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Abstract

Disturbance of the Maxwellian plasma may occur in the vicinity of a spacecraft due to

photoemission, interactions between the spacecraft and thermospheric gases, or electron

emissions from other devices on the spacecraft. Significant non-maxwellian plasma

distributions may also occur in nature as a mixture of ionospheric and magnetospheric plasmas

or secondaries produced by photoionization in the thermosphere or auroral precipitation. The

general formulas for current collection (volt-ampere curves) by planar, cylindrical, and

spherical Langmuir probes in isotropic and anisotropic non-maxwellian plasmas are examined.

Examples are given of how one may identify and remove the non-maxwellian components in

the Langmuir probe current to permit the ionospheric parameters to be determined. Theoretical

volt-ampere curves presented for typical examples of non-maxwellian distributions include:

two-temperature plasmas and a thermal plasma with an energetic electron beam. If the non-

ionospheric electrons are Maxwellian at a temperature distinct from that of the ionosphere

electrons, the volt-ampere curves can be fitted directly to obtain the temperatures and densities

of both electron components without resorting to differenting the current. For an arbitrary

isotropic distribution, the current for retarded particles is shown to be identical for the three

geometries. For anisotropic distributions, the three probