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To whom it may concern:

This is the fi_SA-sponsored three-year project. The first two years
were supported under NAGW-4691, and _ae last year was supported under NAG5-6370. The
achievement of this-_tefized as a great success. We have attached many
published papers documenting details of our achievements. The highlights are summarized in
the following:

I. We have developed a reliable fabrication technique that can produce SIS mixers with
micromachined horn antennas with a high yield.

2. We have constructed a W-band (75-110 GHz) micromachined SIS heterodyne receiver

whose noise temperature is as low as 30 K, which is comparable to the best results achieved
using conventional waveguide and quasioptical SIS mixers.

3. We have constructed a 3x3 focal-plane SIS array for the frequency band of 170-210

GHz. The receiver noise temperature is uniform across the array and the lowest one is
comparable to the best achieved using waveguide and quasioptical SIS mixers.

4. We have measured antenna patterns of the focal-plane array. The pattern from the center
element is essentially Gaussian with the side lobes below -25 dB.

5. We have tested the feasibility of SIS mixers integrated with Josephson-junction local
oscillators. Preliminary results shown that the power level from the J-J oscillator is adequate

for the purpose.

From the achievements of our three-year project, we conclude that micromachined SIS
focal-plane array is an attractive approach to extend beyond the current single-element receiver
technology. It offers noise sensitivities comparable to the best from the single-element
receivers, and it can be constructed with much lower cost than that by scaling the single-
element receiver to arrays. Furthermore, fully integrated SIS receivers using Josephson-

junction local oscillators will be quite natural to implement using the micromachined structures.
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A low-noise micromachined millimeter-wave heterodyne mixer
using Nb superconducting tunnel junctions
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A heterodyne mixer with a micromachined horn antenna and a superconductor-insulator-

superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz)

frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on

a thin Si3N 4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer

performance is optimized by using a backing plane behind the dipole antenna to tune out the

capacitance of the tunnel junction. The lowest receiver noise temperature of 30--+ 3 K (without any

correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable

to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of

micromachined horn antennas in imaging arrays. © 1996 American Institute of Physics.

[S0003-6951 (96)04413-6]

The development of waveguide and quasi-optical (SIS)

heterodyne receivers has dramatically reduced the required
observation time in millimeter- and submillimeter-wavc ra-

dio astronomy. For a further improvement in the observation

of spatially extended sources, imaging arrays of SIS-

receivers would be of great benefit. The high cost and me-

chanical difficulties of building an array of waveguide mix-

ers and the poorer Gaussian beam-quality of quasi-optical

designs have thus far limited the efforts to actually develop

such arrays. The recently developed micromachined horn an-

tennas offer a relatively easy and low cost fabrication and

excellent Gaussian beam properties, and are therefore an at-

tractive candidate for the development of SIS imaging ar-

rays. Additional advantages of these antennas are the seal-

ability to THz frequencies and the possibility of fabricating

on-chip (superconducting) electronics on Si (or GaAs) de-
vice wafers.

Micromachined integrated horn antennas consist of a di-

pole antenna suspended on a thin (_ I p.m) Si3N 4 dielectric

membrane inside a pyramidal cavity etched in silicon, t De-

velopment of a 335-GHz room-temperature heterodyne
• ?

recetver- and a monopulse tracking receiver 3 have already

shown the feasibility of room-temperature micromachined

integrated horn receivers with semiconductor GaAs diode

detectors for applications at millimeter and sub-millimeter

wavelengths. In this letter we report on the fabrication and

testing of a single element micromachined SIS receiver and

demonstrate its excellent noise performance.

The geometry of the micromachined horn-antenna is

shown in Fig. 1. A conventional machined section is placed

in front of this micromachined part to form a quasi-

integrated horn antenna, as described in Refs. 4 and 5. We

previously reported on measurements with a SIS microma-

chined mixer in a horn geometry designed to feed a low

capacitive (C_ 10 fF) Schottky diode. 2 Analysis showed that

this design gave a nearly 5-dB return loss with the highly

capacitive (C_ 70 fF) SIS junctions. 6 In order to reduce this

impedance mismatch we fabricated and tested several horn

antennas, where the backing wafers do not form a complete

pyramidal cavity, but a reflecting backing plane located at

various distances from the dipole antenna. This backing

plane can provide an inductive impedance at the antenna

terminals, which resonates out the junction capacitance,

thereby reducing the impedance mismatch.

A detailed description of the process steps in the fabri-

cation of the micromachined horn antennas is given in Refs.

6 and 7, here we give a short outline. The junction fabrica-

tion is performed using a selective niobium anodization pro-
cess (SNAP). 7"8 The Nb/AI203/Nb trilayer is deposited by

dc-magnetron sputtering on a double-side polished 0.38 mm-
thick and (100)-oriented silicon wafer, which was covered on

both sides with a I-/_m thick low-stress Si3N 4 layer. 7 The

trilayers are patterned by plasma etch of the Nb layers with

CF.= and a wet etch of the AI layer. The junctions are defined

by an anodization process and then a Nb counter electrode is

deposited and patterned to connect the junctions. Bonding

pads are defined by E-beam evaporation of a 400-nm thick

Ti/Au layer followed by a lift-off process.

The patterned trilayer serves as an alignment mark for an

infrared alignment, in which the antenna apertures have to be

defined on the opposite side of the wafer• Alter patterning,

Si [111] planes

Membrane
Si wafers

dipole antenna

I

backing plane
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FIG. I. I)et:fil,, (_f the micmm_lchined horn ;mtenna I'_.'l'_re I'_m<lin_ Ihe

u_al'crs together. The length of the dipolc antenna i_, 1.2 ram.
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the silicon nitride is etched (with reactive ion etching) in a

mixture of freon-23 with 4 % oxygen. The chip is then

mounted in a Teflon KOH etching mount which isolates the

front and backside of the wafer by sandwiching the wafer

between two O-rings. The freestanding membrane is formed

by etching the silicon in a solution ,_vhich conzains __.0%KOH
by weight at 80 °C for 4-5 hours and another hour of etching

at 60 °C. The slower etching of the last hour is used to create

smoother sidewalls of the aperture. The linal fabrication step

is the deposition (with E-beam evaporation) of a 400-nm

Ti/Au layer on the sidewalls of the aperture through a ce-
ramic shadowmask.

The micromachining of the horn apertures is similar to

the etching process described above. The wafers with the

backing planes are fabricated by removing them from the

KOH-etchant before they are completely etched through.

Backing planes at distances of 95, 240, and 345 p.m have

been fabricated, with etching times of (approximately) I, 2,

and 3 hours. The separate pans of the horn aperture are

aligned under a microscope and bonded together with UV-

and heat-curing Norland optical glue and Krazy Glue Cyano-

bond. The stack of 5 St-wafers forming the micromachined

horn section is glued with cyanobond to the backplate of a

mixermount. The machined horn section is placed in front of

the backplate, mounted in an xyz-stage which allows the

alignment with the micromachined section.

The noise and gain properties of the heterodyne receiver

are measured by using millimeter-wave absorbing foams at
two different temperatures (295 K and 77 K) as a calibrated

blackbody signal source. A 75-115 GHz tunable Gunn-

oscillator provides the local oscillator (LO) power. The mix-
erblock and cold stage of the amplification chain for the in-

termediate frequency (IF) are mounted in an Infrared

Laboratories HD3-8 dewar. The signal and LO-power are

combined by a 97% transmission beam splitter and enter the

¢ryostat via a 25-#m thick polypropylene vacuum window

of 3 cm diameter. On the 77 K radiation shield a 750-p,m

thick quartz plate covered with black polyethylene serves as

a cooled low-pass filter. A F=28 mm TPX (methylpentene

polymer) lens is placed at focal length in front of the horn.
The IF-chain consists of a bias-tee circuit in the mixer-

block, a Pamtech LTE 1268K isolator, and a Berkshire Tech-

nologies L-I_5-30HI IF-amplifier (40-dB gain, Tnoi_e"= 3 K).

A further amplification of 60 dB is provided by room-

temperature amplifiers outside the dewar. The IF-power is

measured in a 35 MHz bandwidth with an HP-436A power
sensor at a center frequency of 1.5 GHz (set by a tunable

bandpass filter).

The mechanical ruggedfiess and cooling properties of the

micromaehined horn antenna were previously discussed in

Ref. 5. Experiments showed that the superconducting tunnel

junctions can he adequately cooled on the thin membrane,

and that the devices withstand repeated thermal cycling in
the vacuum dewar.

