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Chapter 1

Introduction

The aviation industry is gradually moving toward the use of integrated modular avionics (IMA)

for civilian transport _ircraft. IMA offers economic advantages by hosting multiple avionics ap-

plications on a single hardware platform. An important concern for IMA is ensuring that

applications are safely partitioned so they cannot interfere with one another, particularly when

high levels of criticality are involved. Furthermore, IMA implementations would Mlow applica-

tions of different criticality to reside on the same platform, raising the need for strong assurances
of partitioning.

NASA's Langley Research Center (LaRC) has been pursuing investigations into the avionics

partitioning problem. This research is aimed at ensuring safe partitioning and logical noninter-

ference among separate applications running on a shared Avionics Computer Resource (ACR).

The investigations are strongly influenced by ongoing standardization efforts, in particular, the

work of RTCA committee SC-182, and the recently completed ARINC 653 application executive
(APEX) interface standard [1].

In support of this effort, we have developed a formal model of partitioning suitable for evMu-

ating the design of an ACR. The model draws from the conceptual and mathematical modeling
techniques developed for computer security applications. This report presents a formulation

of partitioning requirements expressed first using conventional mathematical concepts and no-

tation, then formalized using the language of PVS (Prototype Verification System). PVS is
an enviromnent for formal specification and verification developed at SRI InternationM's Com-

puter Science Laboratory [9]. A description of PVS is located on the World-Wide Web at URL

http ://www. csl. sri. com/pvs/overview.html. The system is freely avMlable under license
from SRI.

This work was performed in the context of a broader program of applied formal methods

activity at LaRC [2]. Additional background and overview material on the use of formM methods

in aerospace applications can be found in Rushby's formal methods handbooks [12, 13], and in
a recent set of NASA guidebooks [7, 8].



Chapter 2

Avionics Computer Resource

The Avionics Computer Resource 1 (ACR) is an embedded generic computing platform that

is able to host multiple applications (avionics functions), provide space (memory) and time

(scheduling) protection for the applications as well as interrupt routing from a single source

to the multiple applications. An ACR will be configurable and will apply to a wide range of

aircraft types. The platform provides logical separation of applications present on the same

ACR. It also provides a means to detect and annunciate any attempts to violate separation
(fault cont aimnent).

2.1 Definitions

Several key terms are used throughout the following presentation. We collect them here to help
clarify the conceptual model.

* Applications: Comprise the independent, active software entities (executable programs)
that perform avionics functions.

• Input ports: Connection points from hardware devices external to the computing sub-
system, e.g., sensors, cockpit switches and controls.

• Output ports: Connection points to hardware devices external to the computing sub-
system, e.g., actuators, cockpit instruments and displays.

• Resources: Internal entities needed by applications to perform their functions, including

processor execution time, memory space, disk space, communication links, etc.

• Processors: Hardware computing devices capable of executing or interpreting the soft-
ware instructions issued by an application.

Kernel: The core component of a processor's operating system, which is responsible

for enforcing partitioning among applications in addition to other resource management
functions.

1The term "resource" is overloaded in this domain. In the name "ACR," resource refers to a large structure

composed of processor hardware and operating system software. Most of the time, however, we use the term

resource to refer to smaller entities such as memory locations.
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• Services: Individual functions or operations that may be requested from a kernel by
either applications or higher layers of an operating system.

2.2 Operating System

A software operating system is a fundamental part of the ACR platform. Its purpose is to
ensure that:

* The execution of an application does not interfere with the execution of any other appli-
cation.

Dedicated computer resources allocated to applications do not conflict or lead to memory,
schedule, or interrupt clashes.

Shared computer resources are allocated to applicatious in a way that maintains the

integrity of the resources and the separation of the applications.

Resources are allocated to each application independently of the presence or absence of
other applications.

• Standardized interfaces to applications are provided.

• Software applications and the hardware resources needed to host them are independent.

The ACR operating system will provide highly robust, kernel-level services that may be used

directly by the application developer or may serve as the basis for a more extensive operating

system. In actual practice, the kernel services must be developed in accordance with the

requirements of RTCA DO-178B [10] (or other applicable guidelines) and must be able to meet

the highest level of criticMity supported by DO-178B. While specific ACR implementations may
be qualified to lower levels of integrity, kernel services must be sufficient to ensure isolation of

applications of varying levels of criticMity residing on the same ACR. The kernel services and

the ACR itself must be quMified at or above the level of the most critical application allowed
to reside on the ACR.

A key attribute of the ACR kernel is the requirement for a robust partition management
mechanism. The partitioning mechanism underlies all aspects of the kernel. The kernel controls

scheduling of partitions through a defined, deterministic scheduling regime (fixed round-robin

algorithm or rate monotonic algorithm); controls communications between partitions; and pro-
vides consistent time management services, low-level I/O services, and ACR-level heMth man-

agement services. Figure 2.1 shows the ACR reference architecture assumed by SC-182.

To carry out its partitioning function, an ACR manages all hardware resources residing
within the ACR and monitors access to all hardware resources connected to the ACR. The ACR

kernel runs on the ACR hardware with sufficient control over all hardware and software resources

to ensure partitions are noninterfering. The kernel performs an essential access mediation

function that is independent of other services provided by the ACR. Access mediation must be

complete, tamper-proof, and assured, where these attributes are defined as follows:

• Complete. There shM1 be no way for software running in any partition to bypass the
kernel and access hardware resources not under the kernel's control.

3
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Figure 2.1: ACR Reference Architecture.

• Tamper-proof. There Shall be no way for software in any partition to tamper with the

kernel or its data so as to subvert the kernel's control of system resources.

• Assured. The kernel shall contain minimal functionality and shall meet all of the regu-
lator's requirements for the criticality rating of the overall ACR.

Collectively these attributes ensure that an ACR has the minimum structural properties

needed to achieve high-integrity partitioning. An ACR must possess these attributes regard-

less of which operating system services are offered to applications running within the ACR's
partitions.

Some additional assumptions about the way applications are handled are listed below.

• A computing hardware platform is available that is capable of supporting basic operating
system functions. The platform allows an executive to manage hardware and software

resources; achieve separate execution domains and enforce separation of higher software

layers; protect itself fi'om faults, errors, or tampering that might defeat partitioning; and

mediate all shared access to hardware and software resources according to an established
policy.

• The kernel executes in its own protected domain with the highest privilege level available

on the computer. Services are requested through a well-defined interface mechanism
allowing users to pass parameters and receive results.

• Partitions define the boundaries of resource protection. If processes or tasks are provided

within partitions, ACR resource protection is not extended to enforce separation among
the processes or tasks.

• It is possible to have multiple instances of the same application within an ACR configura-

tion. In such cases, each instance is considered separate and independent, and is protected
from the other instances as if they were dissimilar applications.



Chapter 3

Formalizing Partitioning

We begin the formMization discussion by motivating the approach taken. A brief overview of

the rationale is presented next. The complete formal models appear in Chapters 4 and 5. Note

that the scope of the formM models is limited to issues of space partitioning. Time partitioning
and other notions of separation are not covered in this report.

3.1 Security-Oriented Noninterference

Research in computer security has been active for nearly 30 years. Three broad problem areas

are generally recognized by the security community: 1) confidentiality (secrecy), 2) integrity

(no unauthorized modification), and 3) denial of service. Much study has been directed at DoD

security needs, e.g., the "multilevel security" problem, which is primarily concerned with con-

fidentiality. In this work, the motiva.tion comes from an operating environment where multiple

users access a connnon computer system. The users have different access permissions and the

information they access is marked with different levels of sensitivity. The goal is to prevent
users from viewing information they are not authorized to see.

While many security models have been devised to characterize and formalize security, re-

searchers have had much success with the family of nonintetferenee models. Origina.lly in-

troduced to address the confidentiality problem, these models can be applied to the integrity

problem as well, which is the main concern in achieving space partitioning.

Noninterference models focus on the notion of programs executing on behalf of (differently)
authorized users. Each such program affects the system state in various ways as instructions

are executed. Users may view portions of the system state through these programs. What
noninterference means in this context is that if user v is not authorized to view information

generated by user u, then the instructions executed by u's program may not influence (or
interfere with) the computations performed by v's program. In other words, no information

that v is able to view should have been influenced by anything computed by u.

Goguen and Meseguer [4, 5] proposed the first noninterference model. Paraphrasing their
model, the basic noninterference requirement can be stated as follows:

v) D v) = o([[P(w, v)

where R(u, v) indicates that v may not view the outputs of u, [[w]] is the system state that

results after executing instruction sequence w, P(w, u) is the sequence w with all of u's instruc-

tions purged fl'om it, and O(s, v) extracts from the system state those outputs viewable by v
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Figure 3.1: Instruction streams in the noninterference model.
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Figure 3.2: ACR devices (internal) vs. avionics devices (external).

(figure 3.1). What this assertion requires is that v's view of the state is the same regardless of

whether u's instructions are executed. Hence, u cannot "interfere" with v. After Goguen and
Meseguer's original formulation, other researchers introduced variations and extensions of their

model for various purposes. Most important were the intransitive versions of noninterference

formulated by Haigh and Young [6] and Rushby [11].

While the noninterference model is a powerful tool, its central requirement is too strong
to be useful in a formalization of partitioning. The strict separation induced by this model is

desirable in a security context, but is too confining in the IMA context. The reason is that

communication between ACR partitions is expressly allowed, albeit under controlled conditions.

Two types of communication can exist in an ACR environment: direct communication between

partitions supported by operating system services, and indirect communication taking place

through sharing or multiple access to avionics devices. For this reason, we make a distinction

between "internal" (ACR) and "external" (avionics) devices (figure 3.2). The upshot is that it

is permissible, under controlled conditions, for an application u to influence the computations

of another application v, making a strict prohibition of "interference" too strong a requirement.

It is possible to create a conditional noninterference model with suitable exemptions built in,

but this runs the risk of exempting too much system behavior. Instead, the modeling approach

we have selected draws from the essence of the noninterference concept and embeds it in a
somewhat modified framework.
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3.2 Conceptual Approaches

When considering the problem of formalizing partitioning, two broad approaches suggest them-

selves based on the nature of system modeling. One is a glass-box approach to modeling, where

the outlines of internal system structure are known and explicitly represented. Conversely, a
black-box approach abstracts away from the internal structure of the system and considers

only the externally visible behavior of the system. We will find it useful to draw from both

conceptual approaches in our adaptation of the noninterference concept.

3.2.1 Glass-box Approach

In the glass-box approach, we represent some key aspects of the internal structure of the ACR

and the execution of applications. Typically, a state machine model is used to capture this

structure and to formalize behavior within the system. The following steps are likely to be
required:

• Model computer resources and applications.

• Model rules for resource allocation and access attempts by application software.

• Incorporate state machine to model the ACR.

• Specify partitioning as a property of instruction execution and OS service invocation--no
improper accesses are allowed.

Using this approach, we would want to specify that applications access only those resources

allocated to them and that the kernel maintains the separation of Mlocated resources.

3.2.2 Black-box Approach

In the black-box approach, we avoid representing aspects of the internal structure of the ACR

and focus instead on the externally observable behavior that results from executing applications.

Typically, an execution trace model is used to capture the observable behavior of the candidate

system, where it is compared against the behavior of a reference system. The two alternatives

are then required to be equivalent in some sense. In our case the two alternatives would be

the desired integrated system and a fictitious federated system of equivalent functionality. A

comparison of behavior between the two alternative systems is the means of capturing key
system requirements. The following steps are likely to be required:

• Model ACR as a process with external port interfaces.

• Map ACR into a.n equivalent federated system (set of processes).

• Use a trace-based formalism to express process behaviors.

• Specify partitioning as a property that admits only behaviors that can be implemented
on the federated system.



Fault tolerance:

Distributed (replicated)system =:_ Uniprocessor system

Partitioning (noninterference):

Uniprocessor system =_ Distributed (federated) system

Figure 3.3: Relationship of RCP and ACR modeling approaches.

In essence, a partitioning property expressed in this manner asserts that no behaviors are

allowed that take advantage of the multiple applications executing on a shared processor to

compute results unobtainable in an equivalent federated system. This approach is somewhat

indirect in that it does not actually prohibit the improper sharing of dedicated resources. What

it does prohibit are computations that depend on such sharing, in effect, limiting the sharing

to those cases where they have no impact on the outcome of the overall system computations.

3.3 Modeling Partitioning

The black-box approach is appealing because it allows for a more abstract, independent expres-

sion of partitioning requirements. This enables a broader variety of actual system designs to fit

within the scope of the model. Unfortunately, by itself this modeling approach is inadequate

to capture all that we need. Consequently, we will develop a model that has the flavor of the

black-box concept at the higher levels while adopting the more direct glass-box approach to
deal with representation of internM system structure.

Drawing on L_RC's work with the Reliable Computing Platform (RCP) [3], our modeling

approach resembles the similar technique of comparison against a "gold standard" (figure 3.3).

In RCP, a comparison between a distributed implementation and a single-processor implementa-

tion was used to formMize a notion of fault tolerance. In an analogous way, we use a comparison
between a federated system and an integrated system to formalize a notion of noninterference

for ACRs. Interestingly, the role of gold standard switched from the single processor system
(in RCP) to the distributed system in the present model.

In both types of comparison:

• The application suites are the same.

,, We are comparing the effects of running applications in two different execution environ-
ments.

,, We are trying to rule out undesirable behaviors that might result when moving from the

standard (assumed correct) architecture to the new (desired) architecture.

Before developing the model in full, we begin with a sketch of a formMization process that
could be used to capture the high level concept of partitioning. The goal is to elucidate what

we mean by partitioning and develop some intuition about the domain without yet introducing
the full framework. The following steps summarize the key parts of the idealized method:



Appl: loop

read sensor S into x;

y := x + i;

write y to actuator A;

end

App2: loop

read sensor T into u;

v := u + i;

write v to actuator B;

end

Figure 3.4: Sample system containing two applications.

1. Given an ACR and its applications, map them into an equivalent federated system (each

partitioned application in its own box).

2. Model the externMly visible behavior of the ACR with execution trace To.

3. Assign traces T1,..., T_ to the component behaviors in the federated system.

4. Require that if L(T1,..., T,_) is the set of feasible interleavings of T1,..., T,_,
then To E L(T1,..., T_) is a valid consequence.

What this scheme aims to do is rule out the presence of any observable behaviors in the

ACR that cannot be duplicated, at least in principle, by an equivalent federated system. In

other words, if the applications were migrated fi'om a federated to an integrated architecture, no

new system behaviors (modulo minor scheduling differences) could be introduced. One conse-

quence of this approach is the limitation that certain memory sharing arrangements cannot be

accommodated, e.g., many of those involving multiple readers and writers. Standard practice,

however, in avionics architectures is to strictly avoid such sharing schemes, thus making the
limitation moot in nearly all implementations.

3.4 Example Scenarios

To illustrate this high-level partitioning concept, we introduce a simple example of an ACR

supporting two applications, Appl and App2. Each carries out a cyclic computation of reading

a value from a sensor, incrementing it, then sending the new value to an actuator. Figure 3.4
shows the structure of this sample system.

Let us assume for the sake of illustration that the ACR implementation has a flaw causing

the memory space for some variables in the two applications to overlap. In particular, assume

that both y from Appl and v from App2 are allocated the same space in memory. We will

consider the effect of this flaw and how it might be manifested in the execution traces.

A typical schedule for running the two applications on an ACR would execute one loop

iteration of App:t followed by one iteration from App2. After each application has executed

once, we would have a trace something like the following:

To = < (S, 7), (A, 8), (T, 12), (B, 13) >

These trace events record the observable inputs and outputs at the external avionics interface.

Note that the assumed flaw has caused no incorrect behavior in this case.



