FY 1997 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
J.E. Turner Waits
Marshall Space Flight Center, Marshall Space Flight Center, Alabama

National Aeronautics and Space Administration
Marshall Space Flight Center

August 1998
FOREWORD

In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the Center for AeroSpace Information (CASI), Hanover, MD, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. The N number should be cited when ordering.
TABLE OF CONTENTS

NASA TECHNICAL MEMORANDA .. 1
NASA TECHNICAL PUBLICATIONS .. 9
MSFC CONFERENCE PUBLICATIONS ... 12
MSFC REFERENCE PUBLICATIONS ... 13
NASA CONTRACTOR REPORTS ... 14
MSFC PAPERS CLEARED FOR PRESENTATION .. 18
INDEX .. 57
TM-108518 October 1996

This paper details a comparison analysis of the zinc oxide pigmented white thermal control paints Z-93 and Z-93P. Both paints were simultaneously exposed to combined space environmental effects and analyzed using an in-vacuo reflectance technique. The dose applied to the paints was approximately equivalent to 5 years in a geosynchronous orbit. This comparison analysis showed that Z-93P is an acceptable substitute for Z-93.

Irradiated samples of Z-93 and Z-93P were subjected to additional exposures of ultraviolet (UV) radiation and analyzed using the in-vacuo reflectance technique to investigate UV activated reflectance recovery. Both samples showed minimal UV activated reflectance recovery after an additional 190 equivalent Sun hour (ESH) exposure.

Reflectance response utilizing nitrogen as a represurizing gas instead of air was also investigated. This investigation found the rates of reflectance recovery when represurized with nitrogen are slower than when represurized with air.

TM-108520 October 1996
Acoustic Emission Monitoring of the DC-XA Composite Liquid Hydrogen Tank During Structural Testing. C. Wilkerson. Materials and Processes Laboratory. 19970001260N (97N-11094)

The results of acoustic emission (AE) monitoring of the DC-XA composite liquid hydrogen tank are presented in this report. The tank was subjected to pressurization, tensile, and compressive loads at ambient temperatures and also while full of liquid nitrogen. The tank was also pressurized with liquid hydrogen. AE was used to monitor the tank for signs of structural defects developing during the test.

TM-108521 October 1996

Current and proposed launch systems will provide access to low-Earth orbit (LEO), and destinations beyond LEO, but the cost of delivering payloads will preclude the use of these services by many users. To develop and encourage revolutionary commercial utilization of geosynchronous orbit (GEO) and to provide an affordable means to continue NASA space science and exploration missions, the transportation costs to in-space destinations must be reduced. The principal objective of this study was to conceptually define three to four promising approaches to in-space transportation for delivery of satellites and other payloads, 3,000- to 10,000-lb class, to GEO destinations. This study established a methodology for evaluating in-space transportation systems based on life-cycle cost. The reusable concepts seemed to fare better in the evaluation than expendable, since a major driver in the life-cycle cost was the stage production cost.

TM-108522 October 1996

About 100,000 pieces of 1- to 10-cm debris in low-Earth orbit are too small to track reliably but large enough
to cripple or destroy spacecraft. The ORION team studied the feasibility of removing the debris with ground-based laser impulses. Photoablation experiments were surveyed and applied to likely debris materials. Laser intensities needed for debris orbit modification call for pulses on the order of 10kJ or continuous wave lasers on the order of 1 MW. Adaptive optics are necessary to correct for atmospheric turbulence. Wavelength and pulse duration windows were found that limit beam degradation due to nonlinear atmospheric processes. Debris can be detected and located to within about 10 microrads with existing radar and passive optical technology. Fine targeting would be accomplished with laser illumination, which might also be used for detection. Bistatic detection with communications satellites may also be possible. We recommend that existing technology be used to demonstrate the concept at a loss of about $20 million. We calculate that an installation to clear altitudes up to 800 km of 1- to 10-cm debris over 2 years of operation would cost about $80 million. Clearing altitudes up to 1,500 km would take about 3 years and cost about $160 million.

TM-108523, Volume I November 1996
The Microgravity Research Experiments (MICREX) Data Base. C.A. Winter and J.C. Jones.* Space Sciences Laboratory. *University of Alabama in Huntsville. 19970011061N (97N-16110)

An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

TM-108523, Volume II November 1996

An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.
designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

TM-108524 November 1996
A New Aging Treatment for Improving Cryogenic Toughness of the Main Structural Alloy of the Super Lightweight Tank. P.S. Chen* and W.P. Stanton.
Materials and Processes Laboratory. *IIT Research Institute, Chicago, Illinois.
19970005060N (97N–13045)

Marshall Space Flight Center (MSFC) has developed a new technique that can enhance cryogenic fracture toughness and reduce the statistical spread of toughness values in alloy 2195. This aging treatment can control the location and size of strengthening precipitate T1, making improvements possible in cryogenic fracture toughness (CFT) and fracture toughness ratio (FTR). At the start of this program, design of experiments (DOE) ingot No. 10 was used as a baseline for aging process development and optimization. The new aging treatment was found to be very effective, improving CFT by approximately 15 to 20 percent for DOE ingot No. 10. To further evaluate the repeatability and effectiveness of this new treatment, the investigators selected and tested three more lots of alloy 2195, using 1.75-in-thick gauge plates with FTR values ranging from 0.85 to 1.07. The new aging treatment effectively enhanced CFT and FTR values for all three lots. In one instance, the material was considered rejectable because it did not meet the minimum FTR value (1.0) of the super lightweight tank (SLWT). The new aging treatment improved its FTR from 0.85 to 1.01, making this material acceptable for use in the SLWT.
304 stainless steel, 6A1-4V titanium, and 5456 aluminum in search of any possible unwanted electrical discharges. Only a faint steady glow of beam-excited atoms around the electron beam and sometimes extending out into the vacuum chamber was observed. No signs of current spiking or of any potentially dangerous electrical discharge were found.

TM–108526 December 1996

The technological and economic thresholds for microgravity space research are estimated in materials science and biotechnology. In the 1990’s, the improvement of materials processing has been identified as a national scientific priority, particularly for stimulating entrepreneurship. The substantial U.S. investment at stake in these critical technologies includes six broad categories: aerospace, transportation, health care, information, energy, and the environment. Microgravity space research addresses key technologies in each area. The viability of selected space-related industries is critically evaluated and a market share philosophy is developed, namely that incremental improvements in a large market’s efficiency is a tangible reward from space-based research.

TM–108527 February 1997

This report documents a study conducted by the MSFC working group on Institutes in 1995 on the structure, organization and business arrangements of Institutes at a time when the agency was considering establishing science institutes. Thirteen institutes, ten science centers associated with the state of Georgia, Stanford Research Institute (SRI), and IIT Research Institute (IITRI), and general data on failed institutes were utilized to form this report. The report covers the working group’s findings on institute mission, structure, director, board of directors/advisors, the working environment, research arrangements, intellectual property rights, business management, institute funding, and metrics.

TM–108528, Volume I October 1996

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY96. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

TM–108531 February 1997

The goal of this research effort was the development of methods for shearographic and thermographic inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities that are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

TM–108532 March 1997

The Rolling Element Bearing Analysis System (REBANS) extends the capability available with traditional quasi-static bearing analysis programs by including the effects of bearing race and support flexibility. This tool was developed under contract for NASA-
MSFC. The initial version delivered at the close of the contract contained several errors and exhibited numerous convergence difficulties. The program has been modified in-house at MSFC to correct the errors and greatly improve the convergence. The modifications consist of significant changes in the problem formulation and nonlinear convergence procedures. The original approach utilized sequential convergence for nested loops to achieve final convergence. This approach proved to be seriously deficient in robustness. Convergence was more the exception than the rule. The approach was changed to iterate all variables simultaneously. This approach has the advantage of using knowledge of the effect of each variable on each other variable (via the system Jacobian) when determining the incremental changes. This method has proved to be quite robust in its convergence. This technical memorandum documents the changes required for the original Theoretical Manual and User's Manual due to the new approach.

TM-108534

March 1997

Some of the primary purposes of this work are to study important technologies, particularly involving thin films, relevant to organic and polymeric materials for improving applicability to optical circuitry and devices and to assess the contribution of convection on film quality in unit and microgravity environments. Among the most important materials processing techniques of interest in this work are solution-based and by physical vapor transport, both having proven gravitational and acceleration dependence. In particular, polydiacetylenes (PDA's) and phthalocyanines (Pc's) are excellent nonlinear optical (NLO) materials with the promise of significantly improved NLO properties through order and film quality enhancements possible through microgravity processing.

Our approach is to focus research on integrated optical circuits and optoelectronic devices relevant to solution-based and vapor processes of interest in the Space Sciences Laboratory at Marshall Space Flight Center (MSFC). Modification of organic materials is an important aspect of achieving more highly ordered structures in conjunction with microgravity processing. Parallel activities include characterization of materials for particular NLO properties and determination of appropriate device designs consistent with selected applications.

One result of this work is the determination, theoretically, that buoyancy-driven convection occurs at low pressures in an ideal gas in thermal gradient from source to sink. Subsequent experiment supports the theory. We have also determined theoretically that buoyancy-driven convection occurs during photodeposition of PDA, an MSFC-patented process for fabricating complex circuits, which is also supported by experiment. Finally, the discovery of intrinsic optical bistability in metal-free Pc films enables the possibility of the development of logic gate technology on the basis of these materials.

TM-108534

April 1997

Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve and acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently- available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.
A single pendulum was simulated in software and then built on a rotary base. A fuzzy controller was used to show its advantages as a nonlinear controller since bringing the pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola 6811 microcontroller. A double pendulum was simulated and fuzzy control was used to hold it in a vertical position. The double pendulum was not built into hardware for lack of time. This project was for training and to show advantages of fuzzy control.

The FY 1996 Annual Report describes key elements of the NASA Microgravity Science Research Program. The program’s goals, approach taken to achieve these goals, and available resources are summarized. Highlights and progress in the ground- and flight-based research are provided.

This document is prepared to provide a systematic process for the selection of tethers for space applications. Criteria are provided for determining the strength requirement for tether missions and for mission success from tether severing due to micrometeoroids and orbital debris particle impacts. Background information of materials for use in space tethers is provided, including electricity-conducting tethers. Dynamic considerations for tether selection is also provided. Safety, quality, and reliability considerations are provided for a tether project.

During a walkdown of the Space Transportation System (STS) orbiter for the 82nd Space Shuttle flight (STS–82), technicians found several safety cables for bolts with missing or loose ferrules. Typically, two or three bolts are secured with a cable which passes through one of the holes in the head of each bolt and a ferrule is crimped on each end of the cable to prevent it from coming out of the holes. The purpose of the cable is to prevent bolts from rotating should they become untightened. Other bolts are secured with either a locking cable or wire which is covered with RTV and foam. The RTV and foam would have to be removed to inspect for missing or loose ferrules. To determine whether this was necessary, vibration and torque test fixtures and tests were made to determine whether or not bolts with missing or loose ferrules would unloosen. These tests showed they would not, and the RTV and foam was not removed.
This document lists the significant publications and presentations of the Space Sciences Laboratory during the period January 1–December 31, 1996. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Also included for completeness is an Appendix (arranged by page number) listing preprints issued by the Laboratory during this reporting period. Some of the preprints have not been published; those already published are so indicated. Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publications in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in this report should be directed to Gregory S. Wilson (ES01; 544-7579) or to one of the authors. The organizational code of the cognizant SSL branch or office is given at the end of each entry.

Testing of the International Space Station (ISS) U.S. Segment baseline configuration of the Atmosphere Revitalization Subsystem (ARS) by NASA's Marshall Space Flight Center (MSFC) was conducted as part of the Environmental Control and Life Support System (ECLSS) design and development program. This testing was designed to answer specific questions regarding the control and performance of the baseline ARS subassemblies in the ISS U.S. Segment configuration. These questions resulted from the continued maturation of the ISS ECLSS configuration and design requirement changes since 1992.

The test used pressurized oxygen injection, a mass spectrometric major constituent analyzer, a Four-Bed Molecular Sieve Carbon Dioxide Removal Assembly, and a Trace Contaminant Control Subassembly to maintain the atmospheric composition in a sealed chamber at ISS specifications for 30 days. Human metabolic processes for a crew of four were simulated according to projected ISS mission time lines. The performance of a static feed water electrolysis Oxygen Generator Assembly was investigated during the test preparation phases; however, technical difficulties prevented its use during the integrated test.

The Integrated ARS Test (IART) program built upon previous closed-door and open-door integrated testing conducted at MSFC between 1987 and 1992. It is the most advanced test of an integrated ARS conducted by NASA to demonstrate its end-to-end control and overall performance. IART test objectives, facility design, pretest analyses, test and control requirements, and test results are presented.

This document is an effort to report the basic test findings in an ongoing quest for understanding how random load factors should be applied to structural components in order to verify the strength of space flight hardware. A Spacelab experiment known as the Atmospheric Emission Photometric Imager (AEPI) was subjected to both an expected flight random environment and the associated Miles' equation equivalent static load. During each of these tests, the fiberglass pedestal was instrumented with 16 triaxial strain gauges around its base. Component strains and invariant stresses were compared. As seen previously in other hardware tests, the stress distribution from the random environment was an order of magnitude below the comparable static stresses. With a proposed data acquisition system, a strain database will be developed that will quantify an empirical relationship between dynamic and static limit stresses. This event will allow a more accurate estimate of launch environment effects on new technology structural components.

Tether-Based Investigation of the Ionosphere and Lower Thermosphere Concept Definition Study Report. Edited by L. Johnson and M. Herrmann. Program Development Directorate. 19970034863N (97N-30086)
Understanding the plasma and atmosphere around the Earth in the lower altitude regions of the mesosphere, lower thermosphere, and ionosphere is important in the global electric system. An upper atmosphere tether has been proposed to NASA that would collect much-needed data to further our knowledge of the regions. The mission is proposed as a shuttle experiment that would lower a tethered probe into certain regions of Earth's atmosphere, collecting data over a 6-day period. This report is a summary of the results of a concept definition study to design engineering system that will achieve the scientific objectives of this mission.

For the common data-available interval of cycles 12 to 22, we show that annual averages of sunspot number for minimum years (R_{min}) and maximum years (R_{max}) and of the minimum value of the aa geomagnetic index in the vicinity of sunspot minimum (aa(min)) are consistent with the notion that each has embedded within its respective record a long-term, linear, secular increase. Extrapolating each of these fits to cycle 23, we infer that it will have $R_{\text{min}} = 12.7 \pm 5.7$, $R_{\text{max}} = 176.7 \pm 61.8$ and aa(min) = 21.0 ± 5.0 (at the 95-percent level of confidence), suggesting that cycle 23 will have $R_{\text{min}} > 7.0$, $R_{\text{max}} > 114.9$, and aa(min) > 16.0 (at the 97.5-percent level of confidence). Such values imply that cycle 23 will be larger than average in size and, consequently (by the Waldmeier effect), will be a fast riser. We also infer from the R_{max} and aa(min) records the existence of an even-odd cycle effect, one in which the odd-following cycle is numerically larger in value than the even-leading cycle. For cycle 23, the even-odd cycle effect suggests that $R_{\text{max}} > 157.6$ and aa(min) > 19.0, values that were recorded for cycle 22, the even-leading cycle of the current even-odd cycle pair (cycles 22 and 23). For 1995, the annual average of the aa index measured about 22, while for sunspot number, it was about 18. Because aa(min) usually lags R_{min} by 1 year (true for 8 of 11 cycles) and 1996 seems destined to be the year of R_{min} for cycle 23, it may be that aa(min) will occur in 1997, although it could occur in 1996 in conjunction with R_{min} (true for 3 of 11 cycles). Because of this ambiguity in determining aa(min), no formal prediction based on the correlation of R_{max} against aa(min), having $r = 0.90$, or of R_{max} against the combined effects of R_{min} and aa(min)—the bivariate technique—having $r = 0.99$ is possible until 1997, at the earliest.

The use of cryogenic fuels (liquid oxygen and liquid hydrogen) in current space transportation vehicles, in combination with the proposed use of composite materials in such applications, requires an understanding of how such materials behave at cryogenic temperatures. In this investigation, tensile intralaminar shear tests were performed at room, dry ice, and liquid nitrogen temperatures to evaluate the effect of temperature on the mechanical response of the IM7/8551-7 carbon-fiber/epoxy-resin system.

Quasi-isotropic lay-ups were also tested to represent a more realistic lay-up. It was found that the matrix became both increasingly resistant to microcracking and stiffer with decreasing temperature. A marginal increase in matrix shear strength with decreasing temperature was also observed. Temperature did not appear to affect the integrity of the fiber-matrix bond.

Solution of the Angles-Only Satellite Tracking Problem. R.E. Burns. Structures and Dynamics Laboratory.

