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Abstract

The temporal spectral density of the log-amplitude scintillation of a laser
beam wave due to a spatially dependent vector-valued crosswind (deter-
ministic as well as random) is evaluated. The path weighting functions for
normalized spectral moments are derived, and offer a potential new tech-
nique for estimating the wind velocity profile. The Tatarskii-Klyatskin
stochastic propagation equation for the Markov turbulence model is used
with the solution approximated by the Rytov method. The Taylor “frozen-
in” hypothesis is assumed for the dependence of the refractive index on
the wind velocity, and the Kolmogorov spectral density is used for the
refractive index field.
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1. Introduction

This paper is in two parts — this first part deals exclusively with theory. The
second part will be devoted to computational/experimental results.

The study of the log-amplitude scintillation spectrum of a coherent beam in wind
turbulence was initiated largely in the late-1960 to early-1970 period spurred by
the application to “remote sensing” — see [7-15]. We are particularly interested in
the case where the wind velocity varies along the propagation path — as in “wind-
shear,” of importance in flight systems. Most of the work involves calculating the
space-time correlation function for a spherical wave or a plane wave. The “frozen-
in” Taylor hypothesis is used to account for the (cross) wind, and the Kolmogorov
spectral density is used for the refractive index field. Lee and Harp [8] calculate the
correlation function for the spherical wave while Ishimaru [2] calculates the spectral
density for a constant wind velocity, in the plane wave case. In this paper we calculate
the temporal spectral density for an arbitrary spatially varying vector wind velocity
for the general beam wave case.

To estimate the wind velocity profile Barakat and Buder [14], following the early
work of Lawrence et al. [9], use the “slope method.” The space-time correlation
function for the spherical wave is shown to be stationary in time and space and
further the time derivative at time zero is a linear functional of the magnitude of
the velocity. The corresponding “path weighting function” is calculated, resulting
in a linear integral equation for the wind velocity (magnitude). In this paper we
show that the normalized moments of the scintillation spectral density yield a similar
relationship and calculate the corresponding path weighting functions. The spectral
moment of order two is of particular importance because of its relation to the zero-
crossing rate {measurable real time) given by Rice’s theorem [18]. We have thus a
potential real time alternate technique for estimating wind velocity.

We also consider a random wind model in which the wind velocity is assumed to be
a Gaussian 2D random field with given mean and covariance matrix. We calculate the
spectral density as well as the spectral moments of order two and the corresponding
path weighting function.

We begin with a brief review in Section 2. The necessary propagation theory is
well described in references [1,2,3] and is reviewed further in [4]. We use the Markov
turbulence model leading to the random parabolic Tatarkskii-Klyatskin propagation
partial differential equation. We use the generally accepted approximation to the
solution due to Rytov, and calculate the slow-varying component of the logarithm
of the amplitude assuming the Taylor hypothesis to account for the wind. Section 3
contains the spectral density and spectral moment calculations for the deterministic
case and Section 4 for the random wind model.



2. Review of Propagation Theory

The starting point of all propagation theory (as in [1,2,3]) is the Helmholtz equa-
tion for the scalar electric field over R® for each component E of the (complex) electric
field (in the usual notation):

V2E + k*n’E =0, n=cue

where k is the wave number: 9
e

k = ———
wavelength

and n(.) is the refractive index. Next we choose a “propagation” direction: say,
X-axis, and write
T =1z + jy + k2

p=3y+kz
where 1, j, k are orthonormal unit vectors in 3-space. Then we let

ikz

E(z,p) = v(z,ple

and substituting in the Helmholtz equation we obtain:

8% Ov 2, 9
5;+2zkg+k(n—l)v+Av =0
where o2 o
Av = (3—3/2 + 5;3) v
Now we can write: )
o“v ov g (ov
— 2k— = — | — + 2tkv .
Oz? + o oz Oz (8$+ ' v)
We assume that v is “slow-varying” in z, so that
15}
—v+2z’kv ~ 2ikv,
oz

or that the g—’;‘,’ term can be neglected. Then we have the “parabolic” approximation
(1,3,4,17):

2ikg—v + Av + K*(n® -1)v = 0 (2.1)
T

which we may treat as an “initial value” problem in z > 0.



If n =1, (2.1) simplifies to:

Oov
2ik — + Av = .
ik o + Av 0 (2.2)
or 5 1 .
v - 1
-8; = 21,_16 v = 2—kAU, z>0. (23)

We can treat this as in [4] as an abstract Cauchy problem for v(z, -) over the Hilbert
space H = L*(R?):

dv
— =A
dz v
where :
i
A==—A
2k
is the infinitesimal generator with
D(A) = H

The solution to the initial value problem is then given by

where S(-) is the semigroup generated by A. As in (4], we can use Fourier transforms
with F(-) denoting Fourier transform for each z:

F(uv(z);A) = /m e My (z, p)|dp|, X € R

By slight abuse of notation, we shall write p? for |p|?%; A? for |A|]%. Since
F(Av;A) = —4nA2F(v; A)

we have

F(u(z);A) = F(S(z)v(0,-)) = e NGB (3 (0); ).

