FY 1997 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
J.E. Turner Waits

Marshall Space Flight Center, Marshall Space Flight Center, Alabama

National Aeronautics and Space Administration
Marshall Space Flight Center

August 1998
FOREWORD

In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the Center for AeroSpace Information (CASI), Hanover, MD, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. The N number should be cited when ordering.
GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama
FY 1997 SCIENTIFIC AND TECHNICAL REPORTS
ARTICLES, PAPERS, AND PRESENTATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PUBLICATIONS</td>
<td>9</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>12</td>
</tr>
<tr>
<td>MSFC REFERENCE PUBLICATIONS</td>
<td>13</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>14</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>18</td>
</tr>
<tr>
<td>INDEX</td>
<td>57</td>
</tr>
</tbody>
</table>
This paper details a comparison analysis of the zinc oxide pigmented white thermal control paints Z-93 and Z-93P. Both paints were simultaneously exposed to combined space environmental effects and analyzed using an in-vacuo reflectance technique. The dose applied to the paints was approximately equivalent to 5 years in a geosynchronous orbit. This comparison analysis showed that Z-93P is an acceptable substitute for Z-93.

Irradiated samples of Z-93 and Z-93P were subjected to additional exposures of ultraviolet (UV) radiation and analyzed using the in-vacuo reflectance technique to investigate UV activated reflectance recovery. Both samples showed minimal UV activated reflectance recovery after an additional 190 equivalent Sun hour (ESH) exposure.

Reflectance response utilizing nitrogen as a represurizing gas instead of air was also investigated. This investigation found the rates of reflectance recovery when represurized with nitrogen are slower than when represurized with air.

The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such "short cuts" is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.
to cripple or destroy spacecraft. The ORION team studied the feasibility of removing the debris with ground-based laser impulses. Photoablation experiments were surveyed and applied to likely debris materials. Laser intensities needed for debris orbit modification call for pulses on the order of 10kJ or continuous wave lasers on the order of 1 MW. Adaptive optics are necessary to correct for atmospheric turbulence. Wavelength and pulse duration windows were found that limit beam degradation due to nonlinear atmospheric processes. Debris can be detected and located to within about 10 microrads with existing radar and passive optical technology. Fine targeting would be accomplished with laser illumination, which might also be used for detection. Bistatic detection with communications satellites may also be possible. We recommend that existing technology be used to demonstrate the concept at a loss of about $20 million. We calculate that an installation to clear altitudes up to 800 km of 1- to 10-cm debris over 2 years of operation would cost about $80 million. Clearing altitudes up to 1,500 km would take about 3 years and cost about $160 million.

TM-108523, Volume I November 1996
The Microgravity Research Experiments (MICREX) Data Base. C.A. Winter and J.C. Jones.* Space Sciences Laboratory. *University of Alabama in Huntsville. 1997001106iN (97N-16110)

An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.
designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

TM-108523, Volume IV November 1996

An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

TM-108524 November 1996

19970005060N (97N-13045)

Marshall Space Flight Center (MSFC) has developed a new technique that can enhance cryogenic fracture toughness and reduce the statistical spread of toughness values in alloy 2195. This aging treatment can control the location and size of strengthening precipitate T1, making improvements possible in cryogenic fracture toughness (CFT) and fracture toughness ratio (FTR). At the start of this program, design of experiments (DOE) ingot No. 10 was used as a baseline for aging process development and optimization. The new aging treatment was found to be very effective, improving CFT by approximately 15 to 20 percent for DOE ingot No. 10. To further evaluate the repeatability and effectiveness of this new treatment, the investigators selected and tested three more lots of alloy 2195, using 1.75-in-thick gauge plates with FTR values ranging from 0.85 to 1.07. The new aging treatment effectively enhanced CFT and FTR values for all three lots. In one instance, the material was considered rejectable because it did not meet the minimum FTR value (1.0) of the super lightweight tank (SLWT). The new aging treatment improved its FTR from 0.85 to 1.01, making this material acceptable for use in the SLWT.

TM-108525 November 1996

19970005301N (97N-13227)

Test welds were made in argon over a range of pressures from 10-5 to 10-3 torr (the latter pressure an order of magnitude above pressures anticipated in the space shuttle bay during welding) with and without plasma on
304 stainless steel, 6A1-4V titanium, and 5456 aluminum in search of any possible unwanted electrical discharges. Only a faint steady glow of beam-excited atoms around the electron beam and sometimes extending out into the vacuum chamber was observed. No signs of current spiking or of any potentially dangerous electrical discharge were found.

TM–108526 December 1996

The technological and economic thresholds for microgravity space research are estimated in materials science and biotechnology. In the 1990's, the improvement of materials processing has been identified as a national scientific priority, particularly for stimulating entrepreneurship. The substantial U.S. investment at stake in these critical technologies includes six broad categories: aerospace, transportation, health care, information, energy, and the environment. Microgravity space research addresses key technologies in each area. The viability of selected space-related industries is critically evaluated and a market share philosophy is developed, namely that incremental improvements in a large market's efficiency is a tangible reward from space-based research.

TM–108527 February 1997

This report documents a study conducted by the MSFC working group on Institutes in 1995 on the structure, organization and business arrangements of Institutes at a time when the agency was considering establishing science institutes. Thirteen institutes, ten science centers associated with the state of Georgia, Stanford Research Institute (SRI), and IIT Research Institute (IITRI), and general data on failed institutes were utilized to form this report. The report covers the working group's findings on institute mission, structure, director, board of directors/advisors, the working environment, research arrangements, intellectual property rights, business management, institute funding, and metrics.

TM–108528, Volume I October 1996

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY96. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

TM–108531 February 1997

The goal of this research effort was the development of methods for shearographic and thermographic inspection of coatings, bonds, or laminates inside rocket fuel or oxidizer tanks, fuel lines, and other closed structures. The endoscopic methods allow imaging and inspection inside cavities that are traditionally inaccessible with shearography or thermography cameras. The techniques are demonstrated and suggestions for practical application are made in this report. Drawings of the experimental setups, detailed procedures, and experimental data are included.

TM–108532 March 1997

The Rolling Element Bearing Analysis System (REBANS) extends the capability available with traditional quasi-static bearing analysis programs by including the effects of bearing race and support flexibility. This tool was developed under contract for NASA-
MSFC. The initial version delivered at the close of the contract contained several errors and exhibited numerous convergence difficulties. The program has been modified in-house at MSFC to correct the errors and greatly improve the convergence. The modifications consist of significant changes in the problem formulation and nonlinear convergence procedures. The original approach utilized sequential convergence for nested loops to achieve final convergence. This approach proved to be seriously deficient in robustness. Convergence was more the exception than the rule. The approach was changed to iterate all variables simultaneously. This approach has the advantage of using knowledge of the effect of each variable on each other variable (via the system Jacobian) when determining the incremental changes. This method has proved to be quite robust in its convergence. This technical memorandum documents the changes required for the original Theoretical Manual and User’s Manual due to the new approach.

TM-108534

March 1997

Some of the primary purposes of this work are to study important technologies, particularly involving thin films, relevant to organic and polymeric materials for improving applicability to optical circuitry and devices and to assess the contribution of convection on film quality in unit and microgravity environments. Among the most important materials processing techniques of interest in this work are solution-based and by physical vapor transport, both having proven gravitational and acceleration dependence. In particular, polydiacetylenes (PDA’s) and phthalocyanines (Pc’s) are excellent nonlinear optical (NLO) materials with the promise of significantly improved NLO properties through order and film quality enhancements possible through microgravity processing.

Our approach is to focus research on integrated optical circuits and optoelectronic devices relevant to solution-based and vapor processes of interest in the Space Sciences Laboratory at Marshall Space Flight Center (MSFC). Modification of organic materials is an important aspect of achieving more highly ordered structures in conjunction with microgravity processing. Parallel activities include characterization of materials for particular NLO properties and determination of appropriate device designs consistent with selected applications.

One result of this work is the determination, theoretically, that buoyancy-driven convection occurs at low pressures in an ideal gas in a thermal gradient from source to sink. Subsequent experiment supports the theory. We have also determined theoretically that buoyancy-driven convection occurs during photodeposition of PDA, an MSFC-patented process for fabricating complex circuits, which is also supported by experiment. Finally, the discovery of intrinsic optical bistability in metal-free Pc films enables the possibility of the development of logic gate technology on the basis of these materials.

TM-108534

April 1997

Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve and acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.
A single pendulum was simulated in software and then built on a rotary base. A fuzzy controller was used to show its advantages as a nonlinear controller since bringing the pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola 6811 microcontroller. A double pendulum was simulated and fuzzy control was used to hold it in a vertical position. The double pendulum was not built into hardware for lack of time. This project was for training and to show advantages of fuzzy control.

The FY 1996 Annual Report describes key elements of the NASA Microgravity Science Research Program. The program's goals, approach taken to achieve these goals, and available resources are summarized. Highlights and progress in the ground- and flight-based research are provided.

This document is prepared to provide a systematic process for the selection of tethers for space applications. Criteria are provided for determining the strength requirement for tether missions and for mission success from tether severing due to micrometeoroids and orbital debris particle impacts. Background information of materials for use in space tethers is provided, including electricity-conducting tethers. Dynamic considerations for tether selection is also provided. Safety, quality, and reliability considerations are provided for a tether project.

During a walkdown of the Space Transportation System (STS) orbiter for the 82nd Space Shuttle flight (STS–82), technicians found several safety cables for bolts with missing or loose ferrules. Typically, two or three bolts are secured with a cable which passes through one of the holes in the head of each bolt and a ferrule is crimped on each end of the cable to prevent it from coming out of the holes. The purpose of the cable is to prevent bolts from rotating should they become untightened. Other bolts are secured with either a locking cable or wire which is covered with RTV and foam. The RTV and foam would have to be removed to inspect for missing or loose ferrules. To determine whether this was necessary, vibration and torque test fixtures and tests were made to determine whether or not bolts with missing or loose ferrules would unloosen. These tests showed they would not, and the RTV and foam was not removed.
This document lists the significant publications and presentations of the Space Sciences Laboratory during the period January 1–December 31, 1996. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Also included for completeness is an Appendix (arranged by page number) listing preprints issued by the Laboratory during this reporting period. Some of the preprints have not been published; those already published are so indicated. Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publications in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in this report should be directed to Gregory S. Wilson (ES01; 544-7579) or to one of the authors. The organizational code of the cognizant SSL branch or office is given at the end of each entry.

TM-108541 August 1997

19970034574N (97N-29824)

Testing of the *International Space Station (ISS)* U.S. Segment baseline configuration of the Atmosphere Revitalization Subsystem (ARS) by NASA's Marshall Space Flight Center (MSFC) was conducted as part of the Environmental Control and Life Support System (ECLSS) design and development program. This testing was designed to answer specific questions regarding the control and performance of the baseline ARS subassemblies in the *ISS* U.S. Segment configuration. These questions resulted from the continued maturation of the *ISS* ECLSS configuration and design requirement changes since 1992.

The test used pressurized oxygen injection, a mass spectrometric major constituent analyzer, a Four-Bed Molecular Sieve Carbon Dioxide Removal Assembly, and a Trace Contaminant Control Subassembly to maintain the atmospheric composition in a sealed chamber at *ISS* specifications for 30 days. Human metabolic processes for a crew of four were simulated according to projected *ISS* mission time lines. The performance of a static feed water electrolysis Oxygen Generator Assembly was investigated during the test preparation phases; however, technical difficulties prevented its use during the integrated test.

The Integrated ARS Test (IART) program built upon previous closed-door and open-door integrated testing conducted at MSFC between 1987 and 1992. It is the most advanced test of an integrated ARS conducted by NASA to demonstrate its end-to-end control and overall performance. IART test objectives, facility design, pre-test analyses, test and control requirements, and test results are presented.

TM-108542 September 1997

19970028919N (97N-27636)

This document is an effort to report the basic test findings in an ongoing quest for understanding how random load factors should be applied to structural components in order to verify the strength of space flight hardware. A Spacelab experiment known as the Atmospheric Emission Photometric Imager (AEPI) was subjected to both an expected flight random environment and the associated Miles’ equation equivalent static load. During each of these tests, the fiberglass pedestal was instrumented with 16 triaxial strain gauges around its base. Component strains and invariant stresses were compared. As seen previously in other hardware tests, the stress distribution from the random environment was an order of magnitude below the comparable static stresses. With a proposed data acquisition system, a strain database will be developed that will quantify an empirical relationship between dynamic and static limit stresses. This event will allow a more accurate estimate of launch environment effects on new technology structural components.

TM-108543 September 1997

19970034863N (97N-30086)
Understanding the plasma and atmosphere around the Earth in the lower altitude regions of the mesosphere, lower thermosphere, and ionosphere is important in the global electric system. An upper atmosphere tether has been proposed to NASA that would collect much-needed data to further our knowledge of the regions. The mission is proposed as a shuttle experiment that would lower a tethered probe into certain regions of Earth's atmosphere, collecting data over a 6-day period. This report is a summary of the results of a concept definition study to design engineering system that will achieve the scientific objectives of this mission.
For the common data-available interval of cycles 12 to 22, we show that annual averages of sunspot number for minimum years \(R_{\text{min}} \) and maximum years \(R_{\text{max}} \) and of the minimum value of the aa geomagnetic index in the vicinity of sunspot minimum \(\text{aa}_{\text{min}} \) are consistent with the notion that each has embedded within its respective record a long-term, linear, secular increase. Extrapolating each of these fits to cycle 23, we infer that it will have \(R_{\text{min}} = 12.7 \pm 5.7 \), \(R_{\text{max}} = 176.7 \pm 61.8 \) and \(\text{aa}_{\text{min}} = 21.0 \pm 5.0 \) (at the 95-percent level of confidence), suggesting that cycle 23 will have \(R_{\text{min}} > 7.0 \), \(R_{\text{max}} > 114.9 \), and \(\text{aa}_{\text{min}} > 16.0 \) (at the 97.5-percent level of confidence). Such values imply that cycle 23 will be larger than average in size and, consequently (by the Waldmeier effect), will be a fast riser. We also infer from the \(R_{\text{max}} \) and \(\text{aa}_{\text{min}} \) records the existence of an even-odd cycle effect, one in which the odd-following cycle is numerically larger in value than the even-leading cycle. For cycle 23, the even-odd cycle effect suggests that \(R_{\text{max}} > 157.6 \) and \(\text{aa}_{\text{min}} > 19.0 \), values that were recorded for cycle 22, the even-leading cycle of the current even-odd cycle pair (cycles 22 and 23). For 1995, the annual average of the \(\text{aa} \) index measured about 22, while for sunspot number, it was about 18. Because \(\text{aa}_{\text{min}} \) usually lags \(R_{\text{min}} \) by 1 year (true for 8 of 11 cycles) and 1996 seems destined to be the year of \(R_{\text{min}} \) for cycle 23, it may be that \(\text{aa}_{\text{min}} \) will occur in 1997, although it could occur in 1996 in conjunction with \(R_{\text{min}} \) (true for 3 of 11 cycles). Because of this ambiguity in determining \(\text{aa}_{\text{min}} \), no formal prediction based on the correlation of \(R_{\text{max}} \) against \(\text{aa}_{\text{min}} \), having \(r = 0.90 \), or of \(R_{\text{max}} \) against the combined effects of \(R_{\text{min}} \) and \(\text{aa}_{\text{min}} \)—the bivariate technique—having \(r = 0.99 \) is possible until 1997, at the earliest.

The use of cryogenic fuels (liquid oxygen and liquid hydrogen) in current space transportation vehicles, in combination with the proposed use of composite materials in such applications, requires an understanding of how such materials behave at cryogenic temperatures. In this investigation, tensile intralaminar shear tests were performed at room, dry ice, and liquid nitrogen temperatures to evaluate the effect of temperature on the mechanical response of the IM7/8551-7 carbon-fiber/epoxy-resin system.

Quasi-isotropic lay-ups were also tested to represent a more realistic lay-up. It was found that the matrix became both increasingly resistant to microcracking and stiffer with decreasing temperature. A marginal increase in matrix shear strength with decreasing temperature was also observed. Temperature did not appear to affect the integrity of the fiber-matrix bond.

