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INTERACTIONS BETWEEN GROUND-STATE NITROGEN ATOMS

AND MOLECULES

By Joseph T. Vanderslice, Edward A. Mason,

and Ellis R. Lippincott

SUMMARY

Potential-energy curves for nitrogen atom (N-N) interactions cor-

i + 3Z_, 5Z_ 7Z_, B 3Hg, C 3Hu, andresponding to the X Zg, A

iHg states of the nitrogen molecule N2 as well as curves for thea

atom-molecules IN-N2)and molecule-molecule (N2-N2) interactions have

been calculated. All calculations have been based as nearly as possible

on experimental data, including spectroscopically determined vibrational

energy levels, scattering cross sections of atomic beams in gases, and

measured vibrational relaxation times. In cases where experimental data

were not available, approximate quantum-mechanical calculations have been

made. Results obtained by these various methods are remarkably consistent

with one another and are believed to have good accuracy.

INTRODUCTION

The various possible interactions between ground-state nitrogen

atoms and molecules are of interest in a number of connections, such as

the calculation of the thermodynamic and transport properties of air at

extremely high temperatures, the active nitrogen problem, and various

upper atmospheric phenomena. Six potential-energy curves have to be

considered, four of which arise when two ground-state nitrogen atoms come

together (N-N). (See ref. I.) The other two are the atom-molecule

(N-N2) and molecule-molecule (N2-N2)interactions, which are orientation

dependent.

i + 5Z_ 'Three of the four types of N-N interactions, the X Zg, A

and 5Z_, correspond to bound states, the last being only very weakly

bound. The fourth state, the 7Z_, is repulsive. It is easy to obtain

a major part of the potential curves for the X 1Zg+ and the A 5Z_

w-lo4



states from available spectroscopic data by using the Ryberg-Klein-Rees

(RKR) method (refs. 2 to 5)- The only precise information on the 5Z_

state is that it causes predissociation in two bound excited states of

the B 3Hg and the a l_g__ states. (The lines reported in ref. 6N 2 ,

as being due to a transition from 5_g to A 3Z+u have since been

reported in a private co_nunication from Dr. C. M. Herzfeld to be due

to another cause.) Accurate potential curves for these two states

can be determined by the RKR method and combined with the experimental

data on the predissociation limits to yield two points on the curve for

the 5Z_ state. It was possible to derive a Morse curve which should be

a reasonable approximation to the true curve by combining these two points

2
with the relation re_ e = Constant for the different electronic states

of the same molecule (ref. i, p. 456). The repulsive potential curve

for the 7Z_ state was calculated from a delta-function model (ref. 7).

This was checked against a potential obtained from an analysis of scat-

tering measurements (ref. $) and with one o_tained from an analysis, based

on the Schwartz, Slawsky, and Herzfeld theory (refs. 9 to 12), of measure-

ments of vibrational relaxation times in nilrogen.

i + 3Z_ 5Z_, and 7Z_ states canRelationships among the X Zg, A

be obtained from a very simple discussion along the lines of conventional

first-order valence bond theory (the approximation of perfect pairing)

as in reference 13. These relationships permit the "tails" of the

X l_g+ and A 3Z_ curves to be calculated once the 5Z_ and 7Z_ curves

are known. These tails join smoothly to th_ curves obtained from the

spectroscopic data by the RKR method. The _erfect-pairing approximation

also leads to simple relationships involving nitrogen molecules, so that

the N-N 2 and N2-N 2 interactions could bc built up from the results on

the N-N interactions. The N2-N 2 interactions so obtained are in good

agreement, after averaging overall orientations, with average N2-N 2

interactions already known from the moleculsr scattering measurements of

reference $ and from high-temperature gas-viscosity data of reference 14.

For the sake of completeness, results _re included for the C _u

state of N2. This is a bound state and wa_ treated by the RKR method.

This research was conducted at the University of Maryland under the

sponsorship and with the financial assistance of the National Advisory

Committee for Aeronautics. The authors are grateful to Dr. W. G. Maisch

for checking some of the equations and to Mr. Louis T. Ho and

Miss Dorothy Duffy for checking the calculations.



SYMBOLS

a

a t

a_b_c_d

B

c

c v

D

d

Ev,j

_E

f

g

g'

h

I

IH

J

JiJ

i,j

k

m

n

constant

average radius of outermost electronic orbit of isolated atom

lettering system for atoms in two nitrogen molecules

constant

velocity of light

parameter in equation (ii)

constant

bond length of molecule

vibration-rotation energy

energy transferred on collision from vibration to rotation

function of vibration-rotation energy

function of vlbration-rotation energy

strength of delta function

Planck's constant

ionization potential of atom

ionization potential of hydrogen atom

rotational quantum number

exchange integral

x, y, or z orbitals; used as subscripts with integrals Q
and J

Boltzmann's constant

mass of molecule

number of electrons in an atom; also, number of molecules per

cubic centimeter in appendix A

summation of QiJ integrals
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Qij

R

R c

r,r 2

r c

re

rmax,rmin

T

Te

V

Vdis

V i

Vo

V(R)

V(r)

Veff(r)

v

Vo_

W i

X

x,y,z

c_

Coulomb integral

distance between centers of mass of interacting molecules

distance of closest approach of centers of mass of two mole-

cules for most effective velocity Vo*

internuclear separations

distance of closest approach of centers of mass of two atoms

for most effective velocity vJ

equilibrium internuclear separation

maximum and minimum values of r, respectively, for a

vibrating molecule

absolute temperature

energy difference between bottom (,f potential curve for state

in question and that for X iEg state

potential energy

London dispersion energy

energy of ith vibrational level

constant

potential energy as a function of R

potential energy as a function of r

effective potential energy for rotating molecule

vibrational quantum number

most effective velocity for deactlvation

defined by equation (6)

defined by equation (A5)

coordinate axes

constant



average polarizability of an N2 molecule

c depth of Van der Waals minimum; Lennard-Jones potential
parameter in equation (AI0)

8,8',81,82 angles in coordinate system used; see figure 3

0

T

T-X-

f.D_CL_

_e

reduced mass

separation between delta functions

relaxation time

defined by equation (A7)

constants

vibrational constant for equilibrium internuclear separation

BOUND STATES OF N 2

The potential-energy curves for the X iz_, A 3E_, B 3Hg, a ing,

and C 3H u bound states of N2 are easily and rapidly obtained by the

RKR method. This is a semiclassical procedure for determining the two dis-

tances which correspond to the classical turning points of vibrational

motion, and it has the great advantage that it makes use of the experi-

mental energy levels themselves without any reference to empirical func-

tions for representing the potential-energy curve. The classical turning

points rma x and rmi n are given by the expressions

rmax = _f/g) f2] 1/2+ + f (1)

2_1/2rmi n = _f/g) + f - f (2)

where f and g are functions of the vibration-rotation energy levels.

The expressions for f and g (ref. 4) are particularly simple if the

vibration-rotation energy Ev, J can be expressed as a quadratic in v:

Ev, o : <o<v + _x v + - c_ v + J(J + i) + BJ(J + i) +

oJ2(J + l) 2 + (3)
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where v and J are the usual vibration-rotation quantum numbers and

_,_x, _, B, and D are constants. If Ev,J cannot be represented

over the experimental range by equation (3), it can be expressed as a

quadratic over different regions so that th_ entire experimental range

can be covered by a series of quadratics. In such cases the following

expressions are obtained for f and g for the rotationless (J = O)

state (refs. 4 and 5):

n

f = (_2_c/h)-1/2_ (_)i-I/21°gewi
i=l

(4)

(=)i -1/2(_i - _i(=)i _)lo_ Wl]
(5)

where

level, and

is the reduced mass, V i is the c_nergy of the ith vibrational

-4(_x)iVi_i/2[a_l- 2(a_x)il/2v i ii/2_

] (6)

In equations (4) to (6), g, V, _, a_x, _, and B are in

(centimeters) -I, f is in centimeters, and the energy zero is chosen

so that V = 0 at the bottom of the potential curve.