Hence
v(z,p) = AQG(m,p—p')v(O, p')ldp'|

where the Fourier transform of G(z, p), for each z > 0 is given by:

e—41r7,\2(i.1:/2k)‘ (24)



Hence

1 -1k k 1 ikp?
G(m’p) = _—-:exp_____p2 — - exp 51._p—
o (ﬂ) 2 2miz z
and . L k] 2
kip—p / /
_ Sl L o do'l. 2.5
wz,0) = 5o [ exp 5 = 00,6 140 (2.5)

For the special case where v(0, ) is a §-function at the origin in R?, we obtain

ke(il&:z-+—(ki.p2 )/2z)

E(x,p) - 27iz

Since constant multipliers do not matter, we may take

|
E(z,p) = ZEetlc(:z:+(pz/2:x:)) (2.6)

which is the result obtained by Ishimaru (2, p. 377] although by somewhat different
arguments.

Beam Wave

For the beam wave case, the initial condition is (as in [2]) given by:

2
—pak
E(0,p) = exp p2 ,
where
]\ ,
a = (W + -1;—0) ; W = beam size; Ro = focal length .

Ishimaru [2] goes through a similar procedure as in deriving (2.6) to obtain E(z,-)
but here we again get this directly from our parabolic approximation (2.1). Thus

Elz,p) = ¢*v(z,p)
and writing v(z) = v(z, ),
v(z) = S(z)v(0); v(0,-) = E(0,-).

Using Fourier transforms to evaluate (2.5), we have



[ 2r o [ A 0o (1T
Flv(z);A) = (ak)exp——47r (2ak)exp—47r A (Qk)

2 2+ L
- (E)e-ene (5

) iz, 1
= (a_TI::) exp —4m2\° ("—2”'-‘-) .

Hence
(. p) L -1 { akp?
viz, = . “a -

p 1+ iza P 2 \1+izo

and . ! L2

eik=z _ akp
- —_ 2.7
E(z,p) (1+ia:a)exP 2 (1+i:va) (2.7)

as in [2, p. 381].
From (2.7) it follows as in [2, p. 381] that the beam size at z is given by

% (1 I)2+ 4z”
Ro k2we

Turbulence Equation

Consider now the case n # 1, we have, rewriting (2.1)

v + Av —k?(n? - 1)v
or = 2k 2ik
ov ) )
3_1‘ = 2—kAU + 7("' —1)’0
If we take
n=1+4+n,
then

n?-1=(1+4+a)?%-1=a%+2n

omitting the A2 as small compared to 27, we have:

n -1 = 24



or,

ov 1 .
P ﬁAv+zknv (2.8)

where fiv denotes the function 7(z, p)v(z, p).
Exact solution of (2.8) not being possible, we invoke the two well-known approx-
imation techniques [1,2,3]: the Born approximation and the Rytov approximation.

Born Approximation

Rewriting (2.8) as an integral equation:
vo(z) = S(w(0) + ik /0 S(z - 0)(7(0)w(0)) do

and expressing the solution in a Volterra series expansion (see [4]), and truncating
the series at the linear term yields the Born approximation [1,2,3]:

o(z) = S(z)v(0) + ik AzS(z—a)[ﬁ(a)S(a)v(O)] do

or,
T
v(z,p) = Eolz,p) +ik [ [ Glz—a,p-p),3(0,0)Eol0, ) ldpl, p€ R

Using the next approximation
log(l+2) = z for |z| small,
we can reduce this further to yield
x(z,p) = loglv(z,p)| = log|Eo(z,p)| + Revs(z,p)

where

vp(z,p) = ik, ) /Oz A,G(sv —o,p— p')ii(o,p")Eolo, ¢) |dp'|.  (2.9)

Eo(z

We now specialize to two cases: the plane wave and the beam wave.



Case 1. Plane Wave

Eo(z,p) = e
and (2.9) yields
k2 r eik(a-z) 1 11€|p— pll2
, = — ——d/ — (o, p') ldp'|. 2.13
¥8(z,p) 27(/0 o) “ P32 o= g) a(o, p') |dp'| (2.13a)
Case 2. Beam Wave
Here . L2
. e‘l % _1 o p
Eolz,p) = 1+ iaz Py T+iaz

Hence (2.9) yields

; 1 akp® z do
’ = tk(1 ] —ikz - /
vs(z p) ik(1 +daz)e (exp 21+ iaz) 0 T—0

k Liklp—p'?\ ., ., _€* -1 _akp®*
- — b L o O , _- d
2ni./;t2<exP2 T—0 n(ap)1+ioaexp 2 1+ia:1;|p|

which, as in (2.14), can be expressed

L ik |p' — v(p)p|*
—_ —_—d / — T A(a,p) |dp']. 2.14
27(A (z — o)y(o) 7 J P2 y(o)(z — o) (g, £) ldp] (2.142)

Next we consider the Rytov approximation [1,2,3].

