Theoretical Limits of Damping
Attainable by Smart Beams
with Rate Feedback

A.V. Balakrishnan
Flight Systems Research Center
UCLA

April 1997

To be published in: Proceedings of SPIE’s 4th Annual Symposium on Smart Structures
and Materials, 2-6 March 1997, San Diego, California.
Theoretical Limits of Damping Attainable by Smart Beams with Rate Feedback

A.V. Balakrishnan
Flight Systems Research Center, UCLA

ABSTRACT
Using a generally accepted model we present a comprehensive analysis (within the page limitation) of an Euler-Bernoulli beam with PZT sensor-actuator and pure rate feedback. The emphasis is on the root locus — the dependence of the attainable damping on the feedback gain. There is a critical value of the gain beyond which the damping decreases to zero. We construct the time-domain response using semigroup theory, and show that the eigenfunctions form a Riesz basis, leading to a "modal" expansion.

1. INTRODUCTION
In this paper we present a comprehensive analysis of an Euler-Bernoulli beam with PZT sensor-actuator along its entire length. The sensor output is a charge in a condenser and the actuator input is the current, a differentiator circuit being then an essential component, yielding "rate feedback." We use a generally accepted model. Tzou et al. present purely computational results and seem to be unaware of a purely theoretical analysis given earlier by Chen et al. The most important design parameter is the control gain and the damping attainable — we construct a full root-locus analysis (omitting details to keep within the page limitation). We also unearth a curious phenomenon — the existence of a deadbeat mode (real eigenvalue) not noticed hitherto. We show that the eigenvalues are the roots of an entire function of order one-half, proving in particular the existence of a countably infinite number of eigenvalues. We also show that the eigenfunctions form a Riesz basis. We also construct the Green's function for the nonhomogeneous eigenvalue problem. As in Chen et al. we use the theory of semigroups of operators to obtain the time-domain solution. Our proof of the exponential stability is different from that in Chen et al., as is our choice of the function space. We note that a similar analysis for a Timoshenko model (a "smart string") is given in Balakrishnan, where there is a critical value of the gain at which there are no eigenvalues and the semigroup is actually nilpotent ("disappearing" solution).

2. MAIN RESULTS
The Euler-Bernoulli model formulates as
\[
\begin{align*}
 cf'''(t,s) + mf(t,s) &= 0, \quad 0 < s < L, \quad 0 < t \\
 f(t,0) &= 0 = f'(t,0); \quad f'''(t,L) = 0 \\
 cf''(t,L) + \alpha f'(t,L) &= 0
\end{align*}
\]
where \(f(t,s) \) is the displacement and the superdots indicate derivative with respect to \(t \) and the primes indicate derivative with respect to \(s \). It is convenient to set
\[\nu^2 = \frac{m}{c}. \]

