of nuclear engines in 1967 (Ref. 8).

A single engine 1s utilized for the nuclear
concept. Major subsystems of this craft are labeled from
one to seven on the cut away view contained in Figure
11. These elements are the (1) ascent crew cabin. (2) the
primary ascent stage H2 propellant tank, (3) the descent
stage structure. (4) the descent stage propellant tanks
(total of four), (5) the descent stage engines (lotal of
four). (6) the ascent stage secondary (conformal) tank
and (7) the ascent stage nuclear engine. (This and other
lander configuration types are discussed in detail in Ref.
9.) Vehicle design analysis included consideration of the
unique 1ssues associated with the use of nuclear
propulsion. including radiation shielding and engine
disposal.

A NTP system emits about | percent of its
energy in gamma and neutron radiation through the
reactor pressure vessel (Ref. 10). This high radiation
environment in the vicinity of the reactor may produce
potentially lethal radiation doses in the vehicle crew
compartment, may possibly damage sensitive
components, and heats the surrounding structure and
propeliant. The addition of a radiation shield between the
reactor and the tank bottom attenuates the energy
disposition into the vehicle. The thickness of the shield
for a given energy attenuation is a function of reactor
power and also an inverse function of separation
distance. The cumulative shielding capability provided
by the dedicated external shicld. the intemal engine
forward support plate, the propellant. and other
spacecraft and crew cabin hardware mass serves to keep
the crew from receiving radiation exposure beyond
acceptable limits. Because liquid H2 has good neutron
absorption capabilities, the design takes advantage of
positioning the H2 propellant to supplement the direct
line shielding ability of the radiation shield. The shield
design must take into account the supplemental
shielding ability of the other attenuating elements, and
the overall geometry of the system including ducts,
voids and other features.

Radiation shield effectiveness calculations are
quite complicated, and require an extensive accounting of
a variety of geometrical elements that can contribute to
attenuation or exacerbate the problem through the
generation of secondary sources of radiation (Ref. 11). A
radiation assessment was not done for this study; the
estimate of 1.0 mt of shield mass used in the analysis
was scaled (based on power level) from a shielding study
(Ref. 12, 13) done for a larger class of engines. Previous
to the ascent bumn, the engine contains no radioactive
fission products. Over the course of the 13 minute burn
time about 5 grams of fission products would have

accumulated m the reactor: this is roughly 17100000 of
the amount generated by a typical 3000 MW terrestrial
nuciear power plant in one year.

CONSOLIDATION OF CREW TRANSFER

VEHICLES TRADE

Consideration was given to the compression of the
reference fleet size from 3 transfer vehicles to 2. Rather
than splitting the Earth-Mars-Earth transfer mission into
two elements as in the DRM, with its separate Earth-
Mars crew transfer vehicle and TE! transfer vehicle, a
single transfer vehicle was configured to consolidate the
function of the two into one. The MTV is round trip
capable. This consolidation eliminates the need for
autonomous placement of the TEI transfer stage in Mars
parking orbit 4 years ahead of its eventual utilization.
However this mode retains the DRM characteristic of pre-
emplacing an empty in-situ lander, as well as utilizing
the surface habitat as the crews outbound transfer habitat.
This full round trip capable transfer stage benefits from
the utilization of NTP propuision for the MOC and TEI in
addition to TMI. The DRM utilizes less efficient 02/CH4
propulsion for TEI (because it requires TEI stage
aerocapture at Mars.). Figure 12 presents a vehicle set
mass comparison between this 2 vehicle variation and
the 3 vehicle DRM. All 2011-2014 mission objectives
planned for the 3 vehicle DRM can be achieved by the 2
vehicle set for 39 mt less IMLEO. (Total mission
IMLEQ'’s are listed in the last column; 458 mt for the
DRM, 420 mt for the consolidated set.) The single round
trip capable MTV of this consolidated set would consist
of 3 pieces joined together (with minimal assembly) in
Earth orbit prior to TMI. The mass of these 3 pieces are
shown as boxed values in Figure 12, bottom row.

These 3 elements compare to the 4 elements
necessary for the reference DRM (two each to make up
each of the two transfer vehicles). The weights for these
DRM elements are also given in Figure 12 (boxed values
inrows 1 and 3) and in Table IV below. The six ETO
flights required for the DRM set could be reduced by one,
to five ETO flights by this consolidation.

TABLE IV MISSION ELEMENTS

DRM Lander Lander ™I TH
asc stg surf stg stg
type surf p/l  hab
cargo n/a n/a 69.7 72.3
cargo 86.9 n/a 80.0 n/a
manned n/a 69.0 80.3 n/a
DRM Lander Lander TMI MTV
VARIATION asc stg  surfhab stg stg
type surf p/1 _ surf p/l
;:argo 86.9 n/a 80.0 n/a
manned n/a 69.0 92.0 91.7



NON-ISPP. MARS MISSION ARCHITECTURES

This non-ISPP architecture is characterized by a mission
set consisting of cargo and piloted vehicle pairs. The
piloted craft is a round trip capable transfer vehicie
carrying the lander to Mars orbit. The lander is fully
fueled at Earth departure. The cargo vehicle delivers the
surface habitat and infrastructure on a low delta velocity
trajectory previous to crew arrival. The difference from
the 2 vehicle consolidated set (variation) described
earlier, 1s the lack of ISPP, with the pre-emplacement of
the surface hab. rather than the ascent stage, previous 1o
crew arnval. This mission mode has been called the
“Split - Sprint” mode in past studies. The mission 1s
split into the cargo and piloted components. with the
piloted MTYV utilizing a faster trip trajectory (sprint) as
compared to the slower (lower delta velocity) cargo
trajectory. A variety of configuration options exist
which could be utilized for this architecture type.

CONFIGURATION OPTIONS

The available propulsion and aerocapture options for
manned Mars transfer vehicles are presently graphically
in Figure 13. The four configuration vanations
illustrated are described below.

Type Ik

This vehicle utilizes NTP exclusively. The same NTP
engine cluster and core transfer stage is used for the TMI,
MOC and TEI bumns. while the lander is propuisively
captured with the transfer stage. This option eliminates
the need for acrocapture into Mars orbit. A low L/D,
descent only aerobrake is shown on the lander of the
Tvpe | vehicle in Figure 13.

Type %

The Type 2 vehicle is an all NTP transfer vehicle with
separate aerocapture of the lander. Same as Type / above.
with the exception that before Mars encounter, the lander
separates from the MTV and either aerocaptures into
Mars orbit or effects a direct entry to the Mars surface.
The same NTP core stage 1s used for TMI. MOC and TEI.
A biconic aerocapture brake is shown on the Type 2
vehicle of Figure 13. Since the transfer stage payload to
be decelerated at MOC is reduced by the mass of the
tander. MOC propellant is reduced compared to the Tvpe/
vehicle. An increase in mission risk is incurred due to the
incorporation of aerocapture technology into the
program. (Mars orbit to surface descent only aerobrake
technology entails much less risk). Figure 14 shows
vehicle packaging in an ETO launch vehicle for a
representative Type 2 configuration.

Type 3:

A NTP core stage is used for TMI and MOC propulsive
capture only. The lander is propulsively captured with
the transfer vehicle into Mars orbit. A separate chemical
stage is used for TEL. The Tvpe 3 vehicle illustration in
Figure 13 shows a chemical propulsion stage integrated

with a spherical crew habitat. The NTP core stage 1s left
in Mars orbit. The TEI stage 1s expended at Earth amival.

Type 4: The Tyvpe 4 vehicle 1s a NTP / Chemical / Dual
Aerocapture Vehicle. A single use NTP stage is used for
TMI and then continues on past Mars without capture. A
chemical O2/H2 or O2/CH4 propulsion system is small
enough to be packaged together with the transfer habitat
module into a biconic brake of the same dimension as
that used by the lander. The chemical TEI stage and the
lander separate upon arrival at Mars and each
aerocaptures. Both are shown with biconic brakes in
Figure 13. The TEI stage drops its aerobrake once in
Mars orbit.

PERFORMANCE ASSESSMENT

Each of these four configuration types were assessed for
the same 2014 mission trajectory utilized in the DRM
analysis. carrying equivalent surface payloads, with the
exception that the full round trip vehicle carries a heavier
crew transter hab than that of the DRM TEI stage (27 vs
21 mt). For these Type | - 4 vehicle missions ISPP was
not utilized: the NTP (eng t/w=6) ascent stage was
delivered fully fueled with the crew on board to Mars
surface. A summary weight statement is presented in
Figure 15 for each configuration. Three Type 4 vehicles
are listed, differentiated by TEI propellant type (O2/H2,
02/CH4 or O2/H2-Be). Fleet IMLEQ varies from 229 to
292 mt. The lander utilizing the NTP ascent stage was
used for IMLEO’s shown in Figure 15.

The Type ! configuration required an IMLEO of 292 mt.
Elimination of aerocapture by this configuration offers
risk reduction, has a single propulsion technology (NTP)
is used exclusively. Used with the NTP ascent stage, NTP
would be the sole propulsion technology development
required for the program (with the exception of the lander
descent engines, which could be existing RL-10"s).

The Type 2 all NTP vehicle with independent lander
aerocapture IMLEO is 250 mt. a reduction of 40 mts
compared to the Type 1 (rows 1 and 2 of Figure 15). This
savings is in MOC and TMI propellant, and is one
objective way of measuring the benefit of independent
lander aerocapture. Consideration must be given to the
cost of developing and testing a man-rated aerocapture
brake into Mars orbit (rather than a brake suited merely
for descent). This development cost must be compared to
the extra launch cost associated with putting 40 mt of H2
into LEO.

The Type 3 NTP / Chemical TEI vehicle IMLEO is 247
mt. Like Type I, this mode does not require aerocapture.

Three Type 4 configuration vehicles were evaluated,
differing only in TEI stage propellant type; O2/H2,
02/CH4, and O2/H2-Be. The masses for these three 2014
transfer vehicles are 236, 247 and 229 respectively. The
Tvpe 4 craft utilizes aerocapture at Mars.



Payloads for all these transfer vehicles included a 27 mt
transfer hab and the lander. which weighed either 52 mts
if 1t had to independently aerocapture. or 47 mts if it was
propulsively captured with the MTV.

Eleet comparison o the baseline DRM

A comparison between the DRM and this non-ISPP
architecture using the Type 2 and Type 3 transfer
vehicles 1s shown in Figure 16. For each, the same total
surface payloads are delivered so as to make for a fair
comparison. In Figure 16, note columns relating to total
fleet IMLEO and ETO flights required. Total mission

IMLEO is roughly the same for all three modes. However.

the six ETO flights required for the DRM set would have
1o be increased by one. to seven for the other two modes.
When overall program cost is considered however. the
Type 2 mission offers potential for significant benefit -
elimination of autonomous, predeployed ISPP. The Type
3 set achieves this benefit but provides a third:
elimination of Mars aerocapture.

REUSABILITY

A comparative evaluation of the propellant weight
penaities for recapture of the MTV at Earth for reuse was
done. Evaluations were done for both recapture to a High
Earth Elliptical Orbit (HEEO) (800 by 45000 km 14 hr
orbit period) and recapture to LEO (407 km by 407 km).
All recaptures were effected propulsively by reusing the
“core” stage (MOC/TEIVEOC stage).