Rytov Approximation
We begin by expressing the electric field as:
E = Ege¥; %(0)=0; E(0) = Eo(0)

in the Helmholtz equation, where Ej is the solution of (2.1) for n = 0, or equivalently

of (2.3). Then .
(V% + n%k?)(Ege?) = 0



yields

(V2 +k3(Eow) = k*(n® - 1)Eq. (2.10)
We now let ’
Eo?l) = 'Uetkz.
Then 52 5
(V2 + kDve*™ = (5?1; + Av + 2ik 52 - k%) e'k=

where we invoke “the parabolic approximation” and neglect the %"- term. Then (2.10)
yields

2ik@- + Av = —k%(n? — 1)(Eoe™*)
oz
or 5 A
fv | Y ke
5~ ok + kR Epe (2.11)
where
v(0) = Eo(0)%(0) = 0
since
¥(0) =0.
Hence, solving (2.11) we have the so-called “Rytov First Iteration Solution,” [2],
eikzik T )
p) = S(z - 0)(A(o,-)Eo(0, -))e ™ d 2.12
b@0) = g [ 8- ) IE(o N dg (212)
where
ﬁ‘(aa .)EO(Ui )

represents the function
171.(0', p)EO(a) p)a pE Rz'

We specialize next to two cases.

Case 1. Plane Wave

Here we take _
Eo(il?) — ezkz

and hence
~ iko

ﬁ(o’, p)Eo(O’, P) = n(av p)e



and (2.12) yields
¥(z) = ikA S(z - o)(dlo,)) do

or,
0 [ ; 1iklo - o .
) = k/d /_— —_— ————— ,l d/
¥ (z, p) (ik) | do v 2710 o) exps — — 70, p') |dp]
k2 = 1 1 1 ik|p — p')? , /
T R — dp'). 2.13
27rAx_a/mz_(,exPQ (0.0 ldp]| (2.13)

This agrees with [2, (17-27a)] but we obtain it by the parabolic approximation.

Case 2. Beam Wave

For the beam wave case

—plak
E(0,p) = Eo(0,p) = exp p2
and as we have seen (cf. 2.7))
eik:c -1 akp2

Ey(z, = — )
o(z, ) 1+ iza €XP 2 1+iza

Hence

1 +iza 1 akp?
= (ik -
¥(z,p) = (i )( el 1+im)

liklp—-p?\. ., 1 -1 akp'?
\ — d
27rz./ r—a0 R’l< T—0 n(gp)l-}—iaa p2 1+ Ualpl

which as Ishimaru (2] has shown can be simpliﬁed to

k? / ik |p' — v(0)pl?
R2

W) = [ g [ g T i) ] (214)

10



where

1+ iao
v(o) T ias - Yp(o) +iv,(0)
- - I 2
’yR(a) _ (1 Ro) (1 QRO) + agzo
(1 - %) + a%z?
ap(o — 1)
<
71(0) ( —i)2+02x2—0
Ro R
2
QR = T

As is known (see [2, p. 349]) the Rytov approximation is generally accepted as
superior to the Born approximation, and so we shall use only the Rytov solution in
the rest of the paper.

Markov Turbulence Model

To proceed further we need to specify the stationary covariance function of the
refractive index field 7(-) in the propagation equation in (2.8). Here we follow the
Tatarskii-Klyatskin theory [1] and invoke the “Markov turbulence model” — that it is
“delta-correlated” along the propagation direction. Denoting the covariance function
by Ri(o, p) we have:

Ri(o,p) = CR8(0)R(p) (2.15)

where C? in the usual notation denotes the turbulence intensity. To determine the
function R(-) we again follow [1,2] and require that

/ Ru(o,p) do =/ Ra(o, p) do

where R3(o, p) is the covariance corresponding to an isotropic random field, with the
Kolmogorov spectral density. This yields

R(p) = [, e QA la

where )
Q) = 75 exp —4m A (2.16)

(& + 4n%?)

11



It is customary to allow the turbulence intensity CZ2 to depend on the propagation
direction so that #(-) is now a “locally stationary process.” However usually little
is known about this dependence. We shall avoid this uncertainty by restricting con-
sideration, if necessary, to propagation path intervals small enough so that it may
be assumed to be constant. Moreover the quantities of interest to us will be “nor-
malized” as in [9] so that we do not need to know the precise value either. In what
follows we shall omit this as a multiplicative constant.