If we now map these applications onto their federated system equivalent, each application
would run on its own processor in the absence of the other. Rather than two interleaved

instruction sequences, each machine would execute a single instruction stream from a single

application. Assuming the same inputs are presented to the federated system interface, we

would get the following traces for the two processors in the federated system:

T1 = ((S, 7),(A,8))

T2= <(T,12), (8,13) >

Obviously, trace To is a valid interleaving of the separate traces T1 and T2, reflecting our
intuition that nothing improper occurred during this execution scenario.

Now consider a different way to schedule the execution of the two applications on the ACR.

Let/ppl run only part way down its first iteration so that the assignment statement is executed

but the write operation to the actuator is not. hppl is suspended at this point and hpp2 executes

one complete iteration. Then hppl is resumed and finishes its loop iteration. This schedule will
result in the following trace:

-- ( (s, 7), (T, 1% (s, 13),(A, 13))

Notice how this schedule has exposed the implementation flaw. The value hppl sends to actuator

/_ is 13, not 8, due to the variable overlap condition. The value of 8 it had computed was
overwritten by hpp2, and hpp2's value is the one that was sent to the actuator. Notice further

how it is impossible to obtain T_ as a valid interleaving of T1 and T2. The actuator value of

13 from hppl should not arise from a sensor input of 7. The computation represented by T(_
simply could not have occurred in the federated system.

10



Chapter 4

A Formal Model of Resource

Partitioning

A formal model of ACR architectures and their partitioning requirelnents is presented below.

The presentation begins with an informal discussion of the modeled entities and overall ap-

proach. Next, a generic model is introduced using informM mathematics. This is followed by
three instances of the generic model expressed in the formM notation of PVS. The three in-

stances investigate various system designs that include different combinations of features and

their access control mechanisms. Excerpts from the PVS theories are presented below. The full

text of the PVS theories can be found in Appendices A.1, B.1, and C.1.

We draw a distinction between partitioning requirements that apply to resources accessible

to applications, and requirements that apply to private data held by the kernel. The overall

partitioning model is divided into two parts based on this distinction. This chapter introduces

the formalism for showing when application resources are protected from direct interference

by other applications. Interpartition communication implemented by the kernel (or other ACR

entities) presents the possibility of interference occurring within the kernel's domain. Chapter 5
develops the formalism for showing when the kernel can be considered free of flaws from this
second type of interference.

4.1 Basic Framework

There are six aspects of modeling we will be concerned with: representation, computation,

separation, requirement, policy, and verification. Each area. is described below informally.
Later this framework will be used to present the formalizations that follow.

• Representation. The basic entities of an ACR need to be represented, at least abstractly,

as the first step in modeling. The set of applications or partitions is represented as a set

of IDs or indices. Basic information units are assumed, corresponding to bits, bytes or

whatever the smallest accessible unit happens to be. A resource space is assumed, which

includes memory locations, elements of processor state, and memory-like devices. A

resource state is considered to be a mapping fl'om resources to information units. FinMly,

the basic computation step is denoted by the term command, which includes processor

instructions, kernel service calls, and possibly other (atomic) operations.

11
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Figure 4.1: Trace-based partitioning requirement.

adding a version of it for traces. P : E* x A _ E* extracts those elements of a computation
trace belonging to application a. Again, we defer definitional details until the PVS form of the
model.

4.2.4 Requirement

Having established the basic entities of the model, we are now ready to state the basic parti-

tioning requirement. We focus on computation traces as the system response of interest. In the

integrated system, the computation trace produced in response to a command list C is simply

D(C). We wish to compare portions of this trace to its analogs in the federated system.

When C is separated into subsequences based on partition, we have that the computation

trace for case a is given by D(P(C, a)). Construct such a trace for each value a, then compare

it to the subtrace found by purging the integrated trace D(C). Thus the final partitioning
requirement we seek has the form:

Va: P(D(C), a)= D(P(C, a))

The right hand side represents the computation applied to each command thread separately.

Each processor in the federated system is assumed to be identical to the original, having the

full complement of resources, although most will not be accessed (we hope) for a given choice
of a.

Figure 4.1 illustrates the relationship of the various lists and traces in the manner of a. classic

colnmuting diagram, showing the familiar algebraic form of a homomorphism. In the figure we

use C0 to represent the original command list for the integrated system and To = D(Co) its

resulting computation trace. Then C1 through C_ are the purged command lists and T1 through
T,_ are their resulting traces.

If the access control policy of the system is working properly, then the effect of separation

is invisible, yielding the same computation results as the integrated system. If, however, the

policy or its enforcement is flawed in some way, one or more of the trace pairs above will differ,

signaling a failure to achieve partitioning as formalized by this requirement.

4.2.5 Policy

With the help of protection features embedded in processor hardware, the kernel enforces an

access control policy on the use of system resources. We denote by the predicate H(C) the

condition of command list C adhering to such a policy and other well-formedness criteria. The

14



policy andtypeof enforcementaresystemdependent;it is not possibleto bemoreexpliciton
the detailswithout consideringthedesignfeaturesthemselves.ThePVSmodelsconsidersuch
detailsfor threedesigns.

4.2.6 Verification

Pulling togetherall the pieces,wecannowstatethetheoremneededto establishthat anACR
designachievesstrongpartitioning:

H(C) D Va: P(D(C), a)= D(P(C, a))

A proof of this conjecture for all command lists C shows that the applications will be well

partitioned under ACR control. This type of proof is constructed for all three PVS designs
appearing in this report.

4.2.7 Variations

Variations on the basic outline sketched above are possible. We describe three variants here.

Still others may suggest themselves based on particular needs.

The first variant concerns the form of the partitioning requirement. Sections 3.3 and 3.4

suggested the approach of taking the separate traces from the purged command streams and

merging them back into a single trace. This "purge-and-merge" technique would lead to the
following type of requirement:

D(C) = M(Aa: D(P(C, a)), N(D(C)))

where the function N extracts application IDs so the merge function M can reconstruct the
trace in the correct order.

This approach is indeed workable and forms an intuitive statement of the partitioning con-

dition. Nevertheless, the form we have chosen is simpler to work with and is equivalent to the

"purge-and-merge" variant. We have constructed a proof in PVS to show this correspondence.

The next two variants concern the computational product used to compare the workings of

the integrated and federated systems. We are using a computation trace for this purpose. One
variant would be to use an external event trace instead. By this we mean a trace that records

only events or data flows occurring at the ACR's externM interface, what we have termed input

and output ports. This type of trace was used in Section 3.4 and the preceding discussion. The

computation trace we have described contains more information, including all the intermediate
steps that would be omitted fl'om an external event trace.

A requirement based on the external event trace would be a weaker constraint on system

operation, but it would be sufficient to capture the essence of partitioning. It would allow

designs that fail to agree on an instruction by instruction basis, but still matched on the

important events of outputs to the avionics devices. By using the computation truce, we have a

requirement that trivially implies the one based on external event traces. As a practical matter,

it seems likely that the computation trace version will be applicable to nearly all designs.

The other variant concerns the use of system states instead of traces as the objects of

comparison. The main requirement could be recast into an invariant showing that state values
match in the two cases for suitably chosen resource and application ID combinations. These

types of invariants must be proved anyway as part of the task of establishing the trace-based
requirement.
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The wisdomof this variant is not as clearas the other. Becausethe domainis aircraft
control,the important matter is ensuringthat outputssentto actuatorsandotherdevicesare
correct.Tracesaregoodfor demonstratingthis property.Stateinvariantsseemto fall onestep
shortof what is needed.It is not enoughto checkthat memoryvaluesmatch;what mattersis
what the systemdoes with such values.

4.3 Illustration

To illustrate the partitioning model formulation, we return to the simple example of an ACR

supporting two applications introduced in Section 3.4 (recall figure 3.4). As before, assume

that the ACR implementation has a flaw. To be more specific, assume that variables y and v
both have been allocated to memory location 1001. Now let us consider the effect of this flaw
in terms of the formM model.

First, we need the command list to be executed by the IMA system.

Co = ( (A1, 0, 7, 1000), (A1, 1000, incr, 1001), (A1, 1001, id, 200),

(A2, 0, 12, i002), (A2, 1002, incr, 1001), (A2, i001, id, 300) )

Here we have assmned that input ports S and T can be read like memory locations, and that

two sampled values are fixed by the constant functions 7 and 12. Similarly, output ports A and

B can be written like memory at locations 200 and 300. The identity function id is used in
these commands to reflect data movement without modification.

Executing the command list Co and collecting the trace events using the model function D
results in the following trace:

To = ( (A1, 7), (A1,8), (A1,8), (A2, 12), (A2, 13), (A2, 13) )

This sequence shows the values computed by each instruction in the command list Co.

Now, applying the purge function to Co produces the two purged command lists reflecting
the separation of the two applications.

C 1 = < (A1, 0, 7, 1000), (A1, 1000, incr, 1001), (A1, 1001, id, 200) )

C2 = ( (A2, 0, 12, i002), (A2, 1002, incr', i001), (A2, i001, id, 300) )

These, in turn, lead to the two traces below.

T1 = ( (AI, 7), (AI, 8), (AI, 8) )

T2 = ( (A2, 12), (A2, 13), (A2, 13) )

We find that T1 = P(To, A1) and T2 = P(To, A2), satisfying the partitioning requirement.

Next, consider the alternate command list below (C0 reordered).

C_ = ( (A1, 0, 7, 1000), (A1, 1000, incr, 1001), (A2, 0, 12, 1002),

(A2, 1002, incr, 1001), (A2, 1001, id, 300), (A1, 1001, id, 200) )

The purged command lists will be the same as C1 and C2; hence T_ and T_ will be the same as

T1 and T2. The integrated system traces, however, will be flawed due to the overlapping use of
memory location 1001:

P(TD, A1) = ( (A1, 7), (A1, 8), (A1, 13) )

P(TD, d2) = ( (d2, 12), (d2, 13), (d2, 13) )

The condition T_ _ P(Tg, A1) exposes the failure to achieve partitioning for command list C_.
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4.4 ACR Design 1: Baseline System

This section introduces a PVS formalization of the basic partitioning model described in Sec-

tion 4.2. The complete PVS theory can be found in Appendix A.1.

We assume a basic IMA architecture having the following characteristics:

• The system has a fixed set of applications.

• 0nly a single type of command exists: machine instructions.

• No interpartition communication is supported.

• Each resource is accessible by at most one application.

• Resource allocation and access rights are static (permanently assigned).

This configuration was chosen for the baseline because it represents a set of minimal system

features. The next two designs will extend this baseline in important ways to show how more
realistic designs can be accommodated.

4.4.1 Representation

Two uninterpreted types, resource and info, represent the space of resources (similar to

addresses) and the basic information unit stored in resources. From these, the system state
type is defined a.s follows.

resource_state: TYPE = [resource -> info]

initial_state: system_state

Resource state can be thought of as those portions of main memory allocated to applications
plus a few other items depending on hardware design.

Commands are machine instructions, each having associated with it a list of argument
resources (to be read), a function to be applied to the arguments, and a list of result resources
(to be written).

cmd_fn: TYPE = [info_list -> info_list]

cmd_type : TYPE+

command: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource_list, fn: cmd_fn,

results: resource_list #]

cmd_list : TYPE = list [command]

Note that in applying the model to a real architecture, these commands may not correspond ex-

actly to real instructions. Some features of actual processors, such as interruptible instructions

and effective address calculations, may require the model to apply to imaginary microinstruc-

tions that would be composed to form the actual machine instructions. This is an interpretation
detail, however, and does not affect the theoretical results obtained below.

Computation traces are constructed as lists of the comp_event type. Each event record
contains the results computed by a single command.
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comp_event:

comp_trace:

TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

results: info_list #]

TYPE = list[comp_event]

Note that all traces are represented by lists using the predefined PVS list type. This works

well but has one minor drawback. The normal method of list construction is to "cons" a new

element on to the front (left) of an existing list. When used as traces, lists will appear in reverse

chronological order when read from left to right. Nevertheless, this has no impact on our results

because lists are used consistently throughout; it remains only a curiosity.

4.4.2 Computation

To represent the effects of command execution, we first need a function to update a list of
resources within system memory with a list of values.

next_state(rlist: resource_list, values: info_list,

s: system_state): RECURSIVE system_state =
CASES rlist OF

null: s,

cons(r, rest): IF values = null

THEN next_state(rest, null, s)

WITH [(r) := null_info]

ELSE next_state(rest, cdr(values), s)

WITH [(r) := car(values)]

ENDIF

ENDCASES

MEASURE length(rlist)

Using the previous utility function, we can model command execution as follows, where the
stateis mapped over the argument resource list to retrieve values.

execute(c: conunand, s: system_state): system_state =

next_state(results(c), fn(c)(map(s)(args(c))), s)

state(cmds: cmd_list): RECURSIVE system_state =

CASES cmds 0F

null: initial_state,

cons(c, rest): execute(c, state(rest))
ENDCASES

MEASURE length(cmds)

The current state is just the cumulative effect of applying execute recursively to the command
list.

Turning to computation traces, we have two analogous functions for describing the result

vMues after invoking a command, and then collecting M1 the events to form a trace.

do_step(c: command, s: system_state): info_list =

fn(c)(map(s)(args(c)))
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do_all(cmds: cmd_list): RECURSIVEcomp_trace=
CASEScmdsOF

null: null,
cons(c, rest): cons((# appl_id := appl_id(c),

cmd_type:= cmd_type(c),
results := do step(c, state(rest)) #),

do_all(rest))
ENDCASES
MEASURElength(cmds)

4.4.3 Separation

The function purge is used to discard all commands from a list except those belonging to a
single application.

purge(cmds: cmd_list, a: appl_id): RECURSIVE cmd_list =

CASES cmds 0F

null: null,

cons(c, rest): IF a = appl_id(c)

THEN cons(c, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(cmds)

This function could have been defined using the PVS primitive filter, but the explicit recursive

definition simplified certain prooN. A second, overloaded version of purge is included to operate
on computation traces.

4.4.4 Requirement

Now the basic partitioning requirement is easily expressed in PVS:

FORALL a: purge(do_all(cmds), a) = do_all(purge(cmds, a))

The quantifier FORALL will normally be omitted from this expression because PVS treats free

variables in formulas as if they were universally quantified. For the special case of a single

application, we have purge(crads, a) = crads, and the requirement reduces to do_all(cmds) =
do_all (crads).

4.4.5 Policy

The access control policy for this design is straightforward. Read and write modes are inde-

pendently supported. Each resource has an access control list (ACL) naming the applications

that have access to it and in what mode(s). As before, this degree of granularity is different

from what a kernel implementation would maintain, where a range of resources would likely be
assigned to one ACL.
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access_mode: TYPE = {READ, WRITE}

access_right: TYPE = [# appl_id: appl_id, mode: access_mode #]

access_set : TYPE = set [access_right]

This scheme works to describe uses of memory and some devices. Input devices could have

read-only access while output devices would be write-only.

A predicate alloc declares the access control in effect for a given system. The following

asserts key requirements about resource allocation, namely, that it be static (independent of

state) and exclusive (only one application has access rights to a resource).

allocation: TYPE = [resource-> access_set]

static_exclusive(alloc_fn: allocation): bool =

FORALL (r: resource):

EXISTS (a: appl_id):

FORALL (at: access_right):

member(ar, alloc_fn(r)) IMPLIES a = appl_id(ar)

alloc: {p: allocation I static_exclusive(p)}

_O

C mmand lists adhering to this policy must satisfy the proper_access predicate below,

which requires that for every command, the application has read access to all argument resources
and write access to all result resources.

mode_access(m: access_mode, rlist: resource_list, a: appl_id): bool =
FORALL (r: resource):

member(r, rlist) IMPLIES

member((# appl_id := a, mode := m #), alloc(r))

proper_access(cmds: cmd_list): RECURSIVE bool =

CASES cmds 0F

null: true,

cons(c, rest): mode_access(READ, args(c), appl_id(c))

AND mode_access(WRITE, results(c), appl_id(c))

AND proper_access(rest)

ENDCASES

MEASURE length(cmds)

4.4.6 Verification

Finally, we arrive at the point where we must prove that enforcement of the policy is a sufficient
condition for the partitioning requirement.

well_partitioned : THEOREM

proper_access (cmds) IMPLIES

purge(do_all(cmds), a) = do_all(purge(cmds, a))

A completely mechanical proof of the theorem well_partitioned has been constructed using

the PVS theorem prover. It relies on roughly ten supporting lemmas. A few typical lemlnas
are described below.
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Thelemmamap_argsassertsthat if tworesourcestatesagreeon all elementsof a resource
list, the effectof doingalookupusingmapis the same.

map_args: LEMMA

(FORALL r: member(r, rlist) IMPLIES sl(r) = s2(r))

IMPLIES

map(sl)(rlist) = map(s2)(rlist)

execute_in: LEMMA

(FORALL r: member(r, args(c)) IMPLIES sl(r) = s2(r))

IMPLIES

(FORALL r: member(r, results(c)) IMPLIES

execute(c, sl)(r) = execute(c, s2)(r))

The lemma execute_in is central to the overM1 proof. It asserts that if two different system

states agree on M1 resources used as arguments for a command, then the new states aRer

executing the command will agree on M1 result resources. This lemma together with the access

control constraints combine to imply that the following state_invariant always holds.

state_invariant: LEMMA

proper_access(cmds) AND

member((# appl_id := a, mode := READ #), alloc(r))
IMPLIES

state(cmds)(r) = state(purge(cmds, a))(r)

purge_step: LEMMA

proper_access(cons(c, cmds)) AND a = appl_id(c) IMPLIES

do step(c, state(cmds)) = do_step(c, state(purge(cmds, a)))

This invariant plus the induction step lemma purge_step combine to prove the main theorem.

4.4.7 Alternatives

As described in Section 4.2.7, the partitioning requirement can also be expressed using a "purge-

and-merge" style of formulation. The following definitions show how this can be accomplished.

Merging traces fi'om a trace vector requires a list of application IDs to indicate the original

command ordering. These IDs are used to index a vector of separate traces that will be merged
into a single trace.

trace_vector: TYPE = [appl_id -> comp_trace]

merge(T:

CASES ids OF

null: null,

cons(a, rest):

trace_vector, ids: id_list): RECURSIVE comp_trace =

IF T(a) = null

THEN cons(null_comp_event,

merge(T WITH [(a)

ELSE cons(car(T(a)),

merge(T WITH [(a)

:= nullJ, cdr(ids)))

:= cdr(T(a))],
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cdr(ids)))
ENDIF

ENDCASES

MEASURE length(ids)

A little utility function to extract application IDsis needed as well.

appl_ids(trace: comp_trace): RECURSIVE id_list =

CASES trace OF

null: null,

cons(e, rest): cons(appl_id(e), appl_ids(rest))

ENDCASES

MEASURE length(trace)

As before, this could have been defined nonrecursively using the PVS primitive map, but proof
considerations ohen favor a recursive definition.

Using these definitions, the alternative form of the verification result is as follows.

well_partitioned: THEOREM

proper_access(cmds) IMPLIES

do_all(cmds) = merge(LAMBDA a: do_all(purge(cmds, a)),

appl_ids(do_all(cmds)))

This theorem has been shown to be a consequence of the well_partitioned result _omSec-
tion 4.4.6.

4.5 ACR Design 2: Multiplexed Shared Resources

This section describes an extension to the PVS formMiza.tion of the baseline design in the

previous section. The complete PVS theory can be found in Appendix B.1.

We assume a basic IMA architecture having the following characteristics:

• The system has a fixed set of applications.

• Several types of commands exist: machine instructions plus save and restore operations

occurring at partition context switches.

• No interpartition communication is supported.

• Each resource is accessible by a.t most one application at a time, but some resources are

shared and their values are swapped in and out during context switches.

• Resource allocation and access rights are dynamic for the shared resources and static for
all others.

This configuration extends the baseline design in an important way. Although main memory
may be statically allocated by the kernel, nearly every processor contains bits of state informa-

tion such as register values that cannot be statically allocated, that are instead reMlocated to

the currently running partition on every context switch. This design handles such a feature by

modeling a save area used to store the shared resources for all applications, presumably in the
private memory of the kernel.
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Commandexecutionis requiredto followthepatternof asequenceof instructionsfl'omthe
sameapplicationbracketedby matchingrestoreand saveoperations.This disciplineensures
that the instructionscurrentlyexecutingareMlowedto accessthe sharedresources.Saveand
restoreoperationsthemselvesarenot likely to be issuedby the applications,but rather be
introducedby thekernelaspart of the contextswitchprocess.Weincludethemto modelthe
actionsperformedregardlessof whichentity initiates theactions.

4.5.1 Representation

Threemaindifferencesexistoverthebaselinedesigncase:asetof sharedresourcesis assumed,
the systemstate hasadditionMcontent,and therearenew commandtypes. The state now
hasthreecomponents:a "memory"areaanalogousto thepreviousconceptof resourcestate,a
saveareato holdthe valuesof sharedresources,andthe allocationstateto recordthedynamic
assignmentof accessrights for resources.

shared_resources: resource_list

memory: TYPE = [resource -> info]

save_area: TYPE = [appl_id -> memory]

allocation: TYPE = [resource -> access_set]

system_state: TYPE = [# active: memory, save:

alloc: allocation #]

save_area,

cmd_type: TYPE = {INSTR, SAVE, RESTORE}

4.5.2 Computation

Command execution now has three types of commands to handle. The save and restore op-

erations have two effects: moving shared resource values between active memory and the save
area, and updating the allocation state of shared resources.

exec_save(m: memory, s: memory): memory =

next_state(shared_resources, map(m)(shared_resources), s)

exec_restore(s: memory, m: memory): memory =

next_state(shared_resources, map(s)(shared_resources), m)

execute(c: command, s: system_state): system_state =

IF cmd_type(c) = INSTR

THEN s WITH [(active) := exec_instr(c, active(s))]

ELSIF cmd_type(c) = SAVE

THEN s WITH [(save)(appl_id(c)) :=

exec_save(active(s), save(s)(appl_id(c))),

(alloc) := deallocate(alloc(s), appl_id(c))]

ELSE s WITH [(active) :=

exec_restore(save(s)(appl_id(c)), active(s)),

(allot) := allocate(alloc(s), appl_id(c))]
ENDIF
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Computation traces are constructed as before with the exception that not M1 commands are

represented; save and restore commands are filtered out and do not become part of the trace.

The rationMe for this is that they are an artifact of the multiplexing of processor resources;

they have no inherent meaning to the avionics functions of the app_cations.

do_all(cmds: cmd_list): RECURSIVE comp_trace =
CASES cmds OF

null: null,

cons(c, rest):

IF cmd_type(c) = INSTR

THEN cons((# appl_id := appl_id(c),

cmd_type := cmd_type(c),

results := do_step(c, state(rest)) #),

do_all(rest))

ELSE do_all(rest)

ENDIF

ENDCASES

MEASURE length(cmds)

4.5.3 Separation

No new types or functions are needed to describe the separation of command stream execution.

4.5.4 Requirement

The partitioning requirementis expressed exactly as before.

4.5.5 Policy

The policy area has several new items. The alloc predicate is no longer a constant but

has become part of the state. The initial state is a constant that must satisfy the allocation
exclusivity condition.

exclusive(alloc: allocation): bool =

FORALL (r: resource):

EXISTS (a: appl_id):

FORALL (ar: access_right):

member(at, alloc(r)) IMPLIES a = appl_id(ar)

initial_state: {s: system_state I exclusive(alloc(s))}

Functions are needed to define updates to the allocation state for save and restore commands.

On a restore, the application is granted both read and write access to all shared resources. On

a save, all access rights to the shared resources are rescinded.

shared_set(a: appl_id): access_set =

add((# appl_id := a, mode := READ #),

add((# appl_id := a, mode := WRITE #),

emptyset[access_right]))
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allocate(alloc: allocation, a: appl_id): allocation =

LAMBDA (r: resource): IF member(r, shared_resources)

THEN shared_set(a)

ELSE alloc(r)

ENDIF

deallocate(alloc: allocation, a: appl_id): allocation =

LAMBDA (r: resource): IF member(r, shared_resources)

THEN emptyset

ELSE alloc(r)

ENDIF

The basic conditions of the proper_access predicate rem_n the same except that the

system state must now be consulted to obtMn the dlocation state.

proper_access(cmds: cmd_list): RECURSIVE bool =

CASES cmds 0F

null: true,

cons(c, rest):

IF cmd type(c) = INSTR

THEN mode_access(READ, args(c), appt_id(c), state(rest))

AND mode_access(WRITE, results(c), appl_id(c), state(rest))

AND proper_access(rest)

ELSE proper_access(rest)
ENDIF

ENDCASES

MEASURE length(cmds)

A significant addition to the baseline system is a well-formedness protocol on command se-

quencing. This is needed to enforce the requirement that instructions be bracketed by matching
pMrs of restore and save commands:

( ... RESTORE, INSTR, ..., INSTR, SAVE ... >

A proper_wap predicate is added %r this purpose. It recursively checks the sequencing re-
quirement for a given command list.

proper_swap_rec(cmds: cmd_list, active: bool,

a: appl id): RECURSIVE bool =
CASES cmds 0F

null: N0T active,

cons(c, rest): IF active AND a = appl_id(c)

THEN IF cmd_type(c) = RESTORE

THEN proper_swap_rec(rest, false,

default_appl)

ELSIF cmd type(c) = INSTR

THEN proper_swap rec(rest, true, a)

ELSE false
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ENDIF

ELSIF N0T active AND cmd_type(c) = SAVE

THEN proper_swap_rec(rest, true, appl_id(c))

ELSE false

ENDIF

ENDCASES

MEASURE length(cmds)

proper_swap(cmds: cmd_list): bool =

proper_swap_rec(cmds, false, default_appl)

0R (EXISTS (a: appl_id): proper_swap_rec(cmds, true, a))

Closely related to this predicate is a support function called active_or, which states when

the tM1 of a command list leaves the system active _r a given application. It %llows a recursive

trajectory similar to that of proper2wap.

active_for(a: appl_id, cmds: cmd_list): RECURSIVE bool =

CASES cmds 0F

null: false,

cons(c, rest): IF cmd_type(c) = SAVE 0R appl_id(c) /= a

THEN false

ELSIF cmd_type(c) = RESTORE

THEN true

ELSE active_for(a, rest)

ENDIF

ENDCASES

MEASURE length(cmds)

The complete validity condition on command lists now includes both the proper_swap and

proper_access predicates.

proper_commands(cmds: cmd_list): bool =

proper_swap(cmds) AND proper_access(cmds)

4.5.6 Verification

The main partitioning theorem takes the same form as in the baseline system with the substi-

tution of the proper_commands predicate for proper_access:

well_partitioned : THEOREM

proper_commands (cmds) IMPLIES

purge(do_all(cmds), a) = do_all(purge(cmds, a))

This theorem has been proved using the PVS prover along with some 30 or so supporting

lemmas. The proof involved some significantly more difficult twists due to the added complexity

of the save and restore operations and the more complicated policy condition.

Several lemmas were needed to reason about the active_2or concept, such as the following
two:
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active_unique: LEMMA

active_for(el, cmds) AND active_for(a2, cmds)

IMPLIES al = a2

active_command: LEMMA

proper_swap(cons(c, cmds)) IMPLIES

IF cmd_type(c) = RESTORE

THEN NOT active_for(appl_id(c), cmds)

ELSE active_for(appl_id(c), cmds)

ENDIF

The exclusivity condition now must be reestablished on every save and restore command.

Moreover, relationships between save area vMues and active memory values must be expressed.

exclusive_allocate: LEMMA

exclusive(alloc) IMPLIES exclusive(allocate(alloc, a))

execute_in_restore: LEMMA

proper_commands(cmds) AND cmd_type(c) = RESTORE AND

member(r, shared_resources)

IMPLIES active(execute(c ' state(cmds)))(r)

= save(state(cmds))(appl_id(c))(r)

To aid the proof, an auxiliary concept was introduced cMled the appl_tate. This function

gives the value of a resource for a given application based on whether it should be found in

active memory or in the save area. Using this notion, a modified state invariant was expressed

and proved relating application states in the integrated and purged command cases.

appl_state(cmds, a)(r): info =

IF active_for(a, cmds) OR N0T member(r, shared_resources)

THEN active(state(cmds))(r)

ELSE save(state(cmds))(a)(r)

ENDIF

state_invariant : LEMMA

proper_commands (cmds) AND

(member(r, shared_resources) 0R

member((# appl_id := a, mode := READ #), alloc(state(cmds))(r)))
IMPLIES

appl_state(cmds, a) (r) = appl_state(purge(cmds, a), a) (r)

Establishing this invariant involves analyzing more cases than its counterpart in the baseline

design, making the interactive PVS proof more cumbersome. This proof complexity is the cost
of introducing resource sharing.

4.6 ACR Design 3: Interpartition Communication

This section describes a different extension to the PVS formalization of the baseline design,

independent of the one in the previous section. The complete PVS theory can be found in
Appendix C.1.
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We assume a basic IMA architecture having the following characteristics:

• The system has a fixed set of applications.

• Two types of commands exist: machine instructions plus generic, interpartition commu-
nication (IPC) kernel services.

• Each resource is accessible by at most one application.

• Resource allocation and access rights are fully static.

This configuration extends the baseline design by adding the important feature of inter-

partition communication. The exact types of communication and specific kernel services for

achieving them are not modeled. It suffices merely to allow for IPC commands that operate on

a global IPC state while adhering to the same access control policy on resources that ordinary
instructions observe. In fact, the kernel services are not limited to those used for IPC--most

other types fit the model as well. Unlike design 2, command execution is not required to follow
any patterns; the two types of comlnands can be interleaved as desired.

When IPC capability is added, the central problem that arises is that partitions are no

longer noninterfering in the strict sense. Communicating applications do indeed "interfere"

with one another. But this interdependence is intentional, of course, and we must accept the
explicitly allowed interactions while prohibiting the unintended ones.

The primary means of achieving this goal is architectural. IPC is only allowed to occur

through kernel services; no shared-memory communication is permitted. IPC services may
cause updates to application-owned resources. Our model incorporates constraints sufficient to

keep such updates confined to one partition at a time. The net result is that we can assure that

third-party partitions are protected from unintended effects during IPC activity.

Modeling this arrangement requires additional mechanisms based on the introduction of

global and local portions of the system state. Local states are replicated as before to capture
the separate computation histories. A global state is added to capture the kernel's internal

implementation of IPC. Each partition sees a common view of this IPC state.

Finally, note that even with the model presented in this section, the protection offered

is limited to absence of harmful effects within application resources. It is still possible for

mishandling to occur within the kernel before data has been delivered to its intended recipient.

Chapter 5 will take up this problem, introducing a modeling technique to show that internal
kernel behavior is also free from interfering effects.

4.6.1 Representation

The system state consists of two parts: the resource state holding application data, analogous
to the state in design 1, and the IPC state, left uninterpreted in the model. IPC commands

must access both parts of the system state while ordinary instructions access only the resource
state.

res_state:

IPC_state:

system_state:

TYPE = [resource -> info]
TYPE+

TYPE = [# res: res_state, IPC: IPC_state #]

initial_res_state: res_state
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initial_IPC_state: IPC_state

initial_state: system_state = (# res := initial_res_state,

IPC := initial_IPC_state #)

cmd_type: TYPE = {INSTR, IPC}

4.6.2 Computation

Computation concepts for instructions are the same as before. For IPC commands, several new

functions are introduced to model the effects of IPC kernel services. IPC command execution

draws inputs from both the resource state and the IPC state, and likewise produces outputs

for both. We are not concerned with the details of IPC state updates because we only wish to

compare the results produced by all the applications. As long as the same effects occur in both

system architectures, the exact nature of interpartition communication is immaterial.

exec IPC(c: command, res: res_state, IPC: IPC_state): system state =

(# res := next_state(results(c),

res_update_IPC(c, map(res) (args(c)), IPC),

res),

IPC := IPC_update_IPC(c, map(res)(args(c)), IPC) #)

Derivation of tile current state from a command stream proceeds by accounting for the type

of command executed at each step. This is a straightforward extension of the baseline model.

state(cmds: cmd_list): RECURSIVE system_state =

CASES cmds 0F

null: initial_state,

cons(c, rest): IF cmd_type(c) = INSTR

THEN (# res := execute(c, res(state(rest))),

IPC := IPC(state(rest)) #)

ELSE exec_IPC(c, res(state(rest)),

IPC(state(rest)))

ENDIF

ENDCASES

MEASURE length(cmds)

An additional function represents the results computed during IPC command execution.

The do_all function uses this function to construct the computation trace, which includes
events for IPC commands.

do_IPC(c: command, res: res_state, IPC: IPC_state): info_list =

res_update IPC(c, map(res)(args(c)), IPC)

do_all(cmds: cmd_list): RECURSIVE comp_trace =

CASES cmds OF

null: null,

cons(c, rest): cons(IF cmd_type(c) = INSTR

THEN INSTR_event(c, res(state(rest)))
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ELSE IPC_event(c, res(state(rest)),

IPC(state(rest)))

ENDIF,

do_all(rest))
ENDCASES

MEASURE length(cmds)

4.6.3 Separation

The concepts needed to describe processor separation are more complicated for this design.

Federated system behavior cannot be modeled using n completely separate command streams,

each operating independently of the others. Because of the IPC commands, computations

among processors axe interdependent. Results from one partition become inputs to another

when IPC services are invoked. To handle this situation, we apply separation in a more selective
mauner.

First, we introduce a system state split into global and local parts. The kernel's internal

state needed to implement IPC is modeled as a single, global state, common to all processors
in the fictitious federated system. The separate resource states, one for each partition in the

federated system model, are collected into a structure and referred to as local states. IPC

commands operate on the global state and one of the local states. Conversely, instruction
commands operate only on one of the local resource states.

This scheme requires a different approach to model the elaboration of computations. We

begin with the types representing the foregoing state concepts. Local portions of the system

state are accessed by indexing with application IDs. In addition to resource states, computation

traces are kept within this structure. Traces are not part of the system state; it is simply

convenient to keep a partition's trace together with its corresponding resource state.

trace_state_appl: TYPE = [# trace: comp_trace, res: res_state #]

init_trace_state_appl: trace_state_appl =

(# trace := null, res := initial_res_state #)

trace_state_vector: TYPE = [appl id -> trace_state appl]

trace state_full: TYPE = [# local: trace_state vector,

global: IPC_state #]

It is also helpful to collect the local state and trace update expressions into a single update
function.

comp_step(c: command, local: trace_state_appl,

global: IPC_state): trace state_appl =

IF cmd_type(c) = IPC

THEN (# trace := cons(IPC_event(c, res(local), global),

trace(local)),

res := res(exec IPC(c, res(local), global)) #)

ELSE (# trace := cons(INSTR event(c, res(local)), trace(local)),

res := execute(c, res(local)) #)
ENDIF
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A command list is executed by the ensemble of separate processors and the common "kernel"

that serves them. Each command updates the local state for one partition and the global IPC
state in the case of IPC commands.

do_all_purge(cmds: cmd_list): RECURSIVE trace_state_full =
CASES cmds 0F

null: (# local := LAMBDA (a: appl_id): init_trace_state_appl,

global := initial_IPC_state #),

cons(c, rest):

LET prey = do_all_purge(rest) IN
(# local :=

LAMBDA (a: appl_id):

IF a = appl_id(c)

THEN comp_step(c, local(prev)(a), global(prey))

ELSE local(prev)(a)

ENDIF,

global :=

IF cmd_type(c) = IPC

THEN IPC(exec_IPC(c, res(local(prev)(appl_id(c))),

global(prey)))

ELSE global(prey)

ENDIF

#)

ENDCASES

MEASURE length(cmds)

The function do_all_purge combines the roles previously served by the two functions do_all

and purge. Two components are produced by this function: a vector of resource states and

traces, one for each application, and a single, common IPC state. Execution of commands within

do_all_purge keeps the partitions separate while allowing a common IPC state to evolve, thus

ensuring that partitions receive meaningful values from their IPC operations, just as they do
in the fully integrated system.

4.6.4 Requirement

The partitioning requirement is the same in spirit as that of the baseline model, but its expres-

sion is different owing to the way computation is modeled using the function do_all_purge.

purge(do_all(cmds), a) = trace(local(do_all_purge(cmds))(a))

The intent is to arrive at the separate computation traces as was done for the previous cases,

while making allowances for the special circumstances surrounding IPC command execution.

While the form of this requirement is not as elegant as that of Section 4.4.4, it serves the same

purpose within the more challenging IPC context.

4.6.5 Policy

Access control policy in this design is identical to the baseline case. Each IPC command must

adhere to the same access constraints as instruction commands. What this means is that an
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IPC commandmay accessonly thoseresourcesassignedto the partition requestingthe IPC
service.This is a reasonablerestriction,andtheproofpresentedin thenext sectionshowsthat
it is sufficientto ensurestrongpartitioning.

4.6.6 Verification

Taldngthe partitioning requirementas expressedabove,the main partitioning theoremfor
design3 canbeexpressedasfollows:

well_partitioned : THEOREM

proper_access (cmds) IMPLIES

purge(do_all(cmds), a) = trace(local(do_all_purge(cmds)) (a))

This theorem has been proved in PVS with the help of some 20 supporting lelTlmas. The proof

was more involved than the baseline case, but not overly so.

New lemmas introduced in this design were needed to deal with the effects of IPC command

execution, such as the following lemma, which shows that if resource values match for a pair of

states, then they still will match after executing an IPC command.

state_match(a, sl, s2): bool =

FORALL r:

member((# appl_id := a, mode := READ #), alloc(r))

IMPLIES sl(r) = s2(r)

exec_IPC_match_appl: LEMMA

mode_access(READ, args(c), a) AND

state_match(a, sl, s2) AND a = appl_id(c)
IMPLIES

state_match(a, res(exec_IPC(c, sl, comm)),

res(exec_IPC(c, s2, comm)))

SeverM other lemmas needed to make deductions about IPC commands are shown below.

exec_IPC_IPC_appl: LEMMA

mode_access(READ, args(c), a) AND

state_match(a, sl, s2) AND a = appl_id(c)
IMPLIES

IPC(exec_IPC(c, sl, comm)) = IPC(exec_IPC(c, s2, comm))

exec_IPC_match_not_appl: LEMMA

mode_access(WRITE, results(c), appl_id(c)) AND a /= appl_id(c)
IMPLIES

state_match(a, res(exec_IPC(c, s, comm)), s)

IPC_event_match_appl: LEMMA

mode_access(READ, args(c), appl_id(c)) AND

state_match(appl_id(c), sl, s2)

IMPLIES

IPC_event(c, sl, comm) = IPC_event(c, s2, comm)
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FinMly, the overM1 state invariant that applies a_er each command is shown below.

invariant asserts state matching conditions for both local and global state components.

state_invariant: THEOREM

proper_access(cmds) IMPLIES

(FORALL a: state_match(a, res(state(cmds)),

res(local(do_all_purge(cmds))(a)))) AND

IPC(state(cmds)) = global(do_all_purge(cmds))

The

4.6.7 Shared Avionics Devices

In addition to IPC services, there is another area. where applications may affect each other,

namely, where external avionics devices are shared among multiple partitions. Allocation of

such devices is typically dedicated rather than shared, but multiplexed access is a definite

possibility in some architectures. For this reason, a partitioning model should accommodate

this type of sharing if the need arises. We have not extended the core model of this report to

cover this case, but we now sketch how the existing framework can support it.

Shared avionics devices can be handled in manner similar to IPC services. The model

would need to recognize such I/O operations, whether carried out using kernel services or

through direct access by machine instructions, as a special class and handle them accordingly.

A treatment analogous to that of IPC services is the prescribed method. By making the special

I/O operations adhere to the same constraints as IPC services, the same modeling and proof
scheme can be used to show that the I/O has no effects outside of the designated resources. The

global-plus-local state technique would work to perform the desired verification. Alternatively,

a more general form of the model could be used in which IPC services and shared device I/O are
both particular instances of the general class of shared operations requiring special treatment.
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Chapter 5

Extending the Model to Kernel

Partitioning

As discussed in the previous chapter, the resource partitioning models offer assurance against

resource interference caused by other applications within a system. As long as a computation

proceeds entirely within one partition, this property is sufficient to achieve independent op-

eration. If, however, communication with other applications takes place, there are additional

points of vulnerability. In particular, when data is in transit from one partition to another,

temporarily being held within private ACR data structures rather than partition resources,

there is a. possibility of mishandling that is not covered by the previously developed models.
We now turn our attention to this additional problem.

5.1 Kernel Noninterference

The basic approach we will follow is to apply the foregoing modeling framework and adapt it

to the kernel interference problem. What this involves is taking the traditional noninterference

concept and turning it upside down. Rather than separating the applications, we choose instead

to separate the IPC mechanisms within the kernel. We assume the kernel implements IPC using

conventional techniques such as ports or channels. Imagine that we can separate and replicate
the kernel's processing, assigning each port or channel to its own kernel "machine." Then we

apply the techniques of Section 4.6, inverting the roles of partitions and kernel. The partitions

become the entity we hold constant while the kernel's IPC channels become the objects of
separation as if implemented by a federated system.

Given this background sketch, the application of the kernel noninterference technique re-
quires the following steps.

• Identify the virtual IPC structures implemented within the kernel, such as ports, channels,
pipes, etc.

• Create a vector of local states for the kernel based on these IPC structures.

• Create a global state containing the partition resources.

• Model computation of regular machine instructions with respect to the common global
state.
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• Modelcomputationof IPC serviceswith respectto theparticularlocalstatecorresponding
to the designatedport, channel,etc.

• Assertthat the computationresultsof the integratedsystemarethe sameasthoseof the
IPC-basedfederatedsystem.

Froln the modelingstandpoint,this schemeproducesa valuabledual of the traditional
noninterferencestructure,althoughit lackssomeofits intuitive appeal.Moreover,theapproach
requiresmodelingmoreof the systemdesignthanis thecasewith resourcepartitioning. And it
is important to notethat noguaranteeof correctnessis inherent;themethodonly demonstrates
that theIPC structuresareindependent.Nevertheless,the methoddoesofferatractablemeans
of addressingthe questionof low-levelinterferencewithin anACR'soperatingsystem.Wenow
givean illustration of theapproachby invertingthemodelof Section4.6.

5.2 Minimal Kernel Design for IPC

This model supplements the resource partitioning models by showing that interpartition com-

munication through a kernel is not subject to unintended interference. A port-based IPC

mechanism is included, and a simple set of IPC services (SEND and RECEIVE) is assumed.
The complete PVS theory can be found in Appendix D.1.

We assume the basic IMA architecture of Section 4.6. The IPC commands are the two

services SEND and RECEIVE. No restrictions are placed on connectivity; ports mas connect
two or more partitions. Ordinary queueing behavior within the virtual channels is observed.

No bounds on the number of messages within a queue are specified. In practice such bounds
may be necessary and will require a more elaborate model.

5.2.1 Representation

A port type is used to distinguish individual communication ports or channels implemented by
the kernel.

port: TYPE+

port: [command -> port]

queue: TYPE = list[info_list]

The system state consists of two parts: the resource state holding application data, and the

IPC state, which assigns one queue to each port. IPC commands must access both parts of the
system state while ordinary instructions access only the resource state.

res_state: TYPE = [resource -> info]

IPC_state: TYPE = [port -> queue]

system_state: TYPE = [# res: res_state, IPC: IPC_state #]

cmd_type: TYPE = {INSTR, SEND, RCV}
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5.2.2 Computation

Computation concepts for instructions are the same as before. For IPC commands, several new

functions are introduced to model the effects of the IPC services SEND and RCV.

do_SEND(c: command, res: res_state, IPC: IPC_state): info_list =

map(res)(args(c))

do_RCV(c: command, res: res_state, IPC:

IF IPC(port(c)) = null

THEN null

ELSE car(IPC(port(c)))

ENDIF

IPC_state): info_list =

exec_SEND(c: command, res: res_state, IPC: IPC_state): system_state =
(# res := res,

IPC := IPC WITH [(port(c)) :=

append(IPC(port(c)),

(: do_SEND(c, res, IPC) :) )] #)

exec_RCV(c: command, res: res_state, IPC:

(# res

IPC

IPC_state): system_state =

:= next_state(results(c), do_RCV(c, res, IPC), res),

:= IF IPC(port(c)) = null

THEN IPC

ELSE IPC WITH [(port(c)) := cdr(IPC(port(c)))]
ENDIF #)

exec_IPC(c: command, res: res_state, IPC: IPC_state): system_state =

IF cmd_type(c) = SEND

THEN exec_SEND(c, res, IPC)

ELSE exec_RCV(c, res, IPC)

ENDIF

Derivation of the current state from a command stream proceeds by accounting for the type

of command executed at each step. This uses basically the same functions as the previous
model.

5.2.3 Separation

As before, the system state for the federated architecture is split into globM and local parts. The

partitions' resource state is modeled as a single, global state, common to M1 "processors" in the

fictitious federated system. The kernel's internal state needed to implement IPC is separated

into multiple copies, one for each port in the federated system model, and the set is collected

into a structure and referred to as loom states. IPC commands operate on the global state and

one of the local states. Conversely, instruction commands operate only on the global state.

The elaboration of computation is inverted fl'om the previous model, but otherwise works in

the same manner. A composite structure containing the local and global states together with
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thecomputationtraceis maintained.Onlyonecomputationtrace,correspondingto theglobal
resourcestate, is necessary.

IPC_state_vector: TYPE =

trace_state_full: TYPE =

[port -> IPC_state]

[# local: IPC_state_vector,

global: res_state,

trace: comp_trace #]

A command list is executed by the ensemble of partitions on one common processor and

separate kernels for each port/channel. Each IPC command updates the kernel state for its
port and the global resource state.

null: (# local

global

trace

cons(c, rest):

do_all_ports(cmds: cmd_list): RECURSIVE trace_state_full =

CASES cmds 0F

:= LAMBDA (p: port): initial_IPC_state,

:= initial_res_state,

:= null #),

LET prey = do_all_ports(rest) IN

IF cmd_type(c) = INSTR

THEN (# local := local(prev),

global := execute(c, global(prey)),

trace := cons(INSTR_event(c, global(prey)),

trace(prey)) #)
ELSE (# local :=

LAMBDA (p: port):

IF p = port(c)

THEN IPC(exec_IPC(c, global(prey),

local(prev)(p)))

ELSE local(prev)(p)

ENDIF,

global := res(exec_IPC(c, global(prey),

looal(prev)(port(c)))),

trace := cons(IPC_event(c, global(prey),

local(prev)(port(c))),

trace(prey)) #)
ENDIF

ENDCASES

MEASURE length(cmds)

The function do_all_ports plays the same role as do_all_purge in the previous model.

Three components are produced by this function: a vector of IPC states, one for each port, a

single, common resource state, and a single computation trace. Execution of commands within

do_all_ports keeps the IPC port structures separate while allowing a common resource state
to evolve.
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5.2.4 Requirement

The partitioning requirement is slightly different from that of the previous model, but its

expression is simple due to the results produced by the function do_all_ports.

do_all (cmds) = trace (do_all_ports (cmds))

The intent is to assert that the computation results fi'om the full set of applications is the same

whether a single integrated kernel is used or an ensemble of port-separated kernels is used.