For a precise formulation of the time-domain response we need to specify first the choice of function spaces. We pick \(L^2[0,L] \) for \(f(t, \cdot) \). Let \(A_o \) denote the operator defined by
\[A_o f = cf''', \]
where
\[D(A_o) = \{ f \mid f', f'', f''', f'''' \in L^2[0,L]; f(0) = 0 = f'(0) = f'''(L) \}. \]
Let
\[\mathcal{H} = L^2[0, L] \times E^1. \]
Define the operator \(A \) with domain and range in \(\mathcal{H} \) by:
\[
x = \begin{bmatrix} f \\ b \end{bmatrix}, \quad Ax = \begin{bmatrix} Af \\ cf''(L) \end{bmatrix};
\]
with domain
\[
\mathcal{D}(A) = \left\{ \begin{bmatrix} f \\ b \end{bmatrix} : f \in \mathcal{D}(A_0) \text{ and } b = f'(L) \right\}.
\]
It is convenient to adopt the notation
\[A_b x = cf''(L), \quad x \in \mathcal{D}(A). \]
Then for \(x \) in \(\mathcal{D}(A) \):
\[
[Ax, x] = \int_0^L cf''''(s) f(s) \, ds + cf''(L)f'(L)
\]
\[= c \int_0^L |f''(s)|^2 \, ds. \]
It is readily seen that \(A \) has dense domain and is self-adjoint and nonnegative definite, and has compact resolvent. Also zero is not an eigenvalue. Let \(\sqrt{A} \) denote the positive square root. On the product space
\[\mathcal{D}(\sqrt{A}) \times L^2[0, L] \]
is introduced the "energy" inner product
\[
[Y, Z]_E = [\sqrt{A} y_1, \sqrt{A} z_1] + m[y_2, z_2]
\]
\[Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \quad Z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}.\]
\[\mathcal{D}(\sqrt{A}) = \left\{ \begin{bmatrix} f \\ b \end{bmatrix} : f'' \in L^2[0, L] \text{ and } b = f'(L), \ f(0) = f'(0) = 0 \right\}.\]
For \(y_1 \) in \(\mathcal{D}(A) \), we see that
\[|Y, Y|_E = |A y_1, y_1| + m|y_2, y_2| \sim \text{"energy" (potential + kinetic).}\]
We denote the product space under this inner product by \(\mathcal{H}_E \) and note that it is a Hilbert space. Let \(A \) denote the operator defined by:
\[AY = \begin{bmatrix} f_2 \\ -cf''(L) \\ -Af \end{bmatrix}, \quad Y = \begin{bmatrix} x \\ f_2 \end{bmatrix} = \begin{bmatrix} f_1(\cdot) \\ f'_1(L) \\ f_2(\cdot) \end{bmatrix}, \]
and
\[
\mathcal{D}(A) = \left\{ \begin{bmatrix} f_1(\cdot) \\ f'_1(L) \end{bmatrix} \in \mathcal{D}(A) \right\}, \quad \left\{ \begin{bmatrix} f_2(\cdot) \\ f_2''(L) \end{bmatrix} \in \mathcal{D}(\sqrt{A}) \right\}.
\]
Thus defined we can verify that
\[\mathcal{D}(A) = \mathcal{D}(A^*) \]
and that \(A \) is dissipative:
\[
\frac{1}{2}[(A + A^*)Y, Y] = \text{Re}[AY, Y]_E = \frac{1}{\alpha |A_b|} ||A_b x||^2 = \frac{1}{\alpha} c^2 |f''(L)|^2.
\]
It is readily verified that \mathcal{A} has a compact resolvent and that \mathcal{A} generates a C_0 contraction semigroup. With these definitions, the system (1) goes over into the abstract formulation:

$$\dot{Y}(t) = \mathcal{A}Y(t). \quad (2)$$

This choice of the function space is technically different from that in Chen et al.5

Eigenvalues and eigenfunctions of \mathcal{A}

Our primary interest is in the modal decomposition — the eigenvalues of \mathcal{A} and the corresponding eigenfunctions. Or, equivalently, in the resolvent of \mathcal{A}. Let $\mathcal{R}(\lambda, \mathcal{A})$ denote the resolvent of \mathcal{A}. Let

$$\mathcal{R}(\lambda, \mathcal{A})Y = Z$$

where

$$Y = \begin{bmatrix} h_1 \\ b \\ h_2 \end{bmatrix}.$$

Since $Z \in \mathcal{D}(\mathcal{A})$, we can write

$$Z = \begin{bmatrix} f_1(\cdot) \\ f'_1(L) \\ f_2(\cdot) \end{bmatrix}$$

and

$$(\lambda I - \mathcal{A})Z = Y$$

yields

$$\lambda f_1 - f_2 = h_1$$

$$\lambda f_2 + \frac{A_0 f_1}{m} = h_2$$

$$\lambda f'_1(L) + \frac{c f''_1(L)}{\alpha} = b.$$

Hence

$$\left\{ \begin{array}{l}
\lambda \nu^2 f_1(s) + f_1'''(s) = \nu^2(h_2(s) + \lambda h_1(s)), \quad 0 < s < L \\
\lambda \alpha f'_1(L) + cf''_1(L) = \alpha b \\
f_1(0) = 0 = f'_1(0) = f''_1(L). \end{array} \right. \quad (3)$$

Eigenvalues

First we consider the eigenvalue problem, setting

$$h_1 = 0 = h_2; \quad b = 0.$$

Let

$$\gamma = \sqrt{-\lambda \nu} e^{i\theta/2} e^{i\pi/4}, \quad \gamma^4 = -\lambda^2 \nu^2$$

where

$$\lambda = |\lambda| e^{i\theta}.$$

Then the solution satisfying the conditions at zero yields:

$$f_1(s) = a(\cosh \gamma s - \cos \gamma s) + b(\sinh \gamma s - \sin \gamma s), \quad 0 < s < L.$$