A single observation station, located at an arbitrary point on the surface of the Earth, can determine only the azimuth and elevation angles of a satellite or ballistic vehicle, and the time at which these observations occur. No information is available about the range or the range-rate of the target. It is shown that five observations of either the elevation or the azimuth, and the time of either set of observations, determine the complete set of orbital elements of the target. The implementation of the theory presented here could provide a great reduction in the hardware costs associated with satellite and reentry vehicle tracking.

By definition, the conventional onset for the start of a sunspot cycle is the time when smoothed sunspot number (i.e., the 12-month moving average) has decreased to its minimum value (called minimum amplitude) prior to the rise to its maximum value (called maximum amplitude) for the given sunspot cycle. On the basis of the modern era sunspot cycles 10–22 and on the presumption that cycle 22 is a short-period cycle having a cycle length of 120 to 126 months (the observed range of short-period modern era cycles), conventional onset for cycle 23 should not occur until sometime between September

TP-3654
October 1996

TP-3663
November 1996

TP-3667
January 1997
Solution of the Angles-Only Satellite Tracking Problem. R.E. Burns. Structures and Dynamics Laboratory. 19970012913N (97N-17038)

TP-3674
February 1997
1996 and March 1997, certainly between June 1996 and June 1997, based on the 95-percent confidence level deduced from the mean and standard deviation of period for the sample of six short-period modern era cycles.

Also, because the first occurrence of a new cycle, high-latitude (≥25 degrees) spot has always preceded conventional onset of the new cycle by at least 3 months (for the data-available interval of cycles 12–22), conventional onset for cycle 23 is not expected until about August 1996 or later, based on the first occurrence of a new cycle 23, high-latitude spot during the decline of old cycle 22 in May 1996. Although much excitement for an earlier-occurring minimum (about March 1996) for cycle 23 was voiced earlier this year, the present study shows that this exuberance is unfounded. The decline of cycle 22 continues to favor cycle 23 minimum sometime during the latter portion of 1996 to the early portion of 1997.

Should the Russian Space Agency (RSA) not participate in the International Space Station (ISS) program, then the United States (U.S.) National Aeronautics and Space Administration (NASA) may choose to execute the ISS mission. However, in order to do this, NASA must build two new space vehicles, which must perform the functions that the Russian vehicles and hardware were to perform. These functions include periodic ISS orbit reboost, initial ISS attitude control, and U.S. On-Orbit Segment (USOS) control moment gyroscope (CMG) momentum desaturation. The two new NASA vehicles that must perform these functions are called the U.S. control module (USCM) and the U.S. resupply module.

This paper presents a design concept for the USCM GN&C subsystem, which must play a major role in ISS orbit reboost and initial attitude control, plus USOS CMG momentum desaturation. The proposed concept is structured similar to the USOS GN&C subsystem, by design. It is very robust, in that it allows the USCM to assume a variety of vehicle attitudes and stay power-positive. It has a storage/safe mode that places the USCM in a gravity-gradient orientation and keeps it there for extended periods of time without consuming a great deal of propellant. Simulation results are presented and discussed that show the soundness of the design approach. An equipment list is included that gives detailed information on the baseline GN&C components.

Corrosion studies were carried out for wrought and cast NASA–23 alloy using electrochemical methods. The scanning reference electrode technique (SRET), the polarisation resistance technique (PR), and the electrochemical impedance spectroscopy (EIS) were employed. These studies corroborate the findings of stress corrosion studies performed earlier, in that the material is highly resistance to corrosion.

This publication presents the control requirements, the details of the designed FCA's, the static stability and dynamic stability wind tunnel test programs, the static stability and control analyses, the dynamic stability characteristics of the experimental LV with the designed FCA's, and a consideration of the elastic vehicle. Dramatic improvements in flight stability have been realized with all the FCA designs; these ranged from 41 percent to 72 percent achieved by the blunt TE design. The control analysis showed that control increased 110 percent with only 3 degrees of FCA deflection. The dynamic
stability results showed improvements with all FCA designs tested at all Mach numbers tested. The blunt TE FCA's had the best overall dynamic stability results. Since the lowest elastic vehicle frequency must be well separated from that of the control system, the significant frequencies and modes of vibration have been identified, and the response spectra compared for the experimental LV in both the conventional and the aft cg configuration. Although the dynamic response was 150 percent greater the aft cg configuration, the lowest bending mode frequency decreased by only 2.8 percent.
CP-3342 October 1996
19980003842N

CP-3347 February 1997
19970013716N (97N-17427)

CP-3348 March 1997
19970012906N (97N-17032)

CP-3349 March 1997

CP-3350 May 1997
19970021613N (97N-22541)
RP–1396 November 1996

RP–1401 April 1997

RP–1405 July 1997
Second International Microgravity Laboratory (IML–2) Final Report. Compiled by Dr. R.S. Snyder. Space Sciences Laboratory. 19970035095N (97N–30299)

RP–1408 August 1997
CR-4759
October 1996
19970005154N (97N–13115)

CR-4763
January 1997
19970013276N (97N–17198)

CR-4774
April 1997
19970018610N (97N–20236)

CR-4783
July 1997
19980000303N

CR-4784
August 1997
19970036055N (97N–30425)

CR-201146
November 1, 1996

CR-201147
November 1, 1996

CR-201148
November 1, 1996
19970007026N (97N–13885)

CR-201149
November 1, 1996
19970007015N (97N–13874)

CR-201150
November 1, 1996
19970005321N (97N–13236)

CR-202757
November 18, 1996

CR-202758
November 18, 1996

CR-202759
November 18, 1996

CR-202760
November 18, 1996
19970007764N (97N-13866)

CR-202761
November 18, 1996
19970006694N (97N–13588)

CR-202762
December 17, 1996

CR-202763
January 23, 1997
Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study, Volume III,
CR-202764 March 25, 1997

CR-202765 March 25, 1997

CR-202766 March 25, 1997

CR-202767 March 26, 1997
Launch Deployment Assembly Human Engineering Analysis. NAS8-40586. Sigmatech, Inc.

CR-202768 April 3, 1997

CR-202769 April 3, 1997

CR-202770 April 3, 1997

CR-202771 April 3, 1997

CR-202772 April 3, 1997

CR-202773 April 3, 1997

CR-202774 April 3, 1997

CR-202775 April 3, 1997

CR-202776 April 3, 1997

CR-202777 April 4, 1997

CR-202778 April 4, 1997

CR-202780 April 7, 1997

CR-202781 April 7, 1997

CR-202782 April 14, 1997
CR-202783 April 14, 1997

CR-202784 April 14, 1997

CR-202785 April 14, 1997

CR-202786 April 14, 1997

CR-202787 April 15, 1997

CR-202788 April 23, 1997

CR-202789 April 28, 1997

CR-202790 April 28, 1997

CR-202791 May 6, 1997

CR-202792 May 6, 1997

CR-202793 May 12, 1997

CR-202794 June 11, 1997
Space Environmental Effects on Thermal Control Coatings. NAS8-38609, D.O. #136. University of Alabama in Huntsville. 19970023684N (97N-23966)

CR-202795 June 11, 1997

CR-202796 June 11, 1997

CR-202797 June 24, 1997

CR-202798 July 18, 1997

CR-202799 July 18, 1997

CR-202800 July 18, 1997
CR–202801 August 5, 1997
Solar Thermal Propulsion Optical Figure Measuring and Rocket Engine Testing—Final Report. NAS8–38609, D.O. #147, University of Alabama in Huntsville.
19970036400N (97N–30715)

CR–202802 August 6, 1997

CR–202803 August 6, 1997
19970029129N (97N–27807)

CR–202804 August 6, 1997

CR–202805 August 6, 1997

CR–202806 August 6, 1997

CR–202807 August 6, 1997

CR–205187 August 6, 1997
19970028584N (97N–27330)

CR–205188 September 11, 1997
19970041301N (97N–32385)
ABDELDAYEM, H. USRA
BANKS, C.E. ES75
PENN, B. ES75
FRAZIER, D.O. ES75
WITHEROW, W.K. ES75
SHIELD, A. ES75

ABDELDAYEM, H. USRA
FRAZIER, D.O. ES76
PALEY, M.S. USRA

ABDELDAYEM. H. USRA
FRAZIER, D.O. ES76
PALEY, M.S. USRA

ADAMS, M. ES82
JONES, C. Swinburne Univ. of Tech.

ADRIAN, M. ES83

Miniaturization of Aurora/Ionospheric Physics: TECHS and Its View of the Thermal Electron Prenoon Cleft. For publication in Southwest Research Institute, San Antonio, TX, 1997.

ADRIAN, M.L. UAH
POLLOCK, C.J. Southwest Research
MOORE, T.E. ES83
KINTNER, P.M. Cornell University
BONNELL, J. Cornell University
ARNOLDY, R.L. University of New Hampshire

LYNCH, K.A. University of New Hampshire
LORENTZEN, D.A. University of Alaska

ADRIAN, M.L. UAH
POLLOCK, C.J. Southwest Research
MOORE, T.E. ES83
KINTNER, P.M. Cornell University
BONNELL, J. Cornell University
ARNOLDY, R.L. University of New Hampshire
LYNCH, K.A. University of New Hampshire
LORENTZEN, D.A. University of Alaska

ALHORN, D.C. EB23

ALLEN, M.J. Stanford University
WALKER, A.B.C., II Stanford University
OLUSEYI, H.M. Stanford University
HOOVER, R.B. ES82
BARBEE, T.W., JR. Lawrence Livermore National Laboratory

ALLEN, R.W. MG30
TYGIELSKI, A. MG30
GABRIS, E.A. MG30

Space Product Development: Bringing the Benefits of Space Down to Earth. For presentation at International Astronautical Federation, Turin, Italy, October 6–10, 1997.

AMZAJERDIAN, F. UAH
KAVAYA, M.J. EB53

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIPIN, M.Y.</td>
<td>New Mexico Highlands</td>
</tr>
<tr>
<td>BARR, T.J.</td>
<td>UAH</td>
</tr>
<tr>
<td>CARDELINO, B.H.</td>
<td>Atlanta University Center</td>
</tr>
<tr>
<td>CLARK, R.D.</td>
<td>New Mexico Highlands</td>
</tr>
<tr>
<td>MOORE, C.E.</td>
<td>ES75</td>
</tr>
<tr>
<td>MYERS, T.</td>
<td>New Mexico Highlands</td>
</tr>
<tr>
<td>PENN, B.G.</td>
<td>ES75</td>
</tr>
<tr>
<td>ROMERO, M.</td>
<td>New Mexico Highlands</td>
</tr>
<tr>
<td>SANGHADASA, M.</td>
<td>UAH</td>
</tr>
<tr>
<td>TIMOFEEVA, T.V.</td>
<td>New Mexico Highlands</td>
</tr>
<tr>
<td>ARMSTRONG, T.W.</td>
<td>SAIC</td>
</tr>
<tr>
<td>COLBORN, B.L.</td>
<td>SAIC</td>
</tr>
<tr>
<td>DIETZ, K.L.</td>
<td>ES84</td>
</tr>
<tr>
<td>RAMSEY, B.D.</td>
<td>ES84</td>
</tr>
<tr>
<td>LAIRD, C.E.</td>
<td>Eastern Kentucky</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ATkinson, R.J.</td>
<td>ES41</td>
</tr>
<tr>
<td>GUILLORY, A.R.</td>
<td>ES41</td>
</tr>
<tr>
<td>JEDLOVEC, G.J.</td>
<td>ES41</td>
</tr>
<tr>
<td>AUGUSTEIJN, T.</td>
<td>ESO</td>
</tr>
<tr>
<td>GREINER, J.</td>
<td>Max-Planck-Institut, Germany</td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>USRA</td>
</tr>
<tr>
<td>VAN PARADISE, J.</td>
<td>UAH</td>
</tr>
<tr>
<td>LIDMAN, C.</td>
<td>ESO</td>
</tr>
<tr>
<td>BLANCO, P.</td>
<td>University of CA, San Diego</td>
</tr>
<tr>
<td>FISHMAN, G.J.</td>
<td>ES84</td>
</tr>
<tr>
<td>BRIGGS, M.S.</td>
<td>UAH</td>
</tr>
<tr>
<td>KOMMERS, J.M.</td>
<td>MIT</td>
</tr>
<tr>
<td>ET AL.</td>
<td></td>
</tr>
<tr>
<td>BALDRIDGE, T.</td>
<td>ES94</td>
</tr>
<tr>
<td>BARRET, C.</td>
<td>ED13</td>
</tr>
<tr>
<td>BARRET, C.</td>
<td>ED13</td>
</tr>
<tr>
<td>Finned Spinning Sounding Rocket with Spinnerons. For presentation at Society of Women Engineers National Conference, Albuquerque, NM, June 24-28, 1997.</td>
<td></td>
</tr>
<tr>
<td>BARRET, C.</td>
<td>ED13</td>
</tr>
<tr>
<td>BARRET, C.</td>
<td>ED13</td>
</tr>
<tr>
<td>BARRY, R.G.</td>
<td>University of Colorado-Boulder</td>
</tr>
<tr>
<td>GOODMAN, S.J.</td>
<td>ES41</td>
</tr>
<tr>
<td>SWICK, R.</td>
<td>University of Colorado-Boulder</td>
</tr>
<tr>
<td>SCHARFEN, G.</td>
<td>University of Colorado-Boulder</td>
</tr>
<tr>
<td>BASKARAN, S.</td>
<td>ES76</td>
</tr>
<tr>
<td>NOEVER, D.A.</td>
<td>ES76</td>
</tr>
</tbody>
</table>
Global Validation of Single-Station Schumann Resonance Lightning Location. For publication in Journal of Atmospheric and Terrestrial Physics.

BOECK, W.L.
Niagara University

BLAKESLEE, R.J.
ES41

GOODMAN, S.J.
ES41

CHRISTIAN, H.J.
ES41

MACH, D.M.
ES41

BUECHLER, D.
ES41

BOCCIPPIO, D.J.
ES41

DRISCOLL, K.T.
ES41

KOSHK, W.J.
ES41

HALL, J.
ES41

Diurnal Cycle of Lightning as Observed by the OTD: Preliminary Results for Africa. For presentation at 1996 Fall Meeting of the American Geophysical Union, San Francisco, CA, December 15–20, 1996.

BOECK, W.L.
Niagara University

VAUGHN, O.H., JR.
ES41

BLAKESLEE, R.J.
ES41

VONNEGUT, B.
State University of New York

BROOK, M.
New Mexico Institute of Mining and Technology

The Discovery of Sprites, Jets and Elves: An Historical Prospective. For publication in Journal of Atmospheric & Terrestrial Physics.

BRADY, R.P.
Southern Illinois University

KULKARNI, M.R.
Southern Illinois University

CHU, T.P.
Southern Illinois University

RUSSELL, S.S.
EH13

Thermal Image Analysis for the On-Line NDE of Composites. For presentation at Second Conference on NDE Applied to Process Control of Composite Fabrication, St. Louis, MO, October 1–2, 1996.

BRITTNACHER, M.J.
ES83

ELSEN, R.
ES83

PARKS, G.K.
ES83

CHEN, L.
ES83

GERMANY, G.A.
ES83

SPANN, J.F., JR.
ES83

BROWN, D.G.
Michigan State Univ.

QUATTROCHI, D.A.
ES41

Special Association of American Geographers, Remote Sensing. For publication in Geocarto International, Hong Kong.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Affiliation</th>
<th>Title</th>
<th>Conference/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>WULSER, J.P.</td>
<td>Lockheed Martin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZUKIC, M.</td>
<td>Cascade Optical Coatings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOOVER, R.B.</td>
<td>ES82</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWERS, W.T.</td>
<td>EB22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGLE, J.</td>
<td>Rockwell International</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BULLINGTON, J.V.</td>
<td>Rockwell International</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GILLIES, D.C.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEHOCZKY, S.L.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GILLIES, D.C.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEHOCZKY, S.L.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GILLIES, D.C.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEHOCZKY, S.L.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARDELINO, B.H.</td>
<td>Spellman College</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOORE, C.E.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAZIER, D.O.</td>
<td>ES75</td>
<td>Calculation of Static Third-Order Polarizabilities of Large Organic Molecules.</td>
<td>For publication in Journal of Physical Chemistry, Atlanta, GA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARRASQUILLO, R.L.</td>
<td>ED62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REUTER, J.L.</td>
<td>ED62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOROKUMA, K.</td>
<td>Emory University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARTER, R.N.</td>
<td>Precision Combustion, Inc.</td>
<td>Unique Metal Monolith Catalytic Reactor for Destruction of Airborne Trace Contaminants.</td>
<td>For pre-</td>
</tr>
</tbody>
</table>

CASH, M.B. EO66
Crew Member Interface with Space Station Furnace Facility. For presentation at NASA URC (University Research Centers) Technical Conference, Albuquerque, NM, February 16–19, 1997.