5.2.5 Policy

An access control policy is not necessary in this design because there is only a single thread of

applications. In a sense the role of the policy is taken over by the design details introduced to
model the IPC services.

5.2.6 Verification

Taking the partitioning requirement as expressed above, the main partitioning theorem for this
design can be expressed as follows:

well_partitioned : THEOREM

do_all (cmds) = trace (do_all_ports (cmds))

This theorem has been proved in PVS with the hell) of five supporting lemmas. The proof was

simpler than that of the previous models, owing to the simple nature of the IPC mechanism

employed.

The lemmas needed to make deductions about IPC commands are shown below.

IPC_event_match: LEMMA

tl(port(c)) = t2(port(c)) IMPLIES

IPC_event(c, s, tl) = IPC_event(c, s, t2)

res_exec_IPC_match: LEMMA

t1(port(c)) = t2(port(c)) IMPLIES

res(exec IPC(c, s, tl)) = res(exec_IPC(c, s, t2))

IPC_exec_IPC_match: LEMMA

p = port(c) AND tl(p) = t2(p) IMPLIES

IPC(exec_IPC(c, s, tl))(p) = IPC(exec_IPC(c, s, t2))(p)

IPC_exec_IPC_other: LEMMA

p /= port(c) IMPLIES IPC(exec_IPC(c, s, t))(p) = t(p)

The overall state invariant that applies after each command is shown below. This invariant

asserts state matching conditions for both local and global state components.

state_invariant: THEOREM

res(state(cmds)) = global(do_all_ports(cmds)) AND

FORALL p: IPC(state(cmds))(p) =

local(do_all_ports(cmds))(p)(p)
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Chapter 6

Conclusion

This report has presented a formM model of partitioning suitable for supporting an ACR archi-

tecture. Based in part on concepts drawn from the noninterference model used by researchers in

information security, the model considers the way computations evolve in two different systems

and requires that the results be equal. By defining what the system response should be in the

case of a system of separate processors, the potentially interfering effects of integration can be
assessed and identified.

The approach was demonstrated on three candidate designs, each an abstraction of features

found in real systems. By continuing the development begun here, more realistic model instances

can be constructed and used to represent more complex systems with a variety of architectural

features and specific kernel services. The PVS notation was found to be effective in expressing

the model, the key requirements, and the supporting lemlnas. The PVS prover was found to

be useful in carrying out the interactive proofs, all of which were completed for the designs
undertaken.
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Appendix A

Baseline Partitioning Model

The first model represents a baseline system having minimal features with fully static resource
allocation and no interpartition communication.

V.Y,
Y,Y,
Y,7,
Y,Y.
Y,Y,
V.Y.
Y,Y.
Y,Y.
Y.Y.

A.1 PVS Theory

°eoeeoeeooeeeeoeoeoeeoeoeeoeeeeoeeeoeeeeooeeoeooeeeeeooeeeeeoeeoooooeo

Formal model of partitioning for an IMA architecture

Base partitioning model:

- Basic system with fixed applications

- Each resource is accessible by at most one application

- Resource allocation and access rights are static

- No interpartition communication

base_part_model: THEORY

BEGIN

The system supports a fixed number of partitions (applications).

num_appl: posint

applid: TYPE = below[num_appl]

Basic information units are small (e.g., bytes)

info: TYPE+

info_list: TYPE = list[info]

cmd_fn: TYPE = [info_list -> info_list]

Resources include memory locations, processor state, and some
devices external to the ACR.

resource: TYPE+
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resource_list: TYPE = list [resource]

Z Commands include processor instructions and kernel services. Input

resources are listed in "args", output resources in "results". The

function models the operation performed on the arguments.

cmd_type: TYPE+

command: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource list, fn: cmd_fn,

results: resource list #]

cmd_list: TYPE = list[command]

Z Resource state models the memory available to applications

resource_state: TYPE = [resource -> info]

initialstate: resource_state

Computation traces record the history of computed results

comp_event: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

results: info list #1

comp_trace: TYPE = list[comp_event]

null_info: info

default_appl: appl_id

default_cmd: cmd_type

null_comp_event: comp_event =

(# appl_id := default_appl, cmd_type := default cmd, results := null #)

oeeeeoeeeeoeooeo%%%%%%%%%%%%%%%%

Access control on resources is modeled below. Access control lists

Z associated with each resource is the conceptual model of control.

access_mode: TYPE = {READ, WRITE}

access_right: TYPE = [# appl_id: appl_id, mode: access mode #]

access_set: TYPE = set[access right]

The following asserts key requirements about resource allocation,

namely, that it be static (independent of state) and exclusive (only

one application has access rights to a resource).

allocation: TYPE = [resource -> access_set]

static_exclusive(alloc fn: allocation): bool =

FORALL (r: resource):

EXISTS (a: appl id):

FOKALL (ar: access_right):

member(at, alloc fn(r)) IMPLIES a = appl_id(ar)
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% Kesource allocation is specified by the constant "alloc".

alloc: {p: allocation I static_exclusive(p)}

%%%%%%%%%%%%%%%%

In the following, traces are represented in reverse chronological order,

Z if read from left to right, owing to their use of the "list" data type.

Update a list of resources within system memory with a list of values.

next_state(rlist: resource_list, values: info_list,

s: resource_state): KECUKSIVE resource_state =
CASES rlist OF

null: s,

cons(r, rest): IF values = null

THEN next state(rest, null, s) WITH [(r) := null info]

ELSE next_state(rest, cdr(values), s)

WITH [(r) := car(values)]

ENDIF

ENDCASES

MEASUKE length(rlist)

The new state that results from executing a single instruction.

execute(c: command, s: resource_state): resource_state =

next_state(results(c), fn(c)(map(s)(args(c))), s)

% The state results from the cumulative application of the entire
command list.

state(cmds: cmd_list): KECUKSIVE resource state =

CASES cmds OF

null: initialstate,

cons(c, rest): execute(c, state(rest))

ENDCASES

MEASUKE length(cmds)

do_step gives the values computed by a single command.

do step(c: command, s: resource state): info list =

fn(c)(map(s)(args(c)))

% Generate the full computation trace from the command sequence.

do_all(cmds: cmd list): KECUKSIVE comp_trace =
CASES cmds OF

null: null,

cons(c, rest): cons((# appl_id := appl_id(c),

cmd_type := cmd_type(c),

44



ENDCASES

MEASURE length(cmds)

results := do_step(c, state(rest)) #),

do_all(rest))

ZZZZZZZZZZZZZZZZ

% Purge removes all commands/events not due to application a.

purge(cmds: cmd_list, a: appl_id): RECURSIVE cmd_list =

CASES cmds OF

null: null,

cons(c, rest): IF a = appl_id(c)

THEN cons(c, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(cmds)

purge(trace: comp_trace, a: appl_id): RECURSIVE comp_trace =
CASES trace OF

null: null,

cons(e, rest): IF a = appl_id(e)

THEN cons(e, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(trace)

oeoeooooeoeoeooe%%XXXgXXXXXXXXX%

mode access(m: access_mode, rlist: resource list, a: appl_id): bool =

FORALL (r: resource):

member(r, rlist) IMPLIES

member((# appl_id := a, mode := m #), alloc(r))

% This predicate formalizes the access rights needed to perform a command.

% A valid command list adheres to this condition, which corresponds to

enforcing access control through runtime checks by the ACR.

proper_access(cmds: cmd_list): RECURSIVE bool =

CASES cmds OF

null: true,

cons(c, rest): mode access(READ, args(c), appl id(c))

AND mode access(WRITE, results(c), appl_id(c))

AND proper access(rest)
ENDCASES

MEASURE length(cmds)
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ZZZZZZZZZZZZZZZ_

a,b: VAR appl_id

ar: VAR access_right

c: VAR command

cmds: VAR cmd_list

ct: VAR comp_trace

m: VAR access_mode

r: VAR resource

rlist: VAR resource_list

s,sl,s2: VAR resource_state

vlist: VAR info_list

Utility lemmas

member_results: LEMMA

member(r, results(c)) AND member(at, alloc(r)) AND

mode_access(WRITE, results(c), appl_id(c))

IMPLIES appl_id(ar) = appl_id(c)

map_args: LEMMA

(FORALL r: member(r, rlist) IMPLIES sl(r) = s2(r))

IMPLIES

map(sl)(rlist) = map(s2)(rlist)

next_state_not_in: LEMMA

NOT member(r, rlist) IMPLIES next_state(rlist, vlist, s)(r) = s(r)

next_state_in: LEMMA

member(r, rlist) IMPLIES

next_state(rlist, vlist, sl)(r) = next_state(rlist, vlist, s2)(r)

Lemmas on the effects of executing a single instruction.

execute_not_in: LEMMA

NOT member(r, results(c)) IMPLIES execute(c, s)(r) = s(r)

execute in: LEMMA

(FORALL r: member(r, args(c)) IMPLIES sl(r) = s2(r))

IMPLIES

(FORALL r: member(r, results(c)) IMPLIES

execute(c, si)(r) = execute(c, s2)(r))

execute in_read: LEMMA

member(r, results(c)) AND mode_access(READ, args(c), a) AND

(FORALL r: member((# appl_id := a, mode := READ #), alloc(r))

IMPLIES sl(r) = s2(r))

IMPLIES

execute(c, sl)(r) = execute(c, s2)(r)
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Following is the key lemma relating ACR state values to those

computed from the purged command streams.

state_invariant: LEMMA

proper_access(cmds) AND

member((# appl_id := a, mode := READ #), alloc(r))
IMPLIES

state(cmds)(r) = state(purge(cmds, a))(r)

purge step: LEMMA

proper_access(cons(c, cmds)) AND a = appl_id(c) IMPLIES

do_step(c, state(cmds)) = do_step(c, state(purge(cmds, a)))

This is the main result that asserts valid partitioning by showing

that the purged operations produce the same

outputs as the original integrated system.

well_partitioned: THEOREM

proper_access(cmds) IMPLIES

purge(do_all(cmds), a) = do_all(purge(cmds, a))

END base_partmodel

A.2 Proof Summary

Proof summary for theory basepart_model

default_appl_TCCl ...................................... proved

alloc_TCCl ............................................. proved

next_state_TCCl ........................................ proved

next_state_TCC2 ........................................ proved

next_state_TCC3 ........................................ proved

state_TCC1 ............................................. proved

purge_TCC1 ............................................. proved

purge_TCC2 ............................................. proved

member_results ......................................... proved

map_args ............................................... proved

next_statenot_in ...................................... proved

next_state_in .......................................... proved

execute_not_in ......................................... proved

execute_in ............................................. proved

execute_in_read ........................................ proved

state_invariant ........................................ proved

purge_step ............................................. proved

well_partitioned ....................................... proved

Theory totals: 18 formulas, 18 attempted, 18 succeeded.

A.3 Proof Chain Analysis

base_part_model.well_partitioned has been PROVED.

The proof chain for well_partitioned is COMPLETE.

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete
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well_partitioned depends on the following proved theorems:

base_part model.state_TCCl

base_part_model.execute_not_in

base_part_model.execute_in

base_part_model.next_state_not_in

integers.posint_TCCl

integers.nonneg_int_TCC1

base_partmodel.purge_TCC2

if_def.IF_TCCl

base_part_model.next_state_TCC2

list_props.length_TCCl

base_part_model.purgeTCCl

base_part_model.state_invariant

base_part_model.next_state_TCC3

list_props.memberTCCl

integers.posint_TCC2

base_part_model.purge_step

base_part_model.map_args

base_part_model.execute_in_read

base_part_model.next_state_in

base_part_model.member_results

base_part_model.alloc_TCCl

base_part_model.nextstate_TCCl

well_partitioned depends on the following axioms:
list_adt.list_induction

well_partitioned depends on the following definitions:

base_part_model.purge

base_part_model.proper_access

sets.member

base_part_model.execute

list_adt.reduce nat

base_part_model.do_all

list props.length

reals.>

list_props.member

list adt_map.map

reals.<=

base_part_model.state

sets.emptyset

base_part_model.next_state

reals.>=

base_part_model.purge

base_part_model.do_step

base_part_model.mode_access

base_part_model.static_exclusive
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Appendix B

/,

Shared Resource Model

The second design extends the baseline system in the first design by adding limited dynamic

resource allocation. Shared resources are multiplexed by swapping their values in and out of
memory.

Formal model of partitioning for an IMA architecture

Base model plus restricted resource sharing:

- Basic system with fixed applications

- Each resource is accessible by at most one application

- Resource allocation and access rights are partly dynamic:

some resources may be saved and restored during partition
context switches

- No interpartition communication

shared_part_model: THEORY

BEGIN

The system supports a fixed number of partitions (applications).

num_appl: posint

appl_id: TYPE = below[num_appl]

Z Basic information units are small (e.g., bytes)

info: TYPE+

info_list: TYPE = list[info]

cmd_fn: TYPE = [info_list -> info_list]

Z Resources include memory locations, processor state, devices external
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to the ACK.

resource: TYPE+

resource list: TYPE = listKresourceJ

Z Commands include processor instructions and kernel services. Input

resources are listed in "args", output resources in "results". The

function models the operation performed on the arguments.

cmd type: TYPE = _INSTK, SAVE, KESTOKE)

command: TYPE = [# appl id: appl id, cmd type: cmd_type,

args: resource list, fn: cmd_fn,

results: resource_list #1

cmd list: TYPE = list[commandJ

Z Access control on resources is modeled below. An access control list

associated with each resource is the conceptual model of control.

access mode: TYPE = _KEAD, WKITE)

access_right: TYPE = [# appl id: appl id, mode: access_mode #]

access set: TYPE = set[access_rightS

System state models the memory available to applications and the save

areas set aside for dynamically reallocated resources.

memory: TYPE = [resource -> infol

save area: TYPE = [appl id -> memoryS

allocation: TYPE = [resource -> access_setS

system_state: TYPE = [# active: memory, save: save area, alloc: allocation #]

Computation traces record the history of computed results

comp_event: TYPE = [# appl_id: appl_id, cmd_type: cmd type,

results: info list #]

comp trace: TYPE = list[comp_eventl

null_info: info

default_appl: appl_id

default_cmd: cmd_type

null_comp_event: comp_event =

(# appl id := default_appl, cmd type := default_cmd, results := null #)

%%%%%%%%%%%%%%%%

The following asserts what is required of resource allocation,

namely, that it be exclusive (only one application has access

rights to a resource).

exclusive(alloc: allocation): bool =

FOKALL (r: resource):

EXISTS (a: appl id):
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FORALL (ar: access_right):

member(at, alloc(r)) IMPLIES a = appl_id(ar)

initial_state: {s: system state I exclusive(alloc(s))}

Those resources that are shared (values saved and restored on swap)
are indicated by this constant.

shared_resources: resource_list

The dynamic resource allocation lists are updated using these functions.

shared set(a: appl_id): access set =

add((# appl_id := a, mode := READ #),

add((# appl_id := a, mode := WRITE #),

emptyset[access_right]))

allocate(alloc: allocation, a: appl_id): allocation =

LAMBDA (r: resource): IF member(r, shared resources)

THEN sharedset(a)

ELSE alloc(r)

ENDIF

deallocate(alloc: allocation, a: appl_id): allocation =

LAMBDA (r: resource): IF member(r, shared resources)

THEN emptyset

ELSE alloc(r)

ENDIF

oeeoeooooeeooeoe%XX%%%gXXgXX%X%%

In the following, traces are represented in reverse chronological order,

if read from left to right, owing to their use of the "list" data type.

