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SUMMARY

Potential-energy curves for nitrogen atom (N-N) interactions cor-
responding to the X 1zf, a3zf, Szt Tzt, B Sy, ¢ 7y, and
a ng states of the nitrogen molecule N, as well as curves for the
atom-molecules (N-Ng) and molecule-molecule (NE-NQ) interactions have

been calculated. All calculations have been based as nearly as possible
on experimental data, including spectroscopically determined vibrational
energy levels, scattering cross sections of atomic beams in gases, and
measured vibrational relaxation times. In cases where experimental data
were not available, approximate gquantum-mechanical calculations have been
made. Results obtained by these various methods are remarkably consistent
with one another and are believed to have good accuracy.

INTRODUCTION

The various possible interactions between ground-state nitrogen
atoms and molecules are of interest in a number of connections, such as
the calculation of the thermodynamic and transport properties of air at
extremely high temperatures, the active nitrogen problem, and various
upper atmospheric phenomena. Six potential-energy curves have to be
considered, four of which arise when two ground-state nitrogen atoms come
together (N-N). (See ref. 1.) The other two are the atom-molecule
(N-Ng) and molecule-molecule (N2—N2) interactions, which are orientation

dependent.

Three of the four types of N-N interactions, the X lzg, A 523,
and 52;, correspond to bound states, the last being only very weakly
bound. The fourth state, the &,

a major part of the potential curves for the X

is repulsive. It is easy to obtain
1+ P
Zg and the A Zu
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states from available spectroscopic data by using the Ryberg-Klein-Rees

(RKR) method (refs. 2 to 5). The only precise information on the 522

state is that it causes predissociation in two bound excited states of

Ny, the B 5]Ig and the a ng states. (The lines reported in ref. 6

as being due to a transition from 5Z§ to A 5Zt have since been

reported in a private communication from Dr. C. M. Herzfeld to be due
to another cause.) Accurate potential curves for these two states

can be determined by the RKR method and comtined with the experimental
data on the predissociation limits to yield two polnts on the curve for

the 52; state. It was possible to derive a Morse curve which should be

a reasonable approximation to the true curve by combining these two points

with the relation rgu% = Constant for the different electronic states

of the same molecule (ref. 1, p. 456). The repulsive potential curve

for the TZ:
This was checked against a potential obtained from an analysis of scat-

tering measurements (ref. 8) and with one ol tained from an analysis, based
on the Schwartz, Slawsky, and Herzfeld theory (refs. 9 to 12), of measure-

ments of vibrational relaxation times in nitrogen.

state was calculated from a delta-function model (ref. 7).

Relationships among the X lZE, A 323, 52;, and 723 states can
be obtained from a very simple discussion along the lines of conventiocnal
first-order valence bond theory (the approximation of perfect pairing)

as in reference 13. These relationships permit the "tails" of the

X lzg and A 32; curves to be calculated once the 52; and 72; curves

are known. These talls join smoothly to the curves obtained from the
spectroscopic data by the RKR method. The rerfect-pairing approximation
also leads to simple relationships involving nitrogen molecules, so that
the N-N, and No-N, Interactions could be built up from the results on

the N-N interactions. The No-No interactions so obtained are in good
agrecment, after averaging overall orientations, with average N,5-No

interactions already known from the moleculsr scattering measurements of
reference 8 and from high-temperature gas-viscosity data of reference 1.

For the sake of completeness, results ere included for the C 3Hu
state of Ng. This is a bound state and wa:s treated by the RKR method.

This research was conducted at the University of Maryland under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics. The authors are grateful to Dr. W. G. Maisch
for checking some of the equations and to Mr. Louis T. Ho and
Miss Dorothy Duffy for checking the calculations.



SYMBOLS

constant

average radius of outermost electronic orbit of isolated atom
lettering system for atoms in two nitrogen molecules
constant

velocity of light

parameter in equation (11)

constant

bond length of molecule

vibration-rotation energy

energy transferred on collision from vibration to rotation
function of vibration-rotation energy

function of vibration-rotation energy

strength of delta function

Planck's constant

ionization potential of atom

ionization potential of hydrogen atom

rotational quantum number

exchange integral

X, ¥, or z orbitals; used as subscripts with integrals Q
and J

Boltzmann's constant
mass of molecule

number of electrons in an atom; also, number of molecules per
cubic centimeter in appendix A

sumation of Qij integrals



Qij Coulomb integral
R distance between centers of mass of interacting molecules
R. distance of closest approach of centers of mass of two mole-

cules for most effective velocity v ¥

r,rs internuclear separations

r, distance of closest approach of centers of mass of two atoms
for most effective velocity v *

Te equilibrium internuclear separation

Tmax:Tmin maximum and minimum values of r, respectively, for a

vibrating molecule
T absolute temperature

T energy difference between bottom of potential curve for state
in question and that for X lZg state

\ potential energy

Vais London dispersion energy

V4 energy of ith vibrational level

Vo constant

V(R) potential energy as a function of R
v(r) potential energy as a function of r

Veff(r) effective potential energy for rotating molecule

v vibrational guantum number

v most effectlve velocity for deactivation
Wy defined by equation (6)

X defined by equation (A5)

X,¥,2 coordinate axes

a constant



a average polarizability of an No molecule

€ depth of Van der Waals minimum; Lennard-Jones potential
parameter in equation (AlOQ)

9,8',8,,85 angles in coordinate system used; see figure 3

i reduced mass

o separation between delta functions

T relaxation time

™ defined by equation (AT)

&yt constants

We vibraticnal constant for equilibrium internuclear separation

BOUND STATES OF Ny

The potential-energy curves for the X lZE, A BEE, B 5Hg, a lng,
and C 5Hu bound states of N, are easily and rapidly obtained by the

RKR method. This is a semiclassical procedure for determining the two dis-
tances which correspond to the classical turning points of vibrational
motion, and it has the great advantage that it makes use of the experi-
mental energy levels themselves without any reference to empirical func-
tions for representing the potential-energy curve. The classical turning

points rp,., and r,;, are given by the expressions

ro = [(f/g) + f2:|l/2 +f (1)

max

Ef/g) + f2]1/2 - f (2)

min

where f and g are functions of the vibration-rotation energy levels.
The expressions for £ and g (ref. k) are particularly simple if the
vibration-rotation energy EV)J can be expressed as a quadratic in v:

v 2 /
By,J = w\y + %) - mx(v + %> - a\v + %)J(J + 1) + BI(J + 1) +

DJ2(J + l)2 + ... (3)



where v and J are the usual vibration-rctation quantum numbers and
w,ux, @, B, and D are constants. If E\ g cannot be represented

over the experimental range by equation (3), it can be expressed as a
quadratic over different regions so that the entire experimental range
can be covered by a series of quadratics. In such cases the following
expressions are obtained for f and g for the rotationless (J = 0)
state (refs. 4 and 5):

n
£ = (8x2uc/n)™/2 ). (w)y ™ Prog, Wy ()
i=1

n
g = (2ﬂ2uc/h)l/2 Z‘ [% ai(wx)i—l (\,11/2 - Vi-ll/z) +
i=1

(cmc)i'l/e(EBi - ai(uxx)i'lwi)los:e Wi:\ (5)

where p 1is the reduced mass, Vi 1s the ¢nergy of the ith vibrational
level, and

We = w? - b(ax) gV, He wy - ‘3(‘“")11/2"1-11/2
* (Dj_2 - u(‘”x)ivi-l wy - 2((11){)11/2\/11/2

(6)

In equations (4) to (6), &, V, w, oax, «, and B are in

(centimeters)'l, f 1is in centimeters, and the energy zero is chosen
so that V = 0 at the bottom of the potent:ial curve.