Several combinations of devices and backing planes

have beer tested. In the measurements with the backing

plane located at 90 #m, the pumped (LO-power applied) l-V

curve exhibits regions of negative dynamic resistance. This

is a consequence of the quantum nature of the tunneling

process, and indicates that the geometrical capacitance of the
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FIG 2 Pumped i-V characteristics of an array of two SIS junction_ at a LO

frequency of 106 GHz and the measured IF-output power with a 295 K and

77 K i_pu( load.

junction is completely tuned out. Figure 2 shows the result of

a heterodyne measurement at a LO-frequency of 106 GHz

with an array of two junctions and the hacking plane located
at 345 #m. The array has a normal state resistance of

Rx = 37 12 and each junction has an area of 2.6 /am'- (the

critical current density is 1_=4.9 kA/cm:). Figure 2 shows
the dc I-V curve measured with the 106 GHz local oscillator

radiation applied (at a mixer mount temperature of 3.1 K)

and the IF-output power (P,F) with a 77 K and 295 K black-

body input signal.
D295/'°77"_ is measured at theThe maximum Y-factor (=--IF "--IF'

first p5otonstep below the gap voltage and is 4.8 dB, which

result_ in a 30_+ 3 K receiver noise temperature (without any

correction). Analysis of the mixer data, where we take into

account the noise and gain contributions of the ff input and

the IF chain, shows that the mixer gain is 1.2 __0.8 dB and

the mixer noise temperature is 7.6_+5 K.

The measured noise temperature as a function of LO

frequency of this device is shown in Fig. 3, along with its

video response measured using a Fourier transform spec-
trometer (FTS). The 3-dB bandwidth of the mixer is _8

GHz. Because of this narrow bandwidth and the 3 GHz sepa-

ration between the upper and lower sideband frequencies, the

ff-coualing at the two sidebands will differ significantly. The

quoted noise temperatures are therefore not truly double
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FIG. 3. Video response and noise temperature of the micromachined SiS-

mixer a, a function of LO frequency. Two sets of curves correspond to the

microm_chined structure with a 345 /zm backing plane and a pyramidal

backing cavity, respectively.
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sideband (DSB) noise temperatures. Figure 3 also shows re-

sults of a measurement with the same array of junctions but

used in a horn with the pyramidal shaped backing cavity.

The best results obtained then are a noise temperature of 70
K and o 3-dB bandwidth of 15 GHz, 6 which shows the ef-

fectiveness of the backing plane in reducing the rf-mismatch.

The lowest noise temperatures measured with the 240 /am

and 95/am backing plane are 35 K and 66 K, respectively.

Figure 3 shows that the resonance frequency increases

and the bandwidth decreases when the backing plane is used

instead of the pyramidal shaped cavity. Measurements with

the two other backing planes (located closer to the dipole)

showed a further increase in resonance frequency and de-

crease in bandwidth. This can be understood qualitatively if

we assume a simple waveguide model of the hornstructure,

where the impedance (Zbp) of a plunger located at distance

d in a waveguide with impedance Z 0, is given by

Zbp=jZotan(2 7rd/hs) (with hs the guide wavelength). This
inductive impedance should resonate out the junction reac-

tance l/(j2_rfC) (with C the junction capacitance). For

small values of d, this gives a resonance frequency of

f,e,- 1/(2_')x/( lllzoCd ), which increases with a decreasing
d. With the same model it can also be shown that the band-

_'idth decreases with a decreasing backing plane distance.

The current state-of-the-art waveguide and quasi-optical
receivers for the 90-115 frequency range have DSB noise

temperatures of 19 K and 38 K. respectively. 9-13 Our results

show that the sensitivity of the micromachined SIS-mixers is

comparable to the best waveguide and quasi-optical mixers.

The bandwidth of our current mixer is limited by the tuning
- range of the backing plane. In future designs we will use

on-chip integrated tuning elements to tune out the junction

capacitance, which will likely increase the bandwidth to

15%, which is the bandwidth of the dipole antenna in the
micromachined horn.

In summary we have shown the operation of a low noise

micromachined SIS mixer for the W-band frequency range.
The feasibility of micromachined SIS-mixers is demon-

strated: the complete micromachined mixer is robust and can

be thermally cycled in a cryogenic vacuum environment and

the tunnel junctions can be sufficiently cooled. The use of a

micromachined backing plane is an effective way of optimiz-

ing the rf coupling to the superconducting tunnel junctions.
The measured minimum noise temperature of 30 K is com-

parable to tile best results obtained with conventional wave-

guide and quasi-optical SIS-receivers and is encouraging for

the use of SIS micromachined mixers in imaging arrays.
We acknowledge R. Ral.,,ton for acces to the MIT Lin-

coln Laboratory fabrication facilities in his group and thank
Earle Macedo, Janan Deneeno and Dan Baker for their tech-

nical assistance during the fabrication of the SIS devices. We

thank Ron Miller at AT&T Bell Labs for the supply of sev-
eral trilayers for junction fabrication and Arifur Rahman for

his help with some of the initial measurements. This work

was supported by the National Science Foundation under

grant No. 9423608-AST. and by NASA under grant No.
NAGW-4691 and 959705.
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Development of a 3 × 3 micromachined millimeter wave SIS imaging array

Gert de Lange, Arifur Rahman, Erik Duerr, and Qing Hu

Department of Electrical Engineering and Computer Science
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Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
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Abstrad B The design and preliminary results of a 3 ×3 mi-

¢romachined millimeter wave focal plane imaging array with su.

perconducting tunnel junctions as mixing elements are presented.

The array operates in the 175-205 GHz frequency range. Micro-

machined hem antennas consist of a dipole antenna fabricated on

a thin dielectric membrane inside a pyramidal cavity etched in

silicon. The relative ease of fabricating arrays of micromachined

antennas make these antennas of particular interest in the devel-

opment of imaging arrays. DC tests of the array show that the

junction characteristics are uniform across the array. The devices

are sufficiently cooled. Local oscillator power has been coupled to

the different elements in the array.

I. INTRODUCTION

Micromachined horn antennas consist of a dipole antenna

fabricated on a thin (.,- I pm) Si3N4 dielectric membrane in-

side a pyramidal cavity etched in silicon [ 1]. In the construction

of this type of antennas, standard whole-wafer photolithogra-

phy and well established anisotropic Si etching processes are
used. The relative ease and low cost of fabrication of accurate

millimeter- and submillimeter-wave components, the absence

of substrate losses, and the possibilities of integrating a mix-

ing element with super- or semi-conducting electronics (e.g.

SQUID IF-amplifiers or Flux-Flow oscillators) make this type

of antenna attractive in comparison with conventional waveg-

uide and open structure antennas [2], [3].

We recently developed a micromachined heterodyne receiver

for the W-band frequency range (75-110 GHz) with super-

conducting (SIS) tunnel junctions as mixing element, which

showed a sensitivity comparable to the best waveguide and

quasi-optical open-structure receivers [4]. A promising appli-
cation of SIS micromachined horn antennas in combination

with a machined horn section (the quasi-integrated horn an-

tenna [5]) is focal plane imaging arrays. Imaging arrays of

SIS-receivers are of great benefit for the observation of spa-

tially extended sources in astronomy, but the high cost and me-

chanical difficulties of building an array of waveguide mixers

and the poorer beam-quality of open-structure antennas have

thus far limited the efforts of actually developing such arrays

[6]-[10]. SIS-mixers made with micromachined horn antennas

offer both a relatively easy, low cost fabrication and excellent

Manuscript received August 25, 1996.

G. de Lange, e-mail gert@mit.edu, fax 617-258-7864

This work was supported by NSF under grant No. 9423608-AST, and by
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Gaussian beam properties. They are therefore well suited for

imaging arrays.

To demonstrate the feasibility of micromachined horn anten-

nas in imaging arrays, we have fabricated a 3 x 3 focal plane SIS

imaging array for the 175-205 GHz frequency range (the choice
of the frequency range is mainly determined by the availability

of the Local Oscillator and the dimensions of the cryostat). In

parallel we have developed two room-temperature imaging ar-

rays with thin film Nb as bolometers for the 70-110 GHz and
175-205 GHz frequency ranges [ 11].

This paper describes the design and fabrication of the 3 x3

175-205 GHz imaging array receiver, the device fabrication,

and preliminary measurements on the array performance.

If. RECEIVER DESIGN

The array receiver can be divided into three main parts: the

machined horn array, the micromachined array, and the IF-

output/DC-bias board. An expanded view of the receiver and

some details of the individual elements are shown in Figs. 1, 2,
and 3.

A. Micromachined array

The micromachined array is made of a stack of 4 Si wafers

with a total thickness of 1.7 mm. The dipole antenna on the
membrane is 0.58 mm long (0.37 A). In order to have access to

the contact pads on the device wafer, through holes are etched

in the two wafers forming the apex of the horn (see Fig. 2. A

detailed description of the individual micromachined antenna

elements and the quasi-integrated horn antenna is given in [ 12],
[13].

Two serially connected Nb/A1203/Nb SIS junctions are used

as mixer element whose resistance is impedance matched to the

35 t2 real impedance at the dipole antenna terminals. Typical
device characteristics for junctions fabricated at the University

of Virginia facility have an area of 2.5 pm 2 and a maximum

current density of 10 kA/cm 2. For our design, junctions with

a current density of 5 kA/cm 2 are required. To optimize the

radiation coupling to the capacitive SIS devices, two different

types of on-chip tuning structures are implemented, shown in

Fig. 3. The first type uses an inductive length of microstrip line

shorted with a low impedance )44 stub. The low impedance
stub has a 90 nm thick (er = 40) Nb205 dielectric and has

dimensions of 10×35 pm 2. The microstripline is 6/.tm wide

and the impedance is 10 t2 for a 300 nm, _r=5.6 SiO dielectric
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Fig I. Expandedview of the arrayreceivershowingthemachinedhornarray.
the micromachinedarrayand the DC/lF-board

layer. Microstrip lengths of 43 pm and 53 pm are used on

the mask to accommodate variations in the fabrication process.