Update a list of resources within system memory with a list of values.

next_state(rlist: resource_list,

values: info_list, s: memory): RECURSIVE memory =
CASES rlist OF

null: s,

cons(r, rest): IF values = null

THEN next state(rest, null, s) WITH [(r) := null_info]

ELSE next_state(rest, cdr(values), s)

WITH [(r) := car(values)]

ENDIF

ENDCASES

MEASURE length(rlist)

The new state that results from executing a single instruction is
computed below.
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exec_instr(c: command, m: memory): memory =

next_state(results(c), fn(c)(map(m)(args(c))), m)

exec save(m: memory, s: memory): memory =

next_state(shared_resources, map(m)(shared_resources , s)

exec restore(s: memory, m: memory): memory =

next_state(shared resources, map(s)(shared resources), m)

execute(c: co_umand, s: system state): system_state =

IF cmd type(c) = INSTR

THEN s WITH E(active) := exec instr(c, active(s))]

ELSIF cmd type(c) = SAVE

THEN s WITH [(save)(appl_id(c)) :=

exec_save(active(s), save(s)(appl_id(c)) ,

(alloc) := deallocate(alloc(s), appl_id(c))]

ELSE s WITH E(active) :=

exec_restore(save(s)(appl_id(c)), active(s)),

(alloc) := allocate(alloc(s), appl_id(c))]
ENDIF

The state results from the cumulative application of the entire
Z command list.

state(cmds: cmd_list): RECURSIVE system state =
CASES cmds OF

null: initial_state,

cons(c, rest): execute(c, state(rest)

ENDCASES

MEASURE length(cmds)

do_step gives the values computed by a slngle command.

do step(c: command, s: system state): info_list =

fn(c)(map(active(s))(args(c)))

Generate the full computation trace from the command sequence.

do all(cmds: cmd_list): RECURSIVE comp_trace =

CASES cmds OF

null: null,

cons(c, rest): IF cmd type(c) = INSTR

THEN cons((# appl_id := appl_id(c),

cmd type := cmd_type(c),

results := do step(c, state(rest)) #),

do_all(rest))

ELSE do_all(rest)

ENDIF

ENDCASES

MEASURE length(cmds)
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Purge removes all commands/events not issued by application a.

purge(cmds: cmd list, a: appl id): RECURSIVE cmd_list =

CASES cmds OF

null: null,

cons(c, rest): IF a = appl id(c)

THEN cons(c, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(cmds)

purge(trace: comp_trace, a: appl id): RECURSIVE comp trace =
CASES trace OF

null: null,

cons(e, rest): IF a = appl_id(e)

THEN cons(e, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(trace)

_ZZ_Z_Z_ZZZ_ZZZ

The following predicate indicates whether an application is active

after a command list is executed. The condition holds when the last

restore and all intervening instructions have the same application ID,

and the matching save command has not yet occurred.

active for(a: appl_id, cmds: cmd_list): RECURSIVE bool =

CASES cmds OF

null: false,

cons(c, rest): IF cmd type(c) = SAVE OR app1 id(c) /= a

THEN false

ELSIF cmd_type(c) = RESTORE

THEN true

ELSE active for(a, rest)
ENDIF

ENDCASES

MEASURE length(cmds)

Commands need to observe certain constraints for partition swapping

to make sense. The command list needs to be divisible into segments of

% the form <RESTORE,INSTR,...,INSTR,SAVE>, all with matching IDs.

proper_swap rec(cmds: cmd_list, active: bool, a: appl_id): RECURSIVE bool =
CASES cmds OF

null: NOT active,

cons(c, rest): IF active AND a = app1 id(c)

THEN IF cmd_type(c) = RESTORE

THEN proper swap_rec(rest, false, default_app1)
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ELSIF cmd_type(c) = INSTR

THEN proper_swap_rec(rest, true, a)

ELSE false

ENDIF

ELSIF NOT active AND cmd_type(c) = SAVE

THEN proper_swap_rec(rest, true, appl_id(c))
ELSE false

ENDIF

ENDCASES

MEASURE length(cmds)

proper_swap(cmds: cmd_list): bool =

proper_swap_rec(cmds, false, default_appl)

OR (EXISTS (a: appl id): proper_swap_rec(cmds, true, a))

"proper_access" formalizes the access rights needed to perform a command.

mode access(m: access_mode, rlist: resource_list,

a: appl_id, s: system_state): bool =

FORALL (r: resource):

member(r, rlist) IMPLIES

member((# appl_id := a, mode := m #), alloc(s)(r))

proper_access(cmds: cmd list): RECURSIVE bool =

CASES cmds OF

null: true,

cons(c, rest):

IF cmd type(c) = INSTR

THEN mode_access(READ, args(c), appl_id(c), state(rest))

AND mode_access(WRITE, results(c), appl id(c), state(rest))

AND proper access(rest)

ELSE proper access(rest)

ENDIF

ENDCASES

MEASURE length(cmds)

"proper_commands" collects all the constraints on valid command lists.

proper commands(cmds: cmd_list): bool =

proper_swap(cmds) AND proper_access(cmds)

eeoeeeeoeeoooe|oXXXXXXXgXXXXgZZZ

a,al,a2: VAR appl_id

alloc: VAR allocation

ar: VAR access right

c: VAR command

cmds,cl,c2: VAR cmd_list

ct: VAR comp_trace

m: VAR access_mode

ml,m2: VAR memory
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p,q: VAR bool

r: VAR resource

rlist: VAR resource list

s,sl,s2: VAR system_state

vlist: VAR info_list

Utility lemmas

static_alloc_initial: LEMMA

NOT member(r, shared resources)

IMPLIES alloc(state(cmds))(r) = alloc(initial state)(r)

static_alloc: LEMMA

NOT member(r, shared resources)

IMPLIES alloc(state(cl))(r) = alloc(state(c2))(r)

access_state: LEMMA

(FORALL r: member(r, rlist) IMPLIES NOT member(r, shared resources))
IMPLIES

mode access(m, rlist, a, state(cl)) = mode access(m, rlist, a, state(c2))

alloc_state static: LEMMA

member(at, alloc(state(cl))(r)) AND NOT member(r, shared resources)

IMPLIES member(ar, alloc(state(c2))(r))

alloc_state_cons: LEMMA

member(at, alloc(state(cons(c, cmds)))(r)) AND cmd type(c) = INSTR

IMPLIES member(at, alloc(state(cmds))(r))

member_allocate: LEMMA

member(r, shared resources)

IMPLIES member((# appl_id := a, mode := READ #), allocate(alloc, a)(r))

AND member((# app1 id := a, mode := WRITE #), allocate(alloc, a)(r))

member_appl_id: LEMMA

member(r, rlist) AND member(at, alloc(s)(r)) AND

mode access(m, rlist, a, s) AND exclusive(alloc(s))

IMPLIES a = appl id(ar)

map_args: LEMMA

(FORALL r: member(r, rlist) IMPLIES ml(r) = m2(r))
IMPLIES

map(ml)(rlist) = map(m2)(rlist)

next_statenot_in: LEMMA

NOT member(r, rlist) IMPLIES next_state(rlist, vlist, ml)(r) = ml(r)

next_state_in: LEMMA

member(r, rlist) IMPLIES

next state(rlist, vlist, ml)(r) = next state(rlist, vlist, m2)(r)
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next_state_map: LEMMA

member(r, rlist)

IMPLIES next_state(rlist, map(ml)(rlist , m2)(r) = m1(r)

next_state from: LEMMA

member(r, rlist) AND length(rlist) = length(vlist) AND

(FORALL (n: below[length(rlist)]): nth(vlist, n) = m1(nth(rlist, n)))

IMPLIES next_state(rlist, vlist, ml)(r) = ml(r)

Lemmas concerning the well formedness of command streams

active_unique: LEMMA

active for(al, cmds) AND active_for(a2, cmds)

IMPLIES al = a2

active_swap: LEMMA

proper_swap rec(cmds, true, a) IMPLIES active for(a, cmds)

not_active_swap: LEMMA

proper_swap_rec(cmds, false, al)

IMPLIES FORALL a2: NOT active_for(a2, cmds)

active_instr: LEMMA

proper swap(cons(c, cmds)) AND cmd_type(c) = INSTR

IMPLIES active_for(appl_id(c), cmds)

active_save: LEMMA

proper_swap(cons(c, cmds)) AND cmd_type(c) = SAVE

IMPLIES active for(appl_id(c), cmds)

active_restore: LEMMA

proper_swap(cons(c, cmds)) AND cmd_type(c) = RESTORE

IMPLIES NOT active_for(appl id(c), cmds)

active_command: LEMMA

proper_swap(cons(c, cmds)) IMPLIES

IF cmd type(c) = RESTORE

THEN NOT active_for(appl_id(c), cmds)

ELSE active_for(appl_id(c), cmds)

ENDIF

other_not_active: LEMMA

proper swap(cons(c, cmds)) AND appl_id(c) /= a

IMPLIES NOT active for(a, cmds)

active access: LEMMA

active for(a, cmds)

IMPLIES mode_access(READ, shared_resources, a, state(cmds)) AND

mode_access(WRITE, shared_resources, a, state(cmds))

exclusive_allocate: LEMMA

exclusive(alloc) IMPLIES exclusive(allocate(alloc, a))
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exclusive_deallocate: LEMMA

exclusive(alloc) IMPLIES exclusive(deallocate(alloc, a))

exclusive_alloc: LEMMA

exclusive(alloc(state(cmds)))

proper_swap_cons: LEMMA

proper_swap(cons(c, cmds)) IMPLIES proper_swap(cmds)

proper_cons: LEMMA

proper_commands(cons(c, cmds)) IMPLIES proper_commands(cmds)

active purge: LEMMA

proper_swap(cmds)

IMPLIES active for(a, cmds) = active for(a, purge(cmds, a))

active purge equal: LEMMA

proper_swap(cmds) AND active_for(al, purge(cmds, a2))
IMPLIES al = a2

proper purge: LEMMA

proper_commands(cmds) IMPLIES proper_commands(purge(cmds, a))

Lemmas on the effects of executing a single instruction.

execute not_in: LEMMA

cmd_type(c) = INSTR AND NOT member(r, results(c))

IMPLIES active(execute(c, s))(r) = active(s)(r)

execute_not_in_save: LEMMA

cmd_type(c) = SAVE

IMPLIES active(execute(c, s))(r) = active(s)(r)

execute_not_in_restore: LEMMA

cmd_type(c) = RESTORE AND NOT member(r, shared resources)

IMPLIES active(execute(c, s))(r) = active(s)(r)

execute save: LEMMA

appl_id(c) /= a

IMPLIES save(execute(c, state(cmds)))(a) = save(state(cmds))(a)

execute_in: LEMMA

cmd_type(c) = INSTR AND

(FORALL r: member(r, args(c)) IMPLIES active(sl)(r) = active(s2)(r))
IMPLIES

(FORALL r: member(r, results(c)) IMPLIES

active(execute(c, sl))(r) = active(execute(c, s2))(r))

execute_in_read: LEMMA

cmd_type(c) = INSTR AND

member(r, results(c)) AND mode_access(READ, args(c), a, sl) AND
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r

(FORALL r: member((# appl_id := a, mode := READ #), alloc(sl)(r)

IMPLIES active(sl)(r) = active(s2)(r))
IMPLIES

active(execute(c, sl))(r) = active(execute(c, s2))(r)

execute_in_save: LEMMA

proper_commands(cmds) AND cmd type(c) = SAVE AND

member(r, shared_resources)

IMPLIES save(execute(c, state(cmds)))(appl_id(c))(r)

= active(state(cmds))(r)

execute_in_restore: LEMMA

proper commands(cmds) AND cmd type(c) = RESTORE AND

member(r, shared_resources)

IMPLIES active(execute(c, state(cmds)))(r)

= save(state(cmds))(appl_id(c))(r)

Following is the key lemma relating ACR state values to those

computed from the purged command streams.

appl_state(cmds, a)(r): info =

IF active for(a, cmds) OR NOT member(r, shared resources)

THEN active(state(cmds))(r)

ELSE save(state(cmds))(a)(r)

ENDIF

state_invariant: LEMMA

proper_commands(cmds) AND

(member(r, shared resources) OR

member((# appl_id := a, mode := READ #), alloc(state(cmds))(r))
IMPLIES

appl_state(cmds, a)(r) = appl_state(purge(cmds, a), a)(r)

purge_step: LEMMA

proper_commands(cons(c, cmds)) AND

a = appl id(c) AND cmd type(c) = INSTR

IMPLIES do step(c, state(cmds)) = do_step(c, state(purge(cmds, a))

This is the main result that asserts valid partitioning by showing

that the purged operations generate traces having the same outputs

as the original integrated system.

well_partitioned: THEOREM

proper_commands(cmds) IMPLIES

purge(do_all(cmds), a) = do_all(purge(cmds, a))

END shared_part_model

B.2 Proof Summary

Proof summary for theory shared_part_model

default_appl_TCCl ...................................... proved - complete
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initial_state_TCCl ..................................... proved - complete

next_state_TCCl ........................................ proved - complete

next_state_TCC2 ........................................ proved - complete

next_state_TCC3 ........................................ proved - complete

state_TCC1 ............................................. proved - complete

purge_TCC1 ............................................. proved - complete

purge_TCC2 ............................................. proved - complete

static_alloc_initial ................................... proved - complete

static_alloc ........................................... proved - complete

access_state ........................................... proved - complete

alloc_state_static ..................................... proved - complete

alloc_state_cons ....................................... proved - complete

member_allocate ........................................ proved - complete

member_appl_id ......................................... proved - complete

map_args ............................................... proved - complete

next_state_not_in ...................................... proved - complete

next_state_in .......................................... proved - complete

next_state_map ......................................... proved - complete

next_state_from_TCCl ................................... proved - complete

next_state_from ........................................ proved - complete

active_unique .......................................... proved - complete

active_swap ............................................ proved - complete

not_active_swap ........................................ proved - complete

active_instr ........................................... proved - complete

active save ............................................ proved - complete

active restore ......................................... proved - complete

active_command ......................................... proved - complete

other_not_active ....................................... proved - complete

active_access .......................................... proved - complete

exclusive_allocate ..................................... proved - complete

exclusive_deallocate ................................... proved - complete

exclusive_alloc ........................................ proved - complete

proper_swap_cons ....................................... proved - complete

proper_cons ............................................ proved - complete

active_purge ........................................... proved - complete

active_purge_equal ..................................... proved - complete

proper_purge ........................................... proved - complete

execute not_in ......................................... proved - complete

executenot_in_save .................................... proved - complete

execute_not_in_restore ................................. proved - complete

execute_save ........................................... proved - complete

execute_in ............................................. proved - complete

execute_in_read ........................................ proved - complete

execute_in_save ........................................ proved - complete

execute_in_restore ..................................... proved - complete

state_invariant ........................................ proved - complete

purge_step ............................................. proved - complete

well_partitioned ....................................... proved - complete

Theory totals: 49 formulas, 49 attempted, 49 succeeded.
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B.3 Proof Chain Analysis

shared_part_model, well_partitioned has been PROVED.