The Type 2 configuration was used in this
assessment. Mars vehicle IMLEO and major component
weights are given in Figure 17. The 2014 mission only
was evaluated, in this case with a Mars-Earth inbound leg
characterized by a 5.2 knv/s Earth arrival velocity (V
infinity). The MTV, which carries a larger 30 mt crew
transfer habitat in this instance and a 52 mt lander. has

one NTP engine cluster, utilized sequentially for the TMI.

MOC. TEI and EOC bumns. The lander aerocaptures at
Mars independentlyof the transfer stage, this is the Tvpe
2 charactenstic.

(1) Expendable case for reference
(2) Recapture into HEEQO
(3) Recapture into LEO

Recapuure into LEQ

Vehicle propulsive capture down to LEO for reuse is
expensive in terms of the added propellant required.
IMLEO is higher by about 75% for the 2014 mission.
(442 vs 250 mt). 40 mt of Earth Orbit Capture (EOC)
propellant is required.

Recapture into HEEQ

For recapture into HEEO the penalty is much less severe:
13.5 mt of EOC propellant is required; IMLEQ increases
by 65 mt. A summary of major element weights is
contained in Table V.

TABLE V REUSABILITY RESULTS
Mission Elements for 2014 Tvpe 2 round
trip transfer vehicle. Depants LEO

Lander TMI MTV Delta
Retun asc stg prop stg mass
[€0] tapkage
expendable 52.0 107.2 909 --
HEEO 52.0 134.7 129.2 +65
LEO 52.0 187.6 202.9 +192

R f Habi TP

It is desirable to reuse the expensive core propulsion
stage and the transfer crew habitat. After recapture into
HEEQ. the vehicle is refueled. a new lander is attached,
and the vehicle is utilized on the next piloted
opportunity. In Figure 17, two potential 2016 reuse
missions are listed below the heading “High Elliptical
Earth Orbit.” and the 2014 mission which returns to
HEEO.

The first 2016 option is to depart from HEEO,
conduct a new mission and again retumn the transfer stage
to HEEO (for yet another potential reuse). The second
option is similar but no recapture of the vehicle is
attempted after this its second use. Element weights for
these two options are shown as rows 3 and 4 on Figure
17. For the latter option (row 4) the major elements
necessary for refueling and resupply to enable a second
mission are listed in Table V1. 127.7 mt of mass would
have to be boosted to HEEO for attaching the TMI fuel
tank, transferring MOC/TEI propellant. and attaching a
new lander payload to the vehicle. Compare this to 250
mt required for a totally new 2016 vehicle. Not only is
122 mt saved, the procurement of one habitat, core
stage, and NTP engine cluster is now unnecessary. The
life expectancy of the transfer crew habitat is greater
than the duration of a single mission. and the NTP
system would also contain sufficient operational life left
for at least one additional mission, perhaps two.

TABLE VI REUSE REQUIREMENTS
Reuse of the 2014 Type 2 round trip vehicle
in 2016. Departs from HEEQ

(1) TMI propellant and tankage: 37.1 mt

(2) MOC/TEL/boiloff propellant: 38.6 mt

(3) Lander system: 520 mt
127.7 mt

NTP engine life expectancy (on the order of 10 hours of
burn time) exceeds the cumulative burn time of the first
mission, which is about 3-4 hrs. The cost savings
associated with reuse of these elements must be evaluated
against the expense of the upper stage needed to ferry the
lander and reuse propellant to HEEO. If there already
exists a large upper stage (for LEO-GEO, or LEO-Moon)
that could be utilized for this purpose then the expense
for development could be avoided. Such was not defined



for this study. It is recommended that a HEEO mussion
OTV system be defined. and to identify possible
synergism with other mission types.

ABORTS COMPARISONS

We return to the subject of abort modes mentioned
earlier. The Mars DRM represents one of several
possible mission modes for manned exploration of
Mars. This unique planetary transfer architecture offers
some interesting benefits to Mars mission planners but
also presents some difficulties. Elements of the DRM
abort strategy must be considered if a complete
evaluation 1s to be made. Difficulties are quantified by
comparison with the abort strategies of the more
traditional mission profiles. (See Figure 18) Rationales
put forward by proponents of the DRM are identified. as
are other issues associated with the "abort-to-surtace”
philosophy that is advanced when discussing this unique
mission mode. The importance that comprehensive abort
planning has on manned interplanetary mission design
must not be overlooked. Gaining an understanding of the
DRM’s abort strategy and how it affects the probability
of mission and crew loss was accomplished via
comparison to several alternative mission modes.
including the variation to the DRM described earlier.

To facilitate this comparison, references will
be made to a series of graphical flowcharts called
“Mission Abort Flow Diagrams.” (These are given in
Figure 19-22, one each for five different Mars
architectures) Abort related difficulties, in which mission
events have no recovery capability should an anomaly
occur, are represented on the Mission Abort Flow
Diagrams as shaded circles appearing under specific
mission events (enclosed by unshaded boxes). These
may be thought of as representing “holes” in the abort
strategy. Reference to these “no-abort available” events
will help facilitate a quantitative, objective approach to
estimating a mission failure probability. Some
descriptive repetition will occur as the issue is addressed
in the following section.

DRM ABORT PHILOSOPHY

The Mars DRM is a special mission mode that
emphasizes the pre-emplacement of major mission
hardware components at Mars previous to the departure
of the crew. In this respect it is not different from other
mission modes investigated in past studies. What
differentiates it from these other modes is what is pre-
emplaced. The DRM pre-emplaces an empty In-situ
lander on the Martian surface and an unmanned crew
return stage in Mars parking orbit. (For the traditional
modes the surface habitat system is pre-emplaced). The
crew then departs in an one-way only (Earth-Mars)
capable transfer vehicle, living out of the surface habitat
in route.