In the second type of tuning structure a capacitive short of the

coplanar feedlines of the antenna is used to form an inductive

shunt similar to the tuning structure described in Ref [14].
The dimensions of the capacitive short are 20 x 10 pm 2 and

distances of 15 and 17 #m between the junction and the edge
of the capacitor are implemented.

The size of a single array element on the device wafer is

much smaller than the element spacing and the vacant space on

the device wafer is filled up with additional array elements to a

total of 36. A single fabrication run therefore yields four 3x3

arrays.

B. Optics

As shown in Fig. 1 the spacing of the individual elements

of the array is determined by the aperture dimensions of the

machined diagonal hem section. Arrays of diagonal horns can

be made with a high packing density and are relatively easy

to fabricate on a milling machine with a split block technique

[15]. The machined horn array consists of a stack of 6 TeCu

blocks, machined on both sides, and was fabricated at MIT

Lincoln Lab. The element spacing in the array is 6.5 ram,

which is _,, 3.5 beam waist (the l/e 2 beam angle of the horn

is 16°). The angular separation Or of the parallel beams from

the array, separated by a distance d, in combination with a

lens of focal length f is _ d/f, whereas the 3dB beam angle

Si [111| planes

N wa_

dipoleantenna

Fig. 2. DetaiL_of a _ngle elementof the micromaehinedarray,showing the
pyramidalcavity,the membmte, and the dipole amenna.

OSaB of a beam with input beam waist wi, is 0.59 win/d. For a

maximum sampling of the sky one requires a 3 dB beam overlap

and thus Or = 2 03dB, which gives an element separation of

d = 1.18 win. Our array therefore undersamples the sky, as any
horn array will do since the beam waist of the horn is always

considerably smaller than the aperture dimensions of the horn
[71.

In front of the horn array we use two PTFE lenses (with

a focal length of 37 and 100 ram) separated in distance by
their focal lengths. The first lens is at 4.2 K and is used to

avoid truncation of the array beams at the 77 K heat filter (a 5

mm thick PTFE disk) and the dewar window (a 25 pm thick

sheet of polypropylene). Both have a diameter of 5 cm. The

combination of lenses forms a slightly magnified image of the

array elements at a 20-cm distance in front of the dewar. This

lens set-up is convenient for our test receiver, since we can

use a small hot/cold load for the heterodyne measurement and

the array is reasonably uniformly illuminated if we use a beam

splitter between the two lenses to couple the LO.

C. Mixerblock

The stack of Si wafers forming the micromachined section

is glued with cyanobond to a small x-y-0 stage with which the

micromachined array is aligned to the machined horn array.
The DC/IF board is made of Duroid 6010 material. The DC/IF

connection from the board to the devices is accomplished with

spring loaded contact pins which contact the pads on the device

wafer via the through holes shown in Fig. 2. Small dots of

indium are used to facilitate the contact between the pad and the

spring loaded pin, A 50 _4microstrip line (DC blocked with a 22

pF chip capacitoO connects an SMA connector with the spring

loaded contact and provides the IF connection to the devices.

The DC-bias is =pplied via a A/4 line, capacifively shorted

with a 100 pF c_acitor. Because of the specific structure of
the micromachined horn antenna, interference of IF and DC-

bias lines with RF antenna is completely avoided and also poses

no limitations on the element spacing, which are problems of

concern in waveguide and open structure antennas.

The array will first operate with a single IF-amplifier, where

separate elements can be selected by voltage controlled IF-
switches. For simultaneous measurements of the elements the

array will operau: in a direct detection mode.
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The n_cromachhted SIS arrays are made partially at MIT
Lincoln Lab and partially at the University of Virginia. The
SIS devices are fabricated on 0.38 mm thick (100)-oriented

silicon wafers, coveted on both sides with a 1-/_m thick, low-

stress SbN4 layer. The first fabrication step is a reactive ion 300
etch to define the apertures on the aperture side of the wafer,
which will later serve as the etch mask in the anisotropic KOH-
etch. The next step defines the marks (with an Au lift-off) 200
on the other (device) side of the wafer, that are references to

the apertures. The patterning of these marks is done using an _-100
infrared mask aligner. The marks serve as alignment marks for ::t.v

the antenna definition. The wafers are then shipped to UVA, _ 0
where the antennas and SIS junctions are fabricated with a .,..(I)

modified Selective Niobium Etch Process, described in [16]. ¢_-100
Back to MIT the chip is mounted in a Teflon KOH etching

mount which isolates the front and backside of the wafer by -200
sandwiching the wafer between two o-rings. The freestanding
membrane is formed by etching the silicon in a solution which
contains 20% KOH by weight at 80 °C for 4-5 hours and another "30_.1

hour at 60°C. The last step is used to create smooth sidewalls of
the aperture. The final fabrication step is the deposition (with
E-beam evaporation)of a 400-nm T'u'Au layer on the sidewalls
of the aperture through a ceramic shadowmask.

IV. RESULTS

One wafer has been fabricated thus far and was mounted

in the array receiver. The DC I-V measurements of seven
junctions with the inductive shunt tuning structure and with the
array mounted in the vacuum dewar (bath temperature 4.2 K)
are shown in Fig. 4 (two other devices of the array lost DC-
contact duringcooldown). The individual elements of the array
are sufficiently cooled and show no gap reduction in comparison
with a I-V measurement in a LHe bath. The resistance of the

devices varies from 35 to 40 t2 which is very close to the

design value. As aminitial test for the mixer performance
Local Oscillator power (from a 75-115 GHz Gunn Oscillator in
combination with a doubler) was applied. Radiation coupling
to all the arrayelements was observed. Fig. 5 shows the pumped
I-V curve of one of the array elements at a LO frequency of
205 GHz.

I I I I I

"8 -4

Voltage (mV)

Fig. 4. DC I-V curve of 7 SIS devices ofthe 9 clement array.

I I I I I

' I _ _ I_ 12 "8 "4

Voltage (mV)

Fig. 5. Pumped I-V curve of one of the array mixer elements at a LO frequency
of 205 GHz.

V. SUMMARY

We have described the design of a SIS micromachined mil-
limeter wave imaging array for the 175-205 GHz frequency
range. Initial measurements on the array performance show
that the array is sufficiently cooled and that the SIS device

characteristics are uniform across the array. LO power has
been coupled to the different elements of the array.
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Heterodyne mixers with a micromachined horn antenna and a SIS tunnel junction as mixing element

are tested in the 75-115 GHz and 180-220 GHz frequen O' range. The mixer performance is optimized

by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction.

For the W.band mixer a lowest DSB receiver noise temperature of 30 4- 3 K is measured at 106 GHz

with a 3-dB bandwidth of 8 GHz. Preliminary measurements of the 180-220 GHz mixer yield a 109 K

DSB noise temperature at 204 GHz. The design era micromachined 190 GHz SIS focal plane array is
described.

I Introduction

Our recent progress in the development of micromachined horn antennas with superconducting (SIS) tunnel

junctions as mixing elements has resulted in a heterodyne receiver for the W-band frequency range with a sensitivity
comparable to the best waveguide and open-s_-ucture antenna receivers [ I ].

Micromachined horn antennas consist of a dipole antenna fabricated on a thin (,-, 1 /_m) SbN4 dielecmc

membrane inside a pyramidal cavity etched in silicon [2]. In the construction of this type of antenna, standard

whole-wafer photolithography and well established anisotropic Si etching processes are used. The relative ease (and

low cost) of fabrication of accurate millimeter- and submillimeter-wave components, the absence of substrate losses,

and the possibilities of integrating a mixing element with super- oi" semi-conducting el .ectronics (e.g. SQUID IF-
amplifiers or Flux-Flow oscillators) make this type of antenna attractive in comparison with conventional waveguide

and open smleture antennas [3.4].

A promising appfication of SIS micromachined horn antennas is in focal plane imaging arrays. Imaging arrays

of SIS-receivers would be of great benefit for the observation of spatially extended sources in astronomy, but the

high cost and mechanical difficulties of-building an array of waveguide mixers and the poorer beam-quality of

open-structure antennas have thus far limited the efforts of actually developing such arrays [5, 6, 7, 8, 9]. SIS-mixers

made with micromachined horn antennas offer bOth a relatively easy, low cost fabrication and excellent Gaussian

beam properties and are therefore well suited for the development of imaging arrays. To demonstrate the feasibility

of micromachined horn antennas in imaging arrays we are currently fabricating a 3x3 focal plane SIS imaging array

for the 180-220 GHz frequency range. In parallel we develop two room temperature imaging arrays with thin film
bib as bolometers for the 70-1 I0 GHz and 180-220 GHz frequency range [10].
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Figure 1: (a) Geometry of the micromachined horn structure. Dimensions are given in units of wavelength at the

designed frequency. (b) Details of a micromachined mixer before bonding the wafers together.