CHANDLER, K.O. ED73
TINKER, M.L. ED23

CHANG, C.L. SAIC
DROBOT, A.T. SAIC
PAPADOPoulos, K. SAIC
WRIGHT, K.H. UAH
STONE, N.H. ES83
GURGILO, C.A. BBRI
WINNINGHAM, D. Southwest Research
BONIFAZI, C.A. ASI, Italy

CHAPPLE, C.R. DS01
GILES, B.L. ES83
DELCOURT, D.C. Centre d'Etudes
MOORE, T.E. GSFC
CHANDLER, M.O. ES83
CRAVEN, P.D. ES83

CHOI, S.-H. ES41

CHRISTENSEN, E.R. Sverdrup Technology
BRUNTY, J. ED23

CHRISTIAN, H.J. ES84
DRISCOLL, K.T. UAH
BOCCIPPO, D.J. ES41
Results from Two Years of Global Lightning Observation with the Optical Transient Detector. For presentation at 1997 Fall Meeting of American Geophysical Union, San Francisco, CA, December 1997.

CHRISTL, M.C. ES84
FOUNTAIN, W.F. ES84
PARNELL, T.A. ES84
ROBERTS, P.E. ES84
GREGORY, J.C. UAH
JOHNSON, J. UAH
TAKAHASHI, Y. UAH

CLARK, T.L. EL23
LAWTON, R. GB Tech.

CLAYTON, J.L. ED63

COFFEY, V.N. ES83
CHANDLER, M.O. ES83
MOORE, T.E. ES83

COFFEY, V.N. ES83
CHANDLER, M.O. ES83
MOORE, T.E. GSFC
Characteristics of the Thermal Ion Bulk Parameters in the Cleft. For presentation at 1997 Fall American Geophysical Union Meeting, San Francisco, CA, December 8–12, 1997.
COFFEY, V.N. MOORE, T.E.

COFFEY, V.N. MOORE, T.E. POLLOCK, C.J.

COMFORT, R.H. ELLIOTT, H.A. CRAVEN, P.D. CHANDLER, M.O. MOORE, T.E. WUEST, M. HUDDLESTON, M. LENNARTSSON, O.W. WUEST, M. HUDDLESTON, M. RICE University Lockhead Palo Alto
Ion Distribution Moments from POLAR/TIDE and Comparisons with POLAR/TIMAS. For presentation at 1997 Spring American Geophysical Union Meeting, Baltimore, MD, May 1997.

COOK, M.B. CLARK-INGRAM, M.

CROLL, A. SZOFRAN, F.R. DOLD, P. KAISER, T. BENZ, K.W. LEHOCZYK, S.L. Universitat Freiburg Universitat Freiburg Universitat Freiburg Universitat Freiburg Universitat Freiburg

CROLL, A. SZOFRAN, F.R. DOLD, P. BENZ, K.W. LEHOCZYK, S.L.
in Journal of Crystal Growth, Amsterdam, Netherlands.

CURRERI, P.A. ES75
KAUKLER, W.F. UAH
SEN, S. USRA
PETERS, P.N. USRA

CURRERI, P.A. ES75
KAUKLER, W.F. ES75
SEN, S. ES75
PETERS, P.N. ES75

CURTIS, R.E. Boeing
PERRY, J.L. ED62

ABRAMOV, L.H. NIICHIMMASH

CUTCHINS, M.A. Auburn University
TINKER, M.L. ED23
BOOKOUT, P.S. ED23

CUTTEN, D.R. HR01
SPINHIME, J.D. HR01
MENZIES, R.T. HR01
BOWDLE, D.A. HR01
SRIVASTAVA, V. HR01
PUESCHEL, R.F. HR01
CLARKE, A.D. HR01
ROTHERMEL, J. HR01

DARBY, S.P. EH42
LANDRUM, D.B. UAH
COLEMAN, H.W. UAH

DARDEN, J.M. ED12
EARHART, E.M. ED12

FLOWERS, G.T. Auburn University

DAVIS, J.M. ES82
GARY, G.A. ES82

DEAN, W.C. Hamilton Standard
LANZARONE, A.W. Hamilton Standard
HOLDER, D. ED62
HOWARD, S. Boeing

DISCHINGER, H.C., JR. EO66
LOUGHEAD, T.E. EO66

DOE, R.A. ES83
KELLY, J.D. ES83
LUMMERZHEIM, D. ES83
PARKS, G.K. ES83
BRITTNACHER, M.J. ES83
GERMANY, G.A. ES83
SPANN, J.F., JR. ES83

Initial Comparison of POLAR UVI and Sondestrom

DONG, P. Battelle
HONG, J.K. Battelle
BYNUM, J. EH22
ROGERS, P. ED24

DONG, P. Battelle
HONG, J.K. Battelle
ZHANG, J. Battelle
ROGERS, P. ED24
BYNUM, J. EH22

DONG, P. Battelle
ROGERS, P. ED24
BYNUM, J. EH22

DREWRY, M. UAH
CONOVER, H. UAH
GRAVES, S. UAH

DRISCOLL, K.T. ES41
CHRISTIAN, H.J. ES41
GOODMAN, S.J. ES41
BLAKESLEE, R.J. ES41
BOCCIPPIO, D.J. ES41

DUMAS, J. University of Tennessee at Chattanooga
HALE, J. EO66
DABNEY, R. ED13

DWHYER, B. JSC
ROGERS, M.N. EO26
BERTHOLD, R. C.S. Draper Lab.

International Space Station Timeliner System. For presentation at 34th Space Congress, Kennedy Space Center, FL, April 29–May 2, 1997.

EDBERG, D. McDonnell Douglas
BOUCHER, R. McDonnell Douglas
NURRE, G.S. ED01
WHORTON, M.S. ED01

EDWARDS, D.L. EH12
HUBBS, W.C. EH12
PISZCZOR, M.F. LeRC

EFFINGER, M.R. EH32
KOENIG, J.R. Southern Research
HALBIG, M.C. LeRC

ELLIOIT, H.A. UAH
COMFORT, R.H. UAH
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. GSFC
MAYNARD, N.C. GSFC

Peterson, W.K. Lockheed Martin
LENNARTSSON, O.W. Lockheed Martin
SHELLEY, E.G. Lockheed Martin
ET AL.
Ion Outflow and Convection in the Polar Cap and Cleft as Measured by TIDE, EFI, MFE, and TIMAS. For presentation at 1997 Fall American Geophysical Union Meeting, San Francisco, CA, December 8–12, 1997.

ELLIOTT, H.A. UAH
COMFORT, R.H. UAH
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. ES83
MOZER, F.S. University of California, Berkeley
RUSSELL, C.T. University of CA, LA
A Comparison of Thermal Ion Flow Velocities to \(E \times B \) Drifts. For presentation at 1997 Spring American Geophysical Union Meeting, Baltimore, MD, May 1997.

ELLIOTT, H.A. UAH
COMFORT, R.H. UAH
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
MOORE, T.E. ES83
MOZER, F.S. University of California, Berkeley
RUSSELL, C.T. University of CA, LA

ELSNER, R.F. ES84
RAMSEY, B.D. ES84
JOY, M.K. ES84
O’DELL, S.L. ES84
SULKANEN, M.E. ES84
TENNANT, A.F. ES84
WEISSKOPF, M.C. ES84
GUJNIH, S. NRC/MSFC
MINAMITANI, T. USRA
ET AL.

EMERSON, C.W. Missouri State University
QUATTROCHI, D.A. HR01
LUVALL, J.C. HR01

ENGLE, J. Rockwell International
POWERS, W.T. EB22
BULLINGTON, J.V. Rockwell International
GORMLEY, T. Lockheed Martin

ERICKSON, R.J. ED62
CARRASQUILLO, R.L. ED62

ERICKSON, R.J. ED62
MASON, R.K. ED62
ROY, R.J. ED62

EVANS, D.M. University of Texas at El Paso
HUANG, D. University of Texas at El Paso
MCCLURE, J.C. University of Texas at El Paso
NUNES, A.C., JR. EH23
Arc Efficiency of Plasma Arc Welds. For publication in Welding Journal-American Welding Society, Miami, FL.

EWING, F. USRA
PUSEY, M. ES76
Protein Crystal Growth for Education. For presentation at Spacebound 97, Montreal, Quebec, Canada, May 11–14, 1997.

FALCONER, D.A. ES82
A Correlation Between Length of Strong-Shear Neutral Lines and Total X-Ray Brightness in Active Regions. For publication in Solar Physics, Tucson, AZ.

FALCONER, D.A. ES82
DAVILA, J.M. GSFC
THOMAS, R.J. GSFC
<table>
<thead>
<tr>
<th>Authors</th>
<th>Date</th>
<th>Institution</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>JORDAN, S.D.</td>
<td>GSFC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAVILA, J.M.</td>
<td>GSFC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THOMAS, R.J.</td>
<td>GSFC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANDRETTA, V.</td>
<td>GSFC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROSIIUS, J.W.</td>
<td>Hughes STX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARA, H.</td>
<td>National Astronomical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOORE, R.L.</td>
<td>ES82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PORTER, J.G.</td>
<td>ES82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISHMAN, G.J.</td>
<td>ES81</td>
<td></td>
<td>The Mystery of Gamma-Ray Bursts. For presentation at The Violent University Workshop, Williamsburg, VA, April 1997.</td>
</tr>
<tr>
<td>FOK, M.-C.</td>
<td>USRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROVIRA, M.</td>
<td>IAFE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TANDBERG-HANSSEN, E.</td>
<td>ES01</td>
<td></td>
<td>Ultraviolet Events Observed in Active Regions II. The Miniflare of March 27, 1980, and Its Extended Arch. For publication in Ap. J.</td>
</tr>
<tr>
<td>FORD, E.</td>
<td>Columbia University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAARET, P.</td>
<td>Columbia University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAVANI, M.</td>
<td>Columbia University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARRET, D.</td>
<td>Harvard Smithsonian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOSER, P.</td>
<td>Harvard Smithsonian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINCKENOR, J.</td>
<td>ED52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

FOSTER, W.A., JR. Auburn University
JENKINS, R.M. Auburn University
HENGEL, J.E. ED34
SMITH, A.W. ED34

FRAGOMENI, J.M. University of Alabama
NUNES, A.C., JR. EH23

FROST, C.L. ED52
RODRIGUEZ, P.I. EL01
AXAF–1 Hypervelocity Impact Test Results. For presentation at Second European Conference on Space Debris, Darmstadt, Germany, March 17-19, 1997.

GALAMA, R.S. University of Amsterdam
VAN PARADIJS, J. UAH
HANLON, L. ESA
BENNETT, K. ESA
KOUVELIOTOU, C. ES84
FISHEMAN, G. ES84
MEEGAN, C.A. ES84
HEISE, J. SRON
ZAND, J. SRON
ET AL.

GALAMA, T. University of Amsterdam
GROOT, P.J. University of Amsterdam
STROM, R.G. University of Amsterdam
VAN PARADIJS, J. UAH
HANLON, L. ESA
BENNETT, K. ESA
KOUVELIOTOU, C. USRA
FISHEMAN, G.J. ES84
MEEGAN, C.A. ES84
HEISE, J. SRON
ET AL.

GALAMA, T. University of Amsterdam
GROOT, P.J. University of Amsterdam
STROM, R.G. University of Amsterdam
VAN PARADIJS, J. UAH
HANLON, L. ESA
BENNETT, K. ESA
KOUVELIOTOU, C. USRA
FISHEMAN, G.J. ES84
MEEGAN, C.A. ES84
HEISE, J. SRON
ET AL.

GALLAGHER, D.L. ES83
CRAVEN, P.D. ES83
COMFORT, R.H. ES83

GARCIA, R. ED32

GARY, G.A. ES82
DAVIS, J.M. ES82
MOORE, R.L.

GENGE, G.
MIMS, K.
MIN, J.
SULLIVAN, R.
EFFINGER, M.R.
HARRIS, D.

GERMANY, G.A.
PARKS, G.K.
BRITEITNACHER, M.J.
SPANN, J.F., JR.
CUMNOCK, J.
LUMMERZHEIM, D.

GILES, B.L.
MOORE, T.E.
CHANDLER, M.O.
CRAVEN, P.D.
POLLOCK, C.J.
The Upwelling Ion Source of Low Energy Ions: Initial Results from TIDE/PSI on POLAR. For presentation at 1997 Spring American Geophysical Union, Baltimore, MD, May 1997.

GILLIES, D.C.
NASA’S Microgravity Materials Science Program. For presentation at SPIE’S 42nd Annual Meeting, San Diego, CA, July 27–August 1, 1997

GILLIES, D.C.
LEHOCZKY, S.L.
SZOFRAN, F.R.
WATRING, D.A.
ALEXANDER, H.A.
JERMAN, G.A.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLASS, J.I.</td>
<td>UAB</td>
</tr>
<tr>
<td>LEFKOWITZ, E.J.</td>
<td>UAB</td>
</tr>
<tr>
<td>CASSELL, G.H.</td>
<td>UAB</td>
</tr>
<tr>
<td>WECHSER, M.</td>
<td>Perkin-Elmer</td>
</tr>
<tr>
<td>TAYLOR, T.B.</td>
<td>Perkin-Elmer</td>
</tr>
<tr>
<td>ALBIN, M.</td>
<td>Perkin-Elmer</td>
</tr>
<tr>
<td>PASZKO-KOLVA, C.</td>
<td>Perkin-Elmer</td>
</tr>
<tr>
<td>ROMAN, M.C.</td>
<td>ED62</td>
</tr>
<tr>
<td>GORACKE, B.D.</td>
<td>Boeing North American</td>
</tr>
<tr>
<td>LEVACK, D.J.H.</td>
<td>Boeing North American</td>
</tr>
<tr>
<td>JOHNSON, G.W.</td>
<td>PS03</td>
</tr>
<tr>
<td>GOLDEN, H.</td>
<td>EO01</td>
</tr>
<tr>
<td>CRAFT, H.G., JR.</td>
<td>LA01</td>
</tr>
<tr>
<td>GOLDSTEIN, B.E.</td>
<td>JPL</td>
</tr>
<tr>
<td>NEUGEBAUER, M.</td>
<td>JPL</td>
</tr>
<tr>
<td>PHILLIPS, J.L.</td>
<td>Los Alamos National Lab.</td>
</tr>
<tr>
<td>BAME, S.</td>
<td>Los Alamos National Lab.</td>
</tr>
<tr>
<td>GOSLING, J.T.</td>
<td>Los Alamos National Lab.</td>
</tr>
<tr>
<td>MCCOMAS, D.J.</td>
<td>Los Alamos National Lab.</td>
</tr>
<tr>
<td>WANG, Y.-M.</td>
<td>Naval Research Lab.</td>
</tr>
<tr>
<td>SHEELEY, N.R., JR.</td>
<td>Naval Research Lab.</td>
</tr>
<tr>
<td>SUESS, S.T.</td>
<td>ES82</td>
</tr>
<tr>
<td>GURGIOLLO, C.A.</td>
<td>Bitterroot Basic Research</td>
</tr>
<tr>
<td>WINNINGHAM, J.D.</td>
<td>Southwest Research</td>
</tr>
<tr>
<td>GU, J.-D.</td>
<td>Harvard University</td>
</tr>
<tr>
<td>MITCHELL, R.</td>
<td>MIT</td>
</tr>
<tr>
<td>MITCHELL, R.</td>
<td>MIT</td>
</tr>
<tr>
<td>GOODMAN, S.J.</td>
<td>ES41</td>
</tr>
<tr>
<td>RAGHAVAN, R.</td>
<td>USRA</td>
</tr>
<tr>
<td>WILLIAMS, E.</td>
<td>MIT</td>
</tr>
<tr>
<td>WEBER, M.</td>
<td>MIT</td>
</tr>
<tr>
<td>BOLDI, B.</td>
<td>MIT</td>
</tr>
<tr>
<td>MATLIN, A.</td>
<td>MIT</td>
</tr>
<tr>
<td>WOLFSON, M.</td>
<td>MIT</td>
</tr>
<tr>
<td>HODANISH, S.</td>
<td>NWS</td>
</tr>
<tr>
<td>SHARP, D.</td>
<td>NWS</td>
</tr>
<tr>
<td>HAGYARD, M.J.</td>
<td>ES82</td>
</tr>
<tr>
<td>HALE, J.</td>
<td>EO66</td>
</tr>
<tr>
<td>HAMILTON, G.S.</td>
<td>EO66</td>
</tr>
<tr>
<td>CAMPBELL, J.L.</td>
<td>EO66</td>
</tr>
<tr>
<td>GORACKE, B.D.</td>
<td>Boeing North American</td>
</tr>
<tr>
<td>LEVACK, D.J.H.</td>
<td>Boeing North American</td>
</tr>
<tr>
<td>JOHNSON, G.W.</td>
<td>PS03</td>
</tr>
</tbody>
</table>

Tripropellant Engine Option Comparison for Single-Stage-to-Orbit. For publication in Journal of Spacecraft and Rockets.