3. Response to Cross Wind

We are now ready to study the response to wind. Let v(o), 0 < 0 < z, denote
the “crosswind,” i.e., projection of the wind velocity in the plane normal to the beam
axis. Invoking the Taylor hypothesis as in [1,2,3,8] we replace 7i(o, p') in (2.14) by

ii(o, p' — v(o)t)
so that the response is now a function of time ¢t as well. Thus (2.14) becomes:

k2 d ik |p' — 2
v(z,pt) = __"___)/m ik o' = v(0)ol” -

b 330z —0) Jm P T (e - o) (o, p' — v(o)t) |dp'], (3.1)

p € R%.

Log Amplitude Scintillation

The log-amplitude scintillation is given by:
X(z,p.t) = log|E(z,p,0)| = log|Eo(z)e"=#")|

= log|Eo(z)| + Rey(z,pt). (3.2)

We are only interested in the part due to the wind:
Rey(z,p,t)

which we shall continue to denote

x(z,p,t).

12



Thus we have for the log amplitude scintillation due to wind:

(z,p,t / do [ hr(e - 0,06, p)i(0,0 = v(0)0) ldF (3.3)
where 2 ) . | , ( ) |2
a1 ik —y(0)ef

r = Re (mr o) P2 7(o>(z-o>)' (34)

This is our basic “scintillation response” space-time field, which we shall use to deduce
the spectrum and covariance functions.

Scintillation Spectrum

From (3.3), we see that for fixed z, and each p € R?, x(z, p, t) describes a tem-
porally stationary Gaussian random process in —0o < t < co. We proceed now to
calculate the corresponding spectral density. For this purpose we first calculate the
covariance function.

R,(p1,p2,t) = E[x(z,p1,t + 5) x(z, pe, )]

¢
= / / [) do hg(z —0,0,p, p1)hr(z — 0,0,p", p2)
- R(p' = p" = v(o)t)

=/R?/ (/ he(z - 0,00 pl)z""[*’”'dp’)

([ hata = 0,0,6", e 4y ) e EEONQO 4] (3.5)

hiz —ag,0p' p1) + h(z— 0,0, p1)

hR(:z:—U,U,P’,Pl) = 2
where
k2 1 ik (o' = y(9)p1 P’ = v(9)p1]
3 _ ! = ————— S ,
(-0,0.0,pm) = 5 ) z=0) P2 v(o)(z — o)

Now for Rep > O:

—1—/ g2milx el exp——l[p m,p’ = m] ldp'| = exp(=2r2)\%u + 2mi[A,m]). (3.6)
2rp JR? 2 U

13



We note that: :
Reliv(0)] = =v,(0) >0, O<o<z

Hence

/‘2 e lp(z —g,0,0', p1) |dp|
R

—4 2)‘2' _ —_—
= ik exp — 272(:)(”; U)exp%i[/\,px]v(a)

./m NPl h(z —0,0,0, p1) ldp'|

4n2X\2%iy(o)(z — 0)
2k

= —ikexp exp 2i[A, p1]v(o)

/ e 2 hp(z — 0,0, 0", p2) |dp”|
R

_ 2A2- _ —_—
= %[ikexp Am zé(:)(z 7) exp —27i[}, p2] v(0)

an2)%iy(0)(z —
— ikexp il z'yéc}rc)(z ?) exp —2mi[A, pafy(a)| -

Hence a little calculation leads to

T .
Rlpont) = [ do [ OG0 0,0,p)Q0) ldX ()

14



where
2

k I -
Qx(\ o o1 p2) = ;(expztvr?ﬂv,(a)

g .
) exp 21i[A, py — p2lvg(0)

: [2 cosh 27 [, py + p2]v,(0)
_e4fr2iA27R(a)£i—"e—21r[)«, n—p2lr,(9)

2:32 b
_e 4N 73(0)-‘-;‘—’6%[»\.p1—m]'7,(0)] 1

k? T
= Jexp (47r2)\271(0)

k

0) exp(2ni[A, p1 — p2]7z(9))

) [2 cosh (27r[A,p1 + pgh,(a))

— 2cosh (47r2i/\2j—3(—zk_—0) - 2r[A, o1 — pg]'yl(a))] ,

0<o<rz (3.8)
From (3.7) we see that the scintillation intensity at p:
Ry(p,p,0) = El(x(z,p,1))"
does not depend on the wind velocity. Defining
Qx(X,0,0) = Qx(X0,p,p)

we have:

K2 T—0
QRx(A o,p) = —Z(exp41r2/\27,(a) = )

. [2 cosh 4r (), ply,(0) — 2cos 47r2/\27R(0)x ; U] . (3.9)
The cross-spectral density P(pi, p2, f) is defined by the Fourier transform:

P(p1’p2)f) = [ e_z‘m.ftRx(pl,pQ,t) dt.

Thus the spectral density matrix of the 2 x 1 scintillation process at any two points

P1, pP2-
Re'/)(x» P1, t)

2
) P1, P2 €ER )
Rew(za P?:t)




for fixed z is given by
P(plyplvf) P(plavaf)

P(po, p1,f) Pl(p2, p2, f)

We shall now proceed to calculate this matrix function, which is the main contri-
bution of this paper. First we shall specialize to the plane wave case to compare with
known results.