Application of the RKR method to the X I_, A 3_, B _g, and

iHg states is straightforward as shown i_i reference 5 and the resultsa

are given in tables I(a) to I(d). The expez_imental data were obtained

by Herzberg (ref. i), Jevons (ref. 15), Peruse and Gaydon (ref. 16), and

Mulliken (ref. 17). The C 3H u state is s_rongly perturbed by another

3H u state (ref. 17), and to obtain good accuracy from equations (4)

to (6) it was necessary to interpolate some additional points corresponding

to hypothetical energy levels. The interpolation was done graphically on

a plot of _v = Ev+l,O - Ev,o against v. The final results for the

C 3Hu state are given in table I(e).
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5_ STATE OF .N2

Although the 5Z_ state of N 2 is a bound state, it is considered

separately because the binding is so weak that the state itself appar-

ently has never been observed directly, and different methods are

required for determining its potentlal-energy curve. The B 3Hg and

the a iHg states of N 2 are both predissociated by the 5Z_ state

(refs. 18 to 20), so that two points on the potential curve for the

5Z_ state can be determined from the predissociation limits. These

limits are 80,003 ± 50 cm-I for 13 _ J _ 14 for the a l]Ig state

and 80,559 ± 50 cm-I for J = 33 for the B 3hg state, where the

zero of energy is taken as the minimum of the X 1 + state.
Zg

In a rotating molecule the effective potential energy is increased

by addition of a centrifugal potential term equal to the kinetic energy

of rotation (ref. i, p. 426). Thus,

Veff(r ) = V(r) +
hJ(J + l)
8_cr 2

(7)

where Veff(r ) is the effective potential energy for the rotating mole-

cule. (The notation V(r) means "V as a function of r.") In predis-

sociation a radiationless transition occurs at the point where two

Veff(r ) curves cross and follows Kronig's selection rules (ref. i,

p. 416) so that Z3J = O. Thus predissociation data give directly the

crossing points of Veff(r ) curves, and these must be translated back

into crossings of curves for rotationless states according to equa-

tion (7). For the B 3Hg state, Veff(r ) was constructed with J = 33

and V(r) as given by V in table l(c). From this curve the inter-

section point of the B 3_g and 5_gg curves could be obtained by simply

reading off that value of r for which Veff(r) = 80,559 cm -I. This

procedure gave r = 1.607 angstroms which corresponds to an energy of

79,512 cm -I on the potential curve for the nonrotating molecule. The

same procedure was used to find the intersection point of the a l_g and

5Z_ curves, using J = 13.5 and the data in table l(d). For the non-

rotating molecule the intersection occurs at r = 1.471 angstroms and an

energy of 79,711 cm -I.
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Since only two points are known on the 5Eg_ curve, another relation

is needed to determine the parameters of a Morse curve. The relation

re2_e = 2.598 X 10 -13 cm has been chosen (ref. i, p. 456), which gives

an average deviation of 4.8 percent for the other bound states of N2.

The only Morse curve which satisfies these _hree conditions and still

has a reasonable dissociation energy is

V(r) + 744 : 744[i - e-13"3(r-L'518_2cm -I (8)

where r is in angstroms and the zero of e_ergy is taken to be two

ground-state N atoms at infinite separation. Some uncertainty arises

in equation (8) from the ±50 cm-1 uncertainty in the predissociation

limits as well as from the use of an empirical rule, but nevertheless

this equation is probably the best approximation possible on the basis

of the available data. The significant thing about the interaction

energy is that it is practically zero over most of the separation range.

Hence, on the average, there is practically no interaction in 5 out of

16 N atom collisions; this will have a significant effect on the calcu-

lation of the transport properties of nitrcgen at high temperatures.