The constants a and b are then determined by the conditions at L:

$$a(\alpha \gamma (\sinh \gamma L + \sin \gamma L) + \gamma^2(\cosh \gamma L + \cos \gamma L)) + b(\alpha \gamma (\cosh \gamma L - \cos \gamma L) + \gamma^2(\sinh \gamma L + \sin \gamma L)) = 0$$

$$a \gamma^3(\sinh \gamma L - \sin \gamma L) + b \gamma^3(\cosh \gamma L + \cos \gamma L) = 0.$$
Let
\[H(\lambda) = \begin{vmatrix} \lambda \alpha \gamma (\sinh \gamma L + \sin \gamma L) & \lambda \alpha \gamma (\cosh \gamma L - \cos \gamma L) \\ c_\gamma^2 (\cosh \gamma L + \cos \gamma L) & c_\gamma^2 (\cosh \gamma L + \sin \gamma L) \\ \gamma^3 (\sinh \gamma L - \sin \gamma L) & \gamma^3 (\cosh \gamma L + \cos \gamma L) \end{vmatrix} \] (4)
and
\[D(\lambda) = \text{Det } H(\lambda). \]

Then
\[D(\lambda) = (\gamma^4) [(\cosh \gamma L + \cos \gamma L)(\lambda \alpha (\sinh \gamma L + \sin \gamma L) + c_\gamma (\cosh \gamma L + \cos \gamma L)) - (\sinh \gamma L - \sin \gamma L)(\lambda \alpha (\cosh \gamma L - \cos \gamma L) + c_\gamma (\sinh \gamma L + \sin \gamma L))] = 2\gamma^4 [c_\gamma (1 + \cosh \gamma L \cos \gamma L) + \lambda \alpha (\sinh \gamma L \cos \gamma L + \cosh \gamma L \sin \gamma L)]. \] (5)

We note that zero is not an eigenvalue. The eigenvalues \(\{\lambda_k\} \) are thus determined by the nonzero roots of
\[c_\gamma (1 + \cosh \gamma L \cos \gamma L) + \lambda \alpha (\sinh \gamma L \cos \gamma L + \cosh \gamma L \sin \gamma L) = 0 \]

Or, using
\[\lambda = \frac{-i\gamma^2}{\nu} \]
we have
\[(1 + \cosh \gamma L \cos \gamma L) - \frac{i\gamma \alpha}{\nu c} (\sinh \gamma L \cos \gamma L + \cosh \gamma L \sin \gamma L) = 0. \] (6)

Theorem 2.1
\(\mathcal{A} \) has exactly one real-valued eigenvalue.

Proof
Setting \(L = 1 \), and using \(\alpha \) to denote \(\frac{\alpha}{\nu} \), and expressing the trigonometric products in (6) as sums, we have
\[f = 1 + \cosh \gamma \cos \gamma - i\gamma (\sinh \gamma \cos \gamma + \cosh \gamma \sin \gamma) \]
\[f = 1 + \frac{1}{2} (\cos \gamma (1 + i) + \cos \gamma (1 - i)) - i\gamma \frac{1}{2} [\sinh \gamma (1 + i) + \sin \gamma (1 - i) + \sin \gamma (1 + i) + \sin \gamma (1 - i)]. \]
Hence making the 1:1 transformation
\[\gamma = x(i - 1) \]
we obtain
\[f(\gamma) = g(x) = 1 + \frac{1}{2} (\cos 2x + \cosh 2x) - \alpha x (\sin 2x + \sinh 2x) \] (7)
yielding an equivalent expression for determining the eigenvalues. Note that \(g(\cdot) \) is real-valued for real values of \(x \). Further
\[g(0) = 2 \]
while, as \(x \to \infty \), \((x \text{ real}) \), we note that
\[g(x) \to -\infty. \]
Hence there is a positive real root. Denote it \(x_0 \). Then
\[\lambda = -\gamma^2 i = -x^2 (i - 1)^2 i = -2x^2. \]
Hence
\[\lambda_0 = -2x_0^2 \]

\[\text{Due to J. Lin; private communication.} \]
is an eigenvalue. We note that \(x_1 \) is the only real-valued root of \(g(\cdot) \). Indeed, if there is a real-valued eigenvalue of \(A \), we must have, denoting it by \(\lambda_1 \),

\[
\lambda_1 = -2x_1^2
\]

and \(x_0 \) must be a root of \(g(\cdot) \). Hence

\[
x_0 = x_1.
\]

Or, \(\lambda_0 \) is the only real-valued eigenvalue of \(A \).