This paper elaborates on the measurements of the micromachined SIS mixer for the 75-115 GHz frequency

range presented in [ 1] and preliminary results of the 190 GHz mixer, and discusses some design aspects of the SIS

focal plane imaging array.

2 Receiver design and device fabrication.

The geometry and main dimensions of the micromachined horn-antenna are shown in Fig 1. where the dimensions

are ex_ in units of wavelength of the design frequency. A detailed description of the receiver and the
fabrication of the micromachined mixer and quasi-integrated horn antenna is given in [11, 12].

The dipole length and distance from the apex of the pyramidal horn as shown in Fig. la give a 35 _ antenna

impedance at the designed center frequency. This impedance gives a good match to the low capacitive GaAs

Schottky diodes (C _ I0 fF) [13, 14] in the

original design, but causes a neatly 5 dB return loss with the highly capacitive (C _ 70 fF) superconducting
tunnel junctions [ 12]. In order to reduce this impedance mismatch we fabricated and tested several horn antennas,

where the backing wafers do not form a complete pyramidal cavity, but a reflecting backing plane located at various

distances d6p from the dipole antenna(see Fig. lb). This backing plane can provide an inductive impedance at the
antenna terminals, which resonates out the junction capacitance, there,by reducing the impedance mismatch.

The backing planes are fabricated by removing a wafer from the KOH..etchant before the wafer is completely

etched through. In the resulting structure the surface of the (100) bacldng plane is slightly rough, but this roughness

is on order of several microns and will therefore not influence the operation in the millimeter wave range. Backing

planes at distances of 95, 240, and 345/_m have been fabricated, with etching times of (approximately) 1, 2, and 3
hours.

3 Results of the 90 GHz and 190 GHz mixers

3.1 FTS measurements

The frequency response of the miaromachincd horn antennas is me_;ured with a Fourier Transform Spectrometer

(FT_). Fig. 2a shows the result of the measured frequency dependem coupling of three 90GI-lz horn antennas with
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Figure 2: (a) Frequency dependent coupling of a micromachined horn antenna with three different backing planes

and a pyramidal backing cavity (no bp). The coupling is measured with a Fourier Transform Spectrometer. (b)
Noise temperature of the micromachined SIS-mixer for three different backing planes and a pyramidal backing

carL'}; as a function of frequency.

different backing planes, together with the coupling of the original pyramidal shaped cavity. The results shown in

the figure arc scaled to each other, to give the same maximum coupling. As can be seen in the figure, the frequency
of maximum coupling increases with decreasing distance between the dipole antenna and the backing plane, while

the bandwidth of the coupling decreases. This can be understood qualitatively if we assume a simple waveguide

model of the homstructure, where the impedance of the backing plane is given by Zip = jZ, o tan(27rd_/,_l), which

should resonate out the junction reactance 1/(.j2_rfC). For small values of dip, this gives a resonance frequency

of f_e, = l/(21r)_/(/poCdip), which increases with decreasing d. With the same model it can also be shown that
the bandwidth decreaseswith decreasing backing plane distance.

In the inset of fig. 4b the measured frequency dependent coupling of the 190 GHz mixer is shown. In this

measurement the backing plane is located at 95/Jm. The maximum coupling occurs at 202 GHz, which is slightly
higher than the design frequency of 190 GHz for a horn with a pyramidal backing cavity.

3.2 Noise measurements

Results of heterodyne measurements with the 90 GHz and 190 GHz mixers are shown in Figs. 2b, 3a. and 4a. Both

mixers use an array of two Nb junctions The arrays have a normal state resistance of R;v = 37 Q (90 GHz) and
Rtv = 42 _ (190 GHz) The junction area is 2.6/_m 2 (the critical current density is Jc "_ 5 kA/cm2). The signal

and LO-power arc combined by a 97% u,ansmission beam splitter and the IF-power is measured in a 35 MHz

bandwidth at a center frequency of 1.5 GHz.

Fig. 3a shows the pumped DC I-V curve and IF-output power of the 90 GHz mixer measured at a 106 GHz
LO frequency (at a mixer mount temperature of 3.1 K) and the backing plane located at 345/_m. The maximum

Y-factor (measured at the first photonstep below the gap voltage) is 4.8 dB, which results in a 30 4- 3 K DSB

receiver noise temperature (without any correction). Analysis of the receiver noise temperature shows that the
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Figure 3: (a) Pumped l-V characteristics of device HEN52 at a _ frequency of 106 GHz and the measured

IF-output power with a 295 and 77 K input load. (b ) Pumped I- V curves with 107- ! 10 GHz LO frequencies for the

90 GHz mixer with a 95/tin backing plane. The changes in the dymamic resistance of the i-V curve on the photon
steps indicate that the geometric capacitance of the junction is tuned out.

mixer gain is 1.2 4-0.8 dB and the mixer noise temperature is 7.6 4- 5 IC

The measured noise temperature as a function of frequency ot this device is shown in Fig. 2b. The 3 dB

bandwidth of the mixer is _ 8 GHz. Fig. 2b also shows results of a measurement with the same array of junctions

but used in a horn with the pyramidal shaped backing cavity. The best results obtained then are a DSB noise

temperature of 70 K and a 3-rib bandwidth of 15 GHz [12], which shows the effectiveness of the backing plane

in reducing the RF-mismatch. Results of the measurements with two other hacking planes are also shown in

Fig. 2b. Similar to the FTS measurement, a decreasing bandwidth a_d a shift in frequency response towards higher

frequencies is observed when the distance between the dipole antenna and the backing plane is decreased. The

lowest DSB noise temperatures measured with the 240 pm and 95 prxbacking plane is 35 K and 66 K, respectively.

In measurements with the backing plane located at 95/_m, sho,vn in Fig. 3b, the pumped I-V curve exhibits
regions of negative dynamic resistance. This is • consequence or the reactive part of the tunnel current, and

indicates that the geometrical capacitance of the junction is completely tuned out, again showing the effectiveness
of the backing plane.

The cturent state-of-the-art waveguidc and quasi-optical receiwa's for the 90-115 frequency range have DSB
noise temperau_res of 19 K and 38 K, respectively [15, 16, 17, 18, 19]. Our current results show therefore that

the sensitivity of micromachined SIS-mixers is comparable to the I:_st waveguide and quasi-optical mixers. The

bandwidth of the mixer is now limited by the tuning range of the backing plane tuning. In • future design we

will use on-chip integrated tuning dements to tune out the junction capacitance, which will likely increase the
bandwidth to 15%, the bandwidth oflhe dipole antenna in the mica¢ machined horn.

Preliminary results of the 190 GHz mixer with • 95/an backing plane and • 204 GHz IX) frequency are shown

in Fig. 4a. The best result obtained thus far is a 109 K DSB receiver noise temperature at 204 GHz. The gold on

the sidewalls of the device wafer used in this measurement was par:ly delaminated, which gives rise to increased

32



2 ju_o_ an'ay
A,,2.6 wn 2

1 J:t_-,12 Q.

v=_-2.)'4 K

0_

J
!

Q 2

295 K z/

I I

4 6 8

Voltage (mV)

0.6 30_

g
_ _ 2._

0.4 _ 200

I-- IS0

3.2 _

¢n

a

!

-!
-C" ,m

Frequ_cy (Ga4z)

I I I l
195 200 205 210

Frequency (GHz)
215
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IF-output power with a 295 and 77 K input load. (b) Instantaneous bandwidth of the 190 GHz mixer. The inset

shows the frequency dependent coupling of the horn antenna measured with an FTS.

[osses. We therefore expect a reduction in noise temperature in future measurements. The noise temperature as
a function of frequency for the 190 GHz mixer is shown in Fig. 4a. The 3 dB bandwidth of the mixer is _ 6

GHz. AIthough there is room for improvement of the 190 GHz receiver sensitivity, these results do indicate that

the micz'omachined SIS-mixer work well in the 180-220 GHz frequency range.

4 190 GHz SIS Focal Plane Array

Based on the excellent performance of the single element mixers, we are currently fabricating a 3 x 3 SIS focal plane

imaging array for 190 GHz. The choice for a 190 GHz center frequency is mainly determined by the availability

of an LO-source and the dimensions of the cryostat. The array will first operate with a single IF-amplifier.
where separate elements can be selected by voltage controlled IF-switches. For simultaneous measurements of the
elements the array has to operate in a direct detection mode.

The design of the array of machined horn sections is shown in Fig. 5a. Arrays of diagonal horns can be made

with a high packing density and are relatively easy to fabricate on a milling machine [20].

In front of the horn array we use two TPX lenses (with a focal length of 43 and 50 ram) separated in distance
by their focal lengths (see Fig. 6 This combination of lenses adequately avoids truncation of the antenna beams at

the dewar window and forms a slightly magnified image of the array elements at a 15 cm distance in front of the

dewar. This lens set-up is convenient for our test receiver, since we can use a small hot/cold load for the hcterodyne
measurement and the array is reasonably uniform illuminated if we use a beam splitter between the two lenses to

couple the LO. In a set-up for measurements at a telescope the second Ions can be used to adapt for the required
f-number of the telescope optics.