The proof chain for well_partitioned is COMPLETE.

well_partitioned depends on the following proved theorems:

shared_part_model.activepurge
if_def. IF_TCC1

shared_part_model.active_swap

shared_part_model.next_state_not_in

shared_part_model.exclusive±alloc

integers.posint_TCCl

shared_part_model.static_alloc_initial

shared_part_model.next_state_TCC3

shared_part_model.purge_step

shared_part_model.active_restore

shared_part_model.execute_in_restore

shared_part_model.purge_TCC2

shared_part_model.proper_swap_cons

shared_part_model.execute_not_in

shared_part_model.static_alloc

shared_part_model.next_state_TCC2

list_props.length_TCC1

shared_part_model.execute_in_read

shared_part_model.map_args

shared_part_model.proper_cons

shared_part_model.execute_not_in_save

shared_part_model.member_allocate

integers.posint_TCC2

shared_part_model.active_purge_equal

shared_part_model.active_access

shared_part_model.next_state_in

shared_part_model.default_appl_TCCl

shared_part_model.state_invariant

shared_part_model.purgeTCCl

shared_part model.proper_purge

shared_part_model.execute_save

shared_part_model.active_unique

shared_part_model.exclusive_allocate

shared_part_model.other_not_active

shared_part_model.next_state_TCCl

shared_part_model.active_command

list_props.member_TCCl

shared_part_model.next_state_map

shared_part_model.not_active_swap

shared_part_model.execute_in_save

shared_part_model.exclusive_deallocate

shared_part_model.execute_not_in_restore

shared_part_model.active_instr

shared_part_model.active_save

integers.nonneg_int_TCC1

shared_part_model.execute_in
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shared_part_model.initial_state_TCCl

shared_part_model.state_TCCl

well_partitioned depends on the following axioms:

list_adt.list_induction

well_partitioned depends on the following definitions:

shared_part_model.exec_restore

shared_part_model.mode_access

list_adt.reduce_nat

shared_part_model.exec_save

notequal./=

shared_part_model.proper_access

shared_part_model.proper_swap

shared_part_model.exec_instr

reals.<=

shared_part_model.active_for

shared_part_model.proper_commands

shared_part_model.purge

shared_part_model.allocate

sets.emptyset

reals.>

shared_part_model.do_all

shared_part_model.exclusive

shared_part_model.do_step

sets.member

shared_part_model.appl_state

shared_part_model.state

list_props.length

shared_part_model.next_state

shared_part_model.execute

list_props.member

shared_part_model.purge

shared_part_model.deallocate

list_adt_map.map

shared_part_model.shared_set

shared_part_model.proper_swap_rec
reals.>=

sets.add
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Appendix C

IPC Partitioning Model

The third design extends the baseline system in a different way by allowing generic interpartition
communication (IPC) services.

C.1 PVS Theory

eoeoeeoeeoeeooeeeooeoeoooeoeeeooooeoeeoeeeoeeeoooeoeoeooeeoooeeeeeeooo

%%

%X

Formal model of partitioning for an IMA architecture

Base model plus interpartition communication:

- Basic system with fixed applications

- Each writable resource is accessible by at most

one application

- Read-only resources accessible by any application

- Resource allocation and access rights are static

- Generic interpartition communication is allowed

IPC_part_model: THEORY

BEGIN

The system supports a fixed number of partitions (applications).

num appl: posint

appl id: TYPE = below[hum appl]

Basic information units are small (e.g., bytes)

info: TYPE+

info_list: TYPE = list[info]

cmd_fn: TYPE = [info list -> info_list]

Resources include memory locations, processor state, and some

devices external to the ACR.
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resource: TYPE+

resource_list: TYPE = list[resource]

Commands include processor instructions and kernel services. Input

Z resources are listed in "args", output resources in "results". The

function models the operation performed on the arguments.

cmd_type: TYPE = {INSTR, IPC}

command: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource_list, fn: cmd_fn,

results: resource list #]

cmd_list: TYPE = list[command]

The type res_state models the memory-like resources available to

applications, IPC_state models the interpartition communication

state, and system_state contains them both.

res_state: TYPE = [resource -> info]

IPC_state: TYPE+

system_state: TYPE = [# res: res_state, IPC: IPC_state #]

initial_res_state: res_state

initial_IPC_state: IPC state

initial_state: system_state = (# res := initial_res_state,

IPC := initial_IPC_state #)

Computation traces record the history of computed results

comp_event: TYPE = [# appl_id: appl_id, cmd_type: cmd type,

args: resource list, fn: cmd_fn,

res_res: resource_list,

results: info_list #]

comp_trace: TYPE = list[comp event]

Misc. constants

null_info: info

default_appl: appl_id

default_cmd: cmd_type

id_fn: cmd_fn = (LAMBDA (L: info_list): L)

null_comp_event: comp_event =

(# appl_id := default_appl, cmd_type := default_cmd,

args := null, fn := id_fn, res_res := null,

results := null #)

ooeoooeooooo6oooZZZZZZZZZZZZZXZX

g Access control on resources is modeled below. Access control lists
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associated with each resource is the conceptual model of control.

access mode: TYPE = {READ, WRITE}

access right: TYPE = [# appl_id: appl_id, mode: access_mode #]

access set: TYPE = setEaccess_right]

read only: [resource -> bool]

The following asserts key requirements about static resource allocation,

namely, that it be exclusive (only one application has access rights
to a resource).

allocation: TYPE = [resource -> access_set]

static_exclusive(alloc fn: allocation): bool =

FOHALL (r: resource):

NOT read_only(r) IMPLIES

EXISTS (a: appl id):

FORALL (at: access right):

member(at, alloc fn(r)) IMPLIES a = appl_id(ar)

write_limited(alloc_fn: allocation): bool =

FORALL (r: resource), (at: access right):

read only(r) AND member(at, alloc fn(r)) IMPLIES mode(ar) = READ

Resource allocation is specified by the constant "alloc".

alloc: {p: allocation I static_exclusive(p) AND write_limited(p)}

eeeooeoeooooooee

In the following, traces are represented in reverse chronological order,

if read from left to right, owing to their use of the "list" data type.

Update a list of resources within system memory with a list of values.

next_state(rlist: resource_list, values: info_list,

s: res_state): RECURSIVE res_state =

CASES rlist OF

null: s,

cons(r, rest): IF values = null

THEN next_state(rest, null, s) WITH [(r)

ELSE next_state(rest, cdr(values), s)

WITH [(r) := car(values)]

ENDIF

ENDCASES

MEASURE length(rlist)

:= null_info]

The new state that results from executing a single instruction.
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execute(c: command, s: res_state): res state =

next_state(results(c), fn(c)(map(s)(args(c))), s)

do step gives the values computed by a single instruction.

do step(c: command, s: res_state): info_list =

fn(c)(map(s)(args(c)))

Z Execution of IPC commands is modeled by the following.

res_update IPC(c: command, args: info_list, IPC: IPC_state): info_list

IPC_update_IPC(c: command, args: info_list, IPC: IPC_state): IPC state

exec_IPC(c: command, res: res_state, IPC: IPC_state): system_state =
(# res := next_state(results(c),

res_update_IPC(c, map(res)(args(c)), IPC),
res),

IPC := IPC_update_IPC(c, map(res)(args(c)), IPC) #)

Z do IPC gives the values computed by a single IPC command.

do IPC(c: command, res: res state, IPC: IPC state): info_list =

res_update_IPC(c, map(res)(args(c)), IPC)

A system state results from the cumulative application of an entire

command list, or from a command list segment continuing from a
previously obtained state.

state(cmds: cmd_list): RECUKSIVE system_state =
CASES cmds OF

null: initial_state,

cons(c, rest): IF cmd_type(c) = INSTR

THEN (# res := execute(c, res(state(rest))),

IPC := IPC(state(rest)) #)

ELSE exec IPC(c, res(state(rest)),

IPC(state(rest)))
ENDIF

ENDCASES

MEASURE length(cmds)

Construction functions for trace events

INSTR_event(c: command, res: res_state): comp_event =

(# appl_id := appl_id(c),

cmd type := cmd type(c),

args := args(c),

fn := fn(c),
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res_res := results(c),

results := do_step(c, res) #)

IPC event(c: command, res: res_state, IPC: IPC_state): comp_event =

(# appl_id := appl id(c),

cmd_type := cmd type(c),

args := args(c),

fn := fn(c),

res_res := results(c),

results := do_IPC(c, res, IPC) #)

Generate the full computationtrace from the command sequence.

do all(cmds: cmd_list): RECURSIVE comp_trace =

CASES cmds OF

null: null,

cons(c, rest): cons(IF cmd type(c) = INSTR

THEN INSTR_event(c, res(state(rest)))

ELSE IPC_event(c, res(state(rest)),

IPC(state(rest)))

ENDIF,

do_all(rest))

ENDCASES

MEASURE length(cmds)

eoeooeoooeeeo00oZZZZZZZXZZXXZXZZ

Purge removes all events not due to application a.

purge(trace: comp_trace, a: appl id): RECURSIVE comp_trace =
CASES trace OF

null: null,

cons(e, rest): IF a = appl id(e)

THEN cons(e, purge(rest, a))

ELSE purge(rest, a)

ENDIF

ENDCASES

MEASURE length(trace)

ooeeeeeeeeooeoooZZZZZXXZZZZZZZZZ

Computation using separated command streams involves computing both

local and global state values. The IPC state is assumed to be

global (single-thread).

trace_state_appl: TYPE = [# trace: comp_trace, res: res_state #]

init_trace_state_appl: trace state_appl =

(# trace := null, res := initial_res_state #)

trace_state_vector: TYPE = [appl_id -> trace_state_appl]

trace_state_full: TYPE = [# local: trace state_vector,
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global: IPC_state #]

_, A single command updates the relevant state and adds to the cumulative

computation trace.

comp_step(c: command, local: trace_state app1,

global: IPC_state): trace_state_appl =

IF cmd_type(c) = IPC

THEN (# trace := cons(IPC_event(c, res(local), global), trace(local)),

res := res(exec_IPC(c, res(local), global)) #)

ELSE (# trace := cons(INSTR_event(c, res(local)), trace(local)),

res := execute(c, res(local)) #)
ENDIF

A command list is executed by the ensemble of separate processors.

Each command updates the local state for one partition and the

global IPC state for IPC commands.

do_all_purge(cmds: cmd_list): RECURSIVE trace_state_full =
CASES cmds OF

null: (# local := LAMBDA (a: appl_id): init_trace_state_appl,

global := initial_IPC state #),

cons(c, rest):

LET prey = do_all purge(rest) IN
(# local :=

LAMBDA (a: appl_id):

IF a = appl_id(c)

THEN comp_step(c, local(prev)(a), global(prey))

ELSE local(prev)(a)

ENDIF,

global := IF cmd_type(c) = IPC

THEN IPC(exec_IPC(c, res(local(prev)(appl_id(c))

global(prey)))

ELSE global(prey)

ENDIF

#)
ENDCASES

MEASURE length(cmds)

ooooooooooeoeoeoZZZZZZZZZZZZZZZZ

mode_access(m: access_mode, rlist: resource_list, a: appl_id): bool =
FORALL (r: resource):

member(r, rlist) IMPLIES

member((# appl_id := a, mode := m #), alloc(r))

This predicate formalizes the access rights needed to perform a command.

A valid command list adheres to this condition, which corresponds to

enforcing access control through runtime checks by the ACR.

proper_access(cmds: cmd_list): RECURSIVE bool =
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CASES cmds OF

null: true,

cons(c, rest

AND

AND

ENDCASES

MEASURE length(cmds)

: mode_access(READ, args(c), appl_id(c)

mode_access(WRITE, results(c), appl_id(c))

proper_access(rest)

a,b: VAR appl_id

ar: VAR access_right

c,d: VAR command

cmds,cl,c2: VAR cmd_list

comm: VAR IPC_state

ct: VAR comp_trace

init: VAR system_state

m: VAR access_mode

r: VAR resource

rlist: VAR resource_list

s,sl,s2: VAR res_state

vlist: VAR info_list

It is useful to consider when two states match on all resources that

a partition has read access to.

state_match(a, sl, s2): bool =

FORALL r:

member((# appl_id := a, mode := READ #), alloc(r)) IMPLIES sl(r) = s2(r)

Y. Utility lemmas

state_match_trans: LEMMA

state_match(a, sl, s) AND state match(a, s, s2)

IMPLIES state_match(a, sl, s2)

member_results: LEMMA

member(r, results(c)) AND member(at, alloc(r)) AND

mode_access(WRITE, results(c), appl_id(c))

IMPLIES appl_id(ar) = appl_id(c)

map_args: LEMMA

(FORALL r: member(r, rlist) IMPLIES sl(r) = s2(r))
IMPLIES

map(sl)(rlist) = map(s2)(rlist)

next_state_not_in: LEMMA

NOT member(r, rlist) IMPLIES next_state(rlist, vlist, s)(r) = s(r)
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next_state_in: LEMMA

member(r, rlist) IMPLIES

next_state(rlist, vlist, sl)(r) = next_state(rlist, vlist, s2)(r)

Lemmas on the effects of executing a single instruction.

execute_not_in: LEMMA

NOT member(r, results(c)) IMPLIES execute(c, s)(r) = s(r)

execute_in: LEMMA

(FORALL r: member(r, args(c)) IMPLIES sl(r) = s2(r))
IMPLIES

(FORALL r: member(r, results(c)) IMPLIES

execute(c, sl)(r) = execute(c, s2)(r))

execute_in_read: LEMMA

member(r, results(c)) AND mode_access(READ, args(c), a) AND

(FORALL r: member((# appl id := a, mode := READ #), alloc(r))

IMPLIES sl(r) = s2(r))

IMPLIES

execute(c, sl)(r) = execute(c, s2)(r)

execute_match_appl: LEMMA

mode_access(READ, args(c), appl_id(c)) AND

state_match(appl_id(c), sl, s2)

IMPLIES

state_match(appl_id(c), execute(c, sl), execute(c, s2))

execute_match_not_appl: LEMMA

mode_access(WRITE, results(c), appl_id(c)) AND a /= appl_id(c)
IMPLIES

state_match(a, execute(c, s), s)

INSTR_event_match_appl: LEMMA

mode_access(READ, args(c), appl_id(c)) AND

state_match(appl_id(c), sl, s2)
IMPLIES

INSTR_event(c, sl) = INSTR_event(c, s2)

Lemmas on the effects of executing a single IPC kernel service.

exec_IPC_not_in: LEMMA

NOT member(r, results(c)) IMPLIES res(exec_IPC(c, s, cormm))(r) = s(r)

exec_IPC_in: LEMMA

(FORALL r: member(r, args(c)) IMPLIES sl(r) = s2(r))

IMPLIES

(FORALL r: member(r, results(c)) IMPLIES

res(exec_IPC(c, sl, com_m))(r) = res(exec_IPC(c, s2, contm))(r)

AND IPC(exec_IPC(c, sl, conum)) = IPC(exec_IPC(c, s2, cormm))
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exec_IPC_in_read: LEMMA

member(r, results(c)) AND mode_access(READ, args(c), a) AND

(FORALL r: member((# appl_id := a, mode := READ #), alloc(r))

IMPLIES si(r) = s2(r))

IMPLIES

res(exec_IPC(c, sl, comm))(r) = res(exec_IPC(c, s2, conum))(r)

AND IPC(exec IPC(c, sl, comm)) = IPC(exec_IPC(c, s2, comm))

exec IPC_in_IPC: LEMMA

(FORALL r: member(r, args(c)) IMPLIES st(r) = s2(r))

IMPLIES

IPC(exec_IPC(c, sl, comm)) = IPC(exec_IPC(c, s2, conhm))

exec_IPC_match_appl: LEMMA

mode_access(READ, args(c), a) AND

state match(a, sl, s2) AND a = appl_id(c)
IMPLIES

state_match(a, res(exec_IPC(c, sl, comm)), res(exec_IPC(c, s2, conum)))

exec_IPC_IPC_appl: LEMMA

mode_access(READ, args(c), a) AND

state match(a, sl, s2) AND a = appl id(c)

IMPLIES

IPC(exec IPC(c, sl, contm)) = IPC(exec_IPC(c, s2, conum))

execIPC_matchnot_appl: LEMMA

mode access(WRITE, results(c), appl id(c)) AND a /= appl_id(c)
IMPLIES

state_match(a, res(exec_IPC(c, s, comm)), s)

IPC_event_matchappl: LEMMA

mode access(READ, args(c), appl id(c)) AND

state match(appl_id(c), sl, s2)

IMPLIES

IPC event(c, sl, comm) = IPC event(c, s2, conuu)

oeoeeooeeooeooeo%%%X%%%%%%%X%%%X

Following are the key lemmas relating ACR state values to those

computed from the purged command streams.

state_invariant: THEOREM

proper_access(cmds) IMPLIES

(FORALL a: state match(a, res(state(cmds)),

res(local(do_all_purge(cmds))(a)))) AND

IPC(state(cmds)) = global(do all purge(cmds))

well_partitioned: THEOREM

proper access(cmds) IMPLIES

purge(doall(cmds), a) = trace(local(do_allpurge(cmds))(a))
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END IPC_part_model

C.2 Proof Summary

Proof summary for theory IPC_part_model

default_appl_TCCl ...................................... proved -

alloc_TCC1 ............................................. proved -

next_state_TCC1 ........................................ proved -

next_state_TCC2 ............ ............................ proved -

next_state_TCC3 ........................................ proved -

state_TCC1 ............................................. proved -

state_TCC2 ............................................. proved -

do_all_TCC1 ............................................ proved -

purge_TCCl ............................................. proved -

purge_TCC2 ............................................. proved -

state_match_trans ...................................... proved -

member_results ......................................... proved -

map_args ............................................... proved -

next_state_not_in ...................................... proved -

next_state_in ................ .......................... proved -

execute_not in ......................................... proved -

execute_in ............................................. proved -

execute_in_read ........................................ proved -

execute_match_appl ..................................... proved -

execute_match_not_appl ................................. proved -

INSTR_event_match_appl ................................. proved -

exec_IPC_not_in ........................................ proved -

exec_IPC_in ............................................ proved -

exec_IPC_in_read ....................................... proved -

exec_IPC_in_IPC ........................................ proved -

exec_IPC_match_appl .................................... proved -

exec_IPC_IPC_appl ...................................... proved -

exec_IPC_match_not_appl ................................ proved -

IPC_event_match_appl ................................... proved -

state_invariant ........................................ proved -

well_partitioned ....................................... proved -

Theory totals: 31 formulas, 31 attempted, 31 succeeded.