7_ STATE OF N2

In reference 7 a method was given for calculating short-range inter-

molecular forces by means of a very simple model in which the nuclear

Coulomb potentials are replaced by square _ells which are allowed to

degenerate into delta functions. The delts-function model was applied

to the unstable b 3E_ state of H2 and to interactions between rare

gas atoms for which no chemical bonding car occur. Despite the extreme

simplicity of the model; the results were generally in better agreement

with experiment than were results obtained by the very laborious standard

quantum-mechanical approximations. On the basis of this model it is

therefore easy to calculate the energy of the 7E_ state of N2, in

which all the valence electrons are unpaired.

In the delta-function model the potential well for an electron in

the field of a nucleus is replaced by a delta function of strength g'_

and in addition the electronic atomic orbi_als are allowed to "float"

around their original nuclei. The floating of the orbitals is achieved

by allowing the delta functions to shift off the nuclei, so that the

separation between the delta functions p is not necessarily equal to

the internuclear separation r. For homonLclear interactions in which

no chemical bonding occurs, the interactiom energy V(r) is



V(r) = n(g')2e-C'P

g, = 21/2(i/iH)

where n is the number of electrons in an atom, I

(9)

(lO)

is the ionization

potential of the atom, and IH is the ionization potential of a hydro-

gen atom. The parameter c' is given in the equation

C' = g'(1 - e -c'D) (ii)

The dependence of 0 on r is taken to be

O = r + 2a'e-r/a' (12)

where a' is the average radius of the outermost electronic orbit of an

isolated atom. Equations (9) to (12) together determine the potential

energy as a function of r when no bonding occurs.

For nitrogen the quantities needed to calculate V(r) for the 7Z_

state are: n = 7, I = 14.545 electron volt (ref. 21), and

a = 0.56 angstroms (ref. 22). Substitution of these values into equa-

tions (9) to (12) yields a potential energy which can be represented by

V(r) = 317.8 e-2"753rev 1.3A < r < 3.2A (13)

This potential is plotted in figure i together with a potential obtained

from vibrational relaxation time measurements in N 2 (see appendix A) and

a potential obtained indirectly from neutral atom beam scattering measure-

ments (ref. 8). The relations used to obtain the 7Z_ curve from such

measurements are given in the following sections. The agreement shown

in figure i is within the uncertainties associated with the measurements

and their theoretical interpretation.

RELATIONS AMONG STATES OF N2

A number of approximate but very useful relations among the different

potential-energy curves of nitrogen can be obtained from the perfect-

pairing approximation of simple valence bond theory (ref. 13). Consider

the interaction between two nitrogen atoms in their 4S ground states.

As the two atoms approach, they can follow any one of the four inter-

action curves corresponding to the molecular states X i_, A 3Z_,
o

5Z_,_ and 7Z_._ It is easy to understand in a simple way how these four
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curves arise. The electron configuration of a 4S nitrogen atom is

(is)2(2s)2(2Px)(2py)(2pz)_ with three unpai_7edelectrons in the p-orbitals.
Whentwo such atoms approach, these three e_ectrons on each atom can be
paired together in various ways. If all thcee are paired (i.e., the

electron spins are antiparallel), the X iEg ground state of N2 results.
If two electrons of one atom are paired with two of the other atom and

the third electron is unpaired, the A 3Z_ state results, and so on,
until the 7Z_ state of highest energy resllts from all the p-electrons
being unpaired.

The mathematical expression of these statements is usually called
the approximation of perfect pairing and is written as follows:

V = ZQi j + ?_JiJ - _2 EJiJ - EJij

all i,j orbitals with orbitals with orbitals with

paired spins unpaired spins parallel spins

(14)

where Qij is a Coulomb integral between the orbitals i and j and Jij

is an exchange integral. The approximate expressions for the interaction

energies of the four states of N 2 are thus

v(ix):Q+ Jxx+ J_ +_z_=_+Jxx+ 2J_

v(5z) : Q+_x_+ J_- Jzz : Q+ Jxx

v(_z): Q + J_ - _ - _zz: _ + J_ - 2J_

vCTx): Q- Jxx- J_ - _z:: Q- J_ - 2_

(15)

(16)

(17)

(18)

where only the p-electrons are considered and Q represents the summation

of the Qij integrals. Here the x-axis is chosen to coincide with the

internuclear axis, and by symmetry Jzz = Jyy _ Jxx" The following rela-

tions are readily obtained from equations (15) to (18):