We note that the corresponding eigenfunction is given by

\[
\phi_1(s) = (\cosh \gamma_0 - \cos \gamma_0)(\cosh \gamma_0 s - \cos \gamma_0 s) - (\sinh \gamma_0 - \sin \gamma_0)(\sinh \gamma_0 s - \sin \gamma_0 s)
\]

where

\[
\gamma_0 = x_0(i - 1), \quad \lambda = -2x_0^2.
\]

Theorem 2.2 (Chen, et al.5)

Let \(\{\lambda_k\} \) denote the eigenvalues, and assume that

\[
|\lambda_k| \to \infty.
\]

Then

\[
\lim_{k} \text{Re}\lambda_k = \frac{-c}{L\alpha}.
\]

Proof

See Chen et al.5 for a proof.

The authors of Chen et al. however do not appear to offer a proof of the fact that the eigenvalues \(\{\lambda_k\} \) are nonfinite in number. The fact that the resolvent is compact is not adequate to establish this; the compactness only assures that if nonfinite in number then \(\{\lambda_k\} \) can be arranged so that

\[
|\lambda_{k+1}| \geq |\lambda_k|
\]

and

\[
|\lambda_k| \to \infty \quad \text{as} \quad k \to \infty.
\]

For proving the fact that eigenvalues are denumerably infinite we can indicate a general technique.

Theorem 2.3

The eigenvalues \(\{\lambda_k\} \) are denumerably infinite and such that

\[
\sum_{i}^{\infty} \left| \text{Im} \left(\frac{1}{\lambda_k} \right) \right| < \infty.
\]

Proof

From (6) we see that for each \(\alpha \), the eigenvalues are the zeros of the function

\[
d(\lambda) = (1 + \cosh \gamma L \cos \gamma L) - i \left(\frac{\alpha}{\lambda} \right) \gamma(\sinh \gamma L \cos \gamma L + \cosh \gamma L \sin \gamma L).
\]

As a power series expansion will show, this is an entire function of the complex variable \(\lambda \). Moreover it is of exponential type, of order \(\frac{1}{2} \), and of completely regular growth. Further we can calculate that

\[
h(\theta) = \lim_{r \to \infty} \log |d(re^{i\theta})| = \sqrt{2} \max \left(|\sin \frac{\theta}{2}|, |\cos \frac{\theta}{2}| \right).
\]
Let \(n(r) \) denote the number of zeros of \(d(\cdot) \) in the circle of radius \(r \) centered at zero. Then by the theorem of R.P. Boas (see Levin\(^7\)) we have:

\[
\lim_{r \to \infty} \frac{n(r)}{r^{1/2}} = \frac{1}{4\pi} \int_0^{2\pi} h(\theta) \, d\theta > 0.
\]

Hence

\[
\lim_{r \to \infty} n(r) = \infty,
\]
or, the number of zeros is not finite. Moreover the function is of class A (see Levin\(^7\) for the definition) since

\[
\sup_{R > 0} \int_0^R \log |d(s) d(-s)| \left| \frac{1}{1 + s^2} \right| \, ds < M_d < \infty.
\]

The result (9) is a consequence. Q.E.D.