A single observation station, located at an arbitrary point on the surface of the Earth, can determine only the azimuth and elevation angles of a satellite or ballistic vehicle, and the time at which these observations occur. No information is available about the range or the range-rate of the target. It is shown that five observations of either the elevation or the azimuth, and the time of either set of observations, determine the complete set of orbital elements of the target. The implementation of the theory presented here could provide a great reduction in the hardware costs associated with satellite and reentry vehicle tracking.
1996 and March 1997, certainly between June 1996 and June 1997, based on the 95-percent confidence level deduced from the mean and standard deviation of period for the sample of six short-period modern era cycles.

Also, because the first occurrence of a new cycle, high-latitude (≥25 degrees) spot has always preceded conventional onset of the new cycle by at least 3 months (for the data-available interval of cycles 12–22), conventional onset for cycle 23 is not expected until about August 1996 or later, based on the first occurrence of a new cycle 23, high-latitude spot during the decline of old cycle 22 in May 1996. Although much excitement for an earlier-occurring minimum (about March 1996) for cycle 23 was voiced earlier this year, the present study shows that this exuberance is unfounded. The decline of cycle 22 continues to favor cycle 23 minimum sometime during the latter portion of 1996 to the early portion of 1997.

TP–3677 March 1997

Should the Russian Space Agency (RSA) not participate in the International Space Station (ISS) program, then the United States (U.S.) National Aeronautics and Space Administration (NASA) may choose to execute the ISS mission. However, in order to do this, NASA must build two new space vehicles, which must perform the functions that the Russian vehicles and hardware were to perform. These functions include periodic ISS orbit reboost, initial ISS attitude control, and U.S. On-Orbit Segment (USOS) control moment gyroscopes (CMG) momentum desaturation. The two new NASA vehicles that must perform these functions are called the U.S. control module (USCM) and the U.S. resupply module.

This paper presents a design concept for the USCM GN&C subsystem, which must play a major role in ISS orbit reboost and initial attitude control, plus USOS CMG momentum desaturation. The proposed concept is structured similar to the USOS GN&C subsystem, by design. It is very robust, in that it allows the USCM to assume a variety of vehicle attitudes and stay power-positive. It has a storage/safe mode that places the USCM in a gravity-gradient orientation and keeps it there for extended periods of time without consuming a great deal of propellant. Simulation results are presented and discussed that show the soundness of the design approach. An equipment list is included that gives detailed information on the baseline GN&C components.

TP–3698 September 1997

Corrosion studies were carried out for wrought and cast NASA–23 alloy using electrochemical methods. The scanning reference electrode technique (SRET), the polarization resistance technique (PR), and the electrochemical impedance spectroscopy (EIS) were employed. These studies corroborate the findings of stress corrosion studies performed earlier, in that the material is highly resistance to corrosion.

TP–3704 August 1997
Design of Launch Vehicle Flight Control Augmentors and Resulting Flight Stability and Control (Center Director’s Discretionary Fund Project 93–05, Part III). C. Barret, Ph.D. Propulsion Laboratory. 19970037712N (97N–31151)

This report is Part III, the final part, of the Center Director’s Discretionary Fund (CDDF) Project 93–05, in which the author as Principal Investigator has proposed and designed forward and aft, all-movable, blunt trailing-edge (TE), flight control augmentors (FCA’s) to provide the required control augmentation for a family of aft center-of-gravity (cg) launch vehicles that could not be adequately controlled using engine gimbaling alone. This comprehensive flight mechanics research effort has been partially documented in previous publications. NASA TP–3535 (Barret, C.; February 1995) has presented the state-of-the art assessment of smart materials and advanced composites directly applicable to the innovative design of the FCA’s. NASA TP–3615 (Barret, C.; April 1996) has presented the developmental stages of the program, the comprehensive reviews of our national heritage of launch vehicles that have used aerodynamic surfaces, and the current use of these by other nations.

This publication presents the control requirements, the details of the designed FCA’s, the static stability and dynamic stability wind tunnel test programs, the static stability and control analyses, the dynamic stability characteristics of the experimental LV with the designed FCA’s, and a consideration of the elastic vehicle. Dramatic improvements in flight stability have been realized with all the FCA designs; these ranged from 41 percent to 72 percent achieved by the blunt TE design. The control analysis showed that control increased 110 percent with only 3 degrees of FCA deflection. The dynamic
stability results showed improvements with all FCA designs tested at all Mach numbers tested. The blunt TE FCA's had the best overall dynamic stability results. Since the lowest elastic vehicle frequency must be well separated from that of the control system, the significant frequencies and modes of vibration have been identified, and the response spectra compared for the experimental LV in both the conventional and the aft cg configuration. Although the dynamic response was 150 percent greater the aft cg configuration, the lowest bending mode frequency decreased by only 2.8 percent.
NASA CONFERENCE PUBLICATIONS

CP-3342 October 1996
19980003842N

CP-3347 February 1997
19970013716N (97N-17427)

CP-3348 March 1997
19970012906N (97N-17032)

CP-3349 March 1997

CP-3350 May 1997
19970021613N (97N-22541)
NASA REFERENCE PUBLICATIONS

RP–1396 November 1996

RP–1401 April 1997
19970020056N (97N–21576)

RP–1405 July 1997
Second International Microgravity Laboratory (IML–2) Final Report. Compiled by Dr. R.S. Snyder. Space Sciences Laboratory.
19970035095N (97N–30299)

RP–1408 August 1997
19970034583N (97N–29833)
CR-4759 October 1996

CR-4763 January 1997

CR-4774 April 1997

CR-4783 July 1997
Test Report—Direct and Indirect Lightning Effects on Composite Materials. NAS8–39983. Tec-Masters, Inc. 19970018160N (97N-20236)

CR-4784 August 1997

CR-201146 November 1, 1996

CR-201147 November 1, 1996

CR-201148 November 1, 1996

CR-201149 November 1, 1996

CR-201150 November 1, 1996

CR-202757 November 18, 1996

CR-202758 November 18, 1996

CR-202759 November 18, 1996

CR-202760 November 18, 1996
Research and Development of Satellite with Optical Device for the SEDS Project. Final Report. NAS8–38609, D.O. #144. University of Alabama in Huntsville. 19970007764N (97N-70611)

CR-202761 November 18, 1996

CR-202762 December 17, 1996

CR-202763 January 23, 1997
Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study, Volume III,
| CR-202767 | March 26, 1997 | Launch Deployment Assembly Human Engineering Analysis. NAS8-40586. Sigmatech, Inc. |
CR-202783 April 14, 1997

CR-202784 April 14, 1997

CR-202785 April 14, 1997

CR-202786 April 14, 1997

CR-202787 April 15, 1997

CR-202788 April 23, 1997

CR-202789 April 28, 1997

CR-202790 April 28, 1997

CR-202791 May 6, 1997

CR-202792 May 6, 1997

CR-202793 May 12, 1997

CR-202794 June 11, 1997
Space Environmental Effects on Thermal Control Coatings. NAS8-38609, D.O. #136. University of Alabama in Huntsville. 19970023684N (97N-23966)

CR-202795 June 11, 1997

CR-202796 June 11, 1997

CR-202797 June 24, 1997

CR-202798 July 18, 1997

CR-202799 July 18, 1997

CR-202800 July 18, 1997
CR-202801 August 5, 1997
19970036400N (97N-30715)

CR-202802 August 6, 1997

CR-202803 August 6, 1997
19970029129N (97N-27807)

CR-202804 August 6, 1997

CR-202805 August 6, 1997

CR-202806 August 6, 1997

CR-202807 August 6, 1997

CR-205187 August 6, 1997
19970028584N (97N-27330)

CR-205188 September 11, 1997
19970041301N (97N-32385)

ABDELDAYEM, H. USRA
FRAZIER, D.O. ES76
PALEY, M.S. USRA

ADDELAYEM, H. USRA
FRAZIER, D.O. ES76
PALEY, M.S. USRA

Intensity-Dependent Changes for the Third Order Nonlinearity in Polydiacetylene. For publication in Optical Society of America, Washington, DC, 1997.

ADAMS, M. ES82
JONES, C. Swinburne Univ. of Tech.

ADRIAN, M. ES83
Miniaturization of Aurora/Ionospheric Physics: TECHS and Its View of the Thermal Electron Prenoon Cleft. For publication in Southwest Research Institute, San Antonio, TX, 1997.

ALLEN, M.J. Stanford University
WALKER, A.B.C., II Stanford University
OLUSEYI, H.M. Stanford University
HOOVER, R.B. ES82
BARBEE, T.W., JR. Lawrence Livermore National Laboratory

ALLEN, R.W. MG30
TYGIELSKI, A. MG30
GABRIS, E.A. MG30

Space Product Development: Bringing the Benefits of Space Down to Earth. For presentation at International Astronautical Federal, Turin, Italy, October 6–10, 1997.

AMZAJERDIAN, F. UAH
KAVAYA, M.J. EB53

MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

ANTIPIN, M.Y. New Mexico Highlands
BARR, T.J. UAH
CARDELINO, B.H. Atlanta University Center
CLARK, R.D. New Mexico Highlands
MOORE, C.E. ES75
MYERS, T. New Mexico Highlands
PENN, B.G. ES75
ROMERO, M. New Mexico Highlands
SANGHADASA, M. UAH
TIMOFEEVA, T.V. New Mexico Highlands

X-Ray Crystal Structures, Molecular Mechanics Calculations and Calculations of the Nonlinear Polarizabilities (B and y) of Dicyanovinylbenzene and Its Methoxy Derivatives, and Comparison with Experimental Values of B. For publication in Journal of Physical Chemistry, Atlanta, GA.

ARMSTRONG, T.W. SAIC
COLBORN, B.L. SAIC
DIETZ, K.L. ES84
RAMSEY, B.D. ES84

ARMSTRONG, T.W. SAIC
COLBORN, B.L. SAIC
HARMON, B.A. ES84
LAIRD, C.E. Eastern Kentucky

ATKINSON, R.J. ES41
GUILLORY, A.R. ES41
JEDLOVEC, G.J. ES41

AUGUSTEIJN, T. ESO
GREINER, J. Max-Planck-Institut, Germany
KOULIDIOU, C. USRA
VAN PARADIJS, J. UAH
LIDMAN, C. ESO
BLANCO, P. University of CA, San Diego
FISHMAN, G.J. ES84
BRIGGS, M.S. UAH

KOMMERS, J.M. MIT
ET AL.

BALDRIDGE, T. ES94

BARRET, C. ED13

BARRET, C. ED13

Finned Spinning Sounding Rocket with Spinnerons. For presentation at Society of Women Engineers National Conference, Albuquerque, NM, June 24-28, 1997.

BARRET, C. ED13

BARRET, C. ED13

BARRY, R.G. University of Colorado-Boulder
GOODMAN, S.J. ES41
SWICK, R. University of Colorado-Boulder
SCHARFEN, G. University of Colorado-Boulder

BASKARAN, S. ES76
NOEVER, D.A. ES76

BEECH, G. EL24
CHANDLER, K.O. EL24

BHAL, B.N. EH23
LEDBETTER, F.E. EH32

BHAT, K. Alabama A&M University
CHOI, J. Alabama A&M University
MCCALL, S.D. Alabama A&M University
AGGARWAL, M.D. Alabama A&M University
CARDELINO, B.H. Spellman College
MOORE, C.E. ES76
PENN, B.G. ES76
FRAZIER, D.O. ES76
SANGHADASA, M. UAH

Theoretical and Experimental Study of the Second-Order Polarizabilities of Schiff’s Bases for Nonlinear Optical Applications. For publication in Journal of Computational Materials Science, Atlanta, GA.

BILBRO, J.W. EB51
COUTLER, D.D. JPL
MARTIN, G. GSFC

BLUE, L. EB31
CRAWFORD, K. EB31

BOCCIPPIO, D.J. MIT
WILLIAMS, E.R. MIT
WONG, C. MIT
BOLDI, R. MIT
GOODMAN, S.J. ES41
CHRISTIAN, H. ES41

Global Validation of Single-Station Schumann Resonance Lightning Location. For publication in Journal of Atmospheric and Terrestrial Physics.

BOECK, W.L. Niagara University
BLAKESLEE, R.J. ES41
GOODMAN, S.J. ES41
CHRISTIAN, H.J. ES41
MACH, D.M. ES41
BUECHLER, D. ES41
BOCCIPPIO, D.J. ES41
DRISCOLL, K.T. ES41
KOSHAK, W.J. ES41
HALL, J. ES41

Diurnal Cycle of Lightning as Observed by the OTD: Preliminary Results for Africa. For presentation at 1996 Fall Meeting of the American Geophysical Union, San Francisco, CA, December 15–20, 1996.

BOECK, W.L. Niagara University
VAUGHN, O.H., JR. ES41
BLAKESLEE, R.J. ES41
VONNEGUT, B. State University of New York
BROOK, M. New Mexico Institute of Mining and Technology

The Discovery of Sprites, Jets and Elves: A Historical Prospective. For publication in Journal of Atmospheric & Terrestrial Physics.

BRADY, R.P. Southern Illinois University
KULKARNI, M.R. Southern Illinois University
CHU, T.P. Southern Illinois University
RUSSELL, S.S. EH13

Thermal Image Analysis for the On-Line NDE of Composites. For presentation at Second Conference on NDE Applied to Process Control of Composite Fabrication, St. Louis, MO, October 1–2, 1996.

BRITTNACHER, M.J. ES83
ELSEN, R. ES83
PARKS, G.K. ES83
CHEN, L. ES83
GERMANY, G.A. ES83
SPANN, J.E., JR. ES83

BROWN, D.G. Michigan State Univ.
QUATTROCHI, D.A. ES41

Special Association of American Geographers, Remote Sensing. For publication in Geocarto International, Hong Kong.
BRUNER, M.E. Lockheed Martin
WULSER, J.P. Lockheed Martin
ZUKIC, M. Cascade Optical Coatings
HOOVER, R.B. ES82

BRYER, P.J. Rockwell International
POWERS, W.T. EB22
ENGLE, J. Rockwell International
BULLINGTON, J.V. Rockwell International

BUNES, A.V. ES75
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75

Numerical Modeling of HgCdTe Solidification: Effects of Phase Diagram, Double-Diffusion Convection and Microgravity Level. For presentation at Joint Xth European and VIth Russian Symposium, St. Petersburg, Russia, June 15–20, 1997.

BUNES, A.V. National Research Council
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75

CAMPBELL, J.W. PS02

CARDELINO, B.H. Spellman College
MOORE, C.E. ES75
FRAZIER, D.O. ES75
MOROKUMA, K. Emory University

CARRASQUILLO, R.L. ED62
REUTER, J.L. ED62
PHILISTINE, C.L. Boeing

CARRINGTON, C. PD11
KELLER, V. PD11

CARTER, D.L. ED62

CARTER, R.N. Precision Combustion, Inc.
BIANCHI, J.F. Precision Combustion, Inc.
PFEFFERLE, W.C. Precision Combustion, Inc.
ROYCHOUDHURY, S. Precision Combustion, Inc.
PERRY, J.L. ED62

Unique Metal Monolith Catalytic Reactor for Destruction of Airborne Trace Contaminants. For pre-

CASH, M.B. EO66
Crew Member Interface with Space Station Furnace Facility. For presentation at NASA URC (University Research Centers) Technical Conference, Albuquerque, NM, February 16–19, 1997.

CHANDLER, K.O. ED73
TINKER, M.L. ED23

CHANG, C.L. SAIC
DROBOT, A.T. SAIC
PAPADOPoulos, K. SAIC
WRIGHT, K.H. UAH
STONE, N.H. ES83
GURGILO, C.A. BBRI
WINNINGHAM, D. Southwest Research
BONIFAZI, C.A. ASI, Italy

CHAPPELL, C.R. DS01
GILES, B.L. ES83
DELCOURT, D.C. Centre d’Etudes
MOORE, T.E. GSFC
CHANDLER, M.O. ES83
CRAVEN, P.D. ES83

CHOU, S.-H. ES41

CHRISTENSEN, E.R. Sverdrup Technology
BRUNTY, J. ED23

CHRISTIAN, H.J. ES41
DRISCOLL, K.T. UAH
BOCCIPPIO, D.J. ES41
Results from Two Years of Global Lightning Observation with the Optical Transient Detector. For presentation at 1997 Fall Meeting of American Geophysical Union, San Francisco, CA, December 1997.

CHRISTL, M.C. ES84
FOUNTAIN, W.F. ES84
PARNELL, T.A. ES84
ROBERTS, P.E. ES84
GREGORY, J.C. UAH
JOHNSON, J. UAH
TAKAHASHI, Y. UAH

CLARK, T.L. EL23
LAWTON, R. GB Tech.

CLAYTON, J.L. ED63

COFFEY, V.N. ES83
CHANDLER, M.O. ES83
MOORE, T.E. ES83

COFFEY, V.N. ES83
CHANDLER, M.O. ES83
MOORE, T.E. GSFC
Characteristics of the Thermal Ion Bulk Parameters in the Cleft. For presentation at 1997 Fall American Geophysical Union Meeting, San Francisco, CA, December 8–12, 1997.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

COFFEY, V.N. ES83
MOORE, T.E. ES83

COFFEY, V.N. ES83
MOORE, T.E. ES83
POLLOCK, C.J. ES83

COMFORT, R.H. UAH
ELLIOTT, H.A. UAH
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. ES83
WUEST, M. Southwest Research
HUDDLESTON, M. Rice University
LENNARTSSON, O.W. Lockheed Palo Alto
Ion Distribution Moments from POLAR/TIDE and Comparisons with POLAR/TIMAS. For presentation at 1997 Spring American Geophysical Union Meeting, Baltimore, MD, May 1997.