The spacing of the individual elements of the array is determined by the aperture dimensions of the

machined horn section. For the 190 GHz array the element spacing is 6.5 ram. which is -,, 3.5 beam waist (the
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Figure 5: (a ) Design of the machined section of the 190 GHz SIS i'naging array (b ) Design for the IF/DC connections
for the seperate elements of the array.

lie 2 beam angle of the horn is 16"). The angular separatio'n 0r of the parallel beams from the array, separated by

a distance d, in combination with a lens of focal length f is _, d/f whereas the 3dB beam angle 03aa of a beam

with input beam waist win is 0.59 win/f. For a maximum sampling of the sky one requires a 3 dB beam overlap

and thus 0r = 2 03dB which gives a element separation old = 1.18 win. Our array therefore undersamples the
sky, as any horn array will do since the beam waist of the horn is always considerably Smaller than the aperture
dimensions of the horn [6].

Because of the specific structure of the micromaehined horn antenna interference of IF and De-bias lines with

RF antenna is completely avoided and also poses no limitatior_s on the element spacing, problems which are of

concern in waveguide and open structure antennas. The design of the DC,SF connections is shown in Fig. 5. Holes

are etched in the Si wafers forming the backing cavity to give a:eess to the contact pads (see Fig. I). The contact

with the pads is made with spring-loaded (pogo) pins and these pogo pins are mounted in a Duroid substrate and
connected via a mierostrip line to SlVna,-connectors.

5 Summary

We have shown the operation of micromachined SIS mixer for the 75- ! ! 5 GHz and 180-220 GHz range. Excellent

noise temperatures are measures, comparable to t'tate-of-the-a_t waveguide and open structure antennas. A SIS
micromaehined focal plane imaging array for 190 GHz is currently under conslruction.
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Preliminary results from a 3x3 micromachined millimeter-wave focal-plane imaging array with su-

perconducting tunnel junctions as mixing elements are presented. The array operates in the 170-210

GHz frequency range. The micromachined array is mechanically robust and the SIS devices are

su_ciently cooled. Uniform DC I-V characteristics of the different elements have been measured.

We have implemented integrated tuning structures which show a 3.dB bandwidth of 70 GHz when

the junction is used in a video detection mode. Preliminary noise measurements on two of the array

elements resulted in lowest DSB noise temperatures of 83 K (@182 GHz) and 125 K (@ 184 GHz),

with a bandwidth of 32 GHz and 20 GHz respectively.

I Introduction

Imaging arrays of SIS-receivers are of great benefit for the observation of spatially extended sources in astronomy,

but the high cost and mechanical difficulties of Imil .di'ng an array of waveguide mixers and the poorer beam-quality

of open-structure antennas have thus far limited the efforts of actually developing such arrays [ 1, 2, 3, 4, 5].

SIS-mixers made with micromaehined horn antennas offer both a relatively easy, low cost fabrication and excellent

Gaussian beam properties and are therefore well suited for the development of imaging arrays. Because of the

specific structure of the micromachined horn antenna, interference of IF and DC-bias lines with RF antenna is

avoided and also there is no limitation on the element qutcing, which are problems of concern in waveguide

and open structure antennas. Fm'th_ advantages for the use of micromachined horn antennas in high frequency

imaging arrays are the absence of substrate lotuses, and file possibilities of integrating a mixing element with super-

or semi-conducting electronics (e.g. SQUID IF-amplifiers or Flux-Flow oscillators) [6, 7, 8]. To demonstrate

the feasibility of micromachined horn antennas in imaging arrays we are cunently testing a 3×3 focal plane SIS

imaging array for the 170-210 GI-Iz frequency range (the choice of the frequeacy range is mainly determined by
the availability of the Local Oscillator and the dimensions of the cryostat). In parallel we have developed two
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room-temperature imaging arrays with thin-film Nb as bolometers f¢,rthe 70-1 l0 GHz and 170-210 GHz frequency
range [9].

Micromachined horn antennas consist of a dipole antenna fabricated on a thin (-- 1 _m) Si]N4 dielectric
membrane inside a pyramidal cavity etched in silicon (see Fig. 1)[10, 1I]. We previously developed a single-
element micromachined SIS receiver for the W-band frequency range, which showed a sensitivity comparable to
the best waveguide and quasi-optical open-structure receivers [12].

This paper describes the design and fabrication of the 3 x 3170-2 t0 OI-lz imaging array receiver and preliminary
noise measurements on the array performance.

2 Receiver Design

The array receiver can be divided into fourmain parts: the machined horn array, the micromachined array, the
magnet, and the IF-output/DC-bias board. An expanded view of TJlereceiver and some details of the individual
elements are shown in Figs. 2, 3, and 5.

2.1 Micromachined array

The micromachined array is made of a stackof 4 Si wafers with a total thickne_ of 1.7 nun. The dipole antenna on
the membrane is 0.58 nun long (0.37 A). In order to have _ce¢_ to the contact pads on the device wafer, through

holes are etched in the two wafers forming the apex of the horn (see Fig. 1). A detailed description of the individual
micmmachined antenna elements and the quasi-integrated horn anteanais given in [13, 14]. The _tck of Si wafers

forming the micromachined section is aligned with • small x-y-# stage and the jug for holding the machined horn
array. The jug and the alignment stage are positioned with resimcl to each other with dowel pins. To align two
wafers to each other, the wafers are mounted with bee-wax to the alignment stage and to a microscope slide glued to
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Figure 2: Expanded view of thearray receiver showing

the machined horn array, themicromachined array, the

magnet, and the DC/IF.board

the jug. After alignment a smallamount of superglue is used to bond the wafers together. The stage is then heated

to remove the stack of wafers from the microscope sfide. A similar procedure is used to align the micromachined

array to the machined array. A typical accuracy of alignment is 20-40/_m.

Two serially connected Nb/AI2Os/Nb SIS junctions are used as mixer element whose resistance is matched to

the 35-t'1 real impedance at the dipole antenna terminals. Typical devices fabricated at the University of V'trginia

facility have an area of 2.5/_m 2 and a maximum current density of I0 kA/cm 2. For our design, junctions with

a current density of 5 kA/cm 2 are required. To optimize the radiation coupling to the capacitive SIS devices,

two different types of on-chip tuning structures are implemented, as shown in Fig. 31, The first type uses an

inductive length of micromip line shorted with a low impedance A/4 stub. The low impedance stub has a 90 run

thick (_ -- 40) I_205 dielectric and has dimensions of I0x35/an 2. The microsuipline is 6/_m wide and its

characteristic impedance is 10 _ for a 300 rim, er=5.6 SiO dielectric layer. Microsuip lengths of 43 _ and

53/an are used to accommodate variations in the fabrication process. In the second type of tuning structure a

capacitive short of the coplanar feedlines of the antenna is used to form an inductive shunt similar to the tuning

structure described in Ref [15]. The dimensions oftha capacitive short are 20 × I0/an 2 (with a 90-nm thick Nb2Os

dielectric) and distances of 15 and 17/an between the junction and the edge of the capacitor are implemented.

The size of a single array element on the device wafer is much imaller than the element spacing and the vacant
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Figure 3: (a) Details of the two different types of tuning structures incorpgrated in the mask design, l:two-section

stub. ll:capacitively shorted coplanar stub. (b) T-bias circuit.

space on the device wafer is filled up with additional array elements to a total of 36. The positioning of the aperture

and backing wafers selects the nine elements forming the array. In the current mask set, four different designs are

implemented in order to find an optimum design of integrated tuning structure. In a future design identical devices

will be implemented. A single fabrication run will then yield four identic',d 3 x3 arrays.

2.2 Machined Horn Array

The geometry of the machined horn section is similar to the diagonal horn clescribed in Ref [ 16]. Arrays of diagonal

horns can be made with a high packing density and are relatively easy to fabricate on a milling machine with a

split block technique. The array is formed by a stack of six gold plated tellurium copper blocks and fabricated at
MIT Lincoln Laboratory. To assure the alignment of the separate blocks during the fabrication, a fixture is used in

which the blocks are positioned by two dowel pins and mounted under a compound angle. Fabrication of machined

arrays for frequencies up to a THz seems to be feasible.

2.3 Optics

As shown in Fig. 2, the minimum spacing of the individual elements of the array is determined by the

aperture dimensions of the machined diagonal horn section. For the 200 GHz array the element spacing is 6.5 nun,

which is _, 3.5 beam waist (the I/e l beam angle of the horn is 16°). The angular separation Or of the parallel

beams from the array, separated by a distance d. in combination with a lens or reflector of focal length f is _ d/f,

whereas the 3dB beam angle 0_t8 of a beam with input beam waist win is 0.59 win/f. A maximum taunpling of

the sky requires a 3 dB beam overlap and thus Or = 20_a which gives an element separation of d = 1.18 win.