Application of the RKR method to tme € 'Z¥, A ’gf, B I, and
a lﬂg states is straightforward as shown i1 reference 5 and the results

are given in tables I(a) to I(d). The experimental data were obtained
by Herzberg (ref. 1), Jevons (ref. 15), Pearse and Gaydon (ref. 16), and

Mulliken (ref. 17). The C 5Ilu state 1s sirongly perturbed by another
3nu state (ref. 17), and to obtain good ac:uracy from equations (4)

to (6) it was necessary to interpolate some additional points corresponding
to hypothetical energy levels. The interpolation was done graphically on
a plot of AEy = Ev+l,0 - Ev,o against v. The final results for the

C Sﬂu state are given in table I(e).

HOT-M
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Although the 522 state of N, is a bound state, it is considered

separately because the binding is so weak that the state itself appar-
ently has never been observed directly, and different methods are

required for determining its potentlal-energy curve. The B 3Hg and
the a lﬂg states of N, are both predissociated by the 52; state

(refs. 18 to 20), so that two points on the potential curve for the
522 state can be determined from the predissociation limits. These
limits are 80,003 + 50 em™} for 13 < J < 14 for the a Ll state

g

and 80,559 + 50 cm™Y for J = 33 for the B 5Hg state, where the

zero of energy is taken as the minimum of the X lZE state.

In a rotating molecule the effective potential energy is increased
by addition of a centrifugal potential term equal to the kinetic energy
of rotation (ref. 1, p. 426). Thus,

hJ(J + 1) (7)

Veee(r) = V(r) +
eff ) ( 8I[|J,CI‘2

where Veff(r) is the effective potential energy for the rotating mole-

cule. (The notation V(r) means "V as a function of r.") In predis-
sociation a radiationless transition occurs at the point where two
Veff(r) curves cross and follows Kronig's selection rules (ref. 1,

p. L16) so that AJ = 0. Thus predissociation data give directly the
crossing points of Veff(r) curves, and these must be translated back

into crossings of curves for rotationless states according to equa-

tion (7). For the B 3Hg state, Veff(r) was constructed with J = 33
and V(r) as given by V 1in table I(c). From this curve the inter-
section point of the B 5Hg and SZE curves could be obtained by simply
reading off that value of r for which Veff(r) = 80,559 em™l. This
procedure gave r = 1.607 angstroms which corresponds to an energy of
79,512 em™t on the potential curve for the nonrotating molecule. The
same procedure was used to find the intersection point of the a ng and
522 curves, using J = 13.5 and the data in table I{(d). For the non-
rotating molecule the intersection occurs at r = 1.471 angstroms and an

.energy of 79,711 em~L.



Since only two points are known on the 522 curve, another relation

is needed to determine the parameters of a lMorse curve. The relation
regab = 2.598 x 10712 cm has been chosen (-ef. 1, p. 456), which gives
an average deviation of 4.8 percent for the other bound states of N,.

The only Morse curve which satisfies these three conditions and still
has a reasonable dissociation energy is

2
V(r) + 7hb = 7uu[i - em13.3(r-1.518)] (8)

where r is in angstroms and the zero of eaergy is taken to be two
ground-state N atoms at infinite separation. Some uncertainty arises

in equation (8) from the t50 em~ 1 uncertainty in the predissociation

limits as well as from the use of an empirical rule, but nevertheless
this equation is probably the best approximation possible on the basis
of the available data. The significant thing about the interaction
energy is that it is practically zero over most of the separation range.
Hence, on the average, there is practically no interaction in 5 out of
16 N atom collisions; this will have a significant effect on the calcu-
lation of the transport properties of nitrcgen at high temperatures.

+
T+ STATE OF Ny

In reference 7 a method was given for calculating short-range inter-
molecular forces by means of a very simple model in which the nuclear
Coulomb potentials are replaced by square wells which are allowed to
degenerate into delta functions. The delte-function model was applied

to the unstable b 52; state of H2 and to interactions between rare

gas atoms for which no chemical bonding car occur. Despite the extreme
simplicity of the model, the results were generally in better agreement
with experiment than were results obtained by the very laborious standard
quantum-mechanical approximations. On the basis of this model it is

therefore easy to calculate the energy of the 72: state of NE’ in

which all the valence electrons are unpaired.