COMFORT, R.H. UAH
MOORE, T.E. ES83
CRAVEN, P.D. ES83
POLLOCK, C.J. Southwest Research
MOZER, F.S. University of California
WILLIAMSON, W.T. Hughes Aircraft

COOK, M.B. EH42
CLARK-INGRAM, M. EH42

COOPER, A.E. EB01
POWERS, W.T. EB01
WALLACE, T.L. Vanderbilt University
BUNTINE, W. Ultimode Systems

CORRIGAN, D.P. Rensselaer Polytechnic
GLICKSMAN, M.E. Rensselaer Polytechnic
CURRERI, P.A. ES75
WORKMAN, G.L. UAH

CRAVEN, P.D. ES83
MOORE, T.E. ES83
CHANDLER, M.O. ES83
COMFORT, R.H. UAH
HUDDLESTON, M. Rice University
DEMPSEY, D. Rice University

CRAVEN, P.D. ES83
WILSON, G.R. ES01
PETERSON, W.K. Lockheed Martin
CHISTON, S.P. University of Maryland
Molecular Ions in the Magnetosphere. For presentation at 1997 Spring American Geophysical Union Meeting, Baltimore, MD, May 1997.

CROLL, A. Universitat Freiburg
SZOFRAN, F.R. ES75
DOLD, P. Universitat Freiburg
KAISER, T. Universitat Freiburg
BENZ, K.W. Universitat Freiburg
LEHOCZYK, S.L. ES75

CROLL, A. Universitat Freiburg
SZOFRAN, F.R. ES75
DOLD, P. Universitat Freiburg
BENZ, K.W. Universitat Freiburg
LEHOCZYK, S.L. ES75
Floating-Zone Growth of Silicon in Magnetic Fields: Part II: Strong Static Axial Fields. For publication
in Journal of Crystal Growth, Amsterdam, Netherlands.

CURREN, P.A. ES75
KAUKLER, W.F. UAH
SEN, S. USRA
PETERS, P.N. USRA

CURREN, P.A. ES75
KAUKLER, W.F. ES75
SEN, S. ES75
PETERS, P.N. ES75

CURTIS, R.E. Boeing
PERRY, J.L. ED62

ABRAMOV, L.H. NIICHIMMASH

CUTCINS, M.A. Auburn University
TINKER, M.L. ED23
BOOKOUT, P.S. ED23

CUTTEN, D.R. HR01
SPINHIME, J.D. HR01
MENZIES, R.T. HR01
BOWDLE, D.A. HR01
SRIVASTAVA, V. HR01
PUESCHEL, R.F. HR01
CLARKE, A.D. HR01
ROTHERMEL, J. HR01

DARBY, S.P. EH42
LANDRUM, D.B. UAH
COLEMAN, H.W. UAH

DARDEN, J.M. ED12
EARHART, E.M. ED12

FLOWERS, G.T. Auburn University

DAVIS, J.M. ES82
GARY, G.A. ES82

DEAN, W.C. Hamilton Standard
LANZARONE, A.W. Hamilton Standard
HOLDER, D. ED62
HOWARD, S. Boeing

DISCHINGER, H.C., JR. EO66
LOUGHEAD, T.E. EO66

DOE, R.A. ES83
KELLY, J.D. ES83
LUMMERZHEIM, D. ES83
PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

Initial Comparison of POLAR UVI and Sondreström

DONG, P. Battelle
HONG, J.K. Battelle
BYNUM, J. EH22
ROGERS, P. ED24

DONG, P. Battelle
HONG, J.K. Battelle
ZHANG, J. Battelle
ROGERS, P. ED24
BYNUM, J. EH22

SHAH, S. Lockheed Martin

DREWRY, M. UAH
CONOVER, H. UAH
GRAVES, S. UAH
GOODMAN, S.J. ES41

DRISCOLL, K.T. ES41
CHRISTIAN, H.J. ES41
GOODMAN, S.J. ES41
BLAKESLEE, R.J. ES41
BOCCIPPIO, D.J. ES41

MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

ET AL.
Ion Outflow and Convection in the Polar Cap and Cleft as Measured by TIDE, EFI, MFE, and TIMAS. For presentation at 1997 Fall American Geophysical Union Meeting, San Francisco, CA, December 8–12, 1997.

ELLIOIT, H.A. UAH
COMFORT, R.H. UAH
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. ES83
MOZER, F.S. University of California, Berkeley
RUSSELL, C.T. University of CA, LA

ELLIOIT, H.A. UAH
COMFORT, R.H. UAH
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. ES83
MOZER, F.S. University of California, Berkeley
RUSSELL, C.T. University of CA, LA

ELSNER, R.F. ES84
RAMSEY, B.D. ES84
JOY, M.K. ES84
O’DELL, S.L. ES84
SULKANEN, M.E. ES84
TENNANT, A.F. ES84
WEISSKOPF, M.C. ES84
GUINN, S. NRC/MSFC
MINAMITANI, T. USRA
ET AL.

EMERSON, C.W. Missouri State University
QUATTROCHI, D.A. HR01
LUVALL, J.C. HR01

ENGLE, J. Rockwell International
POWERS, W.T. Rockwell International
BULLINGTON, J.V. Lockheed Martin

ERICKSON, R.J. ED62
CARRASQUILLO, R.L. ED62

ERICKSON, R.J. ED62
MASON, R.K. ED62
ROY, R.J. ED62

EVANS, D.M. University of Texas at El Paso
HUANG, D. University of Texas at El Paso
MCCLURE, J.C. University of Texas at El Paso
NUNES, A.C., JR. EH23
Arc Efficiency of Plasma Arc Welds. For publication in Welding Journal-American Welding Society, Miami, FL.

EWING, F. USRA
PUSEY, M. ES76
Protein Crystal Growth for Education. For presentation at Spacebound 97, Montreal, Quebec, Canada, May 11–14, 1997.

FALCONER, D.A. ES82
A Correlation Between Length of Strong-Shear Neutral Lines and Total X-Ray Brightness in Active Regions. For publication in Solar Physics, Tucson, AZ.

FALCONER, D.A. ES82
DAVILA, J.M. GSFC
THOMAS, R.J. GSFC
FALCONER, D.A. ES82
JORDAN, S.D. GSFC
DAVILA, J.M. GSFC
THOMAS, R.J. GSFC
ANDRETTA, V. GSFC
BROSIUS, J.W. Hughes STX
HARA, H. National Astronomical
Using Strong Solar Coronal Emission Lines as Coro-
nal Flux Proxies. For publication in Solar Physics,

FALCONER, D.A. ES82
MOORE, R.L. ES82
PORTER, J.G. ES82

Micro Coronal Bright Points Observed in the Quiet
Magnetic Network by SOHO/EIT. For publication
in Proceedings of High Resolution Solar Atmos-
pheric Dynamics Workshop, Gloucester, MA, June
3-4, 1997.

FALCONER, D.A. ES82
MOORE, R.L. ES82
PORTER, J.G. ES82
HATHAWAY, D.H. ES82

Network Coronal Bright Points: Coronal Heating
Concentrations Found in the Solar Magnetic Net-
work. For publication in Astrophysical Journal,
Tuc-

FINCKENOR, J. ED52

Genetic Algorithms, with Inheritance, Versus Grad-
ient Optimizers, and GA/Gradient Hybrids. For
presentation at OPTI 1997, Rome, Italy, September
8-10, 1997.

FISHER, M.F. EP42

Propellant Management in Booster and Upper Stage
Propulsion Systems. For presentation at Third Inter-
national Symposium, Beijing, China, August 11-13,
1997. For publication in AIAA Journal of Spacecraft
& Rockets, 1997.

FISHMAN, G.J. ES81

The Mystery of Gamma-Ray Bursts. For presenta-
tion at The Violent University Workshop,
Williamsburg, VA, April 1997.

FISHMAN, G.J. ES81

Gamma-Ray Bursts: Observational Overview. For
presentation at Italian Space Agency, Elba, Italy, May

FISHMAN, G.J. ES81

Observations of Gamma-Ray Bursts. For presenta-
tion at IAU Symposium #188, Koyoto, Japan, Au-

FOK, M.-C. USRA
MOORE, T.E. ES83

Ring Current Modeling in a Realistic Magnetic Field
Configuration. For publication in Geophysical Re-
search Letters.

FONTENLA, J.M. IAFE
ROVIRA, M. IAFE
TANDBERG-HANSSSEN, E. ES01

Ultraviolet Events Observed in Active Regions II.
The Miniflare of March 27, 1980, and Its Extended
Arch. For publication in Ap. J.

FORD, E. Columbia University
KAARET, P. Columbia University
TAVANI, M. Columbia University
BARRET, D. Harvard Smithsonian
BLOSER, P. Harvard Smithsonian
GRINDLAY, J.E. Harvard Smithsonian
HARMON, B.A. ES84
PACIESAS, W.S. UAH
ZHANG, S.N. USRA

Evidence from Quasi-Periodic Oscillations for a
Millisecond Pulsar in the Low Mass X-Ray Binary
4U 0614+091. For publication in Astrophysical Jour-

FORSYTHE, E. USRA
NADARAJAH, A. University of Toledo
PUSEY, M.L. ES76

The Effects of pH on the Averaged (110) Face
Growth Rates of Tetragonal Lysozyme. For presenta-
tion at Spacebound 97, Montreal, Quebec, Canada,

FORSYTHE, E.L. USRA
SNELL, E.H. ES76
PUSEY, M.L. ES76

Crystallization of Chicken Egg White Lysozyme
from Ammonium Sulfate. For publication in Acta

FOSTER, C.L. EP43
LITKENHOUS, E.E. EP43

Re-Flight of the Deployable Retrievable Booms. For
presentation at 31st Aerospace Mechanisms Sym-
Foster, W.A., Jr. Auburn University
Jenkins, R.M. Auburn University
Hengel, J.E. ED34
Smith, A.W. ED34

Fragomeni, J.M. University of Alabama
Nunes, A.C., Jr. EH23

Frost, C.L. ED52
Rodriguez, P.I. EL01

AXAF-I Hypervelocity Impact Test Results. For presentation at Second European Conference on Space Debris, Darmstadt, Germany, March 17-19, 1997.

Galama, R.S. University of Amsterdam
Van Paradijs, J. UAH
Hanlon, L. ESA
Bennett, K. ESA
Kouveliotou, C. USRA
Fishman, G. ES84
Meeegan, C.A. ES84
Heise, J. SRON
Zand, J. SRON

ET AL.

Galama, T. University of Amsterdam
Groo, P.J. University of Amsterdam
Van Paradijs, J. UAH
Kouveliotou, C. USRA
Robinson, C.R. USRA
Fishman, G.J. ES84
Meeegan, C.A. ES84
Sahu, K.C. Space Telescope Science
Livio, M. Space Telescope Science

ET AL.
The Optical Light Curve of GRB 970228. For publication in Nature, Washington, DC.

Gallagher, D.L. ES83
Craven, P.D. ES83
Comfort, R.H. ES83

Garcia, R. ED32

MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

MOORE, R.L. ES82

GENGE, G. EP32
MIMS, K. EP32
MIN, J. EP32
SULLIVAN, R. EP32
EFFINGER, M.R. EP32
HARRIS, D. EP32

GERMANY, G.A. ES83
PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
SPANN, J.F., JR. ES83
CUMNOCK, J. ES83
LUMMERZHEIM, D. ES83

GERMANY, G.A. ES83
PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
CUMNOCK, J. ES83
LUMMERZHEIM, D. ES83
SPANN, J.F., JR. ES83

GILBERT, J.A. UAH
SHEPHERD, R.L. Colorado School of Mines
COLE, H.J. EB01
ASHLEY, P.R. U.S. Army Missile

GILCHRIST, B.E. University of Michigan
BONIFAZI, C.A. Agenzia Spaziale Italiana
BILEN, S.G. University of Michigan
RAITT, W.J. Utah State University
BURKE, W.J. Phillips Lab.
STONE, N.H. ES83
LEBRETON, J.P. ESA, Netherlands
Enhanced Electrodynamic Tether Currents Due to Electron Emission from a Neutral Gas Discharge: Results from the TSS-1R Mission. For publication in Geophysical Research Letters.

GILES, B.L. ES83
MOORE, T.E. ES83
CHANDLER, M.O. ES83
CRAVEN, P.D. ES83
POLLLOCK, C.J. Southwest Research
The Upwelling Ion Source of Low Energy Ions: Initial Results from TIDE/PSI on POLAR. For presentation at 1997 Spring American Geophysical Union, Baltimore, MD, May 1997.

GILLIES, D.C. ES75
NASA’S Microgravity Materials Science Program. For presentation at SPIE’S 42nd Annual Meeting, San Diego, CA, July 27–August 1, 1997

GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75
SZOFRAN, F.R. ES75
WATRING, D.A. ES75
ALEXANDER, H.A. USRA
JERMAN, G.A. ES75

Microbial Biofilm Formation and Degradation of Candidate Material for the International Space Station. For presentation at 97th American Society for Microbiology General Meeting, Miami Beach, FL, May 4–8, 1997.

Tripropellant Engine Option Comparison for Single-Stage-to-Orbit. For publication in Journal of Spacecraft and Rockets.
HAMMER, R. Kiepenheuer-Institut, Germany
NESIS, A. Kiepenheuer-Institut, Germany
MOORE, R.L. ES82
SUSS, S.T. ES82
MUSIELAK, Z.M. UAH

HARMON, B.A. ES84

HARMON, B.A. ES84

HARMON, B.A. ES84

HARMON, B.A. ES84

HARMON, B.A. ES84
DEAL, K.J. UAH
PACIESAS, W.S. UAH
ZHANG, S.N. USRA/ES84
ROBINSON, C.R. USRA/ES84
GERARD, E. Dept. ARPEGES, Paris
RODRIGUEZ, L.F. Mexico
MIRABEL, I.F. France

HARMON, B.A. ES84
LAIRD, C.E. Eastern Kentucky
FISHMAN, G.J. ES84
PARNELL, T.A. ES84
CAMP, D.C. Lawrence Livermore

FREDERICK, C.E. Tennessee Valley Authority
HURLEY, D.L. Lawrence Berkeley
LINDSTROM, D.J. JSC
MOSS, C.E. Los Alamos National Lab.

HARMON, B.A. ES84
MCCOLLOUGH, M.L.
ZHANG, S.N.
PACIESAS, W.S.
WILSON, C.A.

X-Ray Nova at 1994 in Scorpius. For presentation at IAU Circular 6196, Cambridge, MA.

HARMON, B.A. ES84
PACIESAS, W.S.
FISHMAN, G.J.

GRS 1915+105. For publication in IAU Circular 6204, Cambridge, MA.

HARMON, B.A. ES84
PACIESAS, W.S.
FISHMAN, G.J.

HARMON, B.A. ES84
PACIESAS, W.S.
ZHANG, S.N.
DEAL, K.J.

GRS 1915+105. For publication in IAU Circular 6266, Cambridge, MA.

HARMON, B.A. ES84
ROBINSON, C.R.
FISHMAN, G.J.
ZHANG, S.N.
PACIESAS, W.S.

GRO J1655–40F. For publication in IAU Circular 6501, Cambridge, MA.

HARMON, B.A. ES84
ROBINSON, C.R.
FISHMAN, G.J.
ZHANG, S.N.
PACIESAS, W.S.

HARMON, B.A. ES84
WILSON, C.A. ES84
MCCOLLOUGH, M. ES84
ZHANG, S.N. ES84
PACIESAS, W.S. ES84
ROBINSON, C.R. ES84

GRO J1655-40 and GRS 1915+105. For publication in IAU Circular No. 6436, Cambridge, MA.

HARTFIELD, R. Auburn University
DOBSON, C. EP53
ESKRIDGE, R. EP53
WEHRMEYER, J.A. Vanderbilt University

HATHAWAY, D.H. ES82
WILSON, R.M. ES82

HO, J.X. ES76
SNELL, E.H. ES76
SISK, C.R. ES76
RUBLE, J.R. ES76
CARTER, D.C. ES76
OWENS, S.M. State University of Albany
GIBSON, W.M. State University of Albany

Stationary Crystal Diffraction with a Monochromatic Convergent X-Ray Beam Source and Application for Macro-Molecular Crystal Data Collection. For publication in Acta Crystallographica.

HOLLADAY, J.B. ED62
D’AURIA, R. Alenia Aerospazio, Italy

HOOVER, R.B. ES82

HOOVER, R.B. ES82

HOPKINS, R.C. University of Alabama
BENZING, D.A. University of Alabama
WHITAKER, K.W. University of Alabama
POWERS, W.T. EB22
COOPER, A.E. EB22

HORACK, J.M. ES01
TREISE, D. University of Florida

Reinvention of the Science Communications Process at NASA/ Marshall Space Flight Center’s Space Sciences Laboratory. For presentation at American Association for the Advancement of Science, Seattle, Washington, February 13–18, 1997.