This piloted transfer vehicle contains no return
propellant. Upon arrival into Mars orbit, the crew
descends to the surface in the surface habitat living out of
it during the period of the surface stay, typically about

500-600 days. At the end of the surface mission, the crew
then traverses across the Mars surface some distance to
the ascent stage, boards and readies the craft, then
ascends to Mars orbit for rendezvous with the TEI stage,
which has been waiting in Mars orbit for four years.
(This pre-emplaced TEI stage contains crew consumables
sufficient for the return leg only.)

Along with its resource placement strategy, the
elimination of on-orbit assembly is a key characteristic
of this architecture. This is achieved by splitting the
mission into three transfer vehicle components as
outlined earlier, two of which serve as crew transfer
vehicles, one outbound. one inbound. This necessitates
two distinct crew transfer habitats, propulsion stages,
power systems, aerobrakes, etc. for what is intuitively a
single manned Mars mission. By separating the crew
traveling on the outbound Earth-Mars leg from the Earth
return stage, the option of effecting a Mars swingby
abort (rather than Mars capture) for an immediate Earth
return is lost (in case of a return stage, or surface system
malfunction). Also lost is the crew’s option of effecting
a descent maneuver abort, since the DRM’s ascent stage
is not carried on the descent stage. The crew descends
with their outbound transfer habitat to the surface,
having only terminal descent propellant onboard.

Resource Location
Typically, for full-round trip capable vehicles flying
conjunction trajectories, some additional propellant is
carried onboard for affecting (if the need arises) either an
immediate Earth return via Mars swingby, or an earlier
than planned Earth return maneuver. In either case, more
propellant would be required than the nominal non-abort
conjunction mission return to Earth would require, hence
it can be said that resources (in this case TEI propellant)
are directed to transfer stage capability to provide an
opposition mission like abort return to Earth capability.
The DRM philosophy, in contrast, directs all
resources to Mars. In cases of an outbound system’s
difficulty, these assets, (pre-emplaced on the surface), are
to be used as a haven for the crew until such time as a
later rescue mission can reach them. The utilization of
these assets in this way, is explained as differing in no
significant way from their original, intended use as
outpost assets (that is, habitation and exploration
activities). Thus no additional assets beyond that
originally slated for the nominal mission would be
required to cover an abort situation, as they would in the
previously mentioned case where some extra propellant
is necessary to provide for a swingby abort or an early
Earth return TEI burn. (This is the characteristic of the
Earth return abort mode philosophy) It should be noted
that, for the Earth return philosophy, the added resource
is only propellant; which entails no change in the
vehicle operation, nor introduces any new technology
into the mission, and requires very little change in the
vehicle design (except for stretching tanks to
accommodate additional propellant).



Abort_Philosophies

Several abort philosophies will be reterred to 1n the
foliowing, including "Abort-10-Surface,” "Abort-to-
Orbit.” Fiyby. and "Return-Next-Chance.” Conjunction
class missions are generally planned with Abort-To-
Surface and Abort-10-Orbit modes. Return-Next-Chance
with Abort-to-Orbit is the typical abort planning scheme
for an opposition class mission. A strict Abori-to-
Surface 1s a mode of abort that was adopted by the Mars
DRM. Abori-to-Surface has the characteristics of
devoting as few resources of the mission as possible to
up-front contingencies for abort. If some event occurs
that normally requires abort, the strict Abori-to-Surface
mission philosophy dictates that the crew go to surface
and if possible return to Earth at the end of the mission
or continue on the surface until a rescue can be mounted.
This rescue could use the next nominal mission
reconfigured to perform the necessary rescue function. If
a catastrophic event occurs that precludes the crew from
remaining on surface to End Of Mission (EOM), the
mission and crew will be lost. The Abort-to-Orbir
mission mode is usually in combination with the other
abort modes. Abort-to-Orbir simply allows for sufficient
consumables on-board the MTV or the ETV 1o allow the
crew o weather certain abort events. Thus, if some event
dictates that the crew cannot go to the surface after a
nominal arrival, they can remain on-orbit until an EOM
return. Another example that would call for an Abort-to-
Orbit could be an early return to orbit. requiring an EOM
return or a rescue mission.

Full round trip capable missions generally
employ the Return-Next-Chance abort strategy. With full
round trip capable mission contingencies, the crew can
stay in orbit, on the surface, or in some cases immedi-
ately return, depending on the time and characteristics of
the abort event. The Return-Next-Chance strategy can
increase the number of possible ways to recoup from an
abort event, and therefore the Return-Next-Chance
strategy may be more flexible.

An event leading to an abort can result in
several outcomes. First, corrections could be made with
no mission or crew loss. For example, the crew could
Abort-to-Surface, the mission could be completed, and a
successful rescue is undertaken. The second case to con-
sider consists of a loss of mission, but the crew is
returned safely to Earth. An example of this kind of
abort could entail the following scenario: the habitat on
Mars is remotely detected as having irreversibly
malfunctioned, the crew conducts a Mars flyby, and the
subsequent return to Earth is successfully completed.
This abort scenario entails a mission loss but the crew is
safely returned to Earth. A third case that is considered
could be a crew loss (e.g. ascent vehicle misses
rendezvous with Earth return vehicle).

ABORT FLOW FOR TYPICAL MISSIONS
In this section, abort flows for five architectures are
discussed and compared.

1. Round trip capable (non-in-siru) modes

2. Mars direct mode

3. Mars DRM baseline

4. Consolidated DRM variation (in-situ) mode
5. Generic electric mission

The discussion will address only the manned vehicle
portion of the mission. Each assumes some pre-
emplacement on the surface prior to crew armval. The
DRM requires two pre-emplacement missions, the others
require one. Figure 18 lists what is pre-emplaced for each
architecture. The round trip capable and generic electric
modes can employ either conjunction or opposition
style transfers. The Mars Direct. DRM and consolidated
DRM vanation are conjunction only modes.

Opposition class missions are characterized by Mars
stay times of 30 to 90 days. Opposition missions are
possible every two years and therefore, rescue missions
can be mounted on two year intervals. The standard abort
strategy chosen for these architectures is the Return-
Next-Chance mode. If an abort event that is not related
to main vehicle propulsion occurs before the nominal
Mars departure point (within 30 to 90 days of Mars
armival), the opposition class vehicle has adequate fuel to
depart early. If the abort event precludes an early
departure, the crew can go to the surface or remain in
orbit until the following departure opportunity or wait
until a rescue mission arrives.

Conjunction class missions are characterized by stay
times of 500 to 600 days. The missions are approxi-
mately 2 years apart with long stay times between return
opportunities. One of the disadvantages of the con-
junction style mission is related to rescue opportunities.
The return opportunity falls several months before the
next mission arrival from Earth. This return constraint
1s related to the physics of interplanetary transfer. Thus,
conjunction arrival / return opportunity constraints
aggravate the abort scenario by requiring additional
living space and consumables for the rescue crew over
the duration of another opportunity (approximately 2
years, including transfer time). Alternatively additional
TEI propellant can be carried on board to furnish the
extra delta velocity necessary to depart for Earth
immediately and return on an off-nominal trajectory. The
propellant penalty, which can be excessive, is dependent
on the time Mars departure takes place.

This mission type can be broken into eight primary
events: TMI, Early Trans-Mars Coast. Late Trans-Mars
Coast, MOC, Prepare for Descent. Descent, Surface
Mission, Ascent. and TEL. There is nothing special
about this delineation of the mission events, but this set
of events was chosen for convenience to illustrate
certain abort modes. See Figure 19 for the Abort Flow



Diagram for this mission mode. Under each of the
primary events shown 1n Figure 19 are one or two typical
abort events. For example. under the Early Trans-Mars
Coast event box 1s a circle that indicates that an
anomalous event has occurred. namely the transfer
habitat malfunctioned. precluding long term use. The
abort mode for this event dictates immediate return to
Earth. Note that this event could not be a propulsion
problem because there would be no immediate return
without propulsion. Each circle under a primary event is
either shaded gray or is not shaded. A non shaded circle
indicates that there exists a way to abort the anomalous
event, and the shaded circles indicate that no way to
abort has been made possible. For all subsequent abort
flow charts. the shading convention will hold true. This
discussion does not purport to exhaust the possible abort
related events. Further, the anomalous events designated
as “No Abort” cases were assumed not to have an abort
because of the prohibitively high cost in delta-V required
to correct the trajectory, target an Earth return trajectory.
or the abort event has no known way of escape.

For this round trip capable transfer vehicle
mission, there are three primary events that have no
abort scenarios. First, if the MOC maneuver fails to
occur correctly, the vehicle could fail to capture and the
mission and crew would be lost. Second. if ascent failure
occurs after lift off the crew could crash or miss
rendezvous with the return vessel. again resulting in
mission and crew loss. Third, if the TEI fails in such a
way that the vehicle is placed on an interplanetary
trajectory that does not intercept Earth, the mission and
crew will be lost. These are identified in Figure 19 as the
shaded circles. Since this mode can fly both conjunction
and opposition trajectories, some mission events show
two abort circles associated with them, one
corresponding to the conjunction. and one for
opposition missions.

Mars Direct mode

Both the Mars Direct and DRM mission architectures
employ Abort-to-Surface in their mission design. Mars
Direct and the Mars Reference Design Mission Baseline
have an abort mode of strictly Abori-to-Surface.

The Mars Direct mode places the Earth return crew habitat
on the ascent stage, rather than reemplacing a separate
TEI stage in Mars orbit. The ascent stage/crew habitat
ascends to a direct to Earth departure from the Martian
surface. Only 2 vehicles are used in the Mars Direct
mission mode. The manned outbound stage is identical to
that of the DRM, as it goes direct from Earth to the
surface of Mars. See Figure 20 for the Abort Flow
diagram for the Mars Direct mission; the primary events
are basically identical to the corresponding events of the
round trip capable mission shown in Figure 19, but the
secondary abort events are different. Note the increase in
anomalous events in which no route to recoup by abort
are available (more than twice as many.) An explanation
of this reduction in number of events that have aborts is
found in the abort philosophy of the reference mission:
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Abort-to-Surface. This mission places almost no abort
contingencics in the manned phase of the mission. other
than on the surface. Thus for the first three primary
events. TE!l, Earlv Trans-Mars Coast. and Late Trans-
Mars Coast, there is no CRV on the outbound vehicle,
nor MOC or TEI propellant, precluding an Earth return.
For MOC and Prepare for Descent, there are not adequate
consumables on board the outbound vehicle for a stay in
orbit until a rescue could be mounted on the next
opportunity. The surface phase of the mission assumes
Abort-to-Surface. This abort philosophy is inherentiy
an effective abort approach once the crew is on the
surface. (It should be pointed out. however, that there are
not adequate consumables on the Earth return vehicle in
the event that the crew 1s forced to go to orbit early to
await rescue or EOM return.) Given the strict split
strategy of the Mars Direct mission, there is no ascent
vehicle on the manned outbound mission to Mars,
resulting in a "No Abort” for the descent phase of the
mission.