In the delta-function model the potential well for an electron in
the field of a nucleus is replaced by a delta function of strength g',
and in addition the electronic atomic orbitals are allowed to "float"
around their original nuclei. The floating of the orbitals is achieved
by allowing the delta functions to shift of'f the nuclei, so that the
separation between the delta functions p 1s not necessarily equal to
the internuclear separation r. For homontclear interactions in which
no chemical bonding occurs, the interaction energy V(r) is

LT
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V(r) = n(g')2e=c'p (9)

21/2(1/1y) (10)

gl
where n 1is the number of electrons in an atom, I 1is the ionization
potential of the atom, and Iz is the ionization potential of a hydro-
gen atom. The parameter c¢' 1is given in the equation

et = g1 -ec'p) (11)
The dependence of p on r 1is taken to be
p=r+ 2a’e'r/a' (12)

where a' 1is the average radius of the outermost electronic orbit of an
isolated atom. Equations (9) to (12) together determine the potential
energy as a function of r when no bondlng occurs.

For nitrogen the quantities needed to calculate V(r) for the 723

state are: n = 7, I = 14.545 electron volt (ref. 21), and
a = 0.56 angstroms (ref. 22). Substitution of these values into equa-
tions (9) to (12) yields a potential energy which can be represented by

V(r) = 317.8 e 2 Mgy 1.3a <r < 3.2 (13)

This potential is plotted in figure 1 together with a potential obtained
from vibrational relaxation time measurements in No (see appendix A) and

a potential obtained indirectly from neutral atom beam scattering measure-
ments (ref. 8). The relations used to obtain the 723 curve from such

measurements are given in the following sections. The agreement shown
in figure 1 is within the uncertainties associated with the measurements
and their theoretical interpretation.

RELATIONS AMONG STATES OF N,

A number of approximate but very useful relations among the different
potential-energy curves of nitrogen can be obtained from the perfect-
pairing approximation of simple valence bond theory (ref. 13). Consider

the interaction between two nitrogen atoms in their MS ground states.
As the two atoms approach, they can follow any one of the four inter-

action curves corresponding to the molecular states X lZ+ A 523,

g)
5Z+ and 7Z+. It is easy to understand in a simple way how these four
g’ u
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curves arise. The electron configuration orf a hS nitrogen atom is

(ls)2(2s)2(2px)(2py)(2pz), with three unpai:ed electrons in the p-orbitals.
When two such atoms approach, these three e_ectrons on each atom can be
paired together in various ways. If all three are paired (i.e., the

electron spins are antiparallel), the X 12; ground state of N, results.
If two electrons of one atom are paired witﬂ two of the other atom and

the third electron is unpaired, the A BZE state results, and so on,

until the 72; state of highest energy resilts from all the p-electrons
being unpaired.

The mathematlical expression of these statements is usually called
the approximation of perfect pairing and is written as follows:

V = Iq. . . - L -
%yt b ® Rty 213 (1k)
all i,J orbitals with orbitals with orbitals with
paired spins unpalred spins parallel spins

where Qij is a Coulomb integral between tae orbitals 1 and Jj and Jij

is an exchange integral. The approximate expressions for the interaction
energies of the four states of N2 are thus

V() - Q4 Ty + Ty b Ty = A gy + 2Ty (15)
VO5) = @+ T * Tyy - Jaz = 2+ Jxx (16)
V%) -y - Ty - T, =k Ty - 2T, (17)
V(T2) = @ - Ty - Jyy - Tpp = Q= Ty - 2Tyy (18)

where only the p-electrons are considered and Q represents the summation
of the Qij integrals. Here the x-axis is chosen to coincide with the

internuclear axis, and by symmetry J,, = Jyy # Jyx. The following rela-
tions are readily obtained from equations (15) to (18):

v(3z) %[Y(lz) + %) (19)

v(1z)

In equation (20) use has been made of the fact that at large internuclear
separations the coulomblc interaction Q tetween neutral atoms is very
small. Equations (19) and (20) are probably fairly reliable since the

i

v(Ts) + 2q ~ -v(Tz) (20)
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approximation of perfect pairing has been used to obtain relations among
the energies of the different states and not to calculate the energies
themselves. These relations are extremely useful in the present case

since the long-range tails for the X IZE and A 523 states are easily

obtained from the potential-energy functions for the 522 and 723

states as given by equations (8) and (13).

In figure 2 are plotted the calculated potential-energy curves for
the various states of N, relative to the minimum of the X lZE curve
as zero. The broken lines representing parts of the curves for the
X lzg and A 522 states were calculated from equations (19) and (20)

and join remarkably well with the solid lines calculated from spectro-
scopic data by the RKR method.

N-N, AND N,-N, INTERACTIONS

The results of the preceding section make it possible to calculate
approximate potential curves for the N-N, and No-Np interactions.

In the first place it is evident from equation (14) that both the N-N,
and the No-N, Interaction energies are the sums of the interactions

between the atoms of the different molecules. Secondly, the interaction
energy between an N atom which is part of an Ny molecule and another

N atom, either free or part of some other molecule, is approximately

ZZ

-q -1 -1
v(NN) = q EJXX 2Jyy

—%J =%v(7>:)+lQ (21)

2

in which only the valence p-electrons are considered. At fairly large
internuclear separations, such as occur in ordinary thermal collisions
even at very high temperatures, the coulombic term Q 1in equation (21)

can be neglected. The curves for V(7Z) which were plotted in figure 1
as derived from scattering measurements and from vibrational relaxation
time measurements were calculated from equation (21) with Q = 0, since

the measurements essentially determine V(NN) rather than V(TZ).

Since V(7Z) is known from equation (13), it is simple to calcu-
late V(NN) from equation (21) and then obtain the N-Np and Npy-Nj

interactions by simply adding all the pertinent NN interactions. For
example, the interaction between a molecule ab and a molecule cd
would be written
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Vo= V(rac> + V(rad) + V(rbc) + V(rbd) (22)

Jhere each of the terms on the right is given by equations (13) and (21),
and the dependence of V on orientation is given implicitly by the

dependence of r,,, rgyg, etc. on the molecilar orientation.

For comparison with other results or fcr calculation of bulk prop-
erties it is frequently convenient to have the total interaction energy
averaged over all orientations. The method of averaging and the assump-
tions involved have been discussed in detail in reference 8 for the case
where the atom-atom interactions can be represented by an inverse power
law. In the present case the atom-atom interactions are given by equa-
tions (13) and (21) in the form of an exponential, which can be written
as follows:

V. = Ve @F (23)

where V5, and a are constants. To carry out the averaging, the

coordinate system shown in figure 3 is convenient, in which r is an
atom-atom distance, R 1s the distance between the centers of mass of
the interacting molecules, and d is the bond length of a molecule.
Thus the N-N, interaction is given as

b1
GR) - i_ﬂfo 2V e ™ 2x sin 6 48 (24)

where
r® = R2 + (d/2)2 - Rd cos © (25)

and R is held fixed. If the integration sariable is changed from 6
to r, the integration is straightforward aid yields

G(R) = 2voe'aR(a2Rd)‘l Lé(aR + 1)sinh(ad/2’ - 2(ad/2)cosh(ad/2)] (26)

The range of validity of <V(R)> in terms »>f R evidently depends on
the range of validity of V(r) in terms of r. A plausible procedure

for finding the range of R is to hold r fixed and average R over
all values of 6', so that

(R - r[l N .lie(%ﬂ (27)

HTOT—M
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This is the desired relation between the limits of validity of R and
the limits of r for the N-N» interaction.

The average No-N, potential is obtained in a similar manner.

@ER) = 2L " o siney @, [ kv e 2o sin 9, a0 (28)
- (hn)2 b 1 1 b o} 2 *2

in terms of the molecule-molecule coordinate system of figure 3. The
" integration goes smoothly to yield

<V(R)> = uVOe-aR(aﬁ%dQ)-l Lg(a.R + 2)(cosh ad - 1) - 2ad sinh acil (29)

The range of validity 1s found by holding r, fixed and averaging over

all values of 6'1 and 9'2, so that

@ - [1 ; ag_ﬂ (30)

The results for the average N-N, interaction can be represented

by the equation

() = 387.8 =2-T33Rey 1.54 <R < 3.24  (31)
and the results for the average N5-N, interaction by
(v) = 826.4 e~2-665R 1.5A <R < 3.24 (32)

Equations (31) and (32) were obtained by averaging the results from
equations (13) and (21). Only equation (32) can be compared with simi-
lar potentials derived from other sources, and figure 4 gives such a
comparison with average potentials derived from scattering measurements
(ref. 8) and from high-temperature viscosity data (ref. 14). Since
equation (32) is the result of essentially only a first-order perturba-
tion calculation, it is of interest to add the second-order perturbation
energy, the London dispersion energy, which is given approximately by
the expression (ref. 23)

i

2
(Vais) :.-E.R I_ 360y (33)

(o)
j=s]
(&)Y

for R in angstroms, where a 1is the average polarizability of an N2
molecule and I the ionization potential. The sum of equations (32)
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and (33) is also shown in figure 4. The ag-eement is certainly all that
could be desired and is probably better tha1 would have been expected in
view of the various approximations made.

CONCLUDING REMARKS

Potential-energy curves for interactions between ground-state N
atoms have been calculated, as well as curves for the N-No and Ny-Np

interactions. Calculations have been based on experimental data when-
ever possible, and on approximate quantum-mschanical calculations when
experimental data were unavailable. The interactions corresponding to

the X lZE ground state of N, are given by table I(a) and equations (20)

and (13), the A 32; state by table I(b) and equations (19) and (8), the
5Z§ state by equation (8), and the YZE state by equation (15). Both
the N-N2 and the N2-N2 interactions are glven as a function of orien-

tation implicitly by equations (13), (21), and (22), and the interactions
averaged over all orientations are given by equations (31) to (33). Por-

tions of curves corresponding to interacticns involving excited N atoms

(the B 3Hg, a ng, and C 5Hu states of Ng) are also given in the

tables.

The results obtained by the different methods are remarkably con-
sistent with one another. The results are also consistent with inter-
actions calculated from data on scattering of atomic beams, high tempera-
ture gas viscosity, and vibrational relaxation times, as shown in the
figures. This high degree of consistency gives confidence in the abso-
lute accuracy of the results.

University of Maryland,
College Park, Mda., May 1, 1958.
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APPENDIX A

CALCULATION OF V(N . . . N) FROM VIBRATIONAL

RELAXATION TIMES

Schwartz, Slawsky, and Herzfeld (ref. 9) have developed a theory
which expresses the vibrational relaxation times of gases in terms of the
molecular parameters of the system. Although a number of approximations
and uncertainties exist in the theory, it is often capable of giving
order-of-magnitude agreement with experiment. For diatomic gases the
important collisions are the end-to-end ones, and the total potential is
assumed to be composed of atom-atom potentials of the form

V= Veedr - ¢ (A1)

where V, and a are constants, r is an atom-atom distance, and ¢

is the depth of the Van der Waals minimum. It is further assumed that
in end-to-end collisions all interactions are negligible except the one
between nearest atoms, so that equation (Al) represents the total poten-
tial if r 1is interpreted as the nearcst atom-atom distance and € as
the depth of the minimum for the molecule-molecule interaction. On this
basis the following expression for the relaxation time T has been
obtained (refs. 9 to 12):

1/2
Pl - ot/ Lm) 2 _1 (12)
4n\2kT Qe1P10

where

BRo” ry 3/2 271+n5mAE21/2 AE . €
3 ) SlER-20

21,2
ach
V102 = — (AkL)

87°m AE
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1/3
i 2
y - |*m(aB)® (A5)
8°h2kT

In the above expressions n 1is the number ¢f molecules per cubic centi-
meter, m 1is the mass of a molecule, k it Boltzmann's constant, T 1is
the absolute temperature, h 1is Planck's ccnstant, AE is the energy
transferred on collision from vibration to translation, and R, 1is the
distance of closest approach of the centers of mass of two molecules for
the "most effective" velocity for deactivation v * given by the
expression

XkT

L)’
= Ve 2fc (a6)

where p 1is the reduced mass of one molecule and r, 1is the atom-atom
distance corresponding to Rg-.