Remark

Applying Jensen's Theorem we have

\[
\frac{1}{2\pi} \int_0^{2\pi} d'(r e^{i\theta}) \frac{r e^{i\theta}}{d(r e^{i\theta})} \, d\theta = n(r).
\]

We can actually compute this as a quick means of locating eigenvalues. There is a jump of 2 corresponding to each eigenvalue and its conjugate. This is shown in Figure 1 for

\[
\frac{\alpha}{L_{CV}} = .01.
\]

Eigenfunctions

The eigenfunction corresponding to the eigenvalue \(\lambda_k \) is given by

\[
\Phi_k = A_k \begin{vmatrix} \phi_k \\ \phi'_k(L) \\ \lambda_k \phi_k \end{vmatrix}
\]

where

\[
\phi_k(s) = c_k(\cosh \gamma_k s - \cos \gamma_k s) + d_k(\sinh \gamma_k s - \sin \gamma_k s)
\]

where

\[
H(\lambda_k) \begin{vmatrix} c_k \\ d_k \end{vmatrix} = 0
\]

or, we may take

\[
c_k = (\cosh \gamma_k L - \cos \gamma_k L); \quad d_k = -(\sinh \gamma_k L - \sin \gamma_k L)
\]
or,

\[
\phi_k(s) = A_k[(\cosh \gamma_k L - \cos \gamma_k L)(\cosh \gamma_k s - \cos \gamma_k s) - (\sinh \gamma_k L - \sin \gamma_k L)(\sinh \gamma_k s - \sin \gamma_k s)].
\] \(\text{(11)}\)

Correspondingly:

\[
\phi'_k(L) = 2A_k \gamma_k(\cosh \gamma_k L - \cos \gamma_k L) \sin \gamma_k L.
\]

The coefficient \(A_k \) may be chosen for appropriate normalization. For example we may make

\[
||\Phi_k|| = 1.
\]

Note that \(\lambda_k \) is an eigenvalue of \(A^* \) and the corresponding eigenvector is:

\[
\Psi_k = B_k \begin{vmatrix} \overline{\phi}_k(\cdot) \\ \overline{\phi}'_k(L) \\ -\lambda_k \overline{\phi}_k(\cdot) \end{vmatrix}
\]

6
where \(B_k \) is again a “normalization” scalar. Note that

\[
[\Phi_k, \Psi_k]_E = \left(c \int_0^L \phi''_k(s) \, ds - m \lambda_k^2 \int_0^L \phi_k(s)^2 \, ds \right) A_k \overline{B_k}
\]

\[
= 4c A_k \overline{B_k} \gamma_k c_k d_k \int_0^L \left(\cosh \gamma_n s \cos \gamma_n s + \sinh \gamma_n s \sin \gamma_n s \right) \, ds
\]

\[
= 4c c_k d_k A_k \overline{B_k} \gamma_k \cosh \gamma_k L \sin \gamma_k L
\]

\[
\neq 0.
\]

In particular we may choose \(A_k, B_k \) so that

\[
[l_k, \psi_k] = 1.
\]

(12)

Further using a result of Gohberg and Krein\(^{10}\) (we omit the details) we can establish that \(\{ \Phi_k, \Psi_k \} \) with the normalization (12) actually yield a Riesz basis for \(\mathcal{H}_E \). In terms of this basis we have the (“modal”) expansion for the solution of (2)

\[
Y(t) = \sum_{k=1}^{\infty} a_k e^{\lambda_k t} \Phi_k
\]

(13)

where

\[
a_k = [Y(0), \Psi_k]_E
\]

and as an easy byproduct, using (8), we see that the semigroup generated by \(\mathcal{A} \) is exponentially stable (established in Chen et al. by different arguments).

Root Locus

Let us consider how the eigenvalues behave as the gain \(\alpha \) is varied. For this purpose it is convenient to define

\[
d(\lambda; \alpha) = M(\lambda) + \frac{\alpha}{cv} N(\lambda)
\]

where

\[
M(\lambda) = 1 + \cosh \gamma L \cos \gamma L
\]

\[
N(\lambda) = -\frac{i\gamma}{cv} \left(\sinh \gamma L \cos \gamma L + \cosh \gamma L \sin \gamma L \right).
\]

Because of the analytic dependence of \(d(\lambda; \alpha) \) on \(\alpha \), we can invoke the theory of algebraic or algebroidal functions\(^{8,9}\) and note that

\[
d(\lambda(\alpha); \alpha) = 0
\]

will define \(\lambda(\alpha) \) as a multivalued analytic function of \(\alpha \) with isolated singularities, if any. In particular this allows us to define the sequence \(\{ \lambda_k(\alpha) \} \), \(k = 1, 2, \ldots \) such that

\[
\lambda_k(0) = \frac{i \mu_k}{L^2 v}, \quad \mu_k = (2k - 1) \frac{\pi}{2} + \epsilon_k
\]