(19)

VCIE):-VC_)+ 2Q_-vC_) (20)

In equation (20) use has been made of the _act that at large internuclear

separations the coulombic interaction Q _etween neutral atoms is very

small. Equations (19) and (20) are probably fairly reliable since the
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approximation of perfect pairing has been used to obtain relations among
the energies of the different states and not to calculate the energies
themselves. These relations are extremely useful in the present case

since the long-range tails for the X iZg+ and A 3Z_ states are easily
the potential-energy functions for the 5Z_- and 7E_-obtained from

states as given by equations (8) and (13).

In figure 2 are plotted the calculated potential-energy curves for
the various states of N2 relative to the minimumof the X i +Zg curve
as zero. The broken lines representing parts of the c_rves for the

X iZg+ and A 3Z_ states were calculated from equations (19) and (20)
and join remarkably well with the solid lines calculated from spectro-
scopic data by the RKRmethod.

N-N2 AND N2-N2 INTERACTIONS

The results of the preceding section makeit possible to calculate
approximate potential curves for the N-N2 and N2-N2 interactions.
In the first place it is evident from equation (14) that both the N-N2
and the N2-N2 interaction energies are the sumsof the interactions
between the atoms of the different molecules. Secondly, the interaction
energy between an N atom which is part of an N2 molecule and another
N atom, either free or part of someother molecule, is approximately

i jx x i i i (7Z) i- Jr:- Jzz +7 Q (21)

in which only the valence p-electrons are considered. At fairly large

internuclear separations, such as occur in ordinary thermal collisions

even at very high temperatures, the coulombic term Q in equation (21)

can be neglected. The curves for V_fZ} which were plotted in figure i

as derived from scattering measurements and from vibrational relaxation

time measurements were calculated from equation (21) with Q = 0, since

the measurements essentially determine V(NN) rather than VI7E ) .

Since V(7Z) is known from equation (13), it is simple to calcu-

late V(NN) from equation (21) and then obtain the N-N 2 and N2-N 2

interactions by simply adding all the pertinent NN interactions. For

example_ the interaction between a molecule ab and a molecule cd

would be written
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V = V(rac) + V(rad) + V(rbc ) + V(rbd)
(22)

where each of the terms on the right is given by equations (13) and (21),

and the dependence of V on orientation is given implicitly by the

dependence of rac , rad , etc. on the molecilar orientation.

For comparison with other results or for calculation of bulk prop-

erties it is frequently convenient to have the total interaction energy

averaged over all orientations. The method of averaging and the assump-
tions involved have been discussed in detai] in reference 8 for the case

where the atom-atom interactions can be represented by an inverse power

law. In the present case the atom-atom interactions are given by equa-

tions (13) and (21) in the form of an exponential_ which can be written

as follows:

Vr = Vo e-ar (23)

where V o and a are constants. To carry out the averaging, the

coordinate system shown in figure 3 is conw_nient, in which r is an

atom-atom distance, R is the distance between the centers of mass of

the interacting molecules, and d is the bond length of a molecule.

Thus the N-N 2 interaction is given as

(V(R)) _ 2Voe-ar2_ sin e de
(24)

where

r 2 = R 2 + (d/2) 2 - Rd cos e (25)

and R is held fixed. If the integration :ariable is changed from

to r, the integration is straightforward a_d yields

(v(R)) : 2Voe- (a2Rd)-1  _)sinh(ad/2: - 2(adl2)eosh(adl2) (26)

The range of validity of (V(R)) in terms _f

the range of validity of V(r) in terms of

for finding the range of R is to hold r

all values of e '_ so that

(R) = rll iId_2_+  \Fi _j

R evidently depends on

r. A plausible procedure

fixed and average R over

(27)
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This is the desired relation between the limits of validity of R and

the limits of r for the N-N 2 interaction.