Spectral Density: Plane Wave Case

As we have indicated, the plane wave case is obtained by setting
1,(0) =0; vgl0) =7(0) =1
Substituting into (3.8) we have:

k2

Qx(/\, 0,p1,p2) = -:,2— [1 — cos4m2)? -9

] exp 21i[\, p1 — pa] (3.10)

and in turn we have:
T —omi k2 X _
Ry(p1,p2,t) = /0 do /};ae 2milA, v(o)le 0l e2milh 1 —pa]

. [1 — cos4n?r? (i-;—a)-] Q(A) |dA|

T 00 2
[0 [“en (1“2-) Ao (2rA0(0)t + (o2 = 1))

: [1 — cos4m?)? (-“i%‘fl] Q(A) dr.  (3.11)

This depends only on the difference in position (p; — po) and

x(z,p,t)

is thus both spatially and temporally stationary. This function is noticeably different
from that for the case of the spherical wave derived by Lawrence et al. in [9].

16



Specializing to p; = p; = p, we have:

T . 2
Ry(p,p,t) = [; do e*mi vt /m%— [1 — cosdn2a2Z =2 ]Q(/\) |[dA]
T k2 o0
= /(; do (27) (-5-) /0 Mo(2r A|v (o)t + p1 — p2|)

: [1 — cos (ﬂ_&z—_ﬂ)] Q(A) dr.  (3.12)

Note that the covariance function does not depend on p; and depends only on the
magnitude of the wind velocity |v(o)|.
We shall denote corresponding spectral density P(f, p) by P(f):

pa b, t) / metp
00

M
Iv ( v (U)|) do, (3.13)

)Q(A) (3.14)

Then

where for f > 0,

k? A
S A

If the velocity is a constant:

(1 - oS 47r2,\2

lv(o)| = v

the spectral density formula (3.14) simplifies, since we can perform the integration

with respect to o. In fact
1
P(f) = — Py (i)
v v

K2z o AQ(N) sin 472 )? £
- —_—n - dX
P =5, 77 (l 422 (%) ‘

agreeing with the result obtained by Ishimaru [2], who also obtains therefrom the
estimate:

where

(3.15)

Pi(f) ~ 782 for large f.

17



Cross-Spectral Density: Plane Wave

Let us next consider the cross-spectral density. We have:

P(fvPl»PQ) =./OZP(U,f‘P1,P2) do

where - .
P(U| .fv P1, p?) = / e—QWtftRX(Uv P, P2, t) dt

is the “distributed” spectral density, where

27 k2

Ry(o,p100,t) = o= [ Mo(2mAlv(o)t + )

r—aqg

k

: (1 — cos4m?)? )Q(,\) dA

where
p=p1— p2

By the Bessel function summation formula:
Jo@uA|v(a)t +p|) = Jo(2rX |v(o)[t)Jo(2mA|p|)
+ 22Jm(27r/\ |v(0)| t)Jm(27 A|p|) cos(mm + ¢(g)) t>0
1
= Jo(2m A |v(o)|t)Jo(2n Alp])

+ 2 i Jn (27X |v(0)| t) J;m (27 A|p|) cos me(a),

where the angle ¢(c) is defined by

[v(e),p] = |v(0)] |p|cos ¢(0).

We see that the cross-spectral density depends now on the angle ¢(o), although we

can write
1

f
vt ™ (7 )

where the subscript “1” again stands for the case |v(o)| = 1, and we note that

P(U’ fvpl’pQ) =

18



/ Jo(2m A |t + pl)e~ 2t dt =/ Jo(2m At)e~ ™t gt Jo(27 A|p|)

-0

+ 4i2/{; cos 27 ft Jom (2 At) dt Jom (27 A|pl)
1

- 4i2/{; sin 27 ft Jom_1(27 At) dt Jom-1(27 A|p]).
1

Now by [6, p. 405], for A, f > 0:

Fcos 27 ftJom(2mAL) dt = 0, A< f
cos (2m arcsin ({:))
= iy R A>f (3.16)
[° sin 27 ftJom_1(2728) dt = O, A< f
_ sin ((2m - 1)arc§in (ﬁ)), > (3.17)
2V AZ = f2

Hence

Py(o,f.p1,p2) = /f°° %JOQWMPI)AQQ(A,U) dA
oo oo cos (2m arcsin (£
+ 4izlzcos(2m¢(a))/; (\/,\2 = fi(x))
- Jam (27 Ap|) AQ2(A, 0) dA
& oo Sin ((2m — 1) arcsin (f))
_ 4121:cos((2m — 1)é(0)) /f e
+ Jam-1(2n A o) AQ2(X, ) dA (3.18)

where
2

Qa(M o) = % [1 ~ cos (47r2/\2 z - ”)] Q(N).