HOWARD, R.T. EB44
BRYAN, T.C. EB44
BOOK, M.L. EB44

HOWARD, R.T. EB44
COLE, H.J. EB44
JACKSON, J.L. EB44
KAMERMAN, G. EB44
FRONEK, D. EB44

HUDSON, S.T. ED34
MONTESDEOCO, X.A. Pratt & Whitney

HUDSON, T. ES94
DOWDY, M. ES94
BALDRIDGE, T. ES94

HUETER, U. PF02
Advanced Reusable Transportation Technologies Project Overview. For presentation at AIAA 7th International Space Planes & Hypersonic Systems & Technologies Conference, Norfolk, VA, November 18-22, 1996.

HUETER, U. PF02

HUFFAKER, C.F. PS03
HALE, M.G. SAIC
Systems Technology Assessment Tool (STAT) Capability. For presentation at JANNAF Interagency Propulsion Committee Meeting, Albuquerque, NM, December 10, 1996.

HUNG, J.Y. Auburn University
BISHOP, C.A. Auburn University
POLITES, M.E. EB21
ALHORN, D.C. EB21

HURST, C.J. Environmental Protection Agency
ROMAN, M.C. ED62

HURST, C.J. Environmental Protection Agency
ROMAN, M.C. ED62

INDIERESEN, R.S.
GILCHRIST, B.E.
LEBRETON, J.P.
THOMPSON, D.C.
STONE, N.H. ES83
Simultaneous, Multi-Point, In Situ, Measurements of Ionospheric Structures Using Space Tethers. For publication in Geophysical Research Letters.

INTRILIGATOR, D.S. Carmel Research Center
STONE, N.H. ES83
WINNINGHAM, J.D. Southwest Research
WRIGHT, K.H. UAH
ORSINI, S. IFSI-CNR, Italy
MARCUCI, F. IFSI-CNR, Italy
MARIANI, F. University of Rome II, Italy
Analysis of Energetic Ions in the TSS-1R Satellite Environment. For publication in Geophysical Research Letters.

JARZEMBSKI, M.A. ES41
SRIVASTAVA, V. USRA
Low Pressure Experimental Simulation of Electrical Discharges Above and Inside a Cloud. For publication in Journal of Atmospheric and Solar-Terrestrial Physics, 1997.

JARZEMBSKI, M.A. ES41
SRIVASTAVA, V. USRA
MCALLAUL, E.W., JR. USRA
JEDLOVEC, G.J. ES41
ATKINSON, R.J. Lockheed Martin
Lidar Backscatter Measurements in Hurricane Juliette.
For publication in Geophysical Research Letters, October 1996.

JARZEMBSKI, M.A. ES41
SRIVASTAVA, V. USRA
MCCAUL, E.W., JR. USRA
JEDLOVEC, G.J. ES41
ATKINSON, R.J. Lockheed Martin

JOHNSON, D.L. EL23
PEARSON, S.D. EL23
VAUGHAN, W.W. UAH

BATTs, G.W. Computer Sciences Corp.

JOHNSON, L. PS02

JOHNSON, L. PS02
BALLANCE, J. EE61

JOHNSON, L. PS02
ESTES, R. Harvard Smithsonian
LORENZINI, E. Harvard Smithsonian

JOY, M.K. ES84
Interferometric Images of the Sunyaev-Zel’dovich Effect in Galaxy Clusters from $z=0.15$ to $z=0.83$: Toward an Independent Determination of Ho and Omega. For presentations at Clusters at Different Redshifts Conference, El Paso, NM, May 18–31, 1997.

JOY, M.K. ES84
Interferometric Images of the Sunyaev-Zel’dovich Effect in Galaxy Clusters From $z=0.15$ to $z=0.83$. For presentation at Clusters as Cosmological Probes Workshop, Munich, Germany, October 5–10, 1997.

KANKELBORG, C.C. Montana State University
WALKER, A.B.C., II Stanford University

HOOVER, R.B. ES82
Observation and Modeling of Soft X-Ray Bright Points II: Determination of Temperature and Energy Balance. For publication in Solar Physics, Tucson, AZ.

KAUKLER, W.F. UAH
CURRERI, P.A. ES75
SEN, S. USRA

KAUKLER, W.F. UAH
ROSENBERGER, F. UAH
CURRERI, P.A. ES75
In-situ Studies of Precipitate Formation in Al-Pb Monotectic Solidification by X-Ray Transmission Microscopy. For publication in Metallurgical Transaction, Pittsburgh, PA.

KEY, C.F. EH01
LOWERY, F.S. EH01
DARBY, S.P. EH01
LIBB, R.S. Native American Services

KHAZANOV, G.V. ES83
KRIVORUTSKY, E.N. UAH
LIEMOHN, M.W. ES83
A Model for Lower Hybrid Wave Excitation Compared with Observations by Viking. For publication in Geophysical Research Letters.

KHAZANOV, G.V. ES83
LIEMOHN, M.W. ES83
Comparison of Photoelectron Theory Against Observations. For publication in Monograph, Huntsville 96 Workshop, Huntsville, AL, 1997.

LEWIN, W.H.G.
GRO J1744–28. For publication in IAU Circular 6395, Cambridge, MA.

KOUVELIOTOU, C.
DEAL, K.
RICHARDSON, G.A.
BRIGGS, M.S.
FISHMAN, G.J.
VAN PARADIS, J.

KOUVELIOTOU, C.
DEAL, K.J.
RICHARDSON, G.A.
BRIGGS, M.S.
FISHMAN, G.J.
VAN PARADIS, J.

KOUVELIOTOU, C.
FISHMAN, G.J.
MEEGAN, C.A.
VAN PARADIS, J.
BRIGGS, M.S.
RICHARDSON, G.
HURLEY, K.

KOUVELIOTOU, C.
VAN PARADIS, J.
FISHMAN, G.J.
MEEGAN, C.A.
DIETERS, S.
BRIGGS, M.S.
HURLEY, K.
MURAKAMI, T.
SMITH, I.
FRAIL, D.
SGR 1806–20. For publication in IAU Circular 6503, Cambridge, MA.

LAM, S-N.
LOUISIANA STATE UNIVERSITY
LIU, H.-L.
CALIFORNIA STATE UNIVERSITY
QUATTROCHI, D.A.
ES41

LANDSEA, C.W.
WILSON, R.M.
ET AL.
Downward Trends in the Frequency of Intense Atlantic Hurricanes During the Past Five Decades. For publication in Geophysical Research Letters, Washington, DC.

LANSING, M.D.
WALKER, J.L.
RUSSELL, S.S.

LAPENTA, W.M.
LAKHTAKIA, M.
ROBERTSON, F.R.
MCNIDER, R.T.
SONG, A.
JUVALL, J.
GLOBAL HYDROLOGY & CLIMATE CENTER

LASSITER, J.O.
ED73

Growth and Characterization of Crystalline Films of Meta-Nitroaniline (mNA) and 2-Cyclo-Octylamino-5-Nitropyridine (COANP). For publication in Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE).

LOUGHEAD, T.E. EO66
DISCHINGER, H.C., JR. EO66

LOWERY, J.E. EB12
BREWER, J.C. EB12
WHITT, T.H. EB12
JACKSON, L.G. EB12

LU, H-I. ES41
MILLER, T.L. ES41

LUMMERZHEIM, D. ES83
BRITTNACHER, M.J. ES83
EVANS, D. ES83
GERMANY, G.A. ES83
PARKS, G.K. ES83
REES, M.H. ES83
SPANN, J.F., JR. ES83

LUVALL, J.C. ES41
QUATTROCHI, D.A. ES41
Alabama's Urban Forests—Keeping Our Cities Cool. For publication in Alabama Treasured Forests, Montgomery, AL.

LUVALL, J.C. H401
QUATTROCHI, D.A. HR01
America's Urban Forests—Keeping Our Cities Cool.
Third International Symposium on Space Propulsion
Primary and Upper Stage Propulsion Systems: From
Launch to Space Conference, Beijing, China, Au-

MCCOLLOUGH, M.L.
HARMON, B.A.
HJELLMING, R.M.
ROBINSON, C.R.
ZHANG, S.N.

Discovery in Cygnus X–3 of Correlations Between
the Hard X-Ray and the Radio. For publication in
ESA SP–382, Noordwijk, The Netherlands.

MCCOLLOUGH, M.L.
ROBINSON, C.R.
ZHANG, S.N.
PACIESAS, W.S.
HARMON, B.A.
HJELLMING, R.M.
RUPEN, M.
WALTMAN, E.B.
FOSTER, R.S.
ET AL.

A Multiwavelength Study of Cygnus X–3. For pub-
lication in Proceedings of Fourth Compton Sympo-

MCCOLLOUGH, M.L.
WILSON, C.A.
ZHANG, S.N.
HARMON, B.A.

High Energy Survey of Supernova Remnants with
BATSEF. For publication in ESA SP–382,
Noordwijk, The Netherlands.

MCCOLLUM, M.B.
CLARK, T.L.

Control of Unintentionally Generated RF Fields. For
presentation at IEEE 1997 Symposium on Electromag-
netic Compatibility, Austin, TX, August 18–22,
1997.

MCGAUGHEY, G.
ZIPSER, E.J.
SPENCER, R.W.
HOOD, R.E.

High Resolution Passive Microwave Observations
of Convective Systems Over the Tropical Pacific
Ocean. For publication in American Meteorological
Society Journal of Applied Meteorology.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore, C.E.</td>
<td>Aromaticity in Multidimensional Molecules and Their Nonlinear Optical Properties.</td>
<td>Spellman College</td>
</tr>
<tr>
<td>Cardelino, B.H.</td>
<td></td>
<td>New Mexico Highlands</td>
</tr>
<tr>
<td>Timofeeva, T.</td>
<td></td>
<td>Clark Atlanta University</td>
</tr>
<tr>
<td>Niles, J.</td>
<td></td>
<td>Clark Atlanta University</td>
</tr>
<tr>
<td>Wang X.-Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frazier, D.O.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmieder, B.</td>
<td></td>
<td>Observatoire de Paris</td>
</tr>
<tr>
<td>Hathaway, D.H.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarbell, T.D.</td>
<td></td>
<td>Lockheed Palo Alto</td>
</tr>
<tr>
<td></td>
<td>ES82 3-D Magnetic Field Configuration Late in a Large Two-Ribbon Flare. For presentation at 28th Meeting of the Solar Physics Division of the AAS, Bozeman, MT, June 27–July 1, 1997.</td>
<td></td>
</tr>
<tr>
<td>Chandler, M.O.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChapPELL, C.R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craven, P.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giles, B.L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Et al.</td>
<td>ES83 The High Altitude Polar Wind. For publication in Science Journal.</td>
<td></td>
</tr>
<tr>
<td>Moore, T.E.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chandler, M.O.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craven, P.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giles, B.L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollock, C.J.</td>
<td></td>
<td>Southwest Research</td>
</tr>
<tr>
<td>Noble, C.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arnold, J.E.</td>
<td>The Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). For presentation at CMOS 31st Congress, Saskatoon, Canada, June 1–June 5, 1997.</td>
<td></td>
</tr>
<tr>
<td>Muss, J.</td>
<td></td>
<td>Aerojet</td>
</tr>
<tr>
<td>Nguyen, T.</td>
<td></td>
<td>Aerojet</td>
</tr>
<tr>
<td>Reske, E.</td>
<td></td>
<td>ED32</td>
</tr>
<tr>
<td>Neergaard, L.F.</td>
<td></td>
<td>UAH</td>
</tr>
<tr>
<td>Musielak, Z.E.</td>
<td></td>
<td>UAH</td>
</tr>
<tr>
<td>Hathaway, D.H.</td>
<td>Klein-Gordon Equations for Acoustic Waves and Their Applications in Helioseismology. For publication in Astronomy and Astrophysics, Heidelberg, Germany.</td>
<td></td>
</tr>
<tr>
<td>Neugebauer, M.</td>
<td></td>
<td>JPL</td>
</tr>
<tr>
<td>Goldstein, B.E.</td>
<td></td>
<td>JPL</td>
</tr>
<tr>
<td>McCormas, D.J.</td>
<td></td>
<td>Los Alamos National Lab.</td>
</tr>
<tr>
<td>Suess, S.T.</td>
<td></td>
<td>ES82</td>
</tr>
<tr>
<td>Balog, A.</td>
<td>Velocity Variations in the High-Latitude Solar Wind. For publication in Solar Wind 8, American Institute of Physics, New York NY.</td>
<td></td>
</tr>
<tr>
<td>Nicolas, D.P.</td>
<td></td>
<td>EB13</td>
</tr>
<tr>
<td>Robert, T.</td>
<td></td>
<td>ES76</td>
</tr>
<tr>
<td>Koczor, R.</td>
<td></td>
<td>ES76</td>
</tr>
<tr>
<td>Brantley, W.</td>
<td>Test Status for Proposed Coupling of a Gravitational Force to Extreme Type II YBCO Ceramic Superconductors. For publication in Physica C: Superconductivity, Amsterdam, The Netherlands, 1997.</td>
<td></td>
</tr>
<tr>
<td>Noever, D.A.</td>
<td></td>
<td>ES76</td>
</tr>
<tr>
<td>Sibille, L.</td>
<td></td>
<td>USRA</td>
</tr>
<tr>
<td>Cronise, R.J.</td>
<td></td>
<td>ES76</td>
</tr>
<tr>
<td>Baskaran, S.</td>
<td>Institute for Molecular Biotechnics</td>
<td></td>
</tr>
</tbody>
</table>
HUNT, A. Lawrence Berkeley Neural Net Formulations for Organically Modified, Hydrophobic Silica Aerogel. For publication in Journal of Materials Research, Pittsburgh, PA.

NOEVER, D.A. ES76 BRITTAI N, A.B. ES76 MATSOS, H.C. ES76 BASKARAN, S. ES76 OBENHUBER, D.C. ES76 The Effects of Variable Biome Distribution on Global Climate. For publication in Elsevier Science, Ireland.

ONG, K.K. UAH MUSIELAK, Z.E. UAH Growth and Characterization of Cadmium-Zinc Tel-
luride Crystals Grown by Physical Vapor Transport. For presentation at 11th International Conference on Ternary & Multinary Compounds, Salford, United Kingdom, September 8–12, 1997.

PARNELL, T.A. ES84

PARNELL, T.A. ES84

PATRICK, M.C. EB22

PEARSON, S.D. EL23
JASPER, G.L. EL23
VAUGHAN, W.W. UAH
BATTs, G.W. Computer Sciences Corp.

PENDLETON, G.N. UAH
PACIESAS, W.S. UAH
BRIGGS, M.S. UAH
PREECE, R.D. UAH
MALLOZZI, R.S. UAH
MEEGAN, C.A. ES84
HORACK, J.M. ES84
FISHMAN, G.J. ES84
HAKKILA, J. Mankato State University
ET AL.
The Identification of Two Different Spectral Types of Pulses in Gamma-Ray Bursts. For publication in Astrophysical Journal, Chicago, IL.

PESKOv, V. ES84
RAMSEY, B.D. ES84
FONTE, P. LIP/Portugal

POLETTO, G. ES82
CORTI, G. ES82
SUSS, S.T. ES82
KOHl, J. ES82
ET AL.

POLETTO, G. Osservatorio Astrofisico di Arcetri, Italy
ROMOLI, M. Universita di Firenze, Italy
SUSS, S.T. ES82
WANG, A.H. UAH
WU, S.T. UAH
Inferences on Coronal Magnetic Fields from SOHO UVCS Observations. For publication in Solar Physics, Boston, MA.

POLETTO, G. Osservatorio Astrofisico di Arcetri, Italy
SUSS, S.T. ES82
Khan, J.I. University College, U.K.
UCHIDA, Y. Science University, Japan
HIEI, E. Meisei University, Japan
NEUGEBAUER, M. JPL
GOLDSTEIN, B.E. JPL
STRONG, K.T. Lockheed Palo Alto
HARVEY, K.L. Solar Physics Research
X-Ray Bright Points and High-Speed Wind Streams: A Preliminary Analysis From Yohkoh and Ulysses Data. For publication in European Space Agency, Netherlands.

POLITES, M.E. EB21

POLITES, M.E. EB21
POLITES, M.E. EB21

PRASAD, D.C. Udaipur Solar
AMBASTHA, A. Udaipur Solar
SRIVASTAVA, N. Udaipur Solar
HAGYARD, M.J. ES82

PREECE, R.D. UAH
PENDLETON, G.N. UAH
BRIGGS, M.S. UAH
MALLOWI, R.S. UAH
PACIESAS, W.S. UAH
BAND, D.L. University of California, San Diego
MATTESON, J.L. University of California, San Diego
MEEGAN, C.A. ES84

PUSEY, M.L. ES76

PUSEY, M.L. ES76
EINHORN, D. UAH
SMITH, L.
Fluorescence Studies of Protein (Lysozyme) Crystal Nucleation. For presentation at Spacebound 97, Montreal, Quebec, Canada, May 11–14, 1997.