Mars DRM

The present DRM is a modification of the Mars Direct
Mode. See Figure 21 for the Abort Flow diagram for this
mission. The inbound vehicle leg now consists of the in-
situ ascent stage flight to Mars parking orbit and
rendezvous with the waiting inbound habitat / TEI stage,
which departs for Earth. This allows for the option of the
outbound crew vehicle to capture at Mars and rendezvous
with the inbound stage without descending to the surface.
However, the piloted outbound stage has no main
propulsion system to effect orbit raising and plane
change maneuvers (its TMI stage was jettisoned
immediately after Earth departure). Also, both it and the
TEI stage would have to jettison their aeroshells
successfully before the two could rendezvous. In the
DRM flow the primary events are also basically identical
to the corresponding events of the round trip capable
mission, but again the secondary abort events are
different, like those of the Direct mode. Notice again the
anomalous events in which no route by abort is possible
(Figure 21). Though they are fewer than the Mars Direct
mode. they are more numerous than the round trip
capable mission mode. Because the outbound crew has no
main propulsion available it is impossible for the
vehicle to conduct a Mars swingby, if a surface system,
ascent stage or TEI problem is detected on the outbound
journey. As mentioned earlier, rendezvous with the TEI
stage for Earth return may be possible. Again, there is no
ascent vehicle on the manned outbound vehicle, hence a
“No Abort” for the descent phase of the mission.

g lidated variati he DRM
See Figure 22 for the Abornt Flow Diagram. The abort
situation for the full round trip transfer vehicle varation
DRM represents an improvement over the baseline
DRM. Propulsive capture of the habitat and core vehicle
means that MOC and TEI are on board the vehicle and can
be utilized to conduct a Mars swingby return to Earth in



the event of surface systems or lander systems
maltunction. In this respect 1t 1s similar to the

traditional round trip mode discussed earlier. Since it
retains the In-siru lander component however. 1t. like the
DRM. can offer no recovery from a descent burn
malfunction.

The generic electric mission

The generic electric mission falls into the category of
conjunction or opposition type mission because of the
flexible characteristics of electric propulsion. An
electric mission can be either nuclear powered or solar
powered. The abort approach employed in nominal
electric mission is Abori-to-Surface or return on reduced
power. A reduced power return will entail a longer return
trip, however, the windows of opportunity are
significantly wider than a conventionally powered
mission. If an Abort-10-Surface is required. then the
clectric mission will incur the same consequences as
described earlier. There are fewer primary events for an
electric mission than a conventional mission.

ABORT COMPLICATIONS OF THE DRM

Abort complications arise for the DRM due to the
dividing of what would intuitively appear to be a single
manned transfer vehicle into two transfer spacecraft (one
of which must operate autonomously for four years
pervious to its utilization). If the abort anomaly that
occurs during the outbound Earth-Mars transfer is related
to this quiescent Earth return stage, then there are no
assets that could cover such an abort. That is, uniess a
second TEI stage is also pre-emplaced. This is a
consideration of the present DRM. to pre-emplace a
second TEI in orbit as a backup return vehicle should the
first TEI stage fail. (This second TEI stage, would serve
in the nominal case as the retumn vehicle for the crew
flying the next opportunity in 2016.) At this point one
must consider the total number of habitat transfer
vehicles allocated to insure the crew's safe return; at this
point we have noted that DRM planning calls for 2
transfer vehicles to be autonomously emplaced in Mars
orbit, previous to crew arrival; this seems excessive and
runs counter to the objective of designing for low cost
missions.

In cases of an indicated anomaly in the descent
stage occurring dunng its outbound journey. again little
recourse is available to the crew for a return to Earth
since the in orbit TEI stage is only outfitted for. and
capable of. a prescribed conjunction return at a point in
uime at least 500+ days into the future (the duration of the
planned surface stay). It therefore has not the propellant
to affect an early Earth return maneuver, nor are the 500+
days of consumables required for the crew, available in
the TEI stage for them to wait in orbit until the correct
departure date. Compare the number and type of “no-
abort available” events (shaded circles) of the DRM
(Figure 21) to that of Figure 19. It is evident from an
examination of the Abort Flow Diagrams, that the DRM
does not adequately provide for all credible failure paths,
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and thus levies serious additional risks to the mission.
The strict philosophy of “aborting to the surface™ does
not adequately provide a viable abort path for the full
complement of mission events that the crew will be
subjected to. The multiple difficulties associated with
any actual implementation of the DRM will transiate
into a greater probability of both mission and crew loss
than other mission modes. (Reconfiguring the DRM to
the “consolidated” DRM variation mode helps
somewhat. compare Figure 22 to Figure 21.)

Proponents of the DRM strategy. however,
have argued that total mission risk is actually decreased.
The foliowing paragraph 1s quoted from the document
“Mars Exploration Straregies: A Reference Program and
Comparison of Alternative Architectures” (Ref. 14)
published in 1993,

* The provision of a robust surface capability is
fundamental to the reference mission philosophy
employed in this study. Assets are focused at the
planetary surface because that is where the goais of
Mars exploration can be achieved. Although
efficient and reliable space transportation elements
are critical component of any planetary
exploration strategy, the exploration goal adopted
in this study suggests the need to be able to “live
off the land.”

Thus, the surface capability must
provide a comfortable, productive, reliable, and
safe place for the crew. This, in turn, changes the
risk perspective with respect to previous studies by
relieving the pressure on the space transportation
systems to resolve any and all contingencies.
Whereas in previous studies, many mission
contingencies resulted in trajectory aborts (direct
returns Earth) another option exits in this reference
mission, namely, abort to Mars’ surface. This
allows the mission design to focus on the surface
capability, not on the provision of costly
propulsive performance increases and redundant
systems to be used in the unplanned and relatively
improbable even to system failure in flight.

Unlike in Apollo and other
strategies for returning humans to the Moon, free-
return abort and power abort maneuvers do not
come for free at Mars. The goal of the human
portion of the space transportation function should
be to deliver the crew to and from Mars with the
least reasonable achievable exposure to the hazards
of the space environment. Trajectory aborts, far
from being presumed requirements for human
missions to Mars. should have to fight their way
into a reference mission as a last resort. By
emphasizing the capabilities available to the crew
on the surface of Mars, it, not the interplanetary
space environment. becomes the most secure,
reachable place for the crew in the Solar System
after the completion of the TMI burn.”