This result would appear to be new with this paper. We note that

Pl(avf)p21p1) = Pl(ovprl,P2) . (319)

19



Spectral Density: General Beam Wave Case

Let us now consider the general beam wave case. We shall calculate the spectral
density of the scintillation at the point p. Let

R(pv t) = Rx(Pa P t)'

Then "
R(p,t) = / do R(o, p,t) do
[4]
where _
Ra.pt) = [ YOG (3,0,0)Q() M| (3.20)
Since
QX(A,O', p) > O|

we see that R(0,p,t) is a covariance function in ¢, —oo0 <t < oo. Also

4
R(p,0) = [do [ Qu(r0,0)Q0) IdN (3.21)
and as a function of p, depends only on |p|, and is a minimum at p = 0, since
cosh 4n?[), ply,(0) > 1.

As noted earlier (3.21) does not depend on the velocity v(-). Let ¢(o) denote the
angle between the vector p and v(o), so that:

[v(0), 0] = |v(0)] lp|cos (o).

Then
oo p2r .
Rop) = [ [ e mereg 0
0

. [cosh(41r2|/\| lp| cos(8 — ¢(a))7,(a))

— cos <4W2)\2’7R(U)x - ”)] dX df (3.22)

where we have used the notation for short:

2 T—0
Qo) = Qe (1200, (0) 7). (3.23)
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Now we recall the relation [6, p. 358]
1

o

2r 0o
A " giacosfgbeon0-9) 49— Jo(a)Jq (3) + 2 Jile)Je (2)coskg.  (3.24)
1

Letting
a = 27|\ |v(o)|t

b= 4r|)|p|v,(0)
we have, using (3.24), that

2r .
/ e—2m|z\||v(0)ltcose cosh (47r2|)‘| |p|7[(a) COS(9 _ ¢(U))) do
0

= 2 [Jo(a)Io(b) + Qi(—l)k.lgk(a)lgk(b) cos?k¢>(a)] (3.25)
1

= 2nJo(a) for p = 0. (3.26)
Also
R(0,0,t) = 47r/0°“ Jo(27 |\ [2(0)|)AQ1 (A, 0)
. (1 — cos (47r2)‘27R(0)x ; U)) do. (3.27)
Since
Qx(A, 0,p) — Qx(},0,0) 2 0,
we see that

R(U) P, t) - R(07 Oa t) = ‘/1;2 6—2‘"1’[’\'”(6)]2 (Qx(’\a a, p) - Qx(A, g, 0)) ‘dAl
is a covariance function in t, —oco < t < oo; and further, using (3.25), (3.26),
= 27(AQ)\Q1(/\,0) [Jo(a)(fo(b) - 1) + 22(—1)’“J2k(a)12k(b) C082k¢ dA. (328)
1

Here we may decompose R(g,p,t) as:
R(o,p,t) = R(5,0,t) + R(0,p,t)

where R(0, p, t) is given by (3.28). Correspondingly we decompose the spectral density

P(f,p) = fP(o.f,p) do, —o0 < f < oo,
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setting

P(o,f,p) = P(o,f.0)+P(o,f,p)

P(o,f,0) = ZAWR(U,O,t)COSQWft dt

P(o,fp) = 2Aw1~2(0,p,t) cos 27 ft dt.

Now

_ 1! o —
P(s,f,0) = ()] Pl( ’Iv(o)I’O) (3.29)

where the subscript “1” corresponds to the special case

lv(o)| = 1.

Using (3.16) we have for 0 < f:

Pi(o,f,0) = ; AQ/\—I—\/_Q(_i'—;%(l — cos (47r2)\27k(a)$;a)) dX.

Similarly we have

) I ST G
P(a, f,p) = )] P1( ’|v(a)|’p)

where

Pose) = [

. {(Io(b) -1) + 2?:(—1)" cos (2k arcsin (%)) Iok(b) cos 2k¢(a)] dA

1
where
b = 4rAlply,(0).

Hence finally we have:

_ 1 f
P(o,f,p) = [v ()] Py (U’ Iv(a)lyp)
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and for f > O:

Pl(oyf:p) = Awigﬁ%z

. (10(1») + 2§:(—1)kcos (Zk arcsin (%)) Ik (b) cos 2k@(a)

1

— cos (47r2/\2'7R(U) z ; 0)) dA. (3.30)

For p = 0:

o k2 AQ(A
Pi(f,0) = , 7%

. /z [1 — cos (47(2,\27’3(0)(1 — U))] exp (47(2,\2 v, (o) (z — 0)) do (3.31)
0 k k

If we specialize to the plane wave case,

Pl(alflp) = Pl(U,f,O)
and in particular (3.31) simplifies of course to (3.15). Put another way, (3.31) is the
generalization of (3.15) to the beam wave case.
Spectral Moments/Path Weighting Function

As we have noted, the primary impetus in studying scintillation was in “remote
sensing,” or estimating, the wind velocity. Thus Lee and Harp (8] noted that the time
derivative at time zero of the space time cross-covariance function could be expressed
as a linear function of the wind velocity. They were working with the spherical wave
model but we can see this as well from (3.11) derived for the plane wave. Thus we
can calculate that

d z
= Rlpupa o = [ 10(0)IW(o,0) do (3.11a)

where

W(o,p) = /Ooo 47? (%2) A2J (27 A |p|) (1 — cos4m?A? E:_;_ol) QM) dX
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and note that it does not depend on the wind velocity. Thus it serves as a “path
weighting function.”