Equation (A2) can be written in the form

TO[;e/kTT-2/5sinh(AE/2kT£]

T™* =
1
- yeCelT/? (A7)
where T, 1s the value of T at some standard pressure and
- 6
1/2 \22/3.2 " 22 1%/
¢y = —2 (%) n2x2/ 2, e h (48)
1285 p MRS 'm(aE)?
1/3
L 2
cp = 3|XEAE) (a9)
a2h2k

where p is the standard pressure in dynes/em2. In equations (A7) to
(A9), Cp 1is a constant and (] is nearly constant except for values

of Re, which is weakly temperature dependert.
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A plot of log, T* against T"l/5 for the measurements of Blackman
(ref. 24) and Lukasik and Young (ref. 25) gives a straight line as pre-
dicted by equation (A7). The slope of the line determines the param-
eter a 1in the potential function of equation (Al) as a = T.42 per
angstrom. The second parameter V, was determined from the condition
that when r +d =R =0, then V = 0, so that equation (Al) becomes

V, = ce?(0-d) (A10)

where d = 1.094% angstroms is the bond length of No (ref. 1, p. 553),
and € and o are taken as Lennard-Jones potential parameters for
nitrogen molecules, which are e/k = 79.8° K and o = 3.749 angstroms
as determined from gas data (ref. 23, p. 1111).

The final potential between two N atoms of different molecules is
thus found to be

)e—7.u2r

v(m) = (2.47 x 106 ev 1.9A < r < 2.1A (A11)

where the range of validity of r was estimated from the highest and
lowest experimental temperatures by means of equation (A6). This poten-

tial was converted by equation (21) to V(7Z), the potential between two
free N atoms, and was plotted in figure 1 for comparison with the poten-
tials determined from the delta-function model and from scattering experi-
ments. It is seen that equation (All) is in approximate agreement with
the other potentials, but is much steeper (ref. 26). This is a basic
defect of the theory which has been pointed out previously. In view of
the approximate nature of the theory of vibrational deactivation, the
agreement shown in figure 1 is really surprisingly good.
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TABLE I.- POTENTIAL ENERGY OF STATES OF No

Eés far as the authors could determine, band-origin data were not avail-
able for most transitions involving A J£f, B 5Hg, c 31y, end

a lﬂg states. Hence, band-head data were used and reported levels

may be slightly in error.]

(a) x Izt state

v v, em-1 V, electron volts Tnaxs A Tmins A
0 1,175 0.1457 1.146 1.055
1 3,505 L4346 1.185 1.027
2 5,806 .7199 1.213 1.008
3 8,079 1.002 1.238 .99k
b 10,323 1.280 1.261 .983
5 12,538 1.555 1.282 .973
6 14,725 1.826 1.302 .96)4
v 16,882 2.093 1.321 .956
8 19,011 2.357 1.339 .9h9
9 21,111 2.618 1.358 .92
10 23,181 2.874 1.375 .936
11 25,223 3.128 1.3%93% .931
12 27,235 3.377 1.410 .926
13 29,218 3.62% 1.427 .921
14 31,171 3.865 1.447 .919
15 33,096 4. 104 1.462 .912
16 34,988 4.339 1.477 .907
17 36,859 L.571 1.496 .90k
18 38,688 4. 797 1.512 .900
19 40,493 5.021 1.528 . 896
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TABLE I.- POTENTIAL ENERGY OF STATES OF N, - Continued