Microbial Biofilm Formation and Degradation of Candidate Material for the International Space Station. For presentation at 97th American Society for Microbiology General Meeting, Miami Beach, FL, May 4–8, 1997.

HAMMER, R. Kiepenheuer-Institut, Germany
NESIS, A. Kiepenheuer-Institut, Germany
MOORE, R.L. ES82
SUSS, S.T. ES82
MUSIE Lak, Z.M. UAH

HAMMON, B.A. ES84

HAMMON, B.A. ES84

HAMMON, B.A. ES84

HAMMON, B.A. ES84

HAMMON, B.A. ES84

DEAL, K.J. UAH
PACIESAS, W.S. UAH
ZHANG, S.N. USRA/ES84
ROBINSON, C.R. USRA/ES84
GERARD, E. Dept. ARPEGES, Paris
RODRIGUEZ, L.F. Mexico
MIRABEL, I.F. France

HAMMON, B.A. ES84

LAIRD, C.E. Eastern Kentucky
FISHMAN, G.J. ES84
PARNELL, T.A. ES84
CAMP, D.C. Lawrence Livermore

FREDERICK, C.E. Tennessee Valley Authority
HURLEY, D.L. Lawrence Berkeley
LINDSTROM, D.J. JSC
MOSS, C.E. Los Alamos National Lab.

HAMMON, B.A. ES84

MCCOLLOUGH, M.L.
ZHANG, S.N.
PACIESAS, W.S.
WILSON, C.A.

X-Ray Nova at 1994 in Scorpius. For presentation at IAU Circular 6196, Cambridge, MA.

HAMMON, B.A. ES84

PACIESAS, W.S.
FISHMAN, G.J.

GRS 1915+105. For publication in IAU Circular 6204, Cambridge, MA.

HAMMON, B.A. ES84

PACIESAS, W.S.
FISHMAN, G.J.

HAMMON, B.A. ES84

PACIESAS, W.S.
ZHANG, S.N.
DEAL, K.J.

GRS 1915+105. For publication in IAU Circular 6266, Cambridge, MA.

HAMMON, B.A. ES84

ROBINSON, C.R.
FISHMAN, G.J.
ZHANG, S.N.
PACIESAS, W.S.

GRO J1655-40E For publication in IAU Circular 6501. Cambridge, MA.

HAMMON, B.A. ES84

ROBINSON, C.R.
FISHMAN, G.J.
ZHANG, S.N.
PACIESAS, W.S.

HARMON, B.A. ES84
WILSON, C.A. ES84
MCCOLLOUGH, M. ES84
ZHANG, S.N. ES84
PACIESAS, W.S. ES84
ROBINSON, C.R. ES84

GRO J1655–40 and GRS 1915+105. For publication in IAU Circular No. 6436, Cambridge, MA.

HARMON, B.A. ES84
ZHANG, S.N.
PACIESAS, W.S.
MCCOLLOUGH, M.L.
ROBINSON, C.R.
WILSON, C.A.
ET AL.

HARTFIELD, R. Auburn University
DOBSON, C. EP53
ESKRIDGE, R. EP53

WEHRMeyer, J.A. Vanderbilt University

HATHAWAY, D.H. ES82
WILSON, R.M. ES82

HO, J.X. ES76
SNELL, E.H. ES76
SISK, C.R. ES76
RUBLE, J.R. ES76
CARTER, D.C. ES76
OWENS, S.M. State University of Albany
GIBSON, W.M. State University of Albany

Stationary Crystal Diffraction with a Monochromatic Convergent X-Ray Beam Source and Application for Macro-Molecular Crystal Data Collection. For publication in Acta Crystallographica.

HOLLADAY, J.B. ED62
D'AURIA, R. Alenia Aerospazio, Italy

HOOVER, R.B.

HOOVER, R.B.

HOPKINS, R.C. University of Alabama
BENZING, D.A. University of Alabama
WHITAKER, K.W. University of Alabama
POWERS, W.T. EB22
COOPER, A.E.

HORACK, J.M. ES01
TREISE, D. University of Florida

HOWARD, R.T. EB44
BRYAN, T.C. EB44
BOOK, M.L. EB44

HOWARD, R.T.
COLE, H.J.
JACKSON, J.L.
KAMERMAN, G.
FRONEK, D.

HUDSON, S.T.
MONTESDEOCOA, X.A.
Pratt & Whitney
Aerodynamic Performance Test Results of Single
Stage Oxidizer Turbine with Volute Manifolds. For
presentation at 33rd Joint Propulsion Conference,

HUDSON, T.
DOWDY, M.
BALDRIDGE, T.
NASA Strategy for Windows NT Domains. For presen-
tation at Microsoft Conference, San Diego, CA,
November 4-7, 1996.

HUETER, U.
Advanced Reusable Transportation Technologies
Project Overview. For presentation at AIAA 7th In-
ternational Space Planes & Hypersonic Systems &
Technologies Conference, Norfolk, VA, November
18-22, 1996.

HUFTER, U.
Advanced Reusable Propulsion Technologies Project
Overview. For presentation at 1996 JANNAF Propu-
lion & Joint Subcommittee Meetings, Albuquerque,
NM, December 9-13, 1996. For publication in Pro-
cedings of 1996 JANNAF Propulsion & Joint Sub-
committee Meetings, Albuquerque, NM, December
9-13, 1996.

HUFFAKER, C.F.
HALE, M.G.
Systems Technology Assessment Tool (STAT) Ca-
pability. For presentation at JANNAF Interagency
Propulsion Committee Meeting, Albuquerque, NM,
December 10, 1996.

HUNG, J.Y.
BISHOP, C.A.
POLITES, M.E.
ALHORN, D.C.
Pointing and Scanning Control of Optical Instru-
ments Using Rotating Unbalanced Masses. For pre-
sentation at American Astronautical Society Guid-
ance & Control Conference, Breckenridge, CO, Feb-
ruary 6-9, 1997.

HURST, C.J.
ROMAN, M.C.
Microbial Removal During Water Recovery Onboard
the International Space Station. For publication in
American Society for Microbiology News, Washing-
ton, DC, 1997.

HURST, C.J.
ROMAN, M.C.
Microbiological Aspects of Space Exploration: 100
Years of Life Support Research—And Counting. For
publication in American Society for Microbiology

HURST, C.J.
ROMAN, M.C.
BRITTAIN, A.B.
GARLAND, J.L.
OBENHUBER, D.C.
Center for Biospheric Education & Research
What Does the Future Hold in Terms of the Micro-
biology of Space-Based Life Support Systems? For
publication in American Society for Microbiology

INDIRESAN, R.S.
GILCHRIST, B.E.
LEBRETON, J.P.
THOMPSON, D.C.
STONE, N.H.
Simultaneous, Multi-Point, In Situ, Measurements
of Ionospheric Structures Using Space Tethers. For
publication in Geophysical Research Letters.

INTRILIGATOR, D.S.
STONE, N.H.
WINNINGHAM, J.D.
WRIGHT, K.H.
ORSINI, S.
MARCUCCI, F.
MARIANI, F.
Carmel Research Center
Southwest Research
UAH
IFSI-CNR, Italy
IFSI-CNR, Italy
University of Rome II, Italy
Analysis of Energetic Ions in the TSS-1R Satellite
Environment. For publication in Geophysical Re-
search Letters.

JARZEMBSKI, M.A.
SRIVASTAVA, V.
Low Pressure Experimental Simulation of Electrical
Discharges Above and Inside a Cloud. For publica-
tion in Journal of Atmospheric and Solar-Terres-
trial Physics, 1997.

JARZEMBSKI, M.A.
SRIVASTAVA, V.
MCCAUL, E.W., JR.
JEDLOVEC, G.J.
ES41
ES41
ES41
ES41
ATKINSON, R.J. Lockheed Martin

JARZEMBSKI, M.A. ES41
SRIVASTAVA, V. USRA
MCACAUL, E.W., JR. USRA
JEDLOVEC, G.J. ES41
ATKINSON, R.J. Lockheed Martin

JOHNSON, D.L. EL23
PEARSON, S.D. EL23
VAUGHAN, W.W. UAH
BATTs, G.W. Computer Sciences Corp.

JOHNSON, L. PS02

JOHNSON, L. PS02
BALLANCE, J. EE61

JOHNSON, L. PS02
ESTES, R. Harvard Smithsonian
LORENZINI, E. Harvard Smithsonian

JOY, M.K. ES84
Interferometric Images of the Sunyaev-Zel’dovich Effect in Galaxy Clusters from z=0.15 to z=0.83: Toward an Independent Determination of Ho and Omega. For presentations at Clusters as Cosmological Probes Workshop, Munich, Germany, October 5–10, 1997.

KANKELBORG, C.C. Montana State University
WALKER, A.B.C., II Stanford University
HOOVER, R.B. ES82
Observation and Modeling of Soft X-Ray Bright Points II: Determination of Temperature and Energy Balance. For publication in Solar Physics, Tucson, AZ.

KHAZANOV, G.V. ES83
KRIVORUTSKY, E.N. UAH
LIEMOHN, M.W. ES83
A Model for Lower Hybrid Wave Excitation Compared with Observations by Viking. For publication in Geophysical Research Letters.

KHAZANOV, G.V. ES83
LIEMOHN, M.W. ES83
Comparison of Photoelectron Theory Against Observations. For publication in Monograph, Huntsville 96 Workshop, Huntsville, AL, 1997.
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KHAZANOV, G.V.</td>
<td>UAH</td>
</tr>
<tr>
<td>LIEMOHN, M.W.</td>
<td>ES83</td>
</tr>
<tr>
<td>KRIVORUTSKY, E.N.</td>
<td>UAH</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>KHAZANOV, G.V.</td>
<td>ES83</td>
</tr>
<tr>
<td>LIEMOHN, M.W.</td>
<td>ES83</td>
</tr>
<tr>
<td>MOORE, T.E.</td>
<td>ES83</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ZIRNSTEIN, G.</td>
<td>USRA</td>
</tr>
<tr>
<td>KOMMERS, J.M.</td>
<td>MIT</td>
</tr>
<tr>
<td>LEWIN, W.H.G.</td>
<td>MIT</td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>USRA</td>
</tr>
<tr>
<td>VAN PARADIJS, J.</td>
<td>UAH</td>
</tr>
<tr>
<td>PENDLETON, G.N.</td>
<td>UAH</td>
</tr>
<tr>
<td>MEEGAN, C.A.</td>
<td>ES84</td>
</tr>
<tr>
<td>FISHMAN, G.J.</td>
<td>ES84</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>A Search for Non-Triggered Gamma Ray Bursts in the BATSE Data Base. For publication in Astrophysical Journal, Chicago, IL.</td>
<td></td>
</tr>
<tr>
<td>KOSAK, W.J.</td>
<td>ES41</td>
</tr>
<tr>
<td>SOLAKIEWICZ, R.J.</td>
<td>ES41</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightning Radio Source Retrieval. For presentation at Seminar, Chicago State University, Chicago, IL, February 12, 1997.</td>
<td></td>
</tr>
<tr>
<td>LOKLEK, W.J.</td>
<td>ES41</td>
</tr>
<tr>
<td>SOLAKIEWICZ, R.J.</td>
<td>ES41</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>KOSAK, W.J.</td>
<td>HR01</td>
</tr>
<tr>
<td>KOLODZIEJCZAK, J.J.</td>
<td>USRA</td>
</tr>
<tr>
<td>AUSTIN, R.A.</td>
<td>USRA</td>
</tr>
<tr>
<td>ELSNER, R.F.</td>
<td>ES84</td>
</tr>
<tr>
<td>O’DELL, S.L.</td>
<td>ES84</td>
</tr>
<tr>
<td>SULKANEN, M.E.</td>
<td>ES84</td>
</tr>
<tr>
<td>SWARTZ, D.A.</td>
<td>USRA</td>
</tr>
<tr>
<td>TENNANT, A.F.</td>
<td>ES84</td>
</tr>
<tr>
<td>WEISSKOPF, M.C.</td>
<td>ES01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>KOLODZIEJCZAK, J.J.</td>
<td>USRA</td>
</tr>
<tr>
<td>AUSTIN, R.A.</td>
<td>USRA</td>
</tr>
<tr>
<td>ELSNER, R.F.</td>
<td>ES84</td>
</tr>
<tr>
<td>O’DELL, S.L.</td>
<td>ES84</td>
</tr>
<tr>
<td>SULKANEN, M.E.</td>
<td>ES84</td>
</tr>
<tr>
<td>SWARTZ, D.A.</td>
<td>USRA</td>
</tr>
<tr>
<td>TENNANT, A.F.</td>
<td>ES84</td>
</tr>
<tr>
<td>WEISSKOPF, M.C.</td>
<td>ES01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LEWIN, W.H.G. MIT
GRO J1744–28. For publication in IAU Circular
6395, Cambridge, MA.

KOUVELIOTOU, C. USRA
DEAL, K. UAH
RICHARDSON, G.A. UAH
BRIGGS, M.S. UAH
FISHMAN, G.J. ES84
VAN PARADIJS, J. University of Amsterdam
GRO J1744–28. For publication in International
Astronomical Union (IAU) Circular No. 6530, Cam-
bridge, MA, 1997.

KOUVELIOTOU, C. USRA
DEAL, K.J. UAH
RICHARDSON, G.A. UAH
BRIGGS, M.S. UAH
FISHMAN, G.J. ES84
VAN PARADIJS, J. UAH

KOUVELIOTOU, C. USRA
FISHMAN, G.J. ES84
MEEGAN, C.A. ES84
VAN PARADIJS, J. Univ. of Amsterdam & UAH
BRIGGS, M.S. UAH
RICHARDSON, G. UAH
HURLEY, K. Univ. of California, Berkeley
SGR 1806–20. For publication in IAU Circular 6501,
Cambridge, MA.

KOUVELIOTOU, C. USRA
VAN PARADIJS, J. Univ. of Amsterdam & UAH
FISHMAN, G.J. ES84
MEEGAN, C.A. ES84
DIETERS, S. UAH
BRIGGS, M.S. UAH
HURLEY, K. University of California, Berkeley
MURAKAMI, T. Institute of Space
SMITH, I. Rice University
FRAIL, D. National Radio
SGR 1806–20. For publication in IAU Circular 6503,
Cambridge, MA.

LAM, S-N. Louisiana State University
QIU, H.-L. California State University
QUATTROCHI, D.A. ES41

An Evaluation of Fractal Surface Measurement
Methods Using ICAMS (Image Characterization and
Modeling System). For presentation at Auto-Carto

LANDSEA, C.W. ES82
WILSON, R.M. ES82
ET AL.

Downward Trends in the Frequency of Intense At-
lantic Hurricanes During the Past Five Decades. For
publication in Geophysical Research Letters, Wash-
ington, DC.

LANSING, M.D. EH13
WALKER, J.L. EH13
RUSSELL, S.S.
Residual Strength Prediction of Impact Damaged
Composite Structures by Optical and Acoustical
Computer Sensing and Neural Network Techniques.
For presentation at American Society for Testing and
Materials 7th Symposium on Composites, Fatigue
& Fracture, St. Louis, MO, May 6–8, 1997.