Our array therefore undersamples the r,ky, as any horn array will do since the beam waist of the horn is always

considerably smaller than the aperture dimensions oftbe horn [2].

Quasi-intesrated horn antennas can be used as a feed for reflector ante_mas without additonal leases. Because

of the limited diameter ($ cm) of the 77 K heat filter (a $ mm thick PTI_:. disk) and the dewar window (a 25 tjm

thick sheet of polypropylene) in the measurement set-up, a FIFE lens wit_ a focal lenght of 37 nun is used in our

set-up, to avoid truncation of the array beams. This lens is at 4.2 K. A :_econd lens (at room temperature) with
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ing array. The figure shows the beams for
the array elements on the diagonal of the
array. The 1:'--37nun lens is located in the
dewar.

• focal length of I00 mm is used to form a gaussian telescope (See Fig. 4). The combination of the two lenses

forms a slightly magnified image of the array elements at a 20-cm distance in front of the dewar. This lens set-up
is convenient for our test receiver, since we can use a small hot/cold load for the heterodyne measurement and the
array is reasonably uniformly illuminated if we use a beam splitter between the two lenses to couple the LO.

2.4 Magnet and DC-IF Board

A single magnet coil (made of copper) with approximately 2500 turns of superconducting I00/zm thick Nb wire
(Supercon T48B) is used to suppress unwanted Josephson effects. The geometry of the micromachined array allows

the magnet to be in very close proximity of the junction (,-, 1.5 mm). Although the positioning of the magnet (with
the magnetic field lines perpendicular to the junction surface) is not preferable, a magnet current of 200-300 mA

is sufficient to suppress Josephson effects. The magnet produces a non-uniform magnetic field over the area of the
array. Small permanent magnets or magnet coils located in the core of the magnet could be used to correct for this
non-uniformity, but are not implemented yet.

In order to have local access to the array elements, through holes are etched in the backing wafers. This avoids
die use of long coplanar lines on the device wafer (to bring the signals to the border of the wafer) and thereby
increases the available space for mixer elements, reduces possible cross-talk between the different elements, and

increases the flexibility of the receiver design. Contact between the array elements and the DC/IF board is made
by a modified spring loaded contactpin and a short section of semi-rigid cable in which the center conductor is

replaced by a spring loaded contact pin. The spring loaded contact pins are modified by cutting off the sealed end
of the pin and extracting a part of the spring located inside the pin. This spring b then usedas a flexible contact,
instead of the original head. To ensure a reliable contact between the contact pads and the spring contact, the small
cavities formed by the through holes in the backing wafers are filled with silver epoxy. The contact pin and the
section of semi-rigid cable arc mounted in feed through holes in the core of the magnet coil (see Fig. 5). For each
array element, one contact pad b connected to the common ground (the core of the magnet) while the other contact
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Figure 5: Details of the receiver assembly

pad is connected to the DC-IF board via the secdon of semi-rigid cable. The use of the feed through holes in the
copper core of the magnet provide an effective way of shielding IF contact pins for the different elements from

each other. In a previous design (without a magn=t) severe cross-talk and spurious noise effects were observed in
the IF-output signals

The IF/DC-board is made of Duroid 6010 material and contains a T-bias circuit for each array element. Contact

between the contact pins and the microstrip line and groundplane on the IF board is made by using tight fitting

sockets, soldered on the IF-board. Details of the T-bias design are shown in Fig. 31). A 504'1 microsu'ip line
(width=1170/Jm) (DC blocked with a 22 pF chip capacitor) connects on one end to the center conductor of a

SMA connector and on the other end with the socket for the contact pin. The DC-bias is applied via a 100-£1 A/4

line (w=-152 pro, l=2l nun), capacitively shorted with a 100 pF capacitor (and a 10-k,Q resistor, to avoid charge
build-up).

The array operates with a single IF-amplification stage. Ncise measurements on different elements of the

array are.done by connecting the IF-ampllfier to the different E,-ports on the DC/IF Board. The cold stage of the

IF-chain consists of a Pamtech LTE 1268K isolator, and a Berkshire Technologies L-I.5-30HI IF-amplifier (40

dB). A further amplification of 60 dB is provided by room-temperature amplifiers outside the dewar. The IF-power

is measured in a 35 MHz bandwidth with an HP.-436A power SermSOrat a center frequency of 1.25 GHz (set by a
tunable ban@ass filter).

3 Device fabrication

The micromachined SIS arrays ate made partially at MIT Lincolr_ Lab and partially at the Unive_ity of V'trginia.

The SIS devices are fabricated on 0.38 nun thick (I 00)-oriented silicon wafers, covered on both sides with a l-pro

thick, Iow-stre_ Si31_ layer. The first fab_.afion step is a reactive ion etch to de£me the apcttur_ on _ aperture

side of the wafer, which will later serve as the etch mask in the anisotropic KOH_dL The _t _p defines marks

(with an Au llft-off) on the other (device) side of the wafer, that a;_ references to the apettmes. The patterning of
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Figure 6: (a) DC 1-Vcurve of 7 SIS devices of the 9 element array. (b) Measured antenna beam panerr_ for two

elements on the diagonal of the imaging array. The inset shows the device numbering.

these marks is done using an infrared mask aligner. The marks serve as alignment marks for the antenna definition.
The wafers are then shipped to UVA. where the antennas and SIS junctions are fabricated with a modified Selective

Niobium Etch Process. described in [17]. Back at MIT the chip is mounted in a Teflon KOH etching mount which

isolates the front and back sides of the wafer by sandwiching the wafer between two o-rings. The freestanding
membrane is formed by etching the silicon in a solution which contains 20% KOH by weight at 80 °C for 4-5 hours
and another hour at 60 °C. The last step is used to create smooth sidewalls of the aperture. The final fabrication

step is the deposition by E-beaxn evaporation of a 400-rim T'dAu layer on the sidewalls of the aperture through a
ceramic shadow mask.

4 Results

4.1 DC measurements

A uniform noise performance of the different elements in an array receiver for astronomical observations is of major
importance, since an increase in noise temperature of one or more of the clcments rapidly reduces tic advantage of
using an array receiver. This is of special concernfor micromachined and quasi-optical array receivers, where one
defective element requires replacement of the whole device wafer.

We have thus far tested one device wafer, and results of the DC I-V measurements of 7 SIS devices in the array
am shown in F_g. 6a (in this measurement the cryogenic DC contact was not optimized yet, and two devices lost
contact during cool-down). The measurements am performed with the mixerblock mounted in the vacuum dewar

(at a bath temperaure zf 4.2 K). As shown in Fig. 6a the I-V characteristics are fairly uniform, with a 35 - 40 _1

junction resistance range. The individual eJcmcnts of the array am sufficiently cooled and show no gap reduction
in comparison with an I-V measurement in a IMe bath. Since the overall noise performance of an SIS receiver is

sot very critical to small changes in subgap ctment or device resistance, the device uniformity shown in Fig. 6a
should be sufficient to obtain a uniform noise performance.
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4.2 Antenna Pattern Measurement

As a preliminary test of the antenna patterns of the separate elements in the array, the 45-degree antenna patterns
of two elements are measured at a frequency of 182 GHz. The 45-degree plane antenna are obtained by measuring
the video response of the elements while rotating the dewar with a rotation stage. Due to the 45 degree angle of
the array with respect to the optical table, a combined co- and cross- polarisation is measured. The two elements
are at the center and outermost postion on the diagonal of the array, with the antenna beams parallel to the optical
table. In this measurement, only the cold lens inside the dewar is used. The measured antenna patterns arc
shown in Fig. 6b, together with a Ganssian beam profile. The measured radial separation of the beams is 12.5 °,
and the 10 dB bcamwidth of the central beam is 6.8 °. Calculated values (using a thin lens approximation) for
the beam separation and beam width arc 14.4 ° and 5.2 °, rcspcx:tively. The off-axis element is somewhat wider
and shows a non-symmetric shoulder st -17 dB, which we attribute to abberations caused by the lens. Previous

measurements of single element quasi-integrated horn antennas [11] and single clement [IS] and arrays of diagonal
horns with waveguide feeds [16] have shown excellent Gaussian antenna beam profiles st frequencies close to 1
THz. Recent measurements on our 95 GHz room-temperature bolometer also show excellent beam properties [19].
Although more thorough tests of the beam patterns of the array have to be performed, our measurements indicate
the applicability of quasi-integrated horn antennas in array receivers.

4.3 _ measurements

The frequency response of the different integrated tuning structures is measured with a Fourier Transform Spec-
trometer (FTS). The FTS uses a Hg-arc lamp as the broadband millimeter wave source, and is operated in the
step-and-integrate mode. In these measurements the devices are biased at a voltage just below the gap voltage and
used as a video detector. Fig. ga shows the result of the measured frequency dependent coupling of three different
integrated tuning sffuctures, together with the coupling of a device without integrated tuning structure ([ 14]). The
two section stub with a stub length of 53/_m shows a large increase in bandwidth in comparison with the device
without an integrated tuning structure. The peak in the response of this device around lg0 GHz is a result of the
optimum coupling of the dipole antenna at this frequency. The origin of the observed peak at 300 GHz, which is
also observed for the tuning structure with a 43/,m stub length, has not been identified. The tuning stucture with
a capacitive short located on the coplanar feed line at 17 pm from the junctions has an optimum coupling at 130
GHz.