One disadvantage of this technique involves taking the slope of the cross correlation
function which is an off-line operation, and further the path-weighting function is
equal to zero when p = 0.

We shall show that it is possible instead to work with the spectral moments.

Given any spectral density P(-) (of any real-valued process), we may define the
“spectral moment of order n,” by

RPN
"= "=e (3:32)

yielding a measure of the spectral spread. We can express even-order spectral mo-
ments in terms of derivatives of R(-), the corresponding covariance function. Thus
for n = 2, we have

4n? I = —g(o(;)) . (3.33)

On the other hand we should note that all odd derivatives of R(-) vanish at the origin.
Here we shall calculate all the spectral moments directly from (3.30). Thus we

have: I [0(0)"an(a, p) d
=7 _ Jolv(o)["an(o,p) do
I™(p) I3 ao(o, p) do

(3.34)

where

an(a,p) = _/(;oo fnPI(U’ fa P) df

= ([/Q(SinO)" de)

: -/090 AMIQ1(), 0) (Io(b) — cos (4j2A27R(a)m — 0)) d

k
0 x/2 ) n
+ 2}1:(—1)" (/(; (sin )™ cos 2k0 d8)
- /0 ZAQL(, 0) (Tok(b) cos 2k (o)) dA. (3.35)
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In particular:

ag(o,p) = %/Ooo A@1() o) (Io(b) — cos (41r2/\27R(0) z ; U)) d

a(o,p) = /000 A%Q.(A, o) (Io(b) — cos (47r2/\27R(0) z ; U)) dX

ar(a.0) = 5 [ 2°Qu(a) (1o(8) + Ia(t) cos 26(0)

~ cos (47r2/\27R(0) - U)) dA.

k
We may express (3.32) as

T = [ o@IWalo.p) do (3.36)
where W, (0, p) is the “path weighting function,” and is given by

_ aq(o,p)
Walop) = oo o

We note that for the general beam wave case the path weighting functions de-
pend on the angle ¢(c) for nonzero p. However this dependence disappears when we
specialize to the case of the plane wave:

2 00 —_
an(0,p) = % ([/Q(Sine)" d())[) AHQ(A) (1 ~ cosdn?x? o ”) dr (3.38)

and in particular:

/: ao(o,p) do = E%QAQAQ(A) (/Oz (1 — cosdn?A? ‘-,:-) da) d

k2 o0 in4d 2,\25
= 22 [Taem (1 kel k) dx

47r2/\2f

(3.37)

Thus the path weighting functions do not depend on p, for the plane wave case.

Zero Crossing Rate

The spectral moment of order two is of particular importance because of Rice’s
theorem [18] relating it to the zero-crossing rate of the process:

Average zero crossing rate = 24/ 72, (3.39)



Thus yields, in our notation:
T
No(p)® = 4 [ 10(0)*Wa(o. ) do (3.40)

where No(p) is the average zero-crossing rate at the position p. The zero-crossing
rate can be readily measured on-line by analog instrumentation. Thus (3.40) offers a
postential alternate technique for measuring wind velocity.

4. Random Wind Model

In this section we model the wind velocity vector field v(0), 0 < ¢ < z, as random
— and more specifically, as Gaussian distributed with mean m(o) and nonsingular
covariance matrix R(c). We seek to calculate the average spectral density:

P(f,0) = E[P(f.p)].
Rather than use (3.30) we calculate
E[R(p, )]

where by (3.20)

Rip,) = [do [ e ¥OQ,(0,0,0)Q() A, (1)

Hence

BR(0) = [do [ B[00 Q00 0@ A (42)
and we see that only the first-order distributions of v(-) are involved. Now
E[e 2™ v@N) = exp(—2n%(R(0)A, AJt? + 2ri[A, m(0)]t) (4.3)
and hence
/°° Mt o= 2miN V@] gy

- — [\, m(0)])?
_ 1 =l U= m@?