C.3 Proof Chain Analysis

IPC_part_model.well_partitioned has been PROVED.

The proof chain for well_partitioned is COMPLETE.

well_partitioned depends on the following proved theorems:

IPC_part_model.next_state_in

if_def. IF_TCC1

IPC_part_model.do_all_TCC1

IPC_part_model.state_invariant

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete
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integers.posint_TCC1

IPC_part_model.exec_IPC_in

IPC_part_model.next_state_TCC3

IPC_part_model.exec_IPC_match_not_appl

list_props.length_TCC1

IPC_part_model.next_state_TCC2

IPC_part_model.state_match_trans

IPC_part_model.execute_match_appl

IPC_part_model.exec_IPC_IPCappl

integers.posint_TCC2

IPC_part_model.execute_in

IPC_part_model.allocTCCl

IPC_part_model.purge_TCC2

IPC_part_model.next_state_not_in

IPC_part_model. INSTR_event_matchappl

IPC_part_model.state_TCCl

IPC_part_model.exec_IPC_inIPC

IPC_part_model.execute_match_not_appl

IPC_part_model. IPC_event_match_appl

list_props.member_TCC1

IPC_part_model.member_results

IPC_part_model.exec_IPC_match_appl

IPC_part_model.executein_read

IPC_part_model.next_state_TCCl

IPC_part_model.execute_not_in

IPC_part_model.purge_TCCl

IPC_part_model.map_args

integers.nonneg_int_TCCl

IPC_part_model.state_TCC2

IPC_part_model.exec_IPC_notin

IPC_part_model.exec_IPC_in_read

well_partitioned depends on the following axioms:

list_adt.list_induction

well_partitioned depends on the following definitions:

IPC_part_model.do_all_purge

IPC_part_model.do_IPC

IPC_part_model.state

list_adt.reduce_nat

IPC_part_model.initial_state

IPC_part_model.comp_step

IPC_part_model.do_all

notequal./=

IPC_part_model.proper_access

reals.<=

IPC_part_model.purge

IPC_part_model.write_limited

sets.emptyset

IPC_part_model.do_step

IPC_part_model.static_exclusive

IPC_part_model.execute
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IPC_part_model.init_tracestate_appl

IPC_part_model.mode_access

IPC_part_model.execIPC

reals.>

IPC_part_model. INSTR_event

sets.member

list_props.length

IPC_part_model. IPC_event

list_props.member

IPC_part_model.state_match

list_adt_map.map

reals.>=

IPC_part_model.next_state
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Appendix D

Kernel Partitioning Model

This model supplements the resource partitioning models by showing that interpartition communication

through a kernel is not subject to unintended interference. A simple set of IPC services (SEND and
RECEIVE) is assumed.

Y.X

Y,%

?.X
XY,

%%

%%

XY,

Y,X

%%

X?.

Y,X

Y,Y.

Formal model of partitioning for an IMA architecture

Kernel (IPC) partitioning model:

- Basic system with fixed applications

- Limited interpartition communication (IPC) is allowed

- Partitioning requirements apply to kernel state and IPC

mechanism rather than resource state

- Simple IPC services based on send, receive commands

- Common resource state, multiple IPC states

- Resource allocation and access rights irrelevant

kernel_part model: THEORY

BEGIN

The system supports a fixed number of partitions (applications).

num_appl: posint

applid: TYPE = below[num_appl]

Basic information units are small (e.g., bytes)

info: TYPE+

info list: TYPE = list[info]

cmd fn: TYPE = [info list -> info_list]
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Resources include memory locations, processor state, and some
devices external to the ACR.

resource: TYPE+

resource_list: TYPE = list[resource]

Commands include processor instructions and kernel services.

resources are listed in "args", output resources in "results"

function models the operation performed on the arguments.

cmd_type: TYPE = {INSTR, SEND, RCV}

command: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource_list, fn: cmd_fn,

results: resource_list #]

cmd list: TYPE = list[command]

Input

The

A port_id type is used to distinguish individual communication ports

or channels implemented by the kernel.

port: TYPE+

port: [command -> port]

queue: TYPE = list[info_list]

The type res_state models the memory-like resources available to

applications, IPC_state models the interpartition communication

state, and system_state contains them both.

res state: TYPE = [resource -> info]

IPC_state: TYPE = [port -> queue]

system_state: TYPE = [# res: res_state, IPC: IPC_state #]

initial res_state: res_state

initial_IPC_state: IPC_state

initial_state: system_state = (# res := initial_res_state,

IPC := initial_IPC_state #)

Computation traces record the history of computed results

comp_event: TYPE = [# appl_id: appl_id, cmd_type: cmd_type,

args: resource list, fn: cmd fn,

res_res: resource_list,

results: info_list #J

comp trace: TYPE = list[comp_event]

Misc. constants

null_info: info

default_appl: appl_id

default_cmd: cmd type

id fn: cmd fn = (LAMBDA (L: info_list): L)
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null_comp event: comp_event =

(# appl_id := default appl, cmd type := default_cmd,

args := null, fn := id fn, res_res := null,

results := null #)

%%%%%%%%%%%%%%%%

% Access control on resources omitted.

%%%%%%%%%%%%%%%%

% In the following, traces are represented in reverse chronological order,

% if read from left to right, owing to their use of the "list" data type.

% Update a list of resources within system memory with a list of values.

next_state(rlist: resource_list, values: info list,

s: res_state): RECURSIVE res_state =

CASES rlist OF

null: s,

cons(r, rest): IF values = null

THEN next state(rest, null, s) WITH [(r)

ELSE next state(rest, cdr(values), s)

WITH [(r) := car(values)]

ENDIF

ENDCASES

MEASURE length(rlist)

:= null_info]

% do_step gives the values computed by a single instruction.

do step(c: command, s: res_state): info list =

fn(c)(map(s)(args(c)))

% The new state that results from executing a single instruction:

execute(c: command, s: res_state): res_state =

next_state(results(c), do step(c, s), s)

% do_SEND, do_RCV give the values computed by a single IPC command.

do SEND(c: cormmand, res: res_state, IPC: IPC state): info_list =

map(res)(args(c))

do_RCV(c: command, res: res_state, IPC: IPC_state): info_list =

IF IPC(port(c)) = null

THEN null

ELSE car(IPC(port(c)))
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ENDIF

Execution of IPC commands is modeled by the following.

exec SEND(c: command, res: res_state, IPC: IPC_state): system_state =
(# res := res,

IPC := IPC WITH [(port(c)) :=

append(IPC(port(c)),

(: do_SEND(c, res, IPC) :) )] #)

exec_RCV(c: command, res: res_state, IPC: IPC_state): system_state =

(# res := next_state(results(c), do_RCV(c, res, IPC), res),

IPC := IF IPC(port(c)) = null

THEN IPC

ELSE IPC WITH [(port(c)) := cdr(IPC(port(c)))]
ENDIF #)

exec_IPC(c: command, res: res state, IPC: IPC_state): system state =

IF cmd type(c) = SEND

THEN exec SEND(c, res, IPC)

ELSE exec RCV(c, res, IPC)
ENDIF

A system state results from the cumulative application of an entire

command list, or from a command list segment continuing from a

previously obtained state.

state(cmds: cmd_list): RECURSIVE system_state =
CASES cmds OF

null: initial_state,

cons(c, rest): IF cmd type(c) = INSTR

THEM (# res := execute(c, res(state(rest))),

IPC := IPC(state(rest)) #)

ELSE exec IPC(c, res(state(rest)),

IPC(state(rest)))

ENDIF

ENDCASES

MEASURE length(cmds)

Construction functions for trace events

INSTR_event(c: command, res: res_state): comp_event =

(# app1 id := app1 id(c),

cmd type := cmd_type(c),

args := args(c),

fn := fn(c),

res_res := results(c),

results := do step(c, res) #)

IPC event(c: command, res: res_state, IPC: IPC_state): comp_event =
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(# appl id := appl_id(c),

cmd_type := cmd type(c),

args := args(c),

fn := fn(c),

res_res := results(c),

results := IF cmd_type(c) = SEND

THEN do SEND(c, res, IPC)

ELSE do RCV(c, res, IPC)

ENDIF #)

Generate the full computation trace from the command sequence.

do_all(cmds: cmd_list): RECURSIVE comp_trace =

CASES cmds OF

null: null,

cons(c, rest): cons(IF cmd_type(c) = INSTR

THEN INSTR_event(c, res(state(rest)))

ELSE IPC_event(c, res(state(rest)),

IPC(state(rest)))

ENDIF,

do all(rest))

ENDCASES

MEASURE length(cmds)

eooeeeooeooeooeeZZZZZZZZZZZZZZZZ

Explicit purge operations are not used. Implicit separation of

command streams based on IPC port is captured below.

Computation using separated command streams involves computing both

local and global state values. The resource state is made global.

IPC_state_vector: TYPE = [port -> IPC_state]

trace_state_full: TYPE = [# local: IPC_state_vector,

global: res_state,

trace: comp_trace #]

A command list is executed by the ensemble of partitions on one common

processor and separate kernels for each port/communication channel.

Each IPC command updates the kernel state for its port and the

global resource state.

do_all_ports(cmds: cmd_list): RECURSIVE trace_state_full =

CASES cmds OF

null: (# local := LAMBDA (p: port): initial_IPC_state,

global := initial_res_state,

trace := null #),

cons(c, rest):

LET prey = do_all_ports(rest) IN

IF cmd_type(c) = INSTR
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THEN (# local := local(prey),

global := execute(c, global(prey)),

trace := cons(INSTR_event(c, global(prey)),

trace(prey)) #)

ELSE (# local := LAMBDA (p: port):

IF p = port(c)

THEN IPC(exec IPC(c, global(prey),

local(prev)(p)))

ELSE local(prev)(p)

ENDIF,

global := res(exec IPC(c, global(prey),

local(prev)(port(c)))),

trace := cons(IPC event(c, global(prey),

local(prev)(port(c))),

trace(prey)) #)
ENDIF

ENDCASES

MEASURE length(cmds)

_ZZZ_ZZ_Z_Z_Z

The proper access predicate omitted.

_Z_ZZZ_ZZZZZZ

a,b: VAR appl id

c,d: VAR command

cmds,cl,c2: VAR cmd_list

ct: VAR comp trace

init: VAR system_state

p,q: VAR port

r: VAR resource

rlist: VAR resource_list

s,sl,s2: VAR res_state

t,tl,t2: VAR IPC_state

vlist: VAR info_list

% Lemmas expressing equality of state components under various conditions.

IPC_event_match: LEMMA

tl(port(c)) = t2(port(c)) IMPLIES

IPC_event(c, s, tl) = IPC_event(c, s, t2)

res_exec_IPC_match: LEMMA

tl(port(c)) = t2(port(c)) IMPLIES

res(exec IPC(c, s, tl)) = res(exec_IPC(c, s, t2))

IPC_execIPC_match: LEMMA

p = port(c) AND tl(p) = t2(p) IMPLIES
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IPC(exec_IPC(c, s, tl))(p) = IPC(exec_IPC(c, s, t2))(p)

IPCexec_IPC_other: LEMMA

p /= port(c) IMPLIES IPC(exec_IPC(c, s, t))(p) = t(p)

ZZ_ZZ_ZZZZ

Z Following are the key lemmas relating ACR state values to those

computed from the purged command streams.

state_invariant: THEOREM

res(state(cmds)) = global(do_all_ports(cmds)) AND

FORALL p: IPC(state(cmds))(p) =

local(do_all_ports(cmds))(p)(p)

well_partitioned: THEOREM

do_all(cmds) = trace(do_all_ports(cmds))

END kernel_part model

D.2 Proof Summary

Proof summary for theory kernel_part_model

default_appl_TCCl ...................................... proved

next_state_TCCl ........................................ proved

next_state_Tee2 ........................................ proved

next_state_TCC3 ........................................ proved

do_RCV_TCCI ............................................ proved

state_TCC1 ............................................. proved

state_TCC2 ............................................. proved

do_all TCCl ............................................ proved

IPC_event_match ........................................ proved

res_exec_IPC_match ..................................... proved

IPC_exec_IPC_match ..................................... proved

IPC_exec_IPC_other ..................................... proved

state_invariant ........................................ proved

well_partitioned ....................................... proved

Theory totals: 14 formulas, 14 attempted, 14 succeeded.

D.3 Proof Chain Analysis

kernel_part_model.well_partitioned has been PROVED.

The proof chain for well_partitioned is COMPLETE.

well_partitioned depends on the following proved theorems:

kernel_part_model.next_state_TCC2

kernel_partmodel.state_TCC2

integers.posint_TCCl

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete
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integers.nonneg_int_TCCl

if_def. IF_TCCl

kernel_part_model.state_invariant

kernel_part_model.IPC_exec_IPC_other

list_props.length_TOOl

kernel_part_model.state_TCCl

kernel_part_model.next_state_TCC3

list_props.append_TCCl

kernel_part_model.res_execIPCmatch

kernel_part_model.do_all_TCC1

kernel_part_model.next_state_TCCl

integers.posint_TCC2

kernel_part_model.do_RCV_TCC1

kernel_part_model.IPC_event_match

kernel_part_model. IPC_exec_IPC_match

well_partitioned depends on the following axloms:
list_adt.list_induction

well_partitioned depends on the following definitions:

kernel_part_model.do_RCV

kernel_part_model.state

kernel_part_model.next_state

list_adt.reduce_nat

kernel_part_model.exec_RCV

kernel_part_model.do_all_ports

kernel_part_model.execute

kernel_part_model.do all

list_props.length
reals.>

kernel_part_model.exec_IPC

kernel_part_model.do_step

list_props.append

list_adt_map.map

kernel_part_model.doSEND

reals.<=

kernel_part_model. INSTR_event

kernel_part_model.initial_state

reals.>=

kernel_part_model.exec_SEND

notequal./=

kernel_part model. IPC_event
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