LAPENTA, W.M. ES42
LAKHTAKIA, M. Pennsylvania State
ROBERTSON, F.R. ES41
MCNIDER, R.T. UAH
SONG, A. UAH

JUVALL, J. Global Hydrology & Climate Center
Application of Remotely Sensed Data to Land
Surface/Atmosphere Coupled Modeling Issues. For pre-
sentation at 77th American Meteorological Society,

LASSITER, J.O. ED73

Modal Testing for Add-On Damping System Evalu-
ations—A Poor Man’s Approach. For publication in
Sound and Vibration Magazine, Acoustical Publica-
tions, Inc.
Jackson, T. U.S. Dept. of Agriculture
Luvall, J.C. ES41
Manu, A. Alabama A&M University

Laymon, C.A. Global Hydrology & Climate
Quattrochi, D.A. HR01
Malek, E. Utah State University
Boettinger, J. Utah State University
McCurdy, G. Desert Research Institute

Lee, J.A. EH23

Lehoczky, S.L. ES75
Gillies, D.C.
Szofran, F.R.
Watring, D.A.

Leyderman, A. New Mexico Highlands
Espinoza, M. University of Puerto Rico
Timofeeva, T. New Mexico Highlands
Clark, R. New Mexico Highlands
Frazier, D. ES76
Penn, B.G. ES76

Growth and Characterization of Crystalline Films of Meta-Nitroaniline (mNA) and 2-Cyclo-Octylamino-5-Nitropyridine (COANP). For publication in Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE).

Liemohn, M.W. ES83
Kazazanov, G.V. ES83

Liemohn, M.W. ES83
Kazazanov, G.V. ES83

Determining the Significance of Electrodynamical Coupling Between Superthermal Electrons and Thermal Plasma. For publication in Monograph, Huntsville 96 Workshop, Huntsville, AL, 1997.

Liemohn, M.W. ES83
Kazazanov, G.V. UAH

Liemohn, M.W. ES83
Kazazanov, G.V. ES83
Kozyra, J.U. University of Michigan

Liemohn, M.W. University of Michigan
Kazazanov, G.V. ES83
Moore, T.E. ES83
Gutier, S.M. UAH

Ling, J.C. JPL
Wheaton, W.A. JPL
Wallyn, P. JPL
Mahoney, W.A. JPL
Paciesas, W.S. UAH
Harmon, B.A. ES84
Fishman, G.J. ES84
Zhang, S.N. USRA
Hua, X.M. GSFC

37

LOUGHEAD, T.E.
DISCHINGER, H.C., JR.

LOWERY, J.E.
BREWER, J.C.
WHITT, T.H.
JACKSON, L.G.

LU, H-I.
MILLER, T.L.

LUMMERZHEIM, D.
BRITTNACHER, M.J.
EVANS, D.
GERMANY, G.A.
PARKS, G.K.
REES, M.H.
SPANN, J.F., JR.

LUVALL, J.C.
QUATTROCHI, D.A.
Alabama’s Urban Forests—Keeping Our Cities Cool. For publication in Alabama Treasured Forests, Montgomery, AL.

LUVALL, J.C.
QUATTROCHI, D.A.
America’s Urban Forests—Keeping Our Cities Cool.

MACH, D.M.
BLAKESLEE, R.
BUCHLER, D.
CHRISTIAN, H.J.
DRISCOLL, K.T.
GOODMAN, S.J.
KOSHAK, W.J.
RAGHAVAN, R.

MATISAK, B.
GILLIES, D.
HOWARD, R.T.

MAZURUK, K.
RAMACHANDRAN, N.
SU, C.-H.
Modification of BCF Theory Due to Step Motion. For presentation at SPIE Conference, San Diego, CA, July 27–August 1, 1997.

MAZURUK, K.
RAMACHANDRAN, N.
VOLZ, M.P.
GILLIES, D.C.

MAZURUK, K.
VOLZ, M.P.
The Lorentz Body Force Induced by a Rotating Magnetic Field. For publication in Quarterly of Applied Mathematics, Providence, RI.

MCCARTY, J.P.
LYLES, G.M.
Quality Issues in Propulsion. For presentation at
Third International Symposium on Space Propulsion
Primary and Upper Stage Propulsion Systems: From
Launch to Space Conference, Beijing, China, Au-

MCCOLLOUGH, M.L. USRA
HARMON, B.A. ES84
HJELLMING, R.M. NRAO
ROBINSON, C.R. USRA
ZHANG, S.N. USRA

Discovery in Cygnus X-3 of Correlations Between
the Hard X-Ray and the Radio. For publication in
ESA SP–382, Noordwijk, The Netherlands.

MCCOLLOUGH, M.L. USRA
ROBINSON, C.R. USRA
ZHANG, S.N. USRA
PACIESAS, W.S. UAH
HARMON, B.A. ES84
HJELLMING, R.M. NRAO/VLA
RUPEN, M. NRAO/VLA
WALTMAN, E.B. NRL
FOSTER, R.S. NRL
ET AL.
A Multiwavelength Study of Cygnus X–3. For pub-
lication in Proceedings of Fourth Compton Sym-

MCCOLLOUGH, M.L. USRA
WILSON, C.A. ES84
ZHANG, S.N. USRA
HARMON, B.A. ES84

High Energy Survey of Supernova Remnants with
BATSEF. For publication in ESA SP–382,
Noordwijk, The Netherlands.

MCCOLLUM, M.B. EL23
CLARK, T.L. EL23

Control of Unintentionally Generated RF Fields. For
presentation at IEEE 1997 Symposium on Electromag-
etic Compatibility, Austin, TX, August 18–22,
1997.

MCGAUGHEY, G. Texas A&M University
ZIPSER, E.J. Texas A&M University
SPENCER, R.W. ES01
HOOD, R.E. ES01

High Resolution Passive Microwave Observations
of Convective Systems Over the Tropical Pacific
Ocean. For publication in American Meteorological
Society Journal of Applied Meteorology.

MEEGAN, C.A. ES84
CONNAUGHTON, V. ES84
FISHMAN, G. ES84
KIPPEL, R.M. UAH
KOUVELIOTOU, C. USRA
HURLEY, K. University of California, Berkeley
CLINE, T. GSFC
PALMER, D. GSFC
BARTHELMEY, S. GSFC
ET AL.
Gamma-Ray Bursts. For publication in Central Bu-
reau for Astronomical Telegrams, Smithsonian Ast-
rophysical Observatory, Cambridge, MA.

MEEGAN, C.A. ES84
BRIGGS, M.S. UAH
HAKKILA, J. Mankato State University

Latest Results from BATSE on the Isotropy of
Gamma-Ray Bursts. For presentation at 189th Meet-
ing of the American Astronomical Society, Toronto,

MEEGAN, C.A. ES84
BRIGGS, M. UAH
HAKKILA, J. Mankato State University

Aromaticity in Multidimensional Molecules and
Their Nonlinear Optical Properties. For presentation
at 26th Southeast Theoretical Chemistry Association

MOORE, R.L. ES82
SCHMIEDER, B. Observatoire de Paris
HATHAWAY, D.H. ES82
TARBELL, T.D. Lockheed Palo Alto

3-D Magnetic Field Configuration Late in a Large Two-Ribbon Flare. For presentation at 28th Meeting of the Solar Physics Division of the AAS, Bozeman, MT, June 27–July 1, 1997.

MOORE, T.E. ES83
CHANDLER, M.O.
CHAPPELL, C.R.
CRAVEN, P.D.
GILES, B.L.
ET AL.
The High Altitude Polar Wind. For publication in Science Journal.

MOORE, T.E. ES83
CHANDLER, M.O. ES83
CRAVEN, P.D. ES83
GILES, B.L. ES83
POLLOCK, C.J. Southwest Research
DELCOURT, D.C. Centre d’Etudes

MOORE, T.E. ES83
GILES, B.L. ES83
CHANDLER, M.O. ES83
CHAPPELL, C.R. ES83
CRAVEN, P.D. ES83
SU, Y.-J. UAH
HORWITZ, J.L. UAH
POLLOCK, C.J. Southwest Research
HUNT, A. Lawrence Berkeley
Neural Net Formulations for Organically Modified,
Hydrophobic Silica Aerogel. For publication in Journal
of Materials Research, Pittsburgh, PA.

NOEVER, D.A. ES76
Technology Thresholds for Microgravity: Status and
Prospects. For presentation at 34th Space Congress,
Cocoa Beach, FL, April 29–May 2, 1997.

NOEVER, D.A. ES76
NOEVER, D.A. ES76
BRITTAIN, A.B. ES76
MATSOS, H.C. ES76
BASKARAN, S. ES76
OBENHUBER, D.C. ES76
The Effects of Variable Biome Distribution on Glo-
bal Climate. For publication in Elsevier Science, Ire-
land.

NOEVER, D.A. ES76
cronise, R.J. ES76
WESSLING, F.C. UAH
MCMANNUS, S.P. UAH
MATHEWS, J. UAH
PATEL, D. UAH
Gravitational Effects on Closed-Cellular-Foam Mi-
crostructure. For publication in Journal of Spacecraft
and Rockets.

NOVAK, H.L. USBI
HALL, P.B. EH14
Development of Environmentally Compatible Solid
Film Lubricants. For presentation at 12th Annual
Aerospace Hazardous Materials Management Con-
ference, Palm Beach, FL, August 26, 1997.

OJARD, G. United Technologies Corp.
HENNICKE, J. Cremer Forschungsinstitut
LINDE, H. Cremer Forschungsinstitut
THOMA, H. Cremer Forschungsinstitut
NEUSCHAEFER, B. CR30
MOWRER, W. United Technologies Corp.
BURSEY, R. United Technologies Corp.
CHIN, H. United Technologies Corp.
LOFTIS, J. United Technologies Corp.
Unultrasonic Evaluation of Ceramic Rolling Elements.
For presentation at 1996 JANNAF Propulsion and
Joint Subcommittee Meeting, Albuquerque, NM,
December 9–13, 1996.

ONG, K.K. UAH
MUSIELAK, Z.E. UAH

ROSNER, R. University of Chicago
SUESS, S.T. ES82
SULKANEN, M.E. ES82
Self-Consistent and Time-Dependent Solar Wind
Models. For publication in The Astrophysical Jour-
nal, Chicago, IL.

OTTE, N.E. ED01
Structural Verification of the Space Shuttle's Exter-
nal Tank Super Lightweight Design—A Lesson in
Innovation. For presentation at NASA URC Techni-
cal Conference, Albuquerque, NM, February 15–21,
1997.

PALOSZ, W. ES75
GILLIES, D. ES75
GRASZA, K. IP PAS, Poland
CHUNG, H. SUNY
RAGHOTHAMACHAR, B. SUNY
DUDLEY, M. SUNY
Characterization of Cadmium-Zinc Telluride Crys-
tals Grown by “Contactless” PVT Using Synchrotron
White Beam Topography. For publication in Journal
of Crystal Growth, Amsterdam, The Netherlands.

PALOSZ, W. USRA
GRASZA, K. IP PAS, Poland
GILLIES, D. ES75
COLLINS, E.E. Fisk University
CHEN, K.-T. Fisk University
ZHANG, Y. Fisk University
HU, Z. Fisk University
BURGER, A. Fisk University
CHUNG, H. SUNY
ET AL.
CdTe and (Cd, Zn) Te Crystals Grown by Physical
Vapor Transport: Morphology and Its Dependence
on the Growth Conditions. For presentation at 8th
International Conference on II–VI Compounds,

PALOSZ, W. USRA
GRASZA, K. IP PAS, Poland
GILLIES, D.C. ES75
GEORGE, M.A. Fisk University
COLLINS, E.E. Fisk University
CHEN, K.-T. Fisk University
ZHANG, Y. Fisk University
HU, Z. Fisk University
BURGER, A. Fisk University
ET AL.
Growth and Characterization of Cadmium-Zinc Tel-
Iuride Crystals Grown by Physical Vapor Transport. For presentation at 11th International Conference on Ternary & Multinary Compounds, Salford, United Kingdom, September 8–12, 1997.

PARNELL, T.A.

PARNELL, T.A.

PATRICK, M.C.

PEARSON, S.D.
JASPER, G.L.
VAUGHAN, W.W.
BATTs, G.W.

PENDLETON, G.N.
PACIESAS, W.S.
BRIGGS, M.S.
PREECE, R.D.
MALLOWZI, R.S.
MEEGAN, C.A.
HORACK, J.M.
FISHMAN, G.J.
HAKKILA, J.
ET AL.
The Identification of Two Different Spectral Types of Pulses in Gamma-Ray Bursts. For publication in Astrophysical Journal, Chicago, IL.

PESKOV, V.
RAMSEY, B.D.
FONTE, P.
POLITES, M.E. EB21

PRASAD, D.C. Udaipur Solar
AMBASTHA, A. Udaipur Solar
SRIVASTAVA, N. Udaipur Solar
HAGYARD, M.J. ES82

PREECE, R.D. UAH
PENDLETON, G.N. UAH
BRIGGS, M.S. UAH
MALLOZZI, R.S. UAH
PACIESAS, W.S. UAH
BAND, D.L. University of California, San Diego
MATTESON, J.L. University of California, San Diego
MEEGAN, C.A. ES84

PUSEY, M.L. ES76

PUSEY, M.L. ES76
EINHORN, D. UAH
SMITH, L.
Fluorescence Studies of Protein (Lysozyme) Crystal Nucleation. For presentation at Spacebound 97, Montreal, Quebec, Canada, May 11–14, 1997.

QIU, H.-L. California State University, LA
LAM, N. Louisiana State University
QUATTROCHI, D.A. ES41

QIU, H.-L. California State University
LAM, N.S.-N Louisiana State University
QUATTROCHI, D.A. HR01

QUATTROCHI, D.A. ES41
LAM, N.S. Louisiana State University
QIU, H.-L. Louisiana State University

QUATTROCHI, D.A. ES41

QUATTROCHI, D.A. HR01

QUATTROCHI, D.A. HR01
EMERSON, C.W. Missouri State University
LAM, N. Louisiana State University
LAYMON, C.A. HR01

QUATTROCHI, D.A. ES41

RAGHAVAN, R. ES01
GOODMAN, S.J. ES01
MEYER, P. ES01
BOLDI, B. Massachusetts Institute of Tech.
MATLIN, A. Massachusetts Institute of Tech.
WILLIAMS, E. Massachusetts Institute of Tech.
WEBER, M. Massachusetts Institute of Tech.
HODANISH, S. National Weather Service
MADURA, J. KSC
LENNON, C. KSC
A Real-Time Examination of the Incremental Value of Lightning Data in Diagnosing Convective Storm

RAMACHANDRAN, N. ES75
DOWNEY, J.P. ES75

RAMACHANDRAN, N. ES71
LESLIE, F. ES71

RAMSEY, B.D. ES84
New Developments for Experimental X-ray Astronomy. For publication in Department d’Astrophysique, physique des Particules, physique Nucleaire et Instrumentation Associee (DAPNIA), France.

RAY, C.D. ED62
CARRASQUILLO, R.L. ED62

REAGAN, S. EL24

RICHARDS, S. PF02
LYLES, G.M. DA01
SMITH, D. PF02

ROBERTSON, M. PS04
The NASA Solid Propulsion Integrity Program (SPIP) Nozzle Information System (NIS) CD-ROM Database. For presentation at JANNAF Conference, Albuquerque, New Mexico, December 9–13, 1996.

ROBERTSON, F.R. HR01

ROBINSON, C.R. ES84
HARMON, B.A. ES84
PACIESAS, W.S. ES84
DEAL, K.J. ES84
ZHANG, S.N. ES84
MCCOLLOUGH, M.L. ES84
WILSON, C.A. ES84
GRS 1915+105. For publication in IAU Circular No. 6651, Cambridge, MA.

ROBINSON, C.R. USRA
ZHANG, S.N. USRA
MCCOLLOUGH, M.L. USRA
HARMON, B.A. ES84
DIETERS, S. UAH
PACIESAS, W.S. UAH
TAVANI, M. Columbia University
FENDER, R.P. Sussex University
POOLEY, G.G. Cambridge University
ET AL.
GRS 1915+105. For publication in International Astronomical Union (IAU) Circular No. 6651, Cambridge, MA.

ROBINSON, M.J. McDonnell Douglas
STOLTZBUS, J.M. White Sands Test Facility
OWENS, T. EH43

RODRIGUEZ, P. EL01
FROST, C.L. EL01
GARRETT, H. JPL
KINARD, W. LaRC
NASA Meteoroid and Orbital Debris Technology Program: An Overview. For presentation at Second
European Conference on Space Debris, Darmstadt, Germany, March 17–19, 1997.

ROGERS, M.N. EO26

ROGERS, P. EH22
BYNUM, J. EH22
SHAH, S. EH22

ROMAN, M.C. ED62
MINTON-SUMMERS, S. ION Corp.