QIU, H.-L. California State University, LA
LAM, N. Louisiana State University
QUATTROCHI, D.A. ES41

QIU, H.-L. California State University
LAM, N.S.-N Louisiana State University
QUATTROCHI, D.A. HR01

QUATTROCHI, D.A. ES41
LAM, N.S. Louisiana State University
QIU, H.-L. Louisiana State University

QUATTROCHI, D.A. ES41

QUATTROCHI, D.A. HR01

QUATTROCHI, D.A. HR01
EMERSON, C.W. Missouri State University
LAM, N. Louisiana State University
LAYMON, C.A. HR01

QUATTROCHI, D.A. ES41

RAGHAVAN, R. ES01
GOODMAN, S.J. ES01
MEYER, P. ES01
BOLDI, B. Massachusetts Institute of Tech.
MATLIN, A. Massachusetts Institute of Tech.
WILLIAMS, E. Massachusetts Institute of Tech.
WEBER, M. Massachusetts Institute of Tech.
HODANISH, S. National Weather Service
MADURA, J. KSC
LENNON, C. KSC
A Real-Time Examination of the Incremental Value of Lightning Data in Diagnosing Convective Storm

RAMACHANDRAN, N. ES75
DOWNEY, J.P. ES75

RAMACHANDRAN, N. ES71
LESLIE, F. ES71

RAMSEY, B.D. ES84
New Developments for Experimental X-ray Astronomy. For publication in Department d’Astrophysique, physique des Particules, physique Nucléaire et Instrumentation Associee (DAPNIA), France.

RAY, C.D. ED62
CARRASQUILLO, R.L. ED62
MINTON-SUMMERS, S. ION Electronics

REAGAN, S. EL24

RICHARDS, S. PF02
LYLES, G.M. DA01
SMITH, D. PF02

ROBERTSON, F.R. HR01

ROBINSON, C.R. ES84
HARMON, B.A. ES84
PACIESAS, W.S. ES84
DEAL, K.J. ES84
ZHANG, S.N. ES84
MCCOLLOUGH, M.L. ES84
WILSON, C.A. ES84
GRS 1915+105. For publication in IAU Circular 6525, Cambridge, MA.

ROBINSON, C.R. USRA
ZHANG, S.N. USRA
MCCOLLOUGH, M.L. USRA
HARMON, B.A. ES84
DIETERS, S. UAH
PACIESAS, W.S. UAH
TAVANI, M. Columbia University
FENDER, R.P. Sussex University
POOLEY, G.G. Cambridge University
ET AL.
GRS 1915+105. For publication in International Astronomical Union (IAU) Circular No. 6651, Cambridge, MA.

ROBINSON, M.J. McDonnell Douglas
STOLTZFUS, J.M. White Sands Test Facility
OWENS, T. EH43

RODRIGUEZ, P. EL01
FROST, C.L. EL01
GARRETT, H. JPL
KINARD, W. LaRC
NASA Meteoroid and Orbital Debris Technology Program: An Overview. For presentation at Second
European Conference on Space Debris, Darmstadt, Germany, March 17–19, 1997.

ROGERS, M.N. EO26

ROGERS, P. EH22
BYNUM, J. EH22
SHAH, S. EH22

ROMAN, M.C. ED62
MINTON-SUMMERS, S. ION Corp.

ROMAN, M.C. ED62

ROOSZ, A. University of Miskolc, Hungary
WATRING, D.A. ES75
ROOSZ, T. University of Miskolc, Hungary
TELESZKY, I. University of Miskolc, Hungary
TOTH, L. University of Miskolc, Hungary
A New Technology to Produce Shaped Cast Single Crystals. For presentation at SP 97, 4th Decennial International Conference on Solidification Processing, Sheffield, United Kingdom, July 1-10, 1997.

ROSETHEL, J. Global Hydrology & Climate
CUTTEN, D.R. UAH
HARDESTY, R.M. NOAA
MENZIES, R.T. JPL
HARRISON, J.N. NOAA
JOHNSON, S.C. HR01
TRATT, D.M. JPL
OLIVIER, L.D. NOAA
BANTA, R.M. NOAA

ROSETHEL, J. ES41
CUTTEN, D.R. UAH
HARDESTY, R.M. NOAA Env. Tec. Lab.
HARRISON, J.N. NOAA Env. Tec. Lab.
MENZIES, R.T. JPL
TRATT, D.M. JPL
JOHNSON, S.C. MSFC

ROSETHEL, J. ES01
HARDESTY, R.M. National Oceanic & Atmospheric Administration
MENZIES, R.T. JPL
HARRISON, J.N. National Oceanic & Atmospheric Administration
TRATT, D.M. JPL
JOHNSON, S.C. ES01
CUTTEN, D.R. UAH

ROVIRA, M. IAFE
FONTENLA, J.M.
REICHMANN, E.J. ES01
TANDBERG-HANSEN, E. ES01

RUF, J. ED32

RUF, J. ED32

RUSSELL, S.S. EH13
LANSLING, M.D. UAH
Neural Network Prediction of Failure of Damaged

RYAN, R.S.
LASSITER, J.O.

Shock and Vibration in the National Aeronautics and Space Administration. For publication in Fifty Years of Shock and Vibration Technology, SAVIAC, SVM No. 15, November 1996.

RYAN, R.S.
TOWNSEND, J.S.

SADER, S.
REINING, C.
SEVER, T.L.
SOZA, C.

SAHOO, N.K.
SHAPIRO, A.P.

SCHAUWECKER, C.J.
SHAWGER, S.L.
TUNG, F.C.
NURRE, G.S.

SCHLAGHECK, R.A.
KROES, R.
TRACH, B.
LOWTHER, D.

PETERS, P.N.

SEVER, T.L.

SHAW, E.J.

SMITHERMAN, D.V., JR.

SMITHERMAN, D.V., JR.
SONG, P. University of Michigan
KOZYRA, J.U. University of Michigan
CHANDLER, M.O. ES83
MOORE, T.E. ES83
RUSSELL, C.T. UCLA
Polar Observations of Magnetosheath Plasmas: TIDE Measurements of Thermal Plasma Properties. For publication in Journal IAGA.

SONG, R University of Michigan
KOZYRA, J.U. University of Michigan
CHANDLER, M.O. ES83
MOORE, T.E. ES83
RUSSELL, C.T. UCLA
Change in Ion Distribution Function While Crossing the Space Shuttle Wake. For publication in Journal of Geophysical Research.

SORENSEN, J.E. UAH
STONE, N.H. ES83
WRIGHT, K.H. UAH
Change in Ion Distribution Function While Crossing the Space Shuttle Wake. For publication in Journal of Geophysical Research.

SPANN, J.F. ES83
GERMANY, G. UAH
BRITTNACHER, M.J. University of WA, Seattle
PARKS, G.K. University of WA, Seattle
ELSEN, R. University of WA, Seattle

SPANN, J.F. ES83
GERMANY, G. UAH
PARKS, G.K. University of WA, Seattle
ELSEN, R. University of WA, Seattle

SPANN, J.F. ES83
ULTRAVIOLET IMAGES OF THE GLOBAL AURORA FROM THE POLAR SPACECRAFT. For presentation at Colloquium at the University of Arkansas, Fayetteville, AR, February 14, 1997.

SPENCER, R.W. ES41

SPENCER, R.W. ES41
BRASWELL, W.D. Nichols Research Corp.
Hydrometeor Influence On, and Lapse Rate Changes Inferred from, the MSU Temperature Record. For presentation at 77th American Meteorological Society, Long Beach, California, February 2–7, 1997.

SPENCER, R.W. ES41
BRASWELL, W.D. Nichols Research Corp.
How Dry is the Tropical Free Troposphere? Implications for Global Warming Theory. For publication in Bulletin of the American Meteorological Society, December 1996.

SPANN, J.F. ES83
GERMANY, G. UAH
BRITTNACHER, M.J. University of WA, Seattle
PARKS, G.K. University of WA, Seattle
ELSEN, R. University of WA, Seattle

SPINNER, A.M. ED34
COOPER, K.

SPINNER, A.M. ED34
COOPER, K.
Application of Rapid Prototyping Methods to High Speed Wind Tunnel Testing. For presentation at Supersonic Tunnel Association 83rd Semi-Annual Meeting, Cleveland, OH, October 20–22, 1996.

SRIVASTAVA, V. USRA
CLARKE, A.D. University of Hawaii
JARZEMSKI, M.A. ES41
ROTERMEL, J. ES41

STARK, B.A. ES82
MUSIELAK, Z.E. UAH
SUSS, S.T. ES82
Alfven Wave Resonances and Flow Induced by Non-linear Alfven Waves in a Stratified Atmosphere. For publication in Solar Wind 8, American Institute of Physics, New York, NY.

STEELE, J.W. Hamilton Standard
GRABOWSKI, N. Hamilton Standard
PARKER, D. Hamilton Standard
HOLDER, D. ED62

STONE, N.H. UAH
BONIFAZI, C.A. Agenzia Spaziale Italiana

STONE, N.H. UAH
WRIGHT, K.H.
SAMIR, U. Tel Aviv University
WINNINGHAM, J.D. Southwest Research Institute

SU, C.-H. ES75

SU, C.-H. ES75
SHA, Y.-G. USRA
Segregation Coefficients of Impurities in Selenium by Zone Refining. For publication in Journal of Crystal Growth, Amsterdam, Netherlands.

SU, C.-H. ES75
LEHOCZKY, S.L. Marquette University
LIU, H.-C. Marquette University
FANG, R. Marquette University
BREBRICK, R.F. Marquette University

SUSS, S.T. ES82

SUSS, S.T. ES82

SUSS, S.T. ES82
POLETTO, G. Osservatorio Astrofisico di Arcetri, Italy
WANG, S.-H. UAH
CUSERI, I. Osservatorio Astrofisico di Arcetri, Italy
WU, S.T. UAH
STEINOLFSON, R.S.
The Geometric Spreading of Coronal Plumes and Coronal Holes. For publication in Journal of Geophysical Research, Washington, DC.

SUGGS, R.J. ES41
JEDLOVEC, G.J. ES41
GUILLORY, A.R. ES41

SUNKARA, H.B. National Research Council
PENN, B.G. ES01
FRAZIER, D.O. ES01
RAMACHANDRAN, N. USRA

SUNKARA, H.B. ES01
RAMACHANDRAN, N. ES01
FRAZIER, D.O. ES01
PENN, B.G. ES01

SWANSON, G.R. ED25
ZACHARY, I.W. Iowa State University

TANDBERG-HANSSSEN, E. ES01

TATARA, J.D. ION Corp.
ROMAN, M. ED62

THOM, R.L. EH 13

THOMAS, L.D. EL01
MOG, R.A. OR Applications

TINKER, M.L. ED23

TINKER, M.L. ED23
CUTCHINS, M.A. Auburn University

TRAWEK, M.S. ED62
TATARA, J.D. ION Corp.

TROUT, D.H. EL23

TROUT, D.H. EL23

TUCKER, D.S. ES75
Effects of Gravitation on Heavy Metal Fluoride Fibers. For publication in Applied Physics Letters, Argonne, IL.

TUCKER, P.K. ED32
KLEM, M.D. LeRC
SMITH, T.D. LeRC
FARHANGI, S. Rocketdyne
FISHER, S.C. Rocketdyne
SANTORO, R.J. Pennsylvania State

TURNER, J.E. EE61
HUETER, U. PS03

TYC, G. Bristol Aerospace Limited, Canada
VIGNERON, E. Canadian Space Agency
JABLONSKI, A. Canadian Space Agency
JAMES, H.G. Communications Research Center
CARRINGTON, C. PD12
RUPP, C. PS02
TYGIELSKI, PJ.
EP43

VAN DYKE, M.
PD24
MARTIN, C.
EP12

VAN PARADIJS, J.
UAH
GROOT, P.J.
University of Amsterdam
GALAMA, T.
University of Amsterdam
KOUEVILOTOU, C.
USRA
STROM, R.G.
Netherlands Foundation
TELTING, J.
Netherlands Foundation
RUTTEN, R.G.M.
Netherlands Foundation
FISHMAN, G.J.
ES81
MEEGAN, C.A.
ES81
ET AL.
Transient Optical Emission From the Error Box of the y-Ray Burst of 28 February 1997. For publication in Nature, Washington, DC.

VANNARONI, G.
IFSI–CNR, Italy
DOBROWOLNY, M.
ASI, Italy
LEBRETON, J.P.
ESA, Netherlands
MELCHIONI, E.
RMR, Italy
DE VENUTO, F.
IFSI–CNR, Italy
GUIDONI, U.
ASI, Italy
HARVEY, C.
Observatoire de Paris-Meudon, France
LESS, L.
Universita La Sapienza, Italy
STONE, N.H.
ES83
ET AL.

VANNARONI, G.
IFSI–CNR, Italy
DOBROWOLNY, M.
ESA, Netherlands
LEBRETON, J.P.
AST, Italy
DE VENUTO, F.
IFSI–CNR, Italy
COUTOURIER, S.
ESA, Netherlands
WINNINGHAM, J.D.
Southwest Research
STONE, H.H.
ES83

VAUGHAN, O.H., JR.
ES44
VAUGHEN, J.A.
EH12
KAMENETZKY, R.
EH12
MCCOLLUM, M.B.
EL23
VAN DYKE, M.
PD24
MARTIN, C.
EP12

Blythe, A.
EH12
MCCOLLUM, M.B.
MC2

VOLZ, M.P.
ES75
MAZURUK, K.
USRA
Thermoconvective Instability in a Rotating Magnetic Field. For publication in International Journal of Heat and Mass Transfer.
POLETTO, G. Osservatorio Astrofisico di Arcetri, Italy

WANG, T.-S. ED32

WANG, T.-S. CORNELISON, J. ED32
Analysis of Flowfields over Four-Engine DC–X Rockets. For publication in Journal of Spacecraft & Rockets, Washington, DC.

WATSON, M.D. ABUSHAGUR, M.A.G. UAH

WEISSKOPF, M.C. ELSNER, R.F. O’DELL, S.L.

WEISSKOPF, M.C. O’DELL, S.L.

WESTRA, D.G. ED62

WHORTON, M.S. CALISE, A.J.
A Study of Fixed Order Mixed Norm Designs for a Benchmark Problem in Structural Control. For pub-
lication in Earthquake Engineering and Structural Dynamics, 1997.

WIELAND, P. (Available only from authors. Dates are presentation dates.)

WILKERTON, S. W. Micro Craft, Inc.

HUEGELE, V. EB52

WILLIAMS, E. MIT

GOODMAN, S.J. HR01

RAGHAVAN, R. HR01

BOLDI, R. MIT

MATLIN, A. MIT

WEBER, M. MIT

HODANISH, S. NWS

SHARP, D. NWS

WILLIAMSON, J. ED52

SCHONBERGER, W. UAH

WILSON, C.A. ES84

DIETERS, S. UAH

SCOTT, D.M. USRA

FINGER, M. ES84

VAN PARADIS, J. UAH

WILSON, C.A. ES84

FINGER, M.H. USRA

HARMON, B.A. ES84

WILSON, R.B. ES84

CHAKRABARTY, D. MIT

STROHMAYER, T. USRA

WILSON, C.A. ES84

FINGER, M.H. GSFC

HARMON, B.A. ES84

SCOTT, D.M. USRA

WILSON, R.B. ES84

BILDSTEN, L. University of California

CHAKRABARTY, D. MIT

PRINCE, T.A. California Institute of Tech.

WILSON, C.A. ES84

FINGER, M.H. USRA

SCOTT, D.M. USRA

WILSON, R.B. ES84

CHAKRABARTY, D. MIT

STROHMAYER, T. USRA

GRO J2058+42. For publication in IAU Circular No. 6514, Cambridge, MA.

WILSON, G.R. ES83

CRAVEN, P.D. ES83

WILSON, G.R. ES83

KHAZANOV, G.V. ES83

HORWITZ, J.L. UAH

Achieving Zero Current for Polar Wind Outflow on Open Flux Tubes Subjected to Large Photoelectron
Fluxes. For publication in Geophysical Research Letters.

WILSON, G.R.
PEREZ, J.D.
Auburn University

WILSON, R.B.
CHAKRABARTY, D.
Massachusetts Institute of Tech.
GX 1+4. For publication in IAU Circular No. 6536, Cambridge, MA.

WILSON, R.B.
HARMON, B.A.
SCOTT, D.M.
FINGER, M.H.
ROBINSON, C.R.
CHAKRABARTY, D.
PRINCE, T.A.
Massachusetts Institute of Tech.
California Institute of Tech.
GS 1843+00. For publication in IAU Circular No. 6586, Cambridge, MA.

WILSON, R.B.
SCOTT, D.M.
FINGER, M.H.
Long-Term Observations of Her X–1 with BATSE. For presentation at 4th Compton Symposium, Williamsburg, VA, April 27–30.

WILSON, R.M.
HATHAWAY, D.H.
REICHMANN, E.J.