The average N2-N 2 potential is obtained in a similar manner.

i _0_ _0 _ -ar22_<V(R)> = (4_) 2 2_ sin 81 de I 4Voe sin S 2 de 2 (28)

in terms of the molecule-molecule coordinate system of figure 5. The

integration goes smoothly to yield

(29)

The range of validity is found by holding

!

all values of @'1 and @ 2' so that

r 2 fixed and averaging over

<R> = r211 + i/d_216\r2/J (30)

The results for the average N-N 2 interaction can be represented

by the equation

<V> = 587.8 e-2"733Rev I.SA < R < 5.2-A (31)

and the results for the average N2-N 2 interaction by

<V> : 826.4 e-2"665Rev 1.5A < R < 3.2A (32)

Equations (31) and (32) were obtained by averaging the results from

equations (13) and (21). Only equation (32) can be compared with simi-

lar potentials derived from other sources, and figure 4 gives such a

comparison with average potentials derived from scattering measurements

(ref. 8) and from high-temperature" viscosity data (ref. 14). Since

equation (32) is the result of essentially only a first-order perturba-

tion calculation, it is of interest to add the second-order perturbation

energy_ the London dispersion energy, which is given approximately by

the expression (ref. 23)

3 a2I _36._______OOev (33)
(Vdis> : 4 R6 - R 6

for R in angstroms, where _ is the average polarizability of an N 2

molecule and I the ionization potential. The sum of equations (32)
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and (33) is also shown in figure 4. The agreement is certainly all that

could be desired and is probably better thal would have been expected in

view of the various approximations made.

CONCLUDING REMARKS

Potential-energy curves for interactions between ground-state N

atoms have been calculated, as well as curw_s for the N-N 2 and N2-N 2

interactions. Calculations have been based on experimental data when-

ever possible, and on approximate quantum-mechanical calculations when

experimental data were unavailable. The interactions corresponding to

the X l_ ground state of N2 are given by table I(a) and equations (20)

and (13), the A 3_ state by table I(b) and equations (19) and (8), the

5Z_ state by equation (8)_ and the 7_ state by equation (13). Both

the N-N 2 and the N2-N 2 interactions are given as a function of orien-

tation implicitly by equations (13), (21), and (22), and the interactions

averaged over all orientations are given by equations (31) to (33). Por-

tions of curves corresponding to interacticns involving excited N atoms

(the B 3Hg, a 111g, and C 3H u states of N2) are also given in the

table s.

The results obtained by the different methods are remarkably con-

sistent with one another. The results are also consistent with inter-

actions calculated from data on scattering of atomic beams, high tempera-

ture gas viscosity, and vibrational relaxation times, as shown in the

figures. This high degree of consistency _ives confidence in the abso-

lute accuracy of the results.

University of Maryland,

College Park, Md., May i, 1958.
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z5

CALCULATION OF V(N . N) FROM VIBRATIONAL

RELAXATION TIMES

Schwartz, Slawsky, and Herzfeld (ref. 9) have developed a theory

which expresses the vibrational relaxation times of gases in terms of the

molecular parameters of the system. Although a number of approximations

and uncertainties exist in the theory, it is often capable of giving

order-of-magnitude agreement with experiment. For diatomic gases the

important collisions are the end-to-end ones, and the total potential is

assumed to be composed of atom-atom potentials of the form

V = Vo e-at - e (AI)

where Vo and a are constants, r is an atom-atom distance, and [

is the depth of the Van der Waals minimum. It is further assumed that

in end-to-end collisions all interactions are negligible except the one

between nearest atoms, so that equation (AI) represents the total poten-

tial if r is interpreted as the n_arest atom-atom distance and e as

the depth of the minimum for the molecule-molecule interaction. On this

basis the following expression for the relaxation time T has been

obtained (refs. 9 to 12):

--
QelPIO

(A2)

where

8Rc2:_. 3/2 2,4_5:_n Lg_\2X1/2exp ' )QelPIO = 3 \3; VIO \a2h 2 J (k-3X + LkE + e2RT _ (A3)

2 a2h2
Vl0 = (A4)

8_2mzXE
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1/3

In the above expressions n is the number <f molecules per cubic centi-

meter, m is the mass of a molecule, k i_ Boltzmarm's constant, T is

the absolute temperature, h is Planck's constant, ZkE is the energy

transferred on collision from vibration to translation, and R c is the

distance of closest approach of the centers of mass of two molecules for

the "most effective" velocity for deactivatdon Vo* given by the

expression

i< )2_ o* = XkT

= Vo c-arc (A6)

is the atom-atomwhere _ is the reduced mass of one molecu/e and r c

distance corresponding to Rc.

Equation (A2) can be written in the folm

T*_ To lee/kTT- 2/5 sinh (ZkE/2kT)1

= CleC2/T1/3 (A7)

where To is the value of T at some standard pressure and

128_5 \ml p _ERc 2 _4m(Z_E)2]

(A8)

= 3 I_4m(ZkE) 21 ]/3 (A9)

where p is the standard pressure in dyneslcm 2. In equations (A7) to

(A9), C2 is a constant and CI is nearly constant except for values

of Rc_ which is weakly temperature dependezt.
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A plot of log e T* against T-I/3 for the measurements of Blackman

(ref. 24) and Lukasik and Young (ref. 25) gives a straight line as pre-

dicted by equation (A7). The slope of the line determines the param-

eter a in the potential function of equation (AI) as a = 7.42 per

angstrom. The second parameter Vo was determined from the condition

that when r + d = R = o, then V = 0, so that equation (AI) becomes

Vo = a(°-d) (A10)

where d = 1.094 angstroms is the bond length of N 2 (ref. i, p. 553),

and e and _ are taken as Lerauard-Jones potential parameters for

nitrogen molecules, which are e/k = 79.8 ° K and o = 3.749 angstroms

as determined from gas data (ref. 29, p. iiii).

The final potential between two N atoms of different molecules is

thus found to be

V(NN) = (2.47 × 106)e -7"42r ev 1.9A _ r : 2.1A (All)

where the range of validity of r was estimated from the highest and

lowest experimental temperatures by means of equation (A6). This poten-

tial was converted by equation (21) to V(7Z), the potential between two

free N atoms_ and was plotted in figure i for comparison with the poten-

tials determined from the delta-function model and from scattering experi-

ments. It is seen that equation (All) is in approximate agreement with

the other potentials_ but is much steeper (ref. 26). This is a basic

defect of the theory whJch has been pointed out previously. In view of

the approximate nature of the theory of vibrational deactivation_ the

agreement shown in figure I is really surprisingly good.
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TABLE I.- POTENTIAL ENERGY OF STATES OF N2

As far as the authors could determine, band-origin data were not avail-

able for most transitions involving A _, B 3Hg, C 3Hu, and

a IHg states• Hence, band-head data were used and reported levels

may be slightly in error_

(a) X 1Z_ state

v V, cm -I V, electron volts rmax, A rmin, A

0

i

2

3
4

5
6

7
8

9
i0

ii
12

13
14

15
16

17
18

19

1,175

3,505

5,806

8,079

10,323
12,538

14,725

16,882

19,011

21,111

23,181

25,223

27,235

29,218

31,171

33,096

34,988

36,859

38,688

40,493

0.1457

.4346

.7199
1.002

1.280

1.555
1.826

2.093

2.357
2.618
2. 874
3. 128
3- 377
3.623

3.865
4.104

4.339

4•571

4.797

5.021

1.146

1.185
1.213
1.238
1.261

1.282

i.302
i.32i
1.339

1.358

1.379

1.393
1.410

i.427
1.447
1.462

1.477

1.496

1.5_
i.528

i.055

i.027
i.008
•994
.983

•973
•964

•956

•949

•942

.936

•931
•926

.92i

•919

•912

•9o7

.904
• 900
.896
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TABLE I.- POTENTIAL ENERGY OF STATE_ OF N 2 - Continued