ROMAN, M.C. ED62

ROOSZ, A. University of Miskolc, Hungary
WATRING, D.A. ES75
ROOSZ, T. University of Miskolc, Hungary
TELESZKY, I. University of Miskolc, Hungary
TOTH, L. University of Miskolc, Hungary
A New Technology to Produce Shaped Cast Single Crystals. For presentation at SP 97, 4th Decennial International Conference on Solidification Processing, Sheffield, United Kingdom, July 7–10, 1997.

ROTHERMEL, J. Global Hydrology & Climate
CUTTEN, D.R. UAH
HARDESTY, R.M. NOAA
MENZIES, R.T. JPL
HOWELL, J.N. NOAA
JOHNSON, S.C. HR01
TRATT, D.M. JPL
OLIVIER, L.D. NOAA
BANTA, R.M. NOAA
The Multi-Center Airborne Coherent Atmospheric

ROTHERMEL, J. ES41
CUTTEN, D.R. UAH
HARDESTY, R.M. NOAA Env. Tec. Lab.
HOWELL, J.N. NOAA Env. Tec. Lab.
MENZIES, R.T. JPL
TRATT, D.M. JPL
JOHNSON, S.C. MSFC

ROTHERMEL, J. ES01
HARDESTY, R.M. National Oceanic & Atmospheric Administration
MENZIES, R.T. JPL
HOWELL, J.N. National Oceanic & Atmospheric Administration
TRATT, D.M. JPL
JOHNSON, S.C. ES01
CUTTEN, D.R. UAH

ROVIRA, M. IAFE
FONTENLA, J.M.
REICHMANN, E.J. ES01
TANDBERG-HANSSEN, E. ES01

RUF, J. ED32

RUF, J. ED32

RUSSELL, S.S. EH13
LANSING, M.D. UAH
Neural Network Prediction of Failure of Damaged

RYAN, R.S. ED01
LASSITER, J.O. ED73
Shock and Vibration in the National Aeronautics and Space Administration. For publication in Fifty Years of Shock and Vibration Technology, SAVIAC, SVM No. 15, November 1996.

RYAN, R.S. ED01
TOWNSEND, J.S. ED23

SADER, S. HR01
REINING, C. HR01
SEVER, T.L. HR01
SOZA, C. HR01

SAHOO, N.K. EB52
SHAPIRO, A.P. EB52

SCHONBERG, W.P. UAH
SERRANO, J. UAH
WILLIAMSEN, J.E. ED52
An Internal Effects Model for Spacecraft Modules Perforated by Orbital Debris. For publication in AIAA Journal of Spacecraft and Rockets.

SCHONBERG, W.P. UAH
WILLIAMSEN, J.E. ED52
Cracking Characteristics of Dual-Wall Structures Following Simulated Orbital Debris Particle Impact. For publication in Journal of Spacecraft and Rockets.

SCHUTZENHOFER, L.A. UAH
HAVRISIK, D.M. ED24

SCOTT, D.M. ES84/USRA
FINGER, M.H. ES84/USRA
WILSON, R.B. ES84
KOH, D.T. California Institute of Tech.
PRINCE, T.A. California Institute of Tech.
VAUGHAN, B.A. California Institute of Tech.
CHAKRABARTY, D. Massachusetts Inst. of Tech.

SCOTT, M. USRA
FINGER, M.H. USRA
WILSON, R.B. ES84
PRINCE, T.A. California Institute of Tech.
VAUGHAN, B.A. California Institute of Tech.
4U 0115+634. For publication in IAU Circular No. 6450, Cambridge, MA.

SEN, S. USRA
KAUKLER, W.K. UAH
CURRERI, P.A. ES75
STEFANESCU, D.M. University of Alabama
Dynamics of Solid/Liquid Interface Shape Evolution Near an Insoluble Particle—A X-Ray Transmission Microscopy Investigation. For publication in Metallurgical Transaction, Pittsburgh, PA.

SEN, S. USRA
KAUKLER, W.K. UAH
CURRERI, P.A. ES75
<table>
<thead>
<tr>
<th>Authored By</th>
<th>Institution</th>
<th>Title</th>
<th>Conference/Event Details</th>
</tr>
</thead>
</table>
SONG, P. University of Michigan
KOZYRA, J.U. University of Michigan
CHANDLER, M.O. ES83
MOORE, T.E. ES83
RUSSELL, C.T. UCLA
Polar Observations of Magnetosheath Plasmas: TIDE Measurements of Thermal Plasma Properties. For publication in Journal IAGA.

SORENSEN, J.E. UAH
STONE, N.H. ES83
WRIGHT, K.H. UAH
Change in Ion Distribution Function While Crossing the Space Shuttle Wake. For publication in Journal of Geophysical Research.

SPANN, J.F. ES83
GERMANY, G. UAH
BRITTNACHER, M.J. University of WA, Seattle
PARKS, G.K. University of WA, Seattle
ELSEN, R. University of WA, Seattle

SPANN, J.F. ES83
GERMANY, G. UAH
SWIFT, W. UAH
PARKS, G.K. University of Washington
BRITTNACHER, M.J. University of Washington
ELSEN, R. University of Washington

SPANN, J.F. ES83
Ultraviolet Images of the Global Aurora from the POLAR Spacecraft. For presentation at Colloquium at the University of Arkansas, Fayetteville, AR, February 14, 1997.

SPENCER, R.W. ES41
GLOBAL WARMING: WHAT WE DO AND DO NOT KNOW. For presentation at Central Alabama Section of the American Institute of Chemical Engineers, Birmingham, Alabama, May 20, 1997.

SPENCER, R.W. HR01

SPENCER, R.W. ES41
BRASWELL, W.D. Nichols Research Corp.
Hydrometeor Influence On, and Lapse Rate Changes Inferred from, the MSU Temperature Record. For presentation at 77th American Meteorological Society, Long Beach, California, February 2–7, 1997.

SPENCER, R.W. ES41
BRASWELL, W.D. Nichols Research Corp.
How Dry is the Tropical Free Troposphere? Implications for Global Warming Theory. For publication in Bulletin of the American Meteorological Society, December 1996.

SPONABLE, J. USAF
DUMBACHER, D. RA20
SHELL, D. USAF
The DC-X Graphically Demonstrated That Aircraft-Like, Cheap Access to Space is Possible Today. For publication in Aerospace America, October 1997.

SPRINGER, A.M. ED34
COOPER, K. ED34

SPRINGER, A.M. ED34
COOPER, K.
Application of Rapid Prototyping Methods to High Speed Wind Tunnel Testing. For presentation at Supersonic Tunnel Association 83rd Semi-Annual Meeting, Cleveland, OH, October 20–22, 1996.

SRIVASTAVA, V. USRA
CLARKE, A.D. University of Hawaii
JARZEMSKI, M.A. ES41
ROETHERMEL, J. ES41

STARK, B.A. ES82
MUSIELAK, Z.E. UAH
SUESS, S.T. ES82
Alfven Wave Resonances and Flow Induced by Non-linear Alfven Waves in a Stratified Atmosphere. For publication in Solar Wind 8, American Institute of Physics, New York, NY.

STEELE, J.W. Hamilton Standard
GRABOWSKI, N. Hamilton Standard
PARKER, D. Hamilton Standard
HOLDER, D. ED62

STOLLBERG, M.T. UAH
FINGER, M.H. USRA
WILSON, R.B. ES84
SCOTT, M. USRA
CRARY, D.J. USRA
PACIESAS, W.S. UAH

STONE, N.H. ES83
BONIFAZI, C.A. Agenzia Spaziale Italiana
The TSS–1R Mission: Overview and Scientific Context. For publication in Geophysical Research Letter.

STONE, N.H. ES83
WRIGHT, K.H. UAH
SAMIR, U. Tel Aviv University
WINNINGHAM, J.D. Southwest Research

SU, C.-H. ES75

SU, C.-H. ES75
SHA, Y.-G. USRA
Segregation Coefficients of Impurities in Selenium by Zone Refining. For publication in Journal of Crystal Growth, Amsterdam, Netherlands.

SU, C.-H. ES75
SHA, Y.-G. USRA
LEHOCZKY, S.L. ES75
LIU, H.-C. Marquette University
FANG, R. Marquette University
BREBRICK, R.F. Marquette University

SUCESS, S.T. ES82

SUCESS, S.T. ES82

SUCESS, S.T. ES82
POLETTO, G. Osservatorio Astrofisico di Arcetri, Italy
WANG, S.-H. UAH
CUSERI, I. Osservatorio Astrofisico di Arcetri, Italy
WU, S.T. UAH
STEINOLFSON, R.S.
The Geometric Spreading of Coronal Plumes and Coronal Holes. For publication in Journal of Geophysical Research, Washington, DC.

SUCESS, S.T. ES82
POLETTO, G. Osservatorio Astrofisico di Arcetri, Italy
WANG, S.-H. UAH
CUSERI, I. Osservatorio Astrofisico di Arcetri, Italy
WU, S.T. UAH
STEINOLFSON, R.S.
The Geometric Spreading of Coronal Plumes and Coronal Holes. For publication in Journal of Geophysical Research, Washington, DC.

SUGGS, R.J. ES41
JEDLOVEC, G.J. ES41
GUILLORY, A.R. ES41

SUNKARA, H.B. National Research Council
PENN, B.G. ES01
FRAZIER, D.O. ES01
RAMACHANDRAN, N. USRA

SUNKARA, H.B. ES01
RAMACHANDRAN, N. ES01
FRAZIER, D.O. ES01
Penn, B.G.

Swanson, G.R.
Zachary, I.W.
Iowa State University

Tandberg-Hanssen, E.

Tatara, J.D.
Roman, M.

Thom, R.L.

Thomas, L.D.
Mog, R.A.
OR Applications

Tinker, M.L.
Cutchins, M.A.
Auburn University

Traweek, M.S.
Tatara, J.D.
ION Corp.

Trotz, D.H.

Trotz, D.H.

Tucker, D.S.
Efforts of Gravitation on Heavy Metal Fluoride Fibers. For publication in Applied Physics Letters, Argonne, IL.

Turner, J.E.
Hueter, U.

Tuyn, G.
Bristol Aerospace Limited, Canada
Vigneron, F.
Canadian Space Agency
Jablonski, A.
Canadian Space Agency
James, H.G.
Communications Research Center
Carrington, C.
PD12
Rupp, C.
PS02
TYGIELSKI, RJ. EP43

VAN DYKE, M. PD24
MARTIN, C. EP12

VAN PARADIJS, J. UAH
GROOT, P.J. University of Amsterdam
GALAMA, T. University of Amsterdam
KOUVELIOTOU, C. USRA
STROM, R.G. Netherlands Foundation
TELTING, J. Netherlands Foundation
RUTTEN, R.G.M. Netherlands Foundation
FISHMAN, G.J. ES81
MEEGAN, C.A. ES81
ET AL.
Transient Optical Emission From the Error Box of the y-Ray Burst of 28 February 1997. For publication in Nature, Washington, DC.

VANNARONI, G. IFSI–CNR, Italy
DOBROWOLNY, M. ASI, Italy
LEBRETON, J.P. ESA, Netherlands
MELCHIONI, E. RMR, Italy
DE VENUTO, F. IFSI–CNR, Italy
GUIDONI, U. ASI, Italy
HARVEY, C. Observatoire de Paris–Meudon, France
LESS, L. Universita La Sapienza, Italy
STONE, N.H. ES83
ET AL.

VANNARONI, G. IFSI–CNR, Italy
LEBRETON, J.P. ESA, Netherlands
DOBROWOLNY, M. AST, Italy
DE VENUTO, F. IFSI–CNR, Italy
COUTOURIER, S. ESA, Netherlands
WINNINGHAM, J.D. Southwest Research
STONE, H.H. ES83
POLETTO, G. Osservatorio Astrofisico di Arcetri, Italy

WANG, T.-S. ED32

WANG, T.-S. ED32
CORNELISON, J. ED32
Analysis of Flowfields over Four-Engine DC–X Rockets. For publication in Journal of Spacecraft & Rockets, Washington, DC.

WATSON, M.D. EB52
ABUSHAGUR, M.A.G. UAH
ASHLEY, P.R. U.S. Army Missile Command
JOHNSON-COLE, H. EB53

WEHRMEYER, J.A. EP12
CRAMER, J.M. EP12
DOBSON, C.C. EP12
ESKRIDGE, R.H. EP12

WEHRMEYER, J.A. EP12
CRAMER, J.M. EP12
ESKRIDGE, R.H. EP12
DOBSON, C.C. EP12

WEISSKOPF, M.C. ES83
ELSNER, R.F. ES83
JOY, M.K. ES83
O’DELL, S.L. ES83

WEISSKOPF, M.C. ES01
O’DELL, S.L. ES84

WESCHER, E.M. University of Alaska
SENTMAN, D.D. University of Alaska
HEAVNER, M.J. University of Alaska
HAMPTON, D.L. Ball Aerospace & Tech.
VAUGHAN, O.H., JR. ES41
Blue Jets: Their Relationship to Lightning and Very Large Hailfall, and Physical Mechanisms for Their Production. For publication in Journal of Atmospheric and Terrestrial Physics.

WESTRA, D.G. ED62
KNOWLES, T.R. Energy Sciences Labs

WESTRA, D.G. ED62
PENSWICK, L.B. Stirling Technology
OLAN, R.W. Stirling Technology

WHORTON, M.S. ED12
CALISE, A.J. Georgia Institute of Tech.

WHORTON, M.S. ED12
CALISE, A.J. Georgia Institute of Tech.
HSU, C.-C. Georgia Institute of Tech.
A Study of Fixed Order Mixed Norm Designs for a Benchmark Problem in Structural Control. For pub-
lication in Earthquake Engineering and Structural Dynamics, 1997.

WIELAND, P. ED62

WILKERSO, G.W. Micro Craft, Inc.
HUEGEL, V. EB52

WILLIAMS, E. MIT
GOODMAN, S.J. HR01
RAGHAVAN, R. HR01
BOLDI, R. MIT
MATLIN, A. MIT
WEBER, M. MIT
HODANISH, S. NWS
SHARP, D. NWS

WILLIAMSEN, J. ED52
SCHONBERG, W. UAH

WILSON, C.A. ES84
DIETERS, S. UAH
SCOTT, D.M. USRA
FINGER, M. ES84
VAN PARADIJS, J. UAH

WILSON, C.A. ES84
FINGER, M.H. USRA
HARMON, B.A. ES84
WILSON, R.B. ES84
CHAKRABARTY, D. MIT
STROHMAYER, T. USRA

WILSON, C.A. ES84
FINGER, M.H. GSFC
HARMON, B.A. ES84
SCOTT, D.M. USRA
WILSON, R.B. ES84
BILDSTEN, L. University of California
CHAKRABARTY, D. MIT
PRINCE, T.A. California Institute of Tech.

WILSON, C.A. ES84
FINGER, M.H. USRA
SCOTT, D.M. USRA

WILSON, C.A. ES84
STROHMAYER, T. USRA
CHAKRABARTY, D. Massachusetts Institute of Tech.
GRO J2058+42. For publication in IAU Circular No. 6514, Cambridge, MA.

WILSON, G.R. ES83
CRAVEN, P.D. ES83

WILSON, G.R. ES83
KHAZANOV, G.V. ES83
HORWITZ, J.L. UAH
Achieving Zero Current for Polar Wind Outflow on Open Flux Tubes Subjected to Large Photoelectron
WILSON, G.R. ES83
PEREZ, J.D. Auburn University

WILSON, R.B. ES84
CHAKRABARTY, D. Massachusetts Institute of Tech.
GX 1+4. For publication in IAU Circular No. 6536, Cambridge, MA.

WILSON, R.B. ES84
HARMON, B.A. ES84
SCOTT, D.M. ES84
FINGER, M.H. ES84
ROBINSON, C.R. ES84
CHAKRABARTY, D. Massachusetts Institute of Tech.
PRINCE, T.A. California Institute of Tech.
GS 1843+00. For publication in IAU Circular No. 6586, Cambridge, MA.

WILSON, R.B. ES84
SCOTT, D.M. ES84
FINGER, M.H. ES84
Long-Term Observations of Her X–1 with BATSE. For presentation at 4th Compton Symposium, Williamsburg, VA, April 27–30.