V2r J[R(o)A, A) 2 [R(o)A\ A
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Hence

—_ z ‘ 1
Pre) = [ldo [ —= TRy e

LU = Dim(@)))?
P TR A

ldAl. (4.5)

Diagonal Covariance

While the mean m(c) can be arbitrary, the covariance matrix model may be
reasonably simplified to be diagonal:

R(0) = d*(0)I2x2. (4.6)
In this case we can derive a useful alternate form for (4.5). Thus
T
[ [ aunenQm

. exp[2mi[A, m(0)]t — 2n2A%d%(a)t?] |dA|

= 27 /Oz.dO' ‘/o°° /\Ql(A, 0') (exp —27(2,\2d2(0)t2)

E[R(p,1)]

: [Jo(mm(o)i It To(47 Alp]y,(0))

+2 }i(—l)'vek(zmlm(an £)

- Ing(dm Moy (0)) cos 2K(2)

Ir—a0

~ cos 47r2/\27R(a) ] dX, (4.7)

where ¢(0) is the angle between p and m (o). Hence, for |m(g)| # 0,

/ e~ Fmift (exp-—21r2d2(a)/\2t2) Jok (2w Am ()] |t]) dt

11 pmed 1 -1 -v? -1+’
S b Tamde) \TP T N2@) T PT7 NE()

 cos <2k arcsin (m)) dv

VARIm(o)2 — v
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Hence

Pf.o) = [[do [Tdx-a@i(ho)

- [Io(mnph,(a)) b 23 (=D aldnAlpl1,(0))
1

- cos (Qk arcsin (W)) cos 2k¢(o)

T—0
- cos47r2)\27R(o) - ]

m@x 11 -1 (f—v)? -1 (f+v)*
"\ Jo oz (o) \TP 2 NaE@) T OPTZ (o)

1
: \/A2|m(g)|2 — du) . (4.8)

We note that as d(0) — 0, the last factor in parentheses:

1
T Nmlo)P -

=0 for f > A|m(o)|

for f < Alm(o)]

and thus (4.8) agrees with (3.30) for d(¢) = 0. We may interpret the deterministic
case as mean wind of variance zero.

Case of Zero Mean Wind

On the other hand, one advantage of the random wind model is that we can
consider the case where the mean wind is zero, unlike the deterministic case. Thus
let

m(c)=0, 0<o<z

and further consider a coaxial detector:

p=0.
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Then (4.5) yields:

P(£,0) = Asz Am ;/(g Q1(A, o) (1 — cos (47r2/\27R(0) i 0))

k

_ 2
. exp (71 /\2({2(0)> dA. (4.9)

This has no analog in the deterministic case. It is interesting to note that the spectral
density is now a monotone decreasing function of the frequency. We can simplify
further if we take wind-covariance to be constant:

dic)=d, O<o<r.

Specializing to the plane wave case, (4.9) simplifies to:

— K2z oo /O -1 f? sin 4m2)2 (f)
P(f,O) = T b d €exp (—2— ;Ed-_Q) (1 - W Q(A) dA. (410)

If further as in [9] we invoke the “inertial subrange approximation” for the Kolmogorov
spectral density:

1 1

Q) ~ ~
(fo+an2a)/® - GEARP

we can simplify (4.10) further to:

2. o0 2
K2z =21 1 <f)dA

2 Jo "d (@ins TP\

P(f,0) ~
and evaluating the integral on the right yields:

= , 13y
54 k°z ORE (d) ( A A eXP 53 dA). (4.11)

Note the similarity to the estimate in the deterministic case (cf. (3.15)).

P(f,0) =

Spectral Moments/Path Weighting Functions

We shall consider only the most useful case: the spectral moment for n = 2 and
the corresponding weighting function. Thus using (4.2) we have:
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2 [ 1%P(s.0) of
E /do/ E(,v(0)])Qx(A 0, 9)Q(}) ||
= [Tao [ (um@)IP + [R(0)0 M) @40 0, 0)Q(Y) [dA

For the term containing m(c) we have only to replace v(¢c) by m(c) in (3.33) for
n = 2. For the second term, using (3.24), we have that

/};JR(U)/\, A@x (A, a,p)Q(N) |dA|

— 27d*(0) /0°° 230, (M, 0) [10(47r/\|p|'7](0)) — cos (4#2/\27R(0)x . ")] .

Now

2 ["F(f,p) & = E[R(p.0)
and by (4.7) yields:
E[R(p,0)] = 27r/ da/ 2Q1(), 0)

: [Io(b) — cos (47(2)«27R(U)x - 0)] dA.

Hence

e EIPU0 o
52 P(f.p)df

can be expressed as

f2(p) + fé(p)

where

720 = [ im(o)Walo.p) do
where Wy(a, p) is given by (3.36). And

@) = [(@0) do Wala,p) do

In other words the spectral moment of order two:

o)
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for the random wind is the sum of two terms, the first corresponding to a deterministic
wind velocity equal to the mean wind velocity and the second corresponding to a
determinstic wind velocity equal to the “sigma” of the random wind:

d(o) = /d%(o).

The path weighting function of course does not depend on the statistics of the wind
velocity. Note that the variance term represents an additive error term. This “addi-
tive” property does not extend to higher order spectral moments.
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