By the term “trajectory aborts” the authors are referring
to crew return to Earth via a Mars swingby or powered
Mars maneuver. The above document speaks subjectively
of the benefit of the abort-to-surface philosophy. but
fails to make an objective accounting of ail the specific
abort related events involved. The document does speak
specifically of reducing the exposure to the hazards of
the space environment, which in this context refers to
the detrimental effects of exposure to zero gravity and
solar and galactic radiation (which are lessened when the
crew 1s on the Mars surface.)

But when one considers the importance that
comprehensive abort planning must have on mission
design, it appears that this topic as been somewhat
overlooked in past evaluations of the DRM. All elements
of its abort strategy must be considered if a satisfactory
evaluation is to be made. Only after an rigorous
accounting of the risks involved can one make a case for
a realistic mission failure probability.

In this study, the approach has been to consider
all mission events, determine if there is a recovery path
available should a vehicle or surface systems
malfunction occur during that event, and then compare
the number and severity of these events to similar
evaluations of other mission modes. Though more
analysis is needed, this comparative evaluation indicates
the following order of failure probabilities from highest
to lowest:

TABLE VII MISSION FAILURE PROBABILITY
Ranking from highest to lowest

I. Mars Direct
2. Present DRM
3. Round Trip Capable
4. Generic
VEHICLE ASSEMBLY IN ORBIT

Mars vehicle configuration issues often revoive around
inefficiencies associated with launch vehicle packaging
and on-orbit assembly. Difficulties in these areas were
addressed in the self-assembling Mars transfer vehicle
configurations utilized in this study. This configuration
family was conceived from the beginning to reduce on-
orbit assembly tasks to a minimum. The design is
characterized by its modular in-line integrated truss/tank
elements and its self-assembly capability. There is no
requirement for any tank-to-propellant line or tank-to-
truss connection assembly operations on-orbit. Vehicle
tanks are pre-integrated with propellant lines, tank gas
pressurant lines and other hardware into a standardized
tank/truss module as a single pre-assembled unit for
packaging into the launch vehicle and berthing on-orbit.
On-orbit assembly dedicated hardware and tasks are
reduced over previous designs because the design was
conceived from the outset to act as its own assembly
platform. A ‘core’ transfer vehicle would consist of two
integrated element modules. The first element, a transfer
habitat module and Mars excursion vehicle, is integrated
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onto a forward spine rigid truss structure section. The
second element consists of a engine / thrust structure
system, radiation shield, cylindrical aft propellant tank,
and a reaction control system (RCS) assembly, all
integrated onto the aft truss structure section. These two
element core vehicle modules could be identical for all
missions, regardless of opportunity year. Subsequent
ETO flights would deliver the necessary TMI and MOI
propellant tank / structural modules; each would consist
of a large propellant tank pre-integrated with propellant
lines onto identical truss sections. Variations in mission
delta velocity or payload requirement would then only
impact the length of the non-core TMI and MOI tanks.
All tanks would have the maximum diameter that the ETO
vehicles shroud envelope will allow. A lunar transfer
version would utilize the same two element core (which
has the single aft tank), though with smaller crew
habitat, lander system and a single, TLI tank. For each
modular element a truss runs atop the propellant tanks to
which they are attached; the non-core tanks can be
jettisoned, by truss mounted release mechanisms after
use to reduce mass for subsequent maneuvers on missions
where this would be beneficial. Once on-orbit, the
modular elements would be attached end-to-end. At the
front and aft ends of each element are interfaces where
propellant, gas pressurant, communication and power
lines would be joined. All subsystems, propellant lines
etc. are pre-integrated and located on the structural truss
to which the tank is attached. Positioned above the truss
are one or more RMS arm units that can traverse the
length of the truss for the purpose of joining sections
together. RMS units traveling across the truss top have
access to these subsystems for joining, inspection,
repair or change out; they could accommodate suited
personnel to facilitate these operations if required.

Assembly consists of attaching the common
tank/truss elements at their end-to-end interconnect
points as shown in Figure 23-24. Rather than sending
up to orbit a separate platform prior to the delivery of the
spacecraft components, a single or dual RMS operates
from the first element delivered to orbit. The forward
habitat / truss element segment acts as the ‘assembly
platform’ for the remaining elements. Utilizing this
element’s RCS system, translational and attitude control
maneuvering to within RMS arm capture distance of the
second co-orbiting element is accomplished. Moving
along the top rails of the rigid truss section, the
autonomous (or crew assisted) RMS captures and pulls to
an aligned position the second element and connects the
two at the end-to-end interconnect point. (This could
also be accomplished by a small one or two man crew
pod craft - this vehicle will be discussed in detail in the
next section).

This first interface consists only of a quick-
connect communication/power lines interface. Once
connected, secured and inspected, the RMS then moves
onto the second element, travels the length of its truss
rail, reaches the unconnected end and repeats the capture
and connection process for the next element (again with



the first element’s RCS providing the maneuver control
to get within reach). For the second-to-third element
connecuon. the quick-connect interface includes
propellant and gas pressurant line link ups. This process
is repeated until the vehicle is complete. The elimination
of the requirement for a dedicated co-orbiting assembly
platform. would offer a significant cost benefit to any
Mars program. The number of connection operations
would always be one less than the total number of
elements delivered to orbit: i.e. for the four element
vehicle pictured in Figure 23, three capture and
connection operations would be required. For a three
clement Lunar vehicle, two would be required. A reduction
in connection operations could only be achieved by
increasing the lift capacity of the launch vehicle so that
the vehicle would consist of fewer (but larger) modules.
Furthermore, if vehicle reuse is desired. refurbished core
vehicle elements could be joined to new non-core
tankage modules, and a new landing cratt on-orbit,
allowing for the economical reuse of the expensive
habitat and propulsion elements.