WILSON, R.M. ES82
HATHAWAY, D.H. ES82
REICHMANN, E.J. ES82

WILSON, R.M. ES82
HATHAWAY, D.H. ES82
REICHMANN, E.J. ES82

WINGARD, C.D. EH32

WINGARD, C.D. EH32

WINNINGHAM, J.D. Southwest Research
STONE, N.H. ES83
GURGIOLIO, C.A. Bitterroot Basic Research
WRIGHT, K.H. UAH
FRAHM, R.A. Southwest Research
BONIFAZI, C.A. Agenzia Spaziale Italiana
Suprathermal Electrons Observed on the TSS1–R Satellite. For publication in Geophysical Research Letters.

WRIGHT, K.H. UAH
STONE, N.H. ES83
SAMIR, U. Tel Aviv University
SORENSEN, J. UAH
WINNINGHAM, J.D. SwRI

WRIGHT, K.H., JR. UAH
STONE, N.H. ES83
SORENSEN, J.E. UAH
WINNINGHAM, J.D. Southwest Research
GURGIOLIO, C.A. Bitterroot Basic Research

WRIGHT, K.H., JR. UAH
STONE, N.H. ES83
SORENSEN, J.E. UAH
WINNINGHAM, J.D. SwRI
GURGIOLIO, C. Bitterroot Basic Research
Observations of Reflected Ions and Plasma Turbu-

WU, S.S. ES41

WEST, M. Southwest Research
BURCH, J.L. Southwest Research
YOUNG, D.T. Southwest Research
HUGGLETON, M. Southwest Research
DEMPSEY, D.L. Southwest Research
GILES, B.L. ES83
NORDHOLT, J.E. Los Alamos National
BALISCHER, H. Universitat Bern
JOHNSTONE, A. University College London
SHELLEY, E.G. Lockheed Martin

Upflowing Ions in the Southern Auroral Zone Observed with TIDE and TIMAS on the POLAR Spacecraft. For publication in American Geophysical Union 1996 Fall Meeting, San Francisco, CA, December 1996.

YU, W. Institute of High Energy
ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
REMILLARD, R.E. Massachusetts Institute of Tech.
VAN PARADIJS, J. University of Amsterdam
UY, W. Institute of High Energy

ZHANG, T.X. UAH
HWANG, K.S. UAH
WU, S.T. Computer Sciences Corp.
STONE, H.H. ES83

Current Collection in Space Using Modified Parker-Murphy Model. For publication in Geophysical Research Letters.

ZHANG, T.X. UAH
HUANG, K.S. UAH
WU, S.T. Computer Sciences Corp.
QIU, H.-L. California State University
QUATTROCHI, D.A. ES41

ZHANG, T.X. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
REMILLARD, R.E. Massachusetts Institute of Tech.
VAN PARADIJS, J. University of Amsterdam
UY, W. Institute of High Energy

ZHANG, T.X. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
REMILLARD, R.E. Massachusetts Institute of Tech.
VAN PARADIJS, J. UAH

<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECHNICAL MEMORANDA</td>
</tr>
<tr>
<td>Abdeldayem, H.A.</td>
</tr>
<tr>
<td>Beck, S.W.</td>
</tr>
<tr>
<td>Bhat, B.</td>
</tr>
<tr>
<td>Blackman, M.</td>
</tr>
<tr>
<td>Campbell, J.W.</td>
</tr>
<tr>
<td>Chen, P.S.</td>
</tr>
<tr>
<td>Cole, H.E.</td>
</tr>
<tr>
<td>Curtis, L.A.</td>
</tr>
<tr>
<td>Edwards, D.L.</td>
</tr>
<tr>
<td>Faile, G.C.</td>
</tr>
<tr>
<td>Finckenor, M.M.</td>
</tr>
<tr>
<td>Franks, G.D.</td>
</tr>
<tr>
<td>Frazier, D.O.</td>
</tr>
<tr>
<td>Frost, C.L.</td>
</tr>
<tr>
<td>Galuska, M.J.</td>
</tr>
<tr>
<td>Hayashida, K.B.</td>
</tr>
<tr>
<td>Herrmann, M.</td>
</tr>
<tr>
<td>James, J.T.</td>
</tr>
<tr>
<td>Johnson, L.</td>
</tr>
<tr>
<td>Jones, J.C.</td>
</tr>
<tr>
<td>Kamenetzky, R.R.</td>
</tr>
<tr>
<td>Kier, Isabella</td>
</tr>
<tr>
<td>Kissel, R.R.</td>
</tr>
<tr>
<td>Knox, J.C.</td>
</tr>
<tr>
<td>Lajoie, R.M.</td>
</tr>
<tr>
<td>Lansing, M.D.</td>
</tr>
<tr>
<td>Lee, H.M.</td>
</tr>
<tr>
<td>Limero, T.F.</td>
</tr>
<tr>
<td>Little, S.</td>
</tr>
<tr>
<td>Meshishnek, M.J.</td>
</tr>
<tr>
<td>Mitchell, M.L.</td>
</tr>
<tr>
<td>Noever, D.A.</td>
</tr>
<tr>
<td>Nunes, A.C., Jr.</td>
</tr>
<tr>
<td>O’Dell, D.</td>
</tr>
<tr>
<td>Paley, M.S.</td>
</tr>
<tr>
<td>Penn, B.G.</td>
</tr>
<tr>
<td>Perry, J.L.</td>
</tr>
<tr>
<td>Russell, C.</td>
</tr>
<tr>
<td>Russell, S.S.</td>
</tr>
<tr>
<td>Ryan, S.G.</td>
</tr>
<tr>
<td>Simonds, J.</td>
</tr>
<tr>
<td>Smith, D.D.</td>
</tr>
<tr>
<td>Stanton, W.P.</td>
</tr>
<tr>
<td>Steadman, J.</td>
</tr>
<tr>
<td>Steeve, B.E.</td>
</tr>
<tr>
<td>Stocks, C.</td>
</tr>
<tr>
<td>Summers, F.G.</td>
</tr>
<tr>
<td>Sutherland, W.T.</td>
</tr>
<tr>
<td>Tomlin, D.D.</td>
</tr>
<tr>
<td>Turner Waits, Joyce E.</td>
</tr>
<tr>
<td>Underwood, D.</td>
</tr>
<tr>
<td>Van Dyke, M.K.</td>
</tr>
<tr>
<td>Vaughn, J.</td>
</tr>
<tr>
<td>Vaughn, J.A.</td>
</tr>
<tr>
<td>Wagner, C.Y.</td>
</tr>
<tr>
<td>Wertz, G.E.</td>
</tr>
<tr>
<td>Whitaker, A.</td>
</tr>
<tr>
<td>Wilkerson, C.</td>
</tr>
<tr>
<td>Winter, C.A.</td>
</tr>
<tr>
<td>Witherow, W.K.</td>
</tr>
<tr>
<td>Woodard, D.</td>
</tr>
<tr>
<td>Woodcock, G.R.</td>
</tr>
<tr>
<td>Yost, V.H.</td>
</tr>
<tr>
<td>Zwiener, J.M.</td>
</tr>
<tr>
<td>TECHNICAL PUBLICATIONS</td>
</tr>
<tr>
<td>Barret, C.</td>
</tr>
<tr>
<td>Bartlow, B.E.</td>
</tr>
<tr>
<td>Biss, E.J.</td>
</tr>
<tr>
<td>Burns, R.E.</td>
</tr>
<tr>
<td>Danford, M.D.</td>
</tr>
<tr>
<td>Hathaway, D.H.</td>
</tr>
<tr>
<td>Nettles, A.T.</td>
</tr>
<tr>
<td>Polites, M.E.</td>
</tr>
<tr>
<td>Reichmann, E.J.</td>
</tr>
<tr>
<td>Wilson, R.M.</td>
</tr>
<tr>
<td>CONFERENCE PUBLICATIONS</td>
</tr>
<tr>
<td>Boesiger, E.A.</td>
</tr>
<tr>
<td>Brewer, J.C.</td>
</tr>
<tr>
<td>Clark-Ingram, M.</td>
</tr>
<tr>
<td>Foster, C.L.</td>
</tr>
<tr>
<td>Hessler, S.I.</td>
</tr>
<tr>
<td>McCauley, D.</td>
</tr>
<tr>
<td>Szofran, F.</td>
</tr>
<tr>
<td>Walker, C.</td>
</tr>
<tr>
<td>Whitaker, A.F.</td>
</tr>
<tr>
<td>REFERENCE PUBLICATIONS</td>
</tr>
<tr>
<td>Alexander, M.B.</td>
</tr>
<tr>
<td>Alexander, M.</td>
</tr>
<tr>
<td>Belk, C.</td>
</tr>
<tr>
<td>Cooke, W.</td>
</tr>
<tr>
<td>Cooke, W.</td>
</tr>
<tr>
<td>Herrmann, M.</td>
</tr>
<tr>
<td>Johnson, L.</td>
</tr>
</tbody>
</table>
CONTRACTOR REPORTS

AI Signal Research, Inc ... 16
Auburn University ... 15
C.J. Associates, Inc .. 14
Camber Corporation... 16
Control Dynamics .. 14
ERC, Incorporated .. 14
GB Tech, Inc ... 14
Martin Marietta ... 15
Mississippi State University .. 15
Northeast Science & Technology ... 15
Oakwood College .. 15
Ohio State University .. 16
Pennsylvania State University ... 15
Princeton Synergetics, Inc ... 17
Rockwell International ... 15
Sigmatech, Inc .. 15
Southwest Research Institute .. 14, 15, 16
Stuckey, M .. 14
Tec-Masters, Inc ... 14
University Of Alabama In Huntsville .. 14, 15, 16
University Of Colorado .. 14
University Of Wisconsin-Madison .. 16