(b) A BZﬁ state

- V: Te + V;

v v, em-d electron volts | electron volts rmax, A | Tmin, A
0 726.7 0.0901 6.316 1.356 1.240
1 2,160 .2678 6.493 1.405 1.203
2 3,565 L2l 6.668 1.442 1.180
3 4,942 .6128 6.8358 1474 1.160
4 6,291 . 7801 7.006 1.503 1.145
5 7,613 L9440 7.170 1.532 1.131
6 8,906 1.104 7.-33%0 1.558 1.120
7 | 10,172 1.261 T.-437 1.584 1.108
8 | 11,408 1.415 7.640 1.609 1.099
9 | 12,616 1.564 T.790 1.633 1.089

10 | 13,793 1.710 7.936 1.657 1.080

11 | 14,942 1.853 8.079 1.682 1.070

12 | 16,060 1.991 8.217 1.706 1.062

13 | 17,147 2.126 8.%32 1.73%2 1.054

1k | 18,203 2.257 8.433 1.756 1.046




TABLE I.- POTENTIAL ENERGY OF STATES OF No - Continued

(c) B5]1g state

23

-1 V, Te + V,
v vV, cm electron volts electron volts Tmax> Tmins A
0 863.4 0.1071 7.501 1.271 1.165
1 2,569 .3186 7-713% 1.316 1.132
2 4,246 .5265 7.921 1.351 1.111
3 5, 894 . 7309 8.125 1.381 1.095
L 7,512 .9315 8.325 1.409 1.082
5 9,101 1.129 8.523 1.436 1.071
6 | 10,661 1.322 8.716 1.460 1.061
7 | 12,191 1.512 8.906 1.484 1.052
8 | 13,693 1.698 9.092 1.508 1.04Y
9 | 15,165 1.880 9.274 1.531 1.037
10 | 16,608 2.059 9.453 1.554 1.030
11 | 18,021 2.235 9.629 1.577 1.024
12 | 19,404 2.406 9.800 1.599 1.018
13 | 20,757 2.574 9.968 1.622 1.012
14 | 22,080 2.738 10.132 1.644 1.006
15 | 23,372 2.898 10.292 1.667 1.002
16 | 24,633 3.054 10.448 1.690 .996
17 | 25,862 3.207 10.601 1.714 .992
18 | 27,059 3.355 10.749 1.737 987
19 | 28,223 3.500 10. 894 1.760 .983%
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TABLE I.- POTENTIAL ENERGY OF STATES OF N, - Continued

(d) = lﬂg state
-1 V, Te + V,
M v, cm electron volts | electrcn volts Tmaxs A | Tmins A
0 83%9.9 0.1041 8.€96 1.278 1.172
1 2,506 .3107 8.¢02 1.325 1.139
2 L, 14k .5139 9.105 1.360 1.118
> 5,755 7136 9.705 1.391 1.101
N 7,338 .9099 9.501 1.418 1.088
5 8,893 1.103 9.694 1.445 1.077
6 |10,421 1.292 9.483 1.471 1.067
7 | 11,922 1.478 10.069 1.495 1.059
8 |13,395 1.661 10.052 1.518 1.050
9 | 14,838 1.840 10.1.31 1.541 1.043
10 | 16,256 2.016 10.607 1.56L 1.036
11 | 17,647 2.188 10.779 1.587 1.029
12 | 19,011 2.357 10.948 1.610 1.024
13 | 20,348 2.523 11...14 1.632 1.018
4 | 21,660 2.686 11.077 1.655 1.013
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TABLE I.- POTENTIAL ENERGY OF STATES OF N, - Concluded

(e) C 3Hu state

- v, Te + V,
vV, om electron volts elecgron volts Tnax? A | Tmins A
0 1,013 0.1256 11.180 1.202 1.104
1 3,006 L3727 11.427 1.246 1.074
2 4,946 .6133% 11.668 1.279 1.056
3 6,820 L8457 11.900 1.310 1.042
N 8,602 1.067 12.121 1.342 1.03%3
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(a) Atom-molecule interection.

(b) Molecule-molecule intceraction.

Figure 3.- Coordinate systems for averagingz interaction energies over
molecular orientatioins.
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