WILSON, R.M.
HATHAWAY, D.H.
REICHMANN, E.J.
An Estimate for the Size of Cycle 23 Based on Near Minimum Conditions. For publication in Journal of Geophysical Research, Washington, DC.

WINGARD, C.D.

WINGARD, C.D.

WINNINGHAM, J.D.
STONE, N.H.
GURGILO, C.A.
WRIGHT, K.H.
FRAHM, R.A.
BONIFAZI, C.A.
Southwest Research
ES83
Bitterroot Basic Research
UAH
Southwest Research
Agenzio Spaziale Italiana
Suprathermal Electrons Observed on the TSS1–R Satellite. For publication in Geophysical Research Letters.

WRIGHT, K.H.
STONE, N.H.
SAMIR, U.
SORENSEN, J.
WINNINGHAM, J.D.
SWRI

WRIGHT, K.H.
STONE, N.H.
SORENSEN, J.E.
WINNINGHAM, J.D.
Bitterroot Basic Research
Suprathermal Electrons Observed on the TSS1–R Satellite. For publication in Geophysical Research Letters.

WRIGHT, K.H., JR.
STONE, N.H.
SORENSEN, J.E.
WINNINGHAM, J.D.
Bitterroot Basic Research
lence for Satellite Potentials Greater than the Ion
Ram Energy. For publication in Geophysical Re-

WU, S.S. ES41
Monitoring Land Surface Soil Moisture From Space
With In-Situ Sensors’ Validation—The Huntsville
Example. For presentation at NASA University Re-
search Technical Conference, Albuquerque, NY,

WUEST, M. Southwest Research
BURCH, J.L. Southwest Research
YOUNG, D.T. Southwest Research
HUFFLESTON, M. Southwest Research
DEMPSEY, D.L. Southwest Research
GILES, B.L. ES83
NORDHOLT, J.E. Los Alamos National
BALSIGER, H. Universitat Bern
JOHNSTONE, A. University College London
SHELLEY, E.G. Lockheed Martin

Upflowing Ions in the Southern Auroral Zone Ob-
served with TIDE and TIMAS on the POLAR Space-
craft. For publication in American Geophysical
Union 1996 Fall Meeting, San Francisco, CA, De-
cember 1996.

YU, W. Institute of High Energy
ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
ROBINSON, C.R. USRA
GRINDELAY, J.E. Harvard Smithsonian
BLOSER, P. Harvard Smithsonian
BARRET, D. Centre d’Etude Spatiale
FORD, E.C. Columbia University

A Fractal Module for Multispectral Image Analysis
in ICAMS. For presentation at 1997 Association of
American Geographers Annual Meeting, Fort Worth,
TX, April 1–5, 1997.

ZHANG, X.T. UAH
HWANG, K.S. UAH
WU, S.T. Computer Sciences Corp.
STONE, H.H. ES83

Current Collection in Space Using Modified Parker-
Murphy Model. For publication in Geophysical Re-
search Letters.

ZHENG, W. Louisiana State University
LAM, N. LSU
QIU, H.-L. California State University
QUATTROCHI, D.A. ES41

Kilo-Hertz QPO in Low Intensity State of 4U1608–
52 as Observed with RXTE/PCA. For publication
in Astrophysical Journal Letters, Chicago, IL.

ZHANG, S.N. USRA/ES84
CUI, W. Massachusetts Institute of Tech.
HARMON, B.A. ES84
PACIESAS, W.S. UAH/ES84
REMILLARD, R.E. Massachusetts Institute of Tech.
VAN PARADIJS, J. UAH

The 1996 Soft State Transitions of Cygnus Z–1. For
publication in Astrophysical Journal, University of
Chicago Press, Chicago, IL.
INDEX

TECHNICAL MEMORANDA

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdeldayem, H.A.</td>
<td>5</td>
</tr>
<tr>
<td>Beck, S.W.</td>
<td>5</td>
</tr>
<tr>
<td>Bhat, B.</td>
<td>3</td>
</tr>
<tr>
<td>Blackman, M.</td>
<td>4</td>
</tr>
<tr>
<td>Campbell, J.W.</td>
<td>1</td>
</tr>
<tr>
<td>Chen, P.S.</td>
<td>3</td>
</tr>
<tr>
<td>Cole, H.E.</td>
<td>5</td>
</tr>
<tr>
<td>Curtis, L.A.</td>
<td>1</td>
</tr>
<tr>
<td>Edwards, D.L.</td>
<td>1</td>
</tr>
<tr>
<td>Faile, G.C.</td>
<td>6</td>
</tr>
<tr>
<td>Finckenor, M.M.</td>
<td>1</td>
</tr>
<tr>
<td>Franks, G.D.</td>
<td>7</td>
</tr>
<tr>
<td>Frazier, D.O.</td>
<td>5</td>
</tr>
<tr>
<td>Frost, C.L.</td>
<td>6</td>
</tr>
<tr>
<td>Galuska, M.J.</td>
<td>6</td>
</tr>
<tr>
<td>Hayashida, K.B.</td>
<td>6</td>
</tr>
<tr>
<td>Herrmann, M.</td>
<td>7</td>
</tr>
<tr>
<td>James, J.T.</td>
<td>5</td>
</tr>
<tr>
<td>Johnson, L.</td>
<td>7</td>
</tr>
<tr>
<td>Jones, J.C.</td>
<td>2, 3</td>
</tr>
<tr>
<td>Kamenetzky, R.R.</td>
<td>1</td>
</tr>
<tr>
<td>Kier, Isabella</td>
<td>6</td>
</tr>
<tr>
<td>Kissel, R.R.</td>
<td>6</td>
</tr>
<tr>
<td>Knox, J.C.</td>
<td>7</td>
</tr>
<tr>
<td>Lajoie, R.M.</td>
<td>1</td>
</tr>
<tr>
<td>Lansing, M.D.</td>
<td>4</td>
</tr>
<tr>
<td>Lee, H.M.</td>
<td>7</td>
</tr>
<tr>
<td>Limero, T.F.</td>
<td>5</td>
</tr>
<tr>
<td>Little, S.</td>
<td>4</td>
</tr>
<tr>
<td>Meshishnek, M.J.</td>
<td>1</td>
</tr>
<tr>
<td>Mitchell, M.L.</td>
<td>6</td>
</tr>
<tr>
<td>Noever, D.A.</td>
<td>4</td>
</tr>
<tr>
<td>Nunes, A.C., Jr.</td>
<td>3</td>
</tr>
<tr>
<td>O’Dell, D.</td>
<td>3</td>
</tr>
<tr>
<td>Paley, M.S.</td>
<td>5</td>
</tr>
<tr>
<td>Penn, B.G.</td>
<td>5</td>
</tr>
<tr>
<td>Perry, J.L.</td>
<td>5, 7</td>
</tr>
<tr>
<td>Russell, C.</td>
<td>3</td>
</tr>
<tr>
<td>Russell, S.S.</td>
<td>4</td>
</tr>
<tr>
<td>Ryan, S.G.</td>
<td>4</td>
</tr>
<tr>
<td>Simonds, J.</td>
<td>4</td>
</tr>
<tr>
<td>Smith, D.D.</td>
<td>5</td>
</tr>
<tr>
<td>Stanton, W.P.</td>
<td>3</td>
</tr>
<tr>
<td>Steadman, J.</td>
<td>4</td>
</tr>
<tr>
<td>Steeve, B.E.</td>
<td>1</td>
</tr>
<tr>
<td>Stocks, C.</td>
<td>3</td>
</tr>
<tr>
<td>Summers, F.G.</td>
<td>7</td>
</tr>
<tr>
<td>Sutherland, W.T.</td>
<td>6</td>
</tr>
<tr>
<td>Tomlin, D.D.</td>
<td>6</td>
</tr>
</tbody>
</table>

TECHNICAL PUBLICATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barret, C.</td>
<td>10</td>
</tr>
<tr>
<td>Bartlow, B.E.</td>
<td>10</td>
</tr>
<tr>
<td>Biss, E.J.</td>
<td>9</td>
</tr>
<tr>
<td>Burns, R.E.</td>
<td>9</td>
</tr>
<tr>
<td>Danford, M.D.</td>
<td>10</td>
</tr>
<tr>
<td>Hathaway, D.H.</td>
<td>9</td>
</tr>
<tr>
<td>Nettles, A.T.</td>
<td>9</td>
</tr>
<tr>
<td>Polites, M.E.</td>
<td>10</td>
</tr>
<tr>
<td>Reichmann, E.J.</td>
<td>9</td>
</tr>
<tr>
<td>Wilson, R.M.</td>
<td>9</td>
</tr>
</tbody>
</table>

CONFERENCE PUBLICATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boesiger, E.A.</td>
<td>12</td>
</tr>
<tr>
<td>Brewer, J.C.</td>
<td>12</td>
</tr>
<tr>
<td>Clark-Ingram, M.</td>
<td>12</td>
</tr>
<tr>
<td>Foster, C.L.</td>
<td>12</td>
</tr>
<tr>
<td>Hessler, S.L.</td>
<td>12</td>
</tr>
<tr>
<td>McCauley, D.</td>
<td>12</td>
</tr>
<tr>
<td>Szofran, F.</td>
<td>12</td>
</tr>
<tr>
<td>Walker, C.</td>
<td>12</td>
</tr>
<tr>
<td>Whitaker, A.F.</td>
<td>12</td>
</tr>
</tbody>
</table>

REFERENCE PUBLICATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander, M.B.</td>
<td>13</td>
</tr>
<tr>
<td>Alexander, M.</td>
<td>13</td>
</tr>
<tr>
<td>Belk, C.</td>
<td>13</td>
</tr>
<tr>
<td>Cooke, W.</td>
<td>13</td>
</tr>
<tr>
<td>Herrmann, M.</td>
<td>13</td>
</tr>
<tr>
<td>Johnson, L.</td>
<td>13</td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Niehuss, K.O.</td>
<td></td>
</tr>
<tr>
<td>Pavlitz, S.</td>
<td></td>
</tr>
<tr>
<td>Robinson, J.</td>
<td></td>
</tr>
<tr>
<td>Snyder, R.S.</td>
<td></td>
</tr>
<tr>
<td>Vaughn, W.W.</td>
<td></td>
</tr>
<tr>
<td>Armstrong, T.W.</td>
<td>19</td>
</tr>
<tr>
<td>Aonashi, K.</td>
<td>47</td>
</tr>
<tr>
<td>Antipin, M.Y.</td>
<td>19</td>
</tr>
<tr>
<td>Amzajerdian, F.</td>
<td>18</td>
</tr>
<tr>
<td>Allen, R.W.</td>
<td>18</td>
</tr>
<tr>
<td>Alishouse, J.</td>
<td>47</td>
</tr>
<tr>
<td>Alhom, D.C.</td>
<td>19, 33</td>
</tr>
<tr>
<td>Aggarwal, M.D.</td>
<td>20</td>
</tr>
<tr>
<td>Adler, R.</td>
<td>47</td>
</tr>
<tr>
<td>Adrian, M.L.</td>
<td>18</td>
</tr>
<tr>
<td>Aggarwal, M.D.</td>
<td>20</td>
</tr>
<tr>
<td>Albin, M.</td>
<td>30</td>
</tr>
<tr>
<td>Alexander, H.A.</td>
<td>29</td>
</tr>
<tr>
<td>Alhorn, D.C.</td>
<td>18, 33</td>
</tr>
<tr>
<td>Alishouse, J.</td>
<td>47</td>
</tr>
<tr>
<td>Allen, M.J.</td>
<td>18</td>
</tr>
<tr>
<td>Allen, R.W.</td>
<td>18</td>
</tr>
<tr>
<td>Ambastha, A.</td>
<td>43</td>
</tr>
<tr>
<td>Amzajerdian, F.</td>
<td>18</td>
</tr>
<tr>
<td>Andretta, V.</td>
<td>27</td>
</tr>
<tr>
<td>Antipin, M.Y.</td>
<td>19</td>
</tr>
<tr>
<td>Aonashi, K.</td>
<td>47</td>
</tr>
<tr>
<td>Armstrong, T.W.</td>
<td>19</td>
</tr>
<tr>
<td>Arnold, J.E.</td>
<td>40</td>
</tr>
<tr>
<td>Arnoldy, R.L.</td>
<td>18</td>
</tr>
<tr>
<td>Ashley, P.R.</td>
<td>29, 47, 52</td>
</tr>
<tr>
<td>Atkinson, R.J.</td>
<td>19, 34</td>
</tr>
<tr>
<td>Augustijn, T.</td>
<td>19</td>
</tr>
<tr>
<td>Austin, R.A.</td>
<td>35</td>
</tr>
<tr>
<td>Baldrige, T.</td>
<td>19, 33</td>
</tr>
<tr>
<td>Ballance, J.</td>
<td>34</td>
</tr>
<tr>
<td>Balogh, A.</td>
<td>40</td>
</tr>
<tr>
<td>Balsiger, H.</td>
<td>55</td>
</tr>
<tr>
<td>Bame, S.</td>
<td>30</td>
</tr>
<tr>
<td>Band, D.L.</td>
<td>43</td>
</tr>
<tr>
<td>Banks, C.E.</td>
<td>18</td>
</tr>
<tr>
<td>Banta, R.M.</td>
<td>45</td>
</tr>
<tr>
<td>Barbee, T.W., Jr.</td>
<td>18</td>
</tr>
<tr>
<td>Barr, T.J.</td>
<td>19</td>
</tr>
<tr>
<td>Barret, C.</td>
<td>19</td>
</tr>
<tr>
<td>Barret, D.</td>
<td>27, 55</td>
</tr>
<tr>
<td>Barrett, E.</td>
<td>47</td>
</tr>
<tr>
<td>Barry, R.G.</td>
<td>19</td>
</tr>
<tr>
<td>Barthelmy, S.</td>
<td>39</td>
</tr>
<tr>
<td>Baskaran, S.</td>
<td>19, 40, 41</td>
</tr>
<tr>
<td>Batts, G.W.</td>
<td>34, 42</td>
</tr>
<tr>
<td>Bauer, P.</td>
<td>47</td>
</tr>
<tr>
<td>Beech, G.</td>
<td>20</td>
</tr>
<tr>
<td>Belisle, W.</td>
<td>36</td>
</tr>
<tr>
<td>Bennett, K.</td>
<td>28</td>
</tr>
<tr>
<td>Benz, K.W.</td>
<td>23</td>
</tr>
<tr>
<td>Benzing, D.A.</td>
<td>32</td>
</tr>
<tr>
<td>Berg, W.</td>
<td>47</td>
</tr>
<tr>
<td>Berthold, R.</td>
<td>25</td>
</tr>
<tr>
<td>Bhat, B.N.</td>
<td>20</td>
</tr>
<tr>
<td>Bhat, K.</td>
<td>20</td>
</tr>
<tr>
<td>Bianchi, J.F.</td>
<td>21</td>
</tr>
<tr>
<td>Bilbro, J.W.</td>
<td>20</td>
</tr>
<tr>
<td>Bildsten, L.</td>
<td>53</td>
</tr>
<tr>
<td>Bilen, S.G.</td>
<td>29</td>
</tr>
<tr>
<td>Bishop, C.A.</td>
<td>33</td>
</tr>
<tr>
<td>Blakeslee, R.J.</td>
<td>20, 25, 38</td>
</tr>
<tr>
<td>Blanco, P.</td>
<td>19</td>
</tr>
<tr>
<td>Blosier, P.</td>
<td>27, 55</td>
</tr>
<tr>
<td>Blue, L.</td>
<td>20</td>
</tr>
<tr>
<td>Boutner, L.A.</td>
<td>23</td>
</tr>
<tr>
<td>Boccippio, D.J.</td>
<td>20, 22, 25</td>
</tr>
<tr>
<td>Boeck, W.L.</td>
<td>20</td>
</tr>
<tr>
<td>Boettinger, J.</td>
<td>37</td>
</tr>
<tr>
<td>Boggan, T.J.</td>
<td>47</td>
</tr>
<tr>
<td>Boldi, B.</td>
<td>30, 43</td>
</tr>
<tr>
<td>Boldi, R.</td>
<td>20, 53</td>
</tr>
<tr>
<td>Bonifazi, C.A.</td>
<td>22, 29, 49, 54</td>
</tr>
<tr>
<td>Bonnell, J.</td>
<td>18</td>
</tr>
<tr>
<td>Book, M.L.</td>
<td>32</td>
</tr>
<tr>
<td>Bookout, P.S.</td>
<td>24</td>
</tr>
<tr>
<td>Bordelon, W.</td>
<td>55</td>
</tr>
<tr>
<td>University Of Wisconsin-Madison</td>
<td>16</td>
</tr>
<tr>
<td>University Of Colorado</td>
<td>14</td>
</tr>
<tr>
<td>University Of Huntsville</td>
<td>14, 15, 16</td>
</tr>
<tr>
<td>University Of Colorado</td>
<td>14</td>
</tr>
<tr>
<td>University Of Wisconsin-Madison</td>
<td>16</td>
</tr>
<tr>
<td>University Of Wisconsin-Madison</td>
<td>16</td>
</tr>
</tbody>
</table>