(the “clamped-free” beam modes) and

\[
\lim_{\alpha \to -\infty} \lambda_k(\alpha) = \frac{i (k \pi - \epsilon')^2}{L^2 v}
\]

(“clamped-rolling” modes) and the real root

\[
\lambda_0(\alpha)
\]

is such that

\[
\lim_{\alpha \to -\infty} \lambda_0(\alpha) = 0, \quad \lim_{\alpha \to 0} \lambda_0(\alpha) = -\infty.
\]

A plot of the locus of the real root is shown in Figure 2. Moreover

\[
\lambda'_k(\alpha) = \frac{-1}{cv} \left. \frac{N(\lambda)}{M'(\lambda) + \frac{\alpha}{cv} N'(\lambda)} \right|_{\lambda=\lambda_k(\alpha)}.
\]
In particular
\[\lambda_k'(0) = -\frac{1}{cv} \left. \frac{N(\lambda)}{M'(\lambda)} \right|_{\lambda=\lambda_k(0)}. \]

We can show that
\[\frac{d}{d\alpha} (\text{Re} \lambda_k(\alpha)) = -\frac{\mu_k^2}{L^2v} \left(\frac{2}{Lc\nu} \right), \quad \alpha = 0 \]
\[= \frac{c}{2\alpha^2L}, \quad \alpha = +\infty \]
\[\frac{d}{d\alpha} (\text{Im} \lambda_k(\alpha)) \geq 0. \]

A root locus of the first mode is shown in Figure 3. The damping \((= |\text{Re} \lambda_k|)\) increases with the gain until a critical value of the gain is reached and thereafter decreases to zero. Note that by virtue of (14) we have actually "proportional damping" for small gain. A plot of the critical value of the gain versus the mode number is given in Figure 4.

Resolvent

Let us now return to the resolvent — or solving (3). We note that
\[
g(\lambda, s) = \frac{1}{2\gamma^3} \int_0^s (\text{Sinh} \gamma(s-\sigma) - \text{Sin} \gamma(s-\sigma)) \nu^2 (h_2(\sigma) + \lambda h_1(\sigma)) \, d\sigma
\]
is a "particular" solution of
\[\lambda^2 \nu^2 f_1 + f_1''' = \nu^2 (h_2 + \lambda h_1) \]
such that
\[f_1(0) = f_1'(0) = 0. \]

Hence we can express the solution \(f_1(\lambda, s)\), where we have included \(\lambda\) to indicate the dependence on \(\lambda\), as:
\[f_1(\lambda, s) = g(\lambda, s) + a(\lambda)(\text{Cosh} \gamma s - \text{Cos} \gamma s) + b(\lambda)(\text{Sinh} \gamma s - \text{Sin} \gamma s), \quad 0 < s < L \]
where the coefficients \(a(\lambda), b(\lambda)\) are determined from
\[
\begin{vmatrix}
a(\lambda) \\
b(\lambda)
\end{vmatrix} = H(\lambda)^{-1} \begin{vmatrix} ab - \alpha \lambda g'(\lambda, L) - cg''(\lambda, L) \\ -g'''(\lambda, L) \end{vmatrix}
\]
where the primes again denote derivatives with respect to the variable \(s\). Hence letting
\[H(\lambda) = \begin{vmatrix} h_{11}(\lambda) & h_{12}(\lambda) \\ h_{21}(\lambda) & h_{22}(\lambda) \end{vmatrix} \]
and defining
\[\bar{H}(\lambda) = \begin{vmatrix} h_{22}(\lambda) & -h_{12}(\lambda) \\ -h_{21}(\lambda) & h_{11}(\lambda) \end{vmatrix} \]
so that
\[H(\lambda)\bar{H}(\lambda) = D(\lambda)I = \bar{H}(\lambda)H(\lambda), \]
\[a(\lambda) = \frac{1}{D(\lambda)} \left[h_{22}(\lambda)(ab - \alpha \lambda g'(\lambda, L) - cg''(\lambda, L)) + h_{12}(\lambda)g'''(\lambda, L) \right] \]
\[b(\lambda) = \frac{1}{D(\lambda)} \left[-h_{21}(\lambda)(ab - \alpha \lambda g'(\lambda, L) - cg''(\lambda, L)) - h_{11}(\lambda)g'''(\lambda, L) \right]. \]
We can cast the Green’s function in the form:

\[
 f_1(\lambda, s) = \int_0^s \frac{K(\lambda; s, \sigma)}{D(\lambda)} h(\sigma) \, d\sigma + \int_s^L \frac{K(\lambda; \sigma, s)}{D(\lambda)} h(\sigma) \, d\sigma
\]

\[
 + \frac{\alpha b}{D(\lambda)} [h_{22}(\lambda)(\cosh \gamma s - \cos \gamma s) - h_{21}(\lambda)(\sinh \gamma s - \sin \gamma s)]
\]

\[
 K(\lambda; \sigma, s) = (\cosh \gamma s - \cos \gamma s) \left[\left(2h_{12} - \frac{2\alpha \lambda}{\gamma^2} h_{22} \right) \cosh \gamma (L - \sigma) + \left(2h_{12} + \frac{2\alpha \lambda}{\gamma^2} h_{22} \right) \cos \gamma (L - \sigma) \right.
\]

\[
 - \frac{2ch_{22}}{\gamma} \left(\sinh \gamma (L - \sigma) + \sin \gamma (L - \sigma) \right) \left. \right]
\]

\[
 + (\sinh \gamma s - \sin \gamma s) \left[\left(\frac{2\alpha \lambda h_{21}}{\gamma^2} - 2h_{11} \right) \cosh \gamma (L - \sigma) + \left(-\frac{2\alpha \lambda h_{21}}{\gamma^2} - 2h_{11} \right) \cos \gamma (L - \sigma) \right.
\]

\[
 + \frac{2ch_{21}}{\gamma} \left(\sinh \gamma (L - \sigma) + \sin \gamma (L - \sigma) \right) \right], \quad s < \sigma \quad (15)
\]

\[
 h = m(h_2 + \lambda h_1)
\]

\[
 D(\lambda) = -2\alpha^2 \nu^2 [c_1(1 + \cosh \gamma L \cos \gamma L) + \lambda \alpha (\sinh \gamma L \cos \gamma L + \cosh \gamma L \sin \gamma L)].
\]

Finally

\[
 \mathcal{R}(\lambda, \mathcal{A}) \begin{bmatrix} h_1 \\ b \\ h_2 \end{bmatrix} = \begin{bmatrix} f_1(\lambda, s) \\ f_1(\lambda, 0) \\ \lambda f_1(\lambda, s) - h_1(s) \end{bmatrix}.
\]

Note that setting \(\alpha = 0 \) in (15) we get the Green’s function for the clamped/free-free beam. In particular

\[
 \mathcal{R}(0, \mathcal{A}) \begin{bmatrix} h_1 \\ h_1(0) \\ h_2 \end{bmatrix} = \begin{bmatrix} K h_2 \\ (K h_2)(0) \\ -h_1 \end{bmatrix} + \alpha h_1(0) \begin{bmatrix} \frac{L}{c} \\ \frac{K}{c} \\ 0 \end{bmatrix}
\]

where \(K h_2 \) is the function given by

\[
 \frac{m}{c} \int_0^s (L - \sigma) h_2(\sigma) \, d\sigma + \frac{m}{c} \int_s^L (L - \sigma) h_2(\sigma) \, d\sigma, \quad 0 < s < L.
\]

ACKNOWLEDGEMENTS

Research supported in part under grant NCC 2-374, NASA. I am indebted to J. Lin for the graphs.

REFERENCES

\[\frac{\alpha}{L c \nu} = 0.01 \]

\[L \sqrt{\nu |\lambda| \nu} \]

Figure 1: \(n(|\lambda|) \) Zeros.
\[g = \frac{\alpha}{Lcv} \]

Figure 2: Deadbeat Mode (Real Eigenvalue).

Figure 3: Root Locus: First Mode \(\lambda = \sigma + i\omega \).
Figure 4: Critical Gain vs. Mode.