4.4 Noise measurements

Results of heterodyne measurements with two elements of the array with the 53-/am long two-section tuning stub
arc shown in Figs. 8 and 7b. The signal and LO-power arc combined b.v a 97% transmission beam splitter and the
IF-power is measured in a 35 MHz bandwidth at a center frequency of t.25 GHz.

Fig. 8a shows the pumped I>C I-V curve and IF-output power of ,:levice #4 (see the inset of Fig. 6b for the
numbering of the device Iocation)moasured at a 182 GItz LO frequency. The maximum Y-factor (measured st
the first photonstep below the gap voltage) is 3.7 dB, which results in a g3 4- 3 K DSB receiver noise temperature
(without any correction). Analysis of the receiver noise temperature shows that the mixer gain is - 1.4 4-0.8 dB and
the mixer noise temperature is 23 4- 8 I(. The IF amplifier noise is 13.6 K (calibrated with the shot noise of the

unpumpedjunction), which gives a total noise conm'bution of the IF stage of 30 K. The manufacturers specification
of the amplifier noise is 4-5 K, which indicates that the current IF-coupling scheme can be substantially improved.

Fig. gb shows ;he pumped DC I-V curve and IF-output power of device #7 measured at a 184 GHz LO frequency.
This element has a minimum receiver noise temperature of 125 K DgB. As can be seen in Fig. 8a and b, the.re
is a significant difference in the behaviour of the dements under imuliation with LO-power. Device #4 shows
photon steps with a width of 2 x _w/e, as expected in a series array of two junctions; whereas device #7 shows no
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clear photon steps below the gap voltage and a structure in the IF-output power of width/ko/e. We contribute this
undesirable effect to a non-uniform division of the applied DC-bias voltage and LO-power accross the series array
of junctions. At frequencies where the geometric capacitance of the junction is tuned out by the integrated tuning
circuit, the junction RF-admittance is determined by the quantum susceptance. Since the quantum susceptance is
a sensitive function of bias voltage (especially near the gap voltage), small differences in bias voltage between the
two junctions could have a significant effect on the coupling of LO-power. Use of single junction mixers will avoid
this type of non-uniformity.

The measured noise temperature as a function of frequency for these devices is shown in Fig. 7b. The 3-dB
noise bandwidth for elements #4 and #7 is 32 GHz and 20 GHz respectively. We contribute the difference in the

measured bandwidth to the different behaviour of the mixer elements, as explained in the previous paragraph. In a
previous measurement on a single element mixer with a backing plane tuned antenna, a bandwidth of 6 GHz was

measured [14], showing the effectiveness of the integrated tuning structure in the current design.
Current state-of-the-art waveguide receivers for the 230 GHz astronomy band have DSB noise temperatures

of 35-50 K [19, 20, 21]. With a further optimization of the IF coupling and the use of single junction mixer
elements, the fabrication of micromachined arrays with a competitive noise temperature for each array element

seems feasible. Furthermore, the scalability of the machined and micromachined sections show the promising
prospect for the use of micromachined focal plane imaging arrays for frequecies up to I THz.

5 Smnnmry
We have described the design and fabrication of a SIS micromachined 3 x 3 focal plane imaging array for the
170-210 GHz range. Measurements show that the micromadxined array can withstand thermal cycling and that
the devices are sufficiently cooled. Uniform IX2 I-V characteristics of die different elements have been measured.

The use of integrated tuning structures significantly improved the bandwidth of the mixer. Preliminary heterodyne
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Figure g: (a) Pumped I-V characteristics of element #4 at a LO frequency of 182 GHz and the measured IF-output

power with a 295 and 77 K input load. (b) Same measurement as in a, but for element #7 and a IX)frequency of
186 GHz

noise measurements on the array elements showed a lowest DSB noise temperature of 83 K with a 3-dB bandwidth
of 32 GHz.
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A low-noise, 9-element Micromachined SIS Imaging Array.
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Results from a 3 x 3 microntachhzed millimeter-wave focal-plane bnaging array with superconduct-

brg tunnel junctions as mixing elements are presented. The array operates bl the 170-210 GHz fre-
quency range. The array uses 91_m 2, low inzpedance (3.5 -4.5 fl) junctions, commercially available

from Hypres blc. Integrated tuning structures are bnplemented to nmtch the devices to the antenna

bnpedance. Noise measurements show a lowest DSB noise temperatures of 52 K (@ 190 GHz) (for the

central elenzent). Lowest noise tenzperatures from the off-axis elements are in the range of 60-100 K

DSB, with a uniform bandwidth of 30 GH'.. Antenna beam patterns with a high Gaussian profile have

been measured for on. and off-axis elements.

I Introduction

Imaging arrays of SIS-receivers are of great benefit for the observation of spatially extended sources in astronomy,

but the high cost and mechanical difficulties of building an array of waveguide mixers and the poorer beam-quality

of open-structure antennas have thus far limited the efforts of actually developing such arrays [ 1, 2, 3, 4, 5]. SIS-

mixers made with micromachined horn antennas offer a relatively easy, low cost fabrication, excellent Gaussian

beam properties, and compactness, and are therefore well suited for the development of imaging arrays. Because

of the specific structure of the micromachined horn antenna, interference of IF and DC-bias lines with RF antenna

is avoided and also there is no limitation on the element spacing, which are problems of concern in waveguide and

open structure antennas. Further advantages for the use ofmicromachined horn antennas in high frequency imaging

arrays are the absence of substrate losses, and the possibilities of integrating a mixing element with super- or semi-

conducting electronics (e.g. SQUID IF-amplifiers or Flux-Flow oscillators) [6, 7, 8]. To demonstrate the feasibility

of micromachined horn antennas in imaging arrays, we have developed a 3x3 focal plane SIS imaging array for

the 170-210 GHz frequency range (the choice of the frequency range is mainly determined by the availability of

the Local Oscillator and the dimensions of the cryostat). In parallel we have developed two room-temperature

imaging arrays with thin-film Nb as bolometers for the 70-110 GHz and 170-210 GHz frequency range [9].
Micromachined horn antennas consist of a dipole antenna fabricated on a thin (,_ I pro) Si3N4 dielectric mem-

brane inside a pyramidal cavity etched in silicon (see Fig. 1)[10, 1 I]. We previously developed a single-element

micromachined SIS receiver for the W-band frequency range, which showed a sensitivity comparable to the best

waveguide and quasi-optical open-structure receivers [ ! 2].
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Figure I: (a) Details of a single element of the micronu2chined arra); showing the pyramidal cavil): the membrane,

the through holes for the IF/DC connections, and the dipole antenna. (b) Details of the central region of the dipole

antenna. The junction and tunh=g structure are located on the DC/IF coplanar bias lines.

This paper describes the design and fabrication of a 3 x 3 170-210 GHz imaging array receiver, and the DC and
noise characterization of the array performance.

2 Receiver Design

An expanded view of the receiver and some details of the individual elements are shown in Figs. ! and 2. A detailed
description of the receiver is given in [13]

The micromachined array is made of a stack of 4 Si wafers with a total thickness of 1.7 ram. The dipole

antenna on the membrane is 0.58 mm long (0.37 ;L). In order ¢o ha_e access to the contact pads on the device

wafer, through holes are etched in the two wafers forming the apex of the horn (see Fig. la). A detailed description

of the individual micromachined antenna elements and the quasi-integrated horn antenna is given in [ 14, 15].

A single Nb/Al:O3/Nb SIS junction is used as mixer element. The device has an area of 9 pm 2 and a current
density of 5 kA/cm 2. The coupling of the relatively large-area and low impedance (3.5-4.5 Q) junction to the 35

antenna impedance is optimized by an on-chip tuning circuit, shown in Fig. Ib. The tuning circuit uses an inductive
length of microstrip to tune out the junction capacitance, and a _./4 microstrip impedance transformer to match the

junction impedance to the antenna impedance. The microstrip is 6/an wide and its characteristic impedance is 8.5

Q. Devices with a microstrip length of 190/zrn for the inductive stub and 140Fro for the impedance transformer

show a maximum coupling around 190 GHz, which is the center frequency of the dipole antenna.