CONTRACTOR REPORTS

- Al Signal Research, Inc. 16
- Auburn University 15
- C.J. Associates, Inc. 14
- Camber Corporation 16
- Control Dynamics 14
- ERC, Incorporated 14
- GB Tech, Inc. 14
- Martin Marietta 15
- Mississippi State University ... 15
- Northeast Science & Technology .. 15
- Oakwood College 15
- Ohio State University 16
- Pennsylvania State University .. 15
- Photonic Associates 15
- Princeton Synergetics, Inc. ... 17
- Rockwell International 15
- Sigmatech, Inc. 15
- Southwest Research Institute .. 14, 15, 16
- Stuckey, M. 14
- Tec-Masters, Inc. 14
- University Of Alabama In Huntsville .. 14, 15, 16
- University Of Colorado 14
- University Of Wisconsin-Madison 16

PAPERS CLEARED FOR PRESENTATION

- Abdeldayem, H. 18
- Abramov, L.H. 24
- Abushagur, M.A.G. 52
- Adams, M. 18
- Adler, R. 47
- Adrian, M.L. 18
- Aggarwal, M.D. 20
- Albin, M. 30
- Alexander, H.A. 29
- Alhorn, D.C. 18, 33
- Alishouse, J. 47
- Allen, M.J. 18
- Allen, R.W. 18
- Ambastha, A. 43
- Amzajerdian, F. 18
- Andretta, V. 27
- Antipin, M.Y. 19
- Aonashi, K. 47
- Armstrong, T.W. 19
- Arnold, J.E. 40
- Arnoldy, R.L. 18
- Ashley, P.R. 29, 47, 52
- Atkinson, R.J. 19, 34
- Augustijn, T. 19
- Austin, R.A. 35
- Baldrige, T. 19, 33
- Ballance, J. 34
- Balogh, A. 40
- Balsiger, H. 55
- Bame, S. 30
- Band, D.L. 43
- Banks, C.E. 18
- Banta, R.M. 45
- Barbee, T.W., Jr. 18
- Barr, T.J. 19
- Barret, C. 19
- Barret, D. 27, 55
- Barrett, E. 47
- Barry, R.G. 19
- Barthelmy, S. 39
- Baskaran, S. 19, 40, 41
- Batts, G.W. 34, 42
- Bauer, P. 47
- Beech, G. 20
- Belisle, W.-------- 36
- Bennett, K. 28
- Benz, K.W. 23
- Benzing, D.A. 32
- Berg, W. 47
- Berthold, R. 25
- Bhat, B.N. 20
- Bhat, K. 20
- Bianchi, J.F. 21
- Bilbro, J.W. 20
- Bildsten, L. 53
- Bilen, S.G.-------- 29
- Bishop, C.A. 33
- Blakeslee, R.J. 20, 25, 38
- Blanco, P. 19
- Blosier, P. 27, 55
- Blue, L. 20
- Boutner, L.A. 23
- Boccippio, D.J. 20, 22, 25
- Boeck, W.L. 20
- Boettinger, J. 37
- Boggan, T.J. 47
- Boldi, B. 30, 43
- Boldi, R. 20, 53
- Bonifazi, C.A. 22, 29, 49, 54
- Bonnell, J. 18
- Book, M.L. 32
- Bookout, P.S. 24
- Bordelon, W. 55
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boucher, R.</td>
<td>25</td>
</tr>
<tr>
<td>Bowden, M.</td>
<td>25</td>
</tr>
<tr>
<td>Bowdle, D.A</td>
<td>24</td>
</tr>
<tr>
<td>Boyd, R.W.</td>
<td>47</td>
</tr>
<tr>
<td>Brady, R.F.</td>
<td>20</td>
</tr>
<tr>
<td>Brantley, W.</td>
<td>40</td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>48</td>
</tr>
<tr>
<td>Brebrick, R.F.</td>
<td>49</td>
</tr>
<tr>
<td>Brewer, J.C.</td>
<td>38</td>
</tr>
<tr>
<td>Briggs, M.S.</td>
<td>19, 35, 36, 39, 42</td>
</tr>
<tr>
<td>Brittain, A.B.</td>
<td>33</td>
</tr>
<tr>
<td>Brittnacher, M.J.</td>
<td>20, 24, 29, 38, 49</td>
</tr>
<tr>
<td>Brook, M.</td>
<td>20</td>
</tr>
<tr>
<td>Brown, D.G.</td>
<td>20</td>
</tr>
<tr>
<td>Bruner, M.E.</td>
<td>21</td>
</tr>
<tr>
<td>Brunty, J.</td>
<td>22</td>
</tr>
<tr>
<td>Bryan, T.C.</td>
<td>32</td>
</tr>
<tr>
<td>Bryer, P.J.</td>
<td>21</td>
</tr>
<tr>
<td>Buechler, D.</td>
<td>20, 38</td>
</tr>
<tr>
<td>Bullington, J.V.</td>
<td>21, 26</td>
</tr>
<tr>
<td>Bune, A.V.</td>
<td>21</td>
</tr>
<tr>
<td>Bantine, W.</td>
<td>23</td>
</tr>
<tr>
<td>Burch, J.L.</td>
<td>55</td>
</tr>
<tr>
<td>Burger, A.</td>
<td>41</td>
</tr>
<tr>
<td>Burns, H.D.</td>
<td>21</td>
</tr>
<tr>
<td>Bursey, R.</td>
<td>41</td>
</tr>
<tr>
<td>Butler, B.L.</td>
<td>44</td>
</tr>
<tr>
<td>Bynum, J.</td>
<td>25, 45</td>
</tr>
<tr>
<td>Calise, A.J.</td>
<td>52</td>
</tr>
<tr>
<td>Camp, D.C.</td>
<td>31</td>
</tr>
<tr>
<td>Campbell, J.L.</td>
<td>30</td>
</tr>
<tr>
<td>Campbell, J.W.</td>
<td>21</td>
</tr>
<tr>
<td>Cardelino, B.H.</td>
<td>19, 20, 21, 39, 40</td>
</tr>
<tr>
<td>Carrasquillo, R.L.</td>
<td>21, 26, 44</td>
</tr>
<tr>
<td>Carrington, C.</td>
<td>21, 50</td>
</tr>
<tr>
<td>Carter, D.C.</td>
<td>32</td>
</tr>
<tr>
<td>Carter, D.L.</td>
<td>21</td>
</tr>
<tr>
<td>Carter, R.N.</td>
<td>21</td>
</tr>
<tr>
<td>Cash, M.B.</td>
<td>22</td>
</tr>
<tr>
<td>Cassell, G.H.</td>
<td>30</td>
</tr>
<tr>
<td>Chakrabarty, D.</td>
<td>46, 53, 54</td>
</tr>
<tr>
<td>Chandler, K.O.</td>
<td>20, 22</td>
</tr>
<tr>
<td>Chandler, M.O.</td>
<td>22, 23, 25, 26, 29, 40, 48</td>
</tr>
<tr>
<td>Chang, C.L.</td>
<td>22</td>
</tr>
<tr>
<td>Chappell, C.R.</td>
<td>22, 40</td>
</tr>
<tr>
<td>Chen, K.-T.</td>
<td>41</td>
</tr>
<tr>
<td>Chen, L.</td>
<td>20, 29</td>
</tr>
<tr>
<td>Chin, H.</td>
<td>41</td>
</tr>
<tr>
<td>Chiston, S.P.</td>
<td>23</td>
</tr>
<tr>
<td>Choi, J.</td>
<td>20</td>
</tr>
<tr>
<td>Chou, S.-H.</td>
<td>22</td>
</tr>
<tr>
<td>Christensen, E.R.</td>
<td>22</td>
</tr>
<tr>
<td>Christensen, R.</td>
<td>35</td>
</tr>
<tr>
<td>Christian, H.J.</td>
<td>20, 22, 25, 38</td>
</tr>
<tr>
<td>Christl, M.C.</td>
<td>22</td>
</tr>
<tr>
<td>Chu, T.P.</td>
<td>20</td>
</tr>
<tr>
<td>Chung, H.</td>
<td>41</td>
</tr>
<tr>
<td>Clark, R.D.</td>
<td>19</td>
</tr>
<tr>
<td>Clark, R.</td>
<td>37</td>
</tr>
<tr>
<td>Clark, T.L.</td>
<td>22, 39</td>
</tr>
<tr>
<td>Clarke, A.D.</td>
<td>24, 48</td>
</tr>
<tr>
<td>Clark-Ingram, M.</td>
<td>23</td>
</tr>
<tr>
<td>Clayton, J.L.</td>
<td>22</td>
</tr>
<tr>
<td>Cline, T.</td>
<td>39</td>
</tr>
<tr>
<td>Coffey, V.N.</td>
<td>22, 23, 35</td>
</tr>
<tr>
<td>Colborn, B.L.</td>
<td>19</td>
</tr>
<tr>
<td>Cole, H.J.</td>
<td>29, 32, 47</td>
</tr>
<tr>
<td>Coleman, H.W.</td>
<td>24</td>
</tr>
<tr>
<td>Coleman, T.</td>
<td>36</td>
</tr>
<tr>
<td>Collins, E.E.</td>
<td>41</td>
</tr>
<tr>
<td>Comfort, R.H.</td>
<td>23, 25, 26, 28</td>
</tr>
<tr>
<td>Connaughton, V.</td>
<td>39</td>
</tr>
<tr>
<td>Conover, H.</td>
<td>25</td>
</tr>
<tr>
<td>Cook, M.B.</td>
<td>23</td>
</tr>
<tr>
<td>Cooper, A.E.</td>
<td>23, 32</td>
</tr>
<tr>
<td>Cooper, K.</td>
<td>48</td>
</tr>
<tr>
<td>Cornelison, J.</td>
<td>52</td>
</tr>
<tr>
<td>Corrigan, D.P.</td>
<td>23</td>
</tr>
<tr>
<td>Cort, G.</td>
<td>42</td>
</tr>
<tr>
<td>Coulter, D.D.</td>
<td>20</td>
</tr>
<tr>
<td>Coutourier, S.</td>
<td>51</td>
</tr>
<tr>
<td>Craft, H.G., Jr.</td>
<td>30</td>
</tr>
<tr>
<td>Cramer, J.M.</td>
<td>52</td>
</tr>
<tr>
<td>Crary, D.J.</td>
<td>49</td>
</tr>
<tr>
<td>Craven, P.D.</td>
<td>22, 23, 25, 26, 28, 29, 40, 53</td>
</tr>
<tr>
<td>Crawford, K.</td>
<td>20</td>
</tr>
<tr>
<td>Croll, A.</td>
<td>23</td>
</tr>
<tr>
<td>Cronise, R.J.</td>
<td>41, 47</td>
</tr>
<tr>
<td>Crosson, W.</td>
<td>36</td>
</tr>
<tr>
<td>Cui, W.</td>
<td>55</td>
</tr>
<tr>
<td>Cumnock, J.</td>
<td>29</td>
</tr>
<tr>
<td>Curreri, P.A.</td>
<td>23, 24, 34, 46</td>
</tr>
<tr>
<td>Curtis, R.E.</td>
<td>24</td>
</tr>
<tr>
<td>Cusseri, I.</td>
<td>49</td>
</tr>
<tr>
<td>Cutchins, M.A.</td>
<td>24, 50</td>
</tr>
<tr>
<td>Cutten, D.R.</td>
<td>24, 45</td>
</tr>
<tr>
<td>D'Auria, R.</td>
<td>32</td>
</tr>
<tr>
<td>Dabney, R.</td>
<td>25</td>
</tr>
<tr>
<td>Darby, S.P.</td>
<td>24, 34</td>
</tr>
<tr>
<td>Darden, J.M.</td>
<td>24</td>
</tr>
<tr>
<td>Davila, J.M.</td>
<td>26, 27</td>
</tr>
<tr>
<td>Davis, J.M.</td>
<td>24, 28</td>
</tr>
<tr>
<td>De Venuto, F.</td>
<td>51</td>
</tr>
<tr>
<td>Deal, K.J.</td>
<td>31, 35, 36, 44</td>
</tr>
<tr>
<td>Dean, W.C.</td>
<td>24</td>
</tr>
<tr>
<td>Delcourt, D.C.</td>
<td>22, 40</td>
</tr>
</tbody>
</table>
Hunt, J. ... 25, 30
Hale, M.G ... 33
Hall, J. .. 20
Hall, P.B. .. 41
Hamilton, G.S ... 30
Hammer, R. .. 31
Hampton, D.L ... 52
Hanlon, L. .. 28
Hara, H. ... 27
Hardesty, R.M ... 45
Harmon, B.A .. 4, 23, 24, 26, 30, 32, 34, 35, 39, 44, 45, 50, 52, 53, 54, 55
Harmon, G.A ... 37
Harris, D. .. 29
Hartfield, R. .. 32
Harvey, C. .. 51
Harvey, K.L .. 42
Hathaway, D.H ... 27, 32, 40, 54
Havrisky, D.M ... 46
Heavner, M.J .. 52
Heise, J. ... 28
Helliwell, J.R. ... 47
Hengel, J.E ... 28
Hennecke, J. ... 41
Hiei, E. ... 42
Hjellming, R.M ... 39
Ho, J.X. ... 32
Hodanish, S. .. 30, 43, 53
Holder, D. .. 24, 49
Holladay, J.B ... 32
Hong, J.K. .. 25
Hood, R.E. .. 36, 39
Hoover, R.B .. 18, 21, 32, 34
Hopkins, R.C. ... 32
Horack, J.M ... 32, 42
Horwitz, J.L .. 40, 53
Howard, R.T. ... 32, 38
Howard, S. ... 24
Howell, J.N. .. 45
Hsu, C.-C ... 52
Hu, Z. ... 41
Hua, X.M. .. 37
Huang, D. ... 26
Hubbs, W.C. ... 25
Hudleston, M. ... 23, 35
Hudson, S.T. .. 33
Hudson, T. .. 33
Huegele, V. .. 53
Huerter, U. ... 33, 50
Huffacker, C.F. .. 33
Hun, J.Y. ... 33
Hunt, A. ... 41
Hurley, D.L. .. 31
Hurley, K. .. 28, 36, 39
Hurst, C.J. .. 33, 45
Hwang, S.K. .. 55
Indiresan, R.S .. 33
Intriligator, D.S .. 33
Jablonski, A. .. 50
Jackson, J.L. ... 32
Jackson, L.G. .. 38
Jackson, T. ... 37
James, H.G. .. 50
Jarzembski, M.A. .. 33, 34, 48
Jasper, G.L. .. 42
Jedlovsky, G.J. ... 19, 33, 34, 49
Jenkins, R.M. .. 28
Jerman, G.A. ... 29
Johnson, D.L. .. 34
Johnson, C.W. .. 30
Johnson, J. .. 34
Johnson, L. .. 34
Johnson, S.C. ... 45
Johnson-Cole, H. .. 52
Johnstone, A. .. 35
Jones, C. ... 18
Jones, J. ... 55
Jordan, S.D. .. 27
Joy, M.K. ... 26, 34, 52
Juval, J. ... 36
Kaaret, P. ... 27
Kaiser, T. ... 23, 24
Kamenetzky, R. ... 51
Kameran, G. ... 32
Kankelborg, C.C. .. 34
Kaucy, W.F. .. 24, 34
Kaucy, W.K. .. 46
Kavaya, M.J. .. 18
Keller, V. ... 21
Kelly, J.D. .. 24
Key, C.F. ... 34
Khan, J.J. ... 42
Khazanov, G.V. ... 34, 35, 37, 38
Kincard, W. .. 44
Kintner, P.M. .. 18
Kippen, R.M. .. 39
Klem, M.D. .. 50
Knight, K. .. 35
Knowles, T.R. .. 52
Knupp, K.R. .. 35
Koczor, R. .. 40
Koenig, J.R. .. 25
Koh, D.T. ... 46
Koh, J. ... 42
Kolodziejsak, J.J. .. 35, 42
Kommars, J.M. .. 19, 35
Koshak, W.J. .. 20, 35, 38
Kouveliotou, C. ... 19, 28, 35, 36, 39, 51
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillips, J.L</td>
<td>30</td>
</tr>
<tr>
<td>Pfefferle, W.C</td>
<td>21, 24, 31</td>
</tr>
<tr>
<td>Peters, R.N.</td>
<td>24</td>
</tr>
<tr>
<td>Peskov, V.</td>
<td>44</td>
</tr>
<tr>
<td>Perez, J.D.</td>
<td>44</td>
</tr>
<tr>
<td>Penn, B.G.</td>
<td>23</td>
</tr>
<tr>
<td>Neergaard, L.F.</td>
<td>24</td>
</tr>
<tr>
<td>Nesis, A.</td>
<td>25</td>
</tr>
<tr>
<td>Neugebauer, M.</td>
<td>27, 41, 45</td>
</tr>
<tr>
<td>Neuschafer, B.</td>
<td>18</td>
</tr>
<tr>
<td>Nguyen, T.</td>
<td>29</td>
</tr>
<tr>
<td>Nicolas, D.P.</td>
<td>32</td>
</tr>
<tr>
<td>Niles, J.</td>
<td>33</td>
</tr>
<tr>
<td>Nobre, C.A.</td>
<td>34</td>
</tr>
<tr>
<td>Noever, D.A.</td>
<td>35</td>
</tr>
<tr>
<td>Nordholt, J.E.</td>
<td>36</td>
</tr>
<tr>
<td>Novak, H.L.</td>
<td>37</td>
</tr>
<tr>
<td>Nunes, A.C., Jr.</td>
<td>38</td>
</tr>
<tr>
<td>Nurre, G.S.</td>
<td>39</td>
</tr>
<tr>
<td>O'Dell, S.L.</td>
<td>40</td>
</tr>
<tr>
<td>Obenhuber, D.C.</td>
<td>41</td>
</tr>
<tr>
<td>Ogard, G.</td>
<td>42</td>
</tr>
<tr>
<td>Olgren, J.D.</td>
<td>43</td>
</tr>
<tr>
<td>Oluseyi, H.M.</td>
<td>44</td>
</tr>
<tr>
<td>Ogilvie, K.K.</td>
<td>45</td>
</tr>
<tr>
<td>Orsini, S.</td>
<td>46</td>
</tr>
<tr>
<td>Otte, N.E.</td>
<td>47</td>
</tr>
<tr>
<td>Owens, S.M.</td>
<td>48</td>
</tr>
<tr>
<td>Owens, T.</td>
<td>49</td>
</tr>
<tr>
<td>Puciesas, W.S.</td>
<td>50</td>
</tr>
<tr>
<td>Paley, M.S.</td>
<td>51</td>
</tr>
<tr>
<td>Palmer, D.</td>
<td>52</td>
</tr>
<tr>
<td>Palosz, W.</td>
<td>53</td>
</tr>
<tr>
<td>Papadopoulos, K.</td>
<td>54</td>
</tr>
<tr>
<td>Parker, D.</td>
<td>55</td>
</tr>
<tr>
<td>Parks, B.</td>
<td>56</td>
</tr>
<tr>
<td>Parks, G.K.</td>
<td>57</td>
</tr>
<tr>
<td>Panell, T.A.</td>
<td>58</td>
</tr>
<tr>
<td>Paszko-Kolva, C.</td>
<td>59</td>
</tr>
<tr>
<td>Patel, D.</td>
<td>60</td>
</tr>
<tr>
<td>Pattern, M.C.</td>
<td>61</td>
</tr>
<tr>
<td>Pearson, S.D.</td>
<td>62</td>
</tr>
<tr>
<td>Pendleton, G.N.</td>
<td>63</td>
</tr>
<tr>
<td>Penn, B.G.</td>
<td>64</td>
</tr>
<tr>
<td>Penswick, L.B.</td>
<td>65</td>
</tr>
<tr>
<td>Perez, J.D.</td>
<td>66</td>
</tr>
<tr>
<td>Perry, J.L.</td>
<td>67</td>
</tr>
<tr>
<td>Peskov, V.</td>
<td>68</td>
</tr>
<tr>
<td>Peters, P.H.</td>
<td>69</td>
</tr>
<tr>
<td>Peterson, W.K.</td>
<td>70</td>
</tr>
<tr>
<td>Pfefferle, W.C.</td>
<td>71</td>
</tr>
<tr>
<td>Philistine, C.L.</td>
<td>72</td>
</tr>
<tr>
<td>Phillips, J.L.</td>
<td>73</td>
</tr>
<tr>
<td>Piszczor, M.F.</td>
<td>74</td>
</tr>
<tr>
<td>Poletto, G.</td>
<td>75</td>
</tr>
<tr>
<td>Polites, M.E.</td>
<td>76</td>
</tr>
<tr>
<td>Pollock, C.J.</td>
<td>77</td>
</tr>
<tr>
<td>Pooley, G.G.</td>
<td>78</td>
</tr>
<tr>
<td>Porter, J.G.</td>
<td>79</td>
</tr>
<tr>
<td>Powers, W.T.</td>
<td>80</td>
</tr>
<tr>
<td>Prasad, D.C.</td>
<td>81</td>
</tr>
<tr>
<td>Preece, R.D.</td>
<td>82</td>
</tr>
<tr>
<td>Prince, T.A.</td>
<td>83</td>
</tr>
<tr>
<td>Pueschel, R.F.</td>
<td>84</td>
</tr>
<tr>
<td>Pusey, M.L.</td>
<td>85</td>
</tr>
<tr>
<td>Qiu, H.-I.</td>
<td>86</td>
</tr>
<tr>
<td>Qiu, H.-L.</td>
<td>87</td>
</tr>
<tr>
<td>Quattrochi, D.A.</td>
<td>88</td>
</tr>
<tr>
<td>Raghavan, R.</td>
<td>89</td>
</tr>
<tr>
<td>Raghothamachar, B.</td>
<td>90</td>
</tr>
<tr>
<td>Raitt, W.J.</td>
<td>91</td>
</tr>
<tr>
<td>Ramachandran, N.</td>
<td>92</td>
</tr>
<tr>
<td>Ramsey, B.D.</td>
<td>93</td>
</tr>
<tr>
<td>Ray, C.D.</td>
<td>94</td>
</tr>
<tr>
<td>Reagan, S.</td>
<td>95</td>
</tr>
<tr>
<td>Rees, M.H.</td>
<td>96</td>
</tr>
<tr>
<td>Reichmann, E.J.</td>
<td>97</td>
</tr>
<tr>
<td>Reining, C.</td>
<td>98</td>
</tr>
<tr>
<td>Remillard, R.E.</td>
<td>99</td>
</tr>
<tr>
<td>Reske, E.</td>
<td>100</td>
</tr>
<tr>
<td>Reuter, J.L.</td>
<td>101</td>
</tr>
<tr>
<td>Richards, S.</td>
<td>102</td>
</tr>
<tr>
<td>Richardson, G.A.</td>
<td>103</td>
</tr>
<tr>
<td>Roberts, H.A.</td>
<td>104</td>
</tr>
<tr>
<td>Roberts, F.E.</td>
<td>105</td>
</tr>
<tr>
<td>Robertson, F.R.</td>
<td>106</td>
</tr>
<tr>
<td>Robertson, T.</td>
<td>107</td>
</tr>
<tr>
<td>Robinson, C.R.</td>
<td>108</td>
</tr>
<tr>
<td>Robinson, M.J.</td>
<td>109</td>
</tr>
<tr>
<td>Rodriguez, L.G.</td>
<td>110</td>
</tr>
<tr>
<td>Rodriguez, P.</td>
<td>111</td>
</tr>
<tr>
<td>Rodriguez, P.I.</td>
<td>112</td>
</tr>
<tr>
<td>Rogers, M.N.</td>
<td>113</td>
</tr>
<tr>
<td>Rogers, P.</td>
<td>114</td>
</tr>
<tr>
<td>Roman, M.C.</td>
<td>115</td>
</tr>
<tr>
<td>Romer, M.</td>
<td>116</td>
</tr>
<tr>
<td>Romoli, M.</td>
<td>117</td>
</tr>
<tr>
<td>Roosz, A.</td>
<td>118</td>
</tr>
<tr>
<td>Roosz, T.</td>
<td>119</td>
</tr>
<tr>
<td>Rosenberger, F.</td>
<td>120</td>
</tr>
<tr>
<td>Rosner, R.</td>
<td>121</td>
</tr>
<tr>
<td>Rothermel, J.</td>
<td>122</td>
</tr>
<tr>
<td>Rovira, M.</td>
<td>123</td>
</tr>
<tr>
<td>Roy, R.J.</td>
<td>124</td>
</tr>
<tr>
<td>Roychoudhury, S.</td>
<td>125</td>
</tr>
<tr>
<td>Ruble, J.R.</td>
<td>126</td>
</tr>
<tr>
<td>Ruf, J.</td>
<td>127</td>
</tr>
<tr>
<td>Rupen, M.</td>
<td>128</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Treise, D.</td>
<td>32</td>
</tr>
<tr>
<td>Trout, D.H.</td>
<td>50</td>
</tr>
<tr>
<td>Tucker, D.S.</td>
<td>50</td>
</tr>
<tr>
<td>Tucker, P.K.</td>
<td>50</td>
</tr>
<tr>
<td>Tung, F.C.</td>
<td>46</td>
</tr>
<tr>
<td>Turner, J.E.</td>
<td>50</td>
</tr>
<tr>
<td>Tyc, G.</td>
<td>50</td>
</tr>
<tr>
<td>Tygielski, A.</td>
<td>18</td>
</tr>
<tr>
<td>Tygielski, P.J.</td>
<td>51</td>
</tr>
<tr>
<td>Uchida, Y.</td>
<td>42</td>
</tr>
<tr>
<td>Uy, W.</td>
<td>55</td>
</tr>
<tr>
<td>Van Dyke, M.</td>
<td>51</td>
</tr>
<tr>
<td>Van Paradis, J.</td>
<td>19, 28, 35, 36, 51, 53, 55</td>
</tr>
<tr>
<td>Vannarone, G.</td>
<td>51</td>
</tr>
<tr>
<td>Vaughan, B.A.</td>
<td>46, 47</td>
</tr>
<tr>
<td>Vaughan, O.H., Jr.</td>
<td>51, 52</td>
</tr>
<tr>
<td>Vaughan, W.W.</td>
<td>34, 42</td>
</tr>
<tr>
<td>Vaughn, J.A.</td>
<td>51</td>
</tr>
<tr>
<td>Vaughn, O.H., Jr.</td>
<td>20</td>
</tr>
<tr>
<td>Vigneron, F.</td>
<td>50</td>
</tr>
<tr>
<td>Vlasse, M.</td>
<td>51</td>
</tr>
<tr>
<td>Volz, M.P.</td>
<td>38, 51</td>
</tr>
<tr>
<td>Vongeput, B.</td>
<td>20</td>
</tr>
<tr>
<td>Walker, A.B.C., II</td>
<td>18, 34</td>
</tr>
<tr>
<td>Walker, J.L.</td>
<td>36, 51</td>
</tr>
<tr>
<td>Wallace, T.L.</td>
<td>23</td>
</tr>
<tr>
<td>Wallyn, P.</td>
<td>37</td>
</tr>
<tr>
<td>Waltman, E.B.</td>
<td>59</td>
</tr>
<tr>
<td>Wang X-Q.</td>
<td>39, 40</td>
</tr>
<tr>
<td>Wang, A.H.</td>
<td>42, 51</td>
</tr>
<tr>
<td>Wang, S.-H.</td>
<td>49</td>
</tr>
<tr>
<td>Wang, T.-S.</td>
<td>52</td>
</tr>
<tr>
<td>Wang, Y.-M.</td>
<td>30</td>
</tr>
<tr>
<td>Waring, D.A.</td>
<td>29, 37, 45</td>
</tr>
<tr>
<td>Watson, M.D.</td>
<td>52</td>
</tr>
<tr>
<td>Weber, M.</td>
<td>30, 43, 53</td>
</tr>
<tr>
<td>Wechsler, M.</td>
<td>30</td>
</tr>
<tr>
<td>Wehrmeyer, J.A.</td>
<td>32, 52</td>
</tr>
<tr>
<td>Weisskopf, M.C.</td>
<td>26, 35, 52</td>
</tr>
<tr>
<td>Wescott, E.M.</td>
<td>52</td>
</tr>
<tr>
<td>Wessling, F.C.</td>
<td>41</td>
</tr>
<tr>
<td>Westra, D.G.</td>
<td>52</td>
</tr>
<tr>
<td>Wheaton, W.A.</td>
<td>37</td>
</tr>
<tr>
<td>Whitaker, K.W.</td>
<td>32</td>
</tr>
<tr>
<td>Whitt, T.H.</td>
<td>38</td>
</tr>
<tr>
<td>Whorton, M.S.</td>
<td>25, 52</td>
</tr>
<tr>
<td>Wieand, P.</td>
<td>53</td>
</tr>
<tr>
<td>Wilkerson, G.W.</td>
<td>53</td>
</tr>
<tr>
<td>Willenber, H.J.</td>
<td>48</td>
</tr>
<tr>
<td>Williams, E.</td>
<td>30, 43, 53</td>
</tr>
<tr>
<td>Williams, E.R.</td>
<td>20</td>
</tr>
<tr>
<td>Williamsen, J.</td>
<td>47, 53</td>
</tr>
<tr>
<td>Williamsen, J.E.</td>
<td>46</td>
</tr>
<tr>
<td>Williamson, W.T.</td>
<td>23</td>
</tr>
<tr>
<td>Wilson, C.A.</td>
<td>31, 32, 39, 44, 53, 54</td>
</tr>
<tr>
<td>Wilson, G.R.</td>
<td>23, 53, 54</td>
</tr>
<tr>
<td>Wilson, R.B.</td>
<td>46, 49, 53, 54</td>
</tr>
<tr>
<td>Wilson, R.M.</td>
<td>32, 36, 54</td>
</tr>
<tr>
<td>Wingard, C.D.</td>
<td>54</td>
</tr>
<tr>
<td>Winningham, D.</td>
<td>22</td>
</tr>
<tr>
<td>Winningham, J.D.</td>
<td>30, 33, 49, 51, 54, 54</td>
</tr>
<tr>
<td>Withrow, W.K.</td>
<td>18</td>
</tr>
<tr>
<td>Wolfson, M.</td>
<td>30</td>
</tr>
<tr>
<td>Wong, C.</td>
<td>20</td>
</tr>
<tr>
<td>Woods, P.</td>
<td>35</td>
</tr>
<tr>
<td>Workman, G.L.</td>
<td>23, 51</td>
</tr>
<tr>
<td>Wright, K.H.</td>
<td>22, 30, 33, 48, 49, 54, 55</td>
</tr>
<tr>
<td>Wu, S.S.</td>
<td>55</td>
</tr>
<tr>
<td>Wu, S.T.</td>
<td>42, 49, 51, 55</td>
</tr>
<tr>
<td>Wuest, M.</td>
<td>23, 55</td>
</tr>
<tr>
<td>Wulser, J.P.</td>
<td>21</td>
</tr>
<tr>
<td>Young, D.T.</td>
<td>55</td>
</tr>
<tr>
<td>Yu, W.</td>
<td>55</td>
</tr>
<tr>
<td>Zachary, I.W.</td>
<td>50</td>
</tr>
<tr>
<td>Zand, J.</td>
<td>28</td>
</tr>
<tr>
<td>Zhang, J.</td>
<td>25</td>
</tr>
<tr>
<td>Zhang, S.N.</td>
<td>27, 31, 32, 37, 39, 44, 55</td>
</tr>
<tr>
<td>Zhang, T.X.</td>
<td>55</td>
</tr>
<tr>
<td>Zhang, Y.</td>
<td>41</td>
</tr>
<tr>
<td>Zhang, S.N.</td>
<td>31</td>
</tr>
<tr>
<td>Zhao, W.</td>
<td>36, 35</td>
</tr>
<tr>
<td>Zipser, E.J.</td>
<td>39</td>
</tr>
<tr>
<td>Zirnstein, G.</td>
<td>35</td>
</tr>
<tr>
<td>Zissa, D.E.</td>
<td>55</td>
</tr>
<tr>
<td>Zoladz, T.</td>
<td>55</td>
</tr>
<tr>
<td>Zukic, M.</td>
<td>21</td>
</tr>
</tbody>
</table>
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