CONCLUDING REMARKS

The Mars DRM, in its present form, introduces additional
risk due to difficulties associated with its abort strategy.
In addition to its abort related challenges. the DRM
introduces many new technologies at one time. Several
options are available to address these challenges.
Adopting the “consolidated” DRM mission variation
would alleviate a portion of this risk while still retaining
the DRM’s ISPP component (if that is desired). The sum
of the IMLEO’s of the consolidated mission set is 8%
less than the IMLEO sum of the DRM. The six ETO
flights required for the DRM could be reduced by one to
five of about the same capability. The single round trip
capable MTV could consist of three elements ranging
from 69 to 92 mt each, mated on orbit (or with minimal
assembly). This compares to four elements (ranging
from 69 to 87 mt) for the unaltered DRM. The cargo
vehicle. with ISPP ascent stage, would be the same for
both the DRM and the consolidated set requiring 70 and
72 mt pieces for launch.

Another approach for reducing risk would be to
eliminate ISPP altogether. Mission IMLEO for an
equivalent 2011-2014 mission could be kept at the same
level by this approach if a suitable NTP ascent stage is
utilized. Four year early, autonomous pre-emplacement
would be unnecessary, and the crew transfer vehicle
would be carrying a functional ascent stage allowing for
a contingency descent abort. 1SPP vehicles cannot
accommodate descent abort. The total lander stage fitted
with a non-ISPP, NTP ascent stage weighs about the
same (within 5%) as the lander fitted with the empty 02/
CH4 ISPP ascent stage. It would require no autonomous
predeployment. autonomous propellant production, nor
the dedicated surface power needs of ISPP.

The present DRM is dependent on Mars
aerocapture, which represents an additional risk as
compared to propulsive capture. It also necessitates a
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significant technology development program. This
expense can be avoided altogether by planning to reuse
the NTP TMI engines again for MOC. Results showed
that the mission objectives of the year 2011-2014 DRM
can be done exclusively with NTP (excepting RL-10's for
descent), without aerocapture, without ISPP, and without
4 year autonomous pre-deployment. at about the same
IMLEO as the present DRM. (Type 3). In light of these
factors, this study suggests that the DRM (in its present
form) adds additional risk without providing significant
benefit when compared to either the special risk-
mitigating variation of the DRM. or to an appropriately
designed non-ISPP alternative mission mode. It is a
recommendation of this study that the risks associated
with the present DRM be further quantified. It is also
recommended that more technical detail be generated for
the alternate modes and vehicles which appear to offer
equal benefit at lower cost and risk.

SPECIFIC COST REDUCTION TECHNIQUES
(1) Reduce the number of new technologies to the DRM

(2) Eliminate the separate 4 year early predeployment of
the DRM TEI stage by consolidating its function with
the 2014 crew vehicle. The DRM ISPP philosophy (if
that is desired) would still be retained.

(3) Utilize NTP for more than the TMI burn, specifically
propulsive capture at Mars.

(4) Eliminate ISPP dependency.

(5) Utilize the self-assembly technique for Mars transfer
vehicles, rather than rely on a DRM that is predicated on
elimination of on-orbit assembly.

(6) Utilize the Type 2 or Type 3 configurations as a
means of implementing measures (1) - (5) above. This
would entail abandoning the DRM characteristic.

(7) Recapture of a round trip capable MTV into a HEEO
may offer some potential for cost savings, if a suitable,
preexisting OTV capability is available. A cost reduction
via reuse of the NTP propulsion system/core vehicle and
the transfer habitat may be achieved. The IMLEO penalty
is modest, but the cost of the OTV system needed to
boost propellant and payloads to HEEO must be
considered. This warrants further investigation.
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Mars Design Reference Mission Comparison

NASA DESIGN REFERENCE MISSION 2011 2011 2014
(MSFC Sept 1997) Mission 1 Mission 2 Mission 3
CARGO CARGO PILOTED
comparison of wts data generated by: tace TEI st , X | &
. . place stg | place asc stg | place crew
Boeing Nov 1997 - Bold Font in Mars Orbit | onMars4y | outbound/surf
MSFC  Sept 1997 - Plan Font 4y previousto| before crew | habitat on
crew return departs Mars | Mars surface
- TEI Aerobrake Mass (1) |11.6  10.7
~ Stage Return Habitat (t) (21,9
t {-;(33(3/,(7:;1:” Bumout Mass (t) | 4.6 4.7
Propellant Mass (t) 34.6 314
Ascent ECRYV / Ascent Capsule (t) @
Stage Burnout Mass (t) 4.2 2.6
LOX/CH4 Propellant Mass (t) *34.5 *35.1
Isp=379 sec -
Returned Science P/L Mass (t) (0.1)
Aerobrake Mass (t) 18.4 160 | 153 140
Crew (1) (0.5)
Descent Surface/outbound Hab Mass (t) (19.3 )
Stage Surface payload Mass (t) (32.5) 9.8
LOX/CH4 B M (28)
Isp=379 sec urnout Mass (t) 8.9 42| 69 42
Propellant Mass (t) 173 17.1 [172 173
MASS SUBTOTAL (1) |723 684 868 779 | 69.0 65.1
™I Burnout Mass (t) |[23.2 224 253 224 | 279 25.6
Stage Propellant Mass (t) 1465 46.5 | sa7 50.6 | 523 51.6
LH2
Isp=960 sec
TOTAL TMI STG MASS (1) |69.7  68.9 80.0 730 | 803 773
TOTAL IMLEO (1) |142.0 137.3 |166.8 150.8 | 1493 142.4

* Asc propel produced at Mars using In-Situ resources

D Direct payloads input from MSFC data 9/7/¢

Filee. &
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