PAPERS CLEARED FOR PRESENTATION

Abdeldayem, H .. 18
Abramov, L.H .. 24
Abushagur, M.A.G ... 52
Adams, M .. 18
Adler, R .. 47
Adrian, M.L .. 18
Aggarwal, M.D .. 20
Albin, M ... 30
Alexander, H.A ... 29
Alhorn, D.C .. 18, 33
Alishouse, J ... 47
Allen, M.J ... 18
Allen, R.W ... 18
Ambastha, A ... 43
Anzajerdian, F .. 18
Andretta, V ... 27
Antipin, M.Y .. 19
Aonishi, K ... 47
Armstrong, T.W .. 19
Arnold, J.E .. 40
Arnoldy, R.L .. 18
Ashley, P.R ... 29, 47, 52
Atkinson, R.J .. 19, 34
Augusteijn, T .. 19
Austin, R.A ... 35
Baldridge, T .. 19, 33
Ballance, J .. 34
Balogh, A .. 40
Balsiger, H .. 55
Bane, S .. 30
Band, D.L .. 43
Banks, C.E ... 18
Banta, R.M .. 45
Barbee, T.W., Jr .. 18
Barr, T.J ... 19
Barret, C ... 19
Barret, D ... 27, 55
Barrett, E ... 47
Barry, R.G ... 19
Barthelmy, S .. 39
Baskaran, S .. 19, 40, 41
Batts, G.W .. 34, 42
Bauer, P .. 47
Beech, G ... 20
Belisle, W ... 36
Bennett, K ... 28
Benz, K.W ... 23
Benzing, D.A .. 32
Berg, W .. 47
Berthold, R ... 25
Bhat, B.N ... 20
Bhat, K .. 20
Bianchi, J.F ... 21
Bilbro, J.W ... 20
Bildsten, L ... 53
Bilen, S.G ... 29
Bishop, C.A ... 33
Blakeslee, R.J .. 20, 25, 38
Blanco, P ... 19
Bloser, P ... 27, 55
Blue, L ... 20
Bouttnier, L.A .. 23
Boccippio, D.J ... 20, 22, 25
Boeck, W.L ... 20
Boettinger, J .. 37
Boggon, T.J ... 47
Boldi, B ... 30, 43
Boldi, R ... 20, 53
Bonifazi, C.A .. 22, 29, 49, 54
Bonnell, J ... 18
Book, M.L ... 32
Bookout, P.S .. 24
Bordelon, W .. 55
Boucher, R.	25
Bowden, M.	25
Bowdle, D.A	24
Boyd, R.W.	47
Brady, R.P.	20
Brantley, W.	40
Braswell, W.D.	48
Brebrick, R.F.	49
Brewer, J.C.	38
Briggs, M.S.	19, 35, 36, 39, 42
Brittain, A.B.	33
Brittnacher, M.J.	20, 24, 29, 38, 49
Brook, M.	20
Brosius, J.W.	27
Brown, D.G.	20
Bruner, M.E.	21
Brunty, J.	22
Bryan, T.C.	32
Bryer, P.J.	21
Buechler, D.	20, 38
Bullington, J.V.	21, 26
Bune, A.V.	21
Buntine, W.	23
Burch, J.L.	55
Burger, A.	41
Burke, W.J.	29
Burns, H.D.	21
Bursey, R.	41
Butler, B.L.	44
Bynum, J.	25, 45
Calise, A.J.	52
Camp, D.C.	31
Campbell, J.L.	30
Campbell, J.W.	21
Cardenlino, B.H.	19, 20, 21, 39, 40
Carrasquillo, R.L.	21, 26, 44
Carrington, C.	21, 50
Carter, D.C.	32
Carter, D.L.	21
Carter, R.N.	21
Cash, M.B.	22
Cassell, G.H.	30
Chakrabarty, D.	46, 53, 54
Chandler, K.O.	20, 22
Chandler, M.O.	22, 23, 25, 26, 29, 40, 48
Chang, C.L.	22
Chappell, C.R.	22, 40
Chen, K.-T.	41
Chen, L.	20, 29
Chin, H.	41
Chiston, S.P.	23
Choi, J.	20
Chou, S.-H.	22
Christensen, E.R.	22
Christenson, R.	35
Christian, H.J.	20, 22, 25, 38
Christl, M.C.	22
Chu, T.P.	20
Chung, H.	41
Clark, R.D.	19
Clark, R.	37
Clark, T.L.	22, 39
Clarke, A.D.	24, 48
Clark-Ingram, M.	23
Clayton, J.L.	22
Cline, T.	39
Coffey, V.N.	22, 23, 35
Colborn, B.L.	19
Cole, H.J.	29, 32, 47
Coleman, H.W.	24
Coleman, T.	36
Collins, E.E.	41
Comfort, R.H.	23, 25, 26, 28
Connaughton, V.	39
Conover, H.	25
Cook, M.B.	23
Cooper, A.E.	23, 32
Cooper, K.	48
Cornelison, J.	52
Corrigan, D.P.	23
Corti, G.	42
Coulter, D.D.	20
Coutourier, S.	51
Craft, H.G., Jr.	30
Cramer, J.M.	52
Crary, D.J.	49
Craven, P.D.	22, 23, 25, 26, 28, 29, 40, 53
Crawford, K.	20
Croll, A.	23
Cronise, R.J.	41, 47
Crosson, W.	36
Cui, W.	55
Cumber, J.	29
Curreri, P.A.	23, 24, 34, 46
Curtis, R.E.	24
Cuskeri, I.	49
Cutchen, M.A.	24, 50
Cutten, D.R.	24, 45
D'auria, R.	32
Dabney, R.	25
Darby, S.P.	24, 34
Darden, J.M.	24
Davila, J.M.	26, 27
Davis, J.M.	24, 28
De Venuto, F.	51
Deal, K.J.	31, 35, 36, 44
Dean, W.C.	24
Delcourt, D.C.	22, 40
Dempsey, D. ... 23
Dempsey, D.L. .. 55
Dieters, S. .. 36, 34, 53
Dietz, K.L. ... 19
Dischinger, H.C., Jr. .. 24, 38
Dobrowolny, M. .. 51
Dobson, C.C. .. 32, 52
Doe, R.A. ... 24
Dold, P. .. 23
Dong, P. .. 25
Dowdy, M. ... 33
Drewry, M. ... 25
Driscoll, K.T. .. 20, 22, 25, 38
Drobat, A.T. ... 22
Dudley, M. ... 41
Dumas, J. ... 25
Dumbacher, D. ... 48
Dwyer, B. .. 25
Earhart, E.M. .. 24
Edberg, D. .. 25
Edwards, D.L. .. 25
Effinger, M.R. ... 25, 29
Einhorn, D. ... 43
Elliott, H.A. .. 23, 25, 26
Elsen, R. .. 20, 29, 48
Elsner, F. .. 26, 35, 52
Emerson, C.W. ... 26, 43
Engle, J. .. 21, 26
Erickson, R.J. ... 26
Eskridge, R.H. ... 32, 52
Espinoso, M. .. 37
Estes, R. ... 34
Evans, D.M. .. 26, 38
Ewing, F. .. 26
Fahsit, A. ... 36
Falconer, D.A. ... 26, 27
Fang, R. .. 49
Farhangi, S. ... 50
Frazier, D.O. .. 18
Fender, R.P. ... 44
Finckenor, J. .. 27
Finger, M.H. ... 35, 46, 49, 53, 54
Fischer, G. .. 47
Fisher, M.F. ... 27
Fisher, S.C. ... 50
Fishman, G.J. ... 19, 27, 28, 32, 35, 36, 37, 42, 51
Flowers, G.T. ... 24
Fok, M.C. ... 27
Fonte, P. .. 42
Fontenla, J.M. .. 27, 45
Ford, E.C. .. 27, 55
Forsythe, E. ... 27
Foster, R.S. .. 39
Foster, W.A., Jr. .. 28
Foster, C.L. ... 27
Fountain, W.F. ... 22
Fragomeni, J.M. .. 28
Frahm, R.A. ... 54
Frail, D. .. 36
Frazier, D. .. 37
Frazier, D.O. ... 18, 20, 21, 39, 40, 49
Frederick, C.E. .. 31
Fronk, D. ... 32
Frost, C.L. .. 28, 44
Gabris, E.A. .. 18
Galama, R.S. .. 28
Galama, T. .. 28, 51
Gallagher, D.L. .. 28
Garcia, R. .. 29
Garland, J.L. .. 33
Garrett, H. .. 44
Gary, G.A. ... 24, 28
Geerts, B. .. 35
Genge, G. .. 29
George, M.A. ... 41
Gerard, E. .. 31
Germany, G.A. .. 20, 24, 29, 38, 48
Gibson, W.M. .. 32
Gilbert, J.A. ... 29, 47
Gillchrist, B.E. ... 29, 33
Giles, B.L. ... 22, 29, 40, 55
Gillies, D.C. ... 21, 29, 37, 38, 41
Glass, J.I. .. 30
Glicksman, M.E. .. 23
Golden, H. .. 30
Goldstein, B.E. ... 30, 40, 42
Goodman, S.J. ... 19, 20, 25, 30, 35, 38, 43, 47, 53
Goracke, B.D. .. 30
Gormley, T. .. 26
Gosting, J.T. ... 30
Grabowski, N. ... 49
Grasza, K. .. 41, 42
Graves, S. ... 25
Granger, J.C. .. 22
Greiner, J. ... 19
Grindlay, J.E. ... 27, 55
Griner, C.S. ... 30
Groot, P.J. .. 28, 51
Gu, J.-D. ... 30
Guidioni, U. .. 51
Guillory, A.R. ... 19, 49
Guiter, S.M. ... 37
Gunji, S. ... 26
Gurgiolo, C.A. .. 22, 30, 54
Hagyard, M.J. .. 30, 43
Hakkila, J. .. 39, 42
Halbig, M.C. ... 25
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kozyra, J.U.</td>
<td>37, 48</td>
</tr>
<tr>
<td>Krivorotsky, E.N.</td>
<td>34, 35</td>
</tr>
<tr>
<td>Kroes, R.</td>
<td>46</td>
</tr>
<tr>
<td>Krupp, D.</td>
<td>47</td>
</tr>
<tr>
<td>Kublin, T.</td>
<td>44</td>
</tr>
<tr>
<td>Kulkarni, M.R.</td>
<td>20</td>
</tr>
<tr>
<td>Laird, C.E.</td>
<td>19, 31</td>
</tr>
<tr>
<td>Lakhtakia, M.</td>
<td>36</td>
</tr>
<tr>
<td>Lam, N.</td>
<td>36, 43, 55</td>
</tr>
<tr>
<td>Lam, N.S.</td>
<td>43</td>
</tr>
<tr>
<td>Lam, J.E.</td>
<td>47</td>
</tr>
<tr>
<td>Landrum, D.B.</td>
<td>24</td>
</tr>
<tr>
<td>Landsea, C.W.</td>
<td>36</td>
</tr>
<tr>
<td>Lansing, M.D.</td>
<td>36, 46</td>
</tr>
<tr>
<td>Lanzarone, A.W.</td>
<td>24</td>
</tr>
<tr>
<td>Lapenta, W.M.</td>
<td>36</td>
</tr>
<tr>
<td>Lassiter, J.O.</td>
<td>36, 46</td>
</tr>
<tr>
<td>Lawton, R.</td>
<td>22</td>
</tr>
<tr>
<td>Laymon, C.A.</td>
<td>36, 37, 43</td>
</tr>
<tr>
<td>Lebreton, J.P.</td>
<td>29, 33, 51</td>
</tr>
<tr>
<td>Ledbetter, F.E.</td>
<td>20</td>
</tr>
<tr>
<td>Lee, J.A.</td>
<td>37</td>
</tr>
<tr>
<td>Lefkowitz, E.J.</td>
<td>30</td>
</tr>
<tr>
<td>Lehoczky, S.L.</td>
<td>21, 23, 29, 37, 47, 49</td>
</tr>
<tr>
<td>Lennartsson, O.W.</td>
<td>23, 25</td>
</tr>
<tr>
<td>Lemon, C.</td>
<td>43</td>
</tr>
<tr>
<td>Leslie, F.</td>
<td>44</td>
</tr>
<tr>
<td>Less, L.</td>
<td>51</td>
</tr>
<tr>
<td>Levack, D.J.H.</td>
<td>30</td>
</tr>
<tr>
<td>Lewin, W.H.G.</td>
<td>35, 36</td>
</tr>
<tr>
<td>Leyderman, A.</td>
<td>37</td>
</tr>
<tr>
<td>Li, N.</td>
<td>40</td>
</tr>
<tr>
<td>Libb, R.S.</td>
<td>34</td>
</tr>
<tr>
<td>Lidman, C.</td>
<td>19</td>
</tr>
<tr>
<td>Liemohn, M.W.</td>
<td>34, 35, 37</td>
</tr>
<tr>
<td>Linder, H.</td>
<td>41</td>
</tr>
<tr>
<td>Lindstrom, D.J.</td>
<td>31</td>
</tr>
<tr>
<td>Ling, J.C.</td>
<td>37</td>
</tr>
<tr>
<td>Litkenhous, E.E.</td>
<td>27</td>
</tr>
<tr>
<td>Liu, H.-C.</td>
<td>49</td>
</tr>
<tr>
<td>Livio, M.</td>
<td>28</td>
</tr>
<tr>
<td>Loftis, J.</td>
<td>41</td>
</tr>
<tr>
<td>Lorentzen, D.A.</td>
<td>18</td>
</tr>
<tr>
<td>Lorenzini, E.</td>
<td>34</td>
</tr>
<tr>
<td>Loughead, T.E.</td>
<td>24, 38</td>
</tr>
<tr>
<td>Lowery, F.S.</td>
<td>34</td>
</tr>
<tr>
<td>Lowery, J.E.</td>
<td>38</td>
</tr>
<tr>
<td>Lowther, D.</td>
<td>46</td>
</tr>
<tr>
<td>Lu, H-I.</td>
<td>38</td>
</tr>
<tr>
<td>Lummerzheim, D.</td>
<td>24, 29, 38</td>
</tr>
<tr>
<td>Luvall, J.C.</td>
<td>26, 37, 38</td>
</tr>
<tr>
<td>Lyles, G.M.</td>
<td>38, 44</td>
</tr>
<tr>
<td>Lynch, K.A.</td>
<td>18</td>
</tr>
<tr>
<td>Mach, D.M.</td>
<td>20, 38</td>
</tr>
<tr>
<td>Madura, J.</td>
<td>43</td>
</tr>
<tr>
<td>Mahoney, W.A.</td>
<td>37</td>
</tr>
<tr>
<td>Malek, E.</td>
<td>37</td>
</tr>
<tr>
<td>Mallozzi, R.S.</td>
<td>42, 43</td>
</tr>
<tr>
<td>Manu, A.</td>
<td>37</td>
</tr>
<tr>
<td>Marcucci, F.</td>
<td>33</td>
</tr>
<tr>
<td>Mariani, F.</td>
<td>33</td>
</tr>
<tr>
<td>Martin, C.</td>
<td>51</td>
</tr>
<tr>
<td>Martin, G.</td>
<td>20</td>
</tr>
<tr>
<td>Mason, R.K.</td>
<td>26</td>
</tr>
<tr>
<td>Mathews, J.</td>
<td>41</td>
</tr>
<tr>
<td>Matsuk, B.</td>
<td>38</td>
</tr>
<tr>
<td>Matlin, A.</td>
<td>30, 43, 53</td>
</tr>
<tr>
<td>Matsos, H.C.</td>
<td>41</td>
</tr>
<tr>
<td>Matteson, J.L.</td>
<td>43</td>
</tr>
<tr>
<td>Maynard, N.C.</td>
<td>25</td>
</tr>
<tr>
<td>Mazuruk, K.</td>
<td>38, 51</td>
</tr>
<tr>
<td>McCaI, S.D.</td>
<td>20</td>
</tr>
<tr>
<td>McCarty, J.P.</td>
<td>38</td>
</tr>
<tr>
<td>McCaul, E.W., Jr.</td>
<td>33, 34</td>
</tr>
<tr>
<td>McClure, J.C.</td>
<td>26</td>
</tr>
<tr>
<td>McCollough, M.L.</td>
<td>31, 32, 39, 44</td>
</tr>
<tr>
<td>McCollum, M.B.</td>
<td>39, 51</td>
</tr>
<tr>
<td>McComas, D.J.</td>
<td>30, 40</td>
</tr>
<tr>
<td>McCurdy, G.</td>
<td>37</td>
</tr>
<tr>
<td>Mc Daniels, D.</td>
<td>40</td>
</tr>
<tr>
<td>McDermott, W.C.</td>
<td>35</td>
</tr>
<tr>
<td>McGaughy, G.</td>
<td>39</td>
</tr>
<tr>
<td>McMannus, S.P.</td>
<td>41</td>
</tr>
<tr>
<td>McNider, R.T.</td>
<td>36</td>
</tr>
<tr>
<td>Meegan, C.A.</td>
<td>28, 35, 36, 39, 42, 43, 51</td>
</tr>
<tr>
<td>Melchioni, E.</td>
<td>51</td>
</tr>
<tr>
<td>Menzies, R.T.</td>
<td>24, 45</td>
</tr>
<tr>
<td>Meyer, P.</td>
<td>43</td>
</tr>
<tr>
<td>Miller, T.L.</td>
<td>38</td>
</tr>
<tr>
<td>Mims, K.</td>
<td>29</td>
</tr>
<tr>
<td>Min, J.</td>
<td>29</td>
</tr>
<tr>
<td>Minamitani, T.</td>
<td>26</td>
</tr>
<tr>
<td>Minton-Summers, S.</td>
<td>44, 45</td>
</tr>
<tr>
<td>Mirabel, I.F.</td>
<td>31</td>
</tr>
<tr>
<td>Mitchell, R.</td>
<td>30</td>
</tr>
<tr>
<td>Mog, R.A.</td>
<td>50</td>
</tr>
<tr>
<td>Montesdeoca, X.A.</td>
<td>33</td>
</tr>
<tr>
<td>Montgomery, E.E., IV</td>
<td>39</td>
</tr>
<tr>
<td>Moore, C.E.</td>
<td>19, 20, 21, 40</td>
</tr>
<tr>
<td>Moore, R.L.</td>
<td>27, 29, 31, 40</td>
</tr>
<tr>
<td>Moore, T.E.</td>
<td>18, 22, 23, 25, 26, 27, 29, 35, 37, 40, 48</td>
</tr>
<tr>
<td>Morokuma, K.</td>
<td>21</td>
</tr>
<tr>
<td>Moskowitz, M.E.</td>
<td>47</td>
</tr>
<tr>
<td>Moss, C.E.</td>
<td>31</td>
</tr>
<tr>
<td>Mowrer, W.</td>
<td>41</td>
</tr>
<tr>
<td>Mozer, F.S.</td>
<td>23, 26</td>
</tr>
<tr>
<td>Murakami, T.</td>
<td>36</td>
</tr>
<tr>
<td>Musaev, D.G.</td>
<td>21</td>
</tr>
</tbody>
</table>
Rupp, C. ... 50
Russell, C.T. .. 26, 48
Russell, S.S. .. 20, 36, 45, 51
Rutten, R.G.M. .. 51
Ryan, R.S. ... 46
Sader, S. ... 46
Sahoo, N.K. .. 46
Sahu, K.C. ... 28
Samir, U. ... 49, 54
Sandubrae, J.A. .. 44
Sanghadasa, M. .. 19, 20
Santoro, R.J. ... 50
Scharfen, G. ... 19
Schauwecker, C.J. .. 46
Schlagheck, R.A. .. 46
Schmider, B. ... 40
Schonberg, W. ... 53
Schonberg, W.P. ... 46
Schutenhofer, L.A. .. 46
Scott, D.M. ... 46, 53, 54
Scott, M. ... 47, 49
Sen, S. ... 24, 34, 47
Sentman, D.D. ... 52
Serrano, J. .. 46
Sever, T.L. ... 46, 47
Sha, Y.-G. ... 47, 49
Shah, S. ... 25, 45
Shapiro, A.P. ... 46
Sharp, D. ... 30, 33
Shaw, E.J. ... 47
Shaw, S.L. ... 46
Sheeley, N.R., Jr. .. 30
Shell, D. ... 48
Shelley, E.G. ... 25, 55
Shepherd, R.L. .. 29, 47
Shield, A. ... 18
Shipman, J. ... 47
Shiessl, Y. .. 47
Sibille, L. ... 40, 47
Sisk, C.R. ... 32, 51
Skellek, S. ... 55
Smith, A.W. ... 28
Smith, D.D. .. 44, 47
Smith, E.A. .. 47
Smith, I. ... 36
Smith, L. ... 43
Smith, T.D. .. 50
Smitherman, D.V., Jr. .. 47
Snell, E.H. .. 27, 32, 47
Solakiewicz, R.J. ... 35
Song, A. ... 36
Song, P. ... 48
Sorensen, J.E. .. 48, 54
Soza, C. .. 46
Spann, J.F. ... 20, 24, 29, 38, 48
Spann, J.F., Jr. ... 20, 48
Spencer, R.W. .. 39, 48
Spinheim, J.D. ... 24
Sponable, J. ... 48
Springer, A.M. .. 48
Srivastava, N. .. 43
Srivastava, V. ... 24, 33, 34, 48
Stark, B.A. ... 48
Steele, J.W. .. 49
Stefanescu, D.M. ... 46
Steinolfson, R.S. ... 49
Stollberg, M.T. .. 49
Stoltzfus, J.M. ... 44
Stone, H.H. ... 51
Stone, N.H. ... 22, 30, 33, 35, 48, 51, 54, 55
Strohmayer, T. .. 53
Strom, R.G. ... 28, 41
Strong, K.T. ... 42
Stucker, M. ... 44
Su, C.-H. ... 38, 47, 49
Su, Y.-J. ... 40
Suess, S.T. .. 30, 31, 40, 41, 49, 51
Suggs, R.J. ... 49
Sulkanen, M.E. .. 26, 35, 41
Sullivan, R. ... 29
Sunkara, H.B. ... 49
Swanson, G.R. .. 50
Swartz, D.A. .. 35
Swick, R. ... 19
Swift, W. ... 48
Szofer, F.R. ... 23, 29, 37
Takahashi, Y. ... 22
Tandberg-Hanssen, E. ... 27, 45, 50
Tarbell, T.D. ... 40
Tatara, J.D. ... 50
Tavani, M. .. 27, 44
Taylor, T.B. ... 30
Teleszky, I. ... 45
Telting, J. ... 51
Tennant, A.F. ... 26, 35
Thom, R.L. ... 50
Thoma, H. .. 41
Thomas, L.D. ... 50
Thomas, R.J. .. 26, 27
Thompson, D.C. .. 33
Timofeeva, T. ... 37, 39, 40
Timofeeva, T.V. .. 19
Tinker, M.L. .. 22, 24, 50
Toth, L. ... 45
Townsend, J.S. ... 46
Trach, B. ... 46
Tratt, D.M. ... 45
Traweek, M.S. .. 50
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY97. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.