<table>
<thead>
<tr>
<th>1. AGENCY USE ONLY (Leave Blank)</th>
<th>2. REPORT DATE</th>
<th>3. REPORT TYPE AND DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>August 1998</td>
<td>Technical Memorandum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5. FUNDING NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 1997 Scientific and Technical Reports, Articles, Papers, and Presentations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHORS</th>
<th>7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>
| J.E. Turner Waits, Compiler | George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812 |

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>
| M–895 | National Aeronautics and Space Administration
Washington, DC 20546 |

<table>
<thead>
<tr>
<th>10. SPONSORING/MONITORING AGENCY REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA/TM—1998–208801</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SUPPLEMENTARY NOTES</th>
<th>12a. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
</table>
| Prepared by Technical Information & Operations Services Office, Center Operations Directorate | Unclassified–Unlimited
Availability: NASA CASI (301) 621-0390
Nonstandard Distribution |

<table>
<thead>
<tr>
<th>12b. DISTRIBUTION CODE</th>
<th>13. ABSTRACT (Maximum 200 words)</th>
</tr>
</thead>
</table>
| A05 | This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY97. It also includes papers of MSFC contractors.
After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.
The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available. |

<table>
<thead>
<tr>
<th>14. SUBJECT TERMS</th>
<th>15. NUMBER OF PAGES</th>
<th>16. PRICE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72</td>
<td>A05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. SECURITY CLASSIFICATION OF REPORT</th>
<th>18. SECURITY CLASSIFICATION OF THIS PAGE</th>
<th>19. SECURITY CLASSIFICATION OF ABSTRACT</th>
<th>20. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>