(b) A 3Z+u

v

0

i

2 i

3
4

5
6

7

8

9
I0

ii

12

13
14

i

V, cm -I

726.7

2,160

3,565

4,942

6,291

7,615

8,906

10,172

11,408

12,616

13,793

14,942

16,060

17,147

18,203

V,

electron volts

O. 0901

•2678

.4421

.6128

.7801

.9440

i. 104

I. 261

i. 415

i.564

1.71o
i.853

1.991
2. 126

2.257

Te + V,

electron volts

6. 3116

6.493

6.668

6. 8158

7.006

7-170

7.350
7.437

7.6_o

7.79o

7.956

8.oF9

8.2[7

8.352
8.433

rmax, A

i.356

i.405
1.442

i.474

1.503
i.532

1.558

1.58_
i.609

1.633

1.657
1.682

1.706

i.732

i.756

rmin, A

i. 240

i. 203

1.180

i. 160

i.145

1.131
i. 120

i. 108

1.099

1.089

1.o8o

i.o7o
1.062

1.o54
1.046
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TABLE I.- POTENTIAL ENERGY OF STATES OF N2 - Continued

(c) B 3_g state

V

0

1

2

2

ll

12

13
14

15
16

17
18

19

V, cm -I

863.4

2,569

4,246

5,894

7,512

9,101

10,661

12,191

13,693

15,165

16,608

18,021

19,404

20,757

22,080

23,372

24,633

25,862

27,059

28,223

V,

electron volts

0.1071
.3186

.5265

.7309

.9315

T e + V,

electron volts

7.501

7.713

7.921
8.125

8.325

rma x, A

1.271
1.316

1-351
1.38l

1.409

1.129

1.522

1.512

1.698

z.88o

2.059

2.239
2.406

2.574

2.738

2.898

3.054

3.207

3-355

3.5oo

8.523

8.716

8.906

9.092

9.274

9.453
9.629

9.800

9.968

10.132

10.292

lO.448

10.601

10.749

lO.894

1.436

1.460

1.4_4

1.5o8

1.531

1.554

i. 577

i. 599
1.622

1.644

1.667

1.690

1.714

1.737

1.760

rmi n, A

1. 165

1. 132

i. iii

1.095
1.082

1. 071

1.061

1. 052
i.044

1.037

1. 030
i. 024

1.018

1.012

1.006

i. 002

.996

•992

•987

•983
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TABLE I.- POTENTIAL ENERGY OF STAZES OF N2 - Continued

(d) a 1Hg state

v

0

i

2

3
4

5
6

7
8

9
i0

ii

12

15
14

V, cm -1

839.9

2,506

4,144

5,755

7,338

8,893

i0,421

11,922

13,395
14,838

16, 256

17,647

19,011

20,348

21,660

V_

electron volts

0.1041

.5107

-5139
.7136

.9099

1.105

m.292

i.478
1.661

1.840
2.016

2.188

2.357

2.523
2.686

Te _ V,

electron volts

8.(96

8.9o2
9.3o5
9.3o5
9-501

9.(_94
9-_83

i0. (_69

I0. 252
lO.I 31

io.(io7
i0.-79
i0. !148
ii. LI4

ii. 2-77

rmax, A

1.278

i.325

i.360

1.391
i.418

1.445

i.471
1.495
I.518

1.541

1.564

1.587
i. 610

i .632

1.655

rmin, A

i.172
i.159
i.118

1.lOl

1.088

1.077

i.067

1.059

1.050
1.o43
1.o36
]..029
1. o24
1.018

1.013
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TABLE I.- POTENTIAL ENERGY OF STATES OF N2 - Concluded

(e) C 3H u state

V

0

i

2

3
4

V, cm -I V, T e + V,electron volts electron volts rmax, A rmin, A

1,013

3,006

4,946

6,820

8,602

o.1256

.3727

.6133

.8457

1.o67

ll.]80

11.427

11.668

11.900

12.121

1.202

1.246

1.279

1.310

1.342

i. 104

1.074

i.056
i. 042

1 .o33
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Figure 2.- Summary of N-N interactions.
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(a) Atom-molecule interaction.

(b) Molecule-molecule interaction.

Figure 3.- Coordinate systems for averagi_ interaction energies over
molecular orientations.
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