The geometry of the machined horn section is similar to the diagonal horn described in Ref [16]. Arrays of

diagonal horns can be made with a high packing density and ate relatively easy to fabricate on a milling machine

with a split block technique. The array is formed by a stack of si_: gold plated tellurium copper blocks and
fabricated at MIT Lincoln Laboratory

As shown in Fig. 2, the minimum spacing of the individual elements of the array is determined by the aperture

dimensions of the machined diagonal horn section. For the 200 GHz array the element spacing is 6.5 ram, which
is _, 3.5 beam waist (the l/e 2 beam angle of the horn is 16"). The angular separation 0r of the parallel beams from

the array, separated by a distance d, in combination with a lens or reflector of focal length f is _ d/f, whereas

the 3dB beam angle 0MB of a beam with input beam waist wi, is 0.59 wi,/f. A maximum sampling of the sky

requires a 3 dB beam overlap and thus 0r = 2 0._B which gives an ele_z)ent separation ofd = 1.18 wi,. Our array
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Figure 2: Expanded view of the arm)' receiver showing
the machined horn arm), the micronu_chined array, the

magnet, and the DC/IF-board

therefore undersarnples the sky, as any horn array will do since the beam waist of the horn is always considerably

smaller than the aperture dimensions of the horn [2]. Quasi-integrated horn antennas can be used as a feed for
reflector antennas without additonal lenses. Because of the limited diameter (5 cm) of the 77 K radiation filter (a 5

mm thick PTFE disk) and the dewar window (a 25 pm thick sheet of polypropylene) in the measurement set-up, a

FTI=E lens with a focal length of 37 mm is used in our set-up, to avoid truncation of the array beams. This lens is
at 4.2 IC

A single magnet coil (made of copper) with approximately 2500 turns of superconducting 100-pro thick Nb

wire (Supercon T48B) is used to suppress unwanted Josephson effects. The geometry of the micromachined array

allows the magnet to be in very close proximity of the junction (_, 1.5 nun). Although the positioning of the

magnet (with the magnetic field lines perpendicular to the junction surface) is not preferable, a magnet current of

200-300 mA is sufficient to suppress the Iosephson effects

In order to have local access to the array elements, through holes are etched in the backing wafers. This

zvoids the use of long coplanar lines on the device wafer (to bring the signals to the border of the wafer) and
thereby increases the available space for mixer elements, reduces possible cross-talk between different elements,

and increases the flexibility of the receiver design. Contact between the array elements and the DC/IF board is

made by Servometer bellow contacts (type 2510), mounted on top of a miniature screw. The screws ate mounted

either directly in the core of the magnet (for the ground contact) or as the center conductor of a short section of

semi-rigid cable which is also mounted in the core of the magnet. This allows individual adjustment of all contacts
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Figure 3: (a) DC I-V curve of 5 SIS devices of the 9 element array (b) Measured antenna bean, patterns for two

elements on the diagonal of the bnaging array. The inset shows the device numbering.

and has proven to be a reliable contact at cryogenic temperatures.

The lF/DC-board is made of Duroid 6010 material and contains a T-bias circuit for each array element. Contact

between the contact screws and the IF board is made by using tight fitting sockets, soldered on the IF-board.

The array operates with a single IF-amplification stage. Noise measurements on different elements of the array

are done by connecting the IF-amplifier to the different IF-ports on the DC/IF Board. The cold stage of the IF-

chain consists of a Pamtech LTE 1268K isolator, and a Berkshire Technologies L-1.5-30HI IF-amplifier (40 dB).

A further amplification of 60 dB is provided by room-temperature amplifiers outside the dewar. The IF-power

is measured in a 35 MHz bandwidth with an HP-436A power sensor at a center frequency of 1.5 GHz (set by a
tunable bandpass filter).

3 Device fabrication

The micromachined SIS arrays are made partially at Hypres and partially at MIT Lincoln lab. The SIS devices

are fabricated on 0.38 mm thick (100)-oriented silicon wafers, covered on both sides with a I-/an thick, low-

stress Si3N4 layer. The junctions and antennas are defined with the slandard Hypres fabrication procedure. The

freestanding membrane is formed by etching the silicon in a solution which contains 20% KOH by weight at 80 °C

for 4-5 hours and another hour at 60 °C. The last step is used to create smooth sidewalls of the aperture. The final

fabrication step is the deposition by E-beam evaporation of a 400-nm T'dAu layer on the sidewalls of the aperture
through a ceramic shadow mask.
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4 Results

4.1 DC measurements

Results of typical DC I-V measurements of 5 SIS devices in the array are shown in Fig. 3a. The measurements

are performed with the mixerblock mounted in the vacuum dewar (at a bath temperature of 4.2 K). As shown
in Fig. 3a the I-V characteristics show 'back bending' at voltages above the 2.5 mV gap voltage. This is not

observed if the devices are measured on a dip-stick submerged in liquid helium and therefore it indicates heating
ef the devices due to the poor thermal conductance of the membrane. Previous measurements with smaller (2.5

pm 2, R = 40 f_) devices did not show this heating effect. Although the back bending does not severely deteriorate

r,he mixer performance, future designs can have an improved cooling by extending the tuning structure (with an

extra length of _./2), which will locate the devices on the solid silicon region. The device resistance ranges from

3.5 ¢o4.5 _. A drawback of SIS arrays fabricated on one single chip is the possible failure of one of the elements,

which then cannot be replaced. We have measured the I-V characteristics of several arrays and always found all 9

elements operating.

4.2 Antenna Pattern Measurement

As a preliminary test of the antenna patterns of different array elements, we previously measured the 45-degree

antenna patterns of two elements at a frequency of 182 GHz. The 45-degree plane antenna are obtained by mea-

suring the video response of the elements while rotating the dewar with a rotation stage. Due to the 45 degree

angle of the array with respect to the optical table, a combined co- and cross- polarisation is measured. The two

elements are at the center and outermost postion on the diagonal of the array, with the antenna beams parallel to the
optical table. This measurement includes the cold lens inside the dewar. The measured antenna patterns are shown

in Fig. 3b, together with a Gaussian beam profile. The measured radial separation of the beams is 12.5 °, and the

I0 dB beamwidth of the central beam is 6.8'. Calculated values (using a thin lens approximation) for the beam

separation and beam width are 14.4' and 5.2% respectively, with The off-axis element has a wider beam and it has

an assymmetric shoulder at -17 dB, which we attribute to abberations caused by the lens. Previous measurements

of single element quasi-integrated horn antennas [ ! 1] and single element [ 17] and arrays of diagonal horns with
waveguide feeds [16] have shown excellent Gaussian antenna beam profiles at frequencies close to 1 THz. Recent
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measurements on our 95 GHz room-temperature bolometer also show excellent beam properties [18].

4.3 FTS measurements

The frequency response of the integrated tuning structures is measured with a Fourier Transform Spectrometer

(FTS). The FTS uses a Hg-arc lamp as a broadband millimeter wave source, and is operated in the step-and-

integrate mode. In these measurements the devices arc biased at a voltage just below the gap voltage and used as

a video detector. Fig. 4a shows the result of a measured frequency dependent coupling of a device with a tuning

stub length of 190/an and a transformer length of 140/an. The calculated bandwidth for this tuning structure

(assuming a frequency independent antenna impedance) is about 60 GHz. The measured bandwidth of 30 GHz is

therefore limited by the 15 % bandwidth of the dipole antenna.

4.4 Noise measurements

Results of a heterodyne measurement on the central element (device # 5, see inset of Fig. 3b) of the array are

shown in Fig. 4b. The signal and LO-power are combined by a 97% transmission beam splitter and the IF-power

is measured in a 35 MHz bandwidth at a center frequency of 1.5 GHz. Fig. 4b shows the pumped DC I-V curve

and IF-output power measured at a 190 GHz LO frequency. The minimum uncorrected receiver noise temperature

is 52 K DSB, measured at a bath temperature of 2.7 K. Although the device shows some heating effects above

the gap-voltage, this noise temperature is still comparable to the best results obtained in tunable waveguide mixers
[t9, 20, 2Z].

The measured noise temperatures as functions of frequency for 9 elements of another array are shown in Fig. 5.
In this array the minimum noise temperature of the central element is _,2 K (see the inset). The measured noise

temperature of the different elements is fairly uniform, with minimum noise temperatures for 8 elements ranging

from 62 to 90 K and one element with a somewhat elevated noise temper;tture of I01 K. The 3-dB noise bandwidth

of the elements has a uniform value of around 30 GHz across the array. We contribute the differences in the noise



temperature across the array partly to the effect of the limited size of our dewar window and the need of using a
ratherthick lens inside the dewar. Measurements of different arrays always showed a lowest noise temperature for
the central element. As shown in Fig. 4b, the lens deteriorates the off-axis beam pattern and because the 9 beams
enter the dewar under different angles, it complicates the coupling of the LO and the Hot/Cold source. The LO and

signal coupling is now optimized by tilting and rotating the beam splitter or the dewar. Further optimization of the
optical coupling will most likely make the noise temperature across the array more uniform.

Our measurements therefore indicate the feasibility of compact, low-cost micromachined SIS focal plane imag-
ing arrays, with competetive noise temperatures. Furthermore. the scalability of the machined and micromachined
sections show the promising prospect for the use of micromachined focal plane imaging arrays for frequencies up
m l THz.

5 Summary
W'ehave described the design, fabrication, and testing of a SIS micromachined 3 x 3 focal-plane imaging array for
the 170-210 GHz frequency range. Heterodyne noise measurements on the array elements showed a lowest DSB
noise temperature of 52 K for a central element, with a 3-dB bandwidth of 30 GHz. The noise temperature of the
eft-axis elements ranges from 71 to 101 K, with a uniform bandwidth of 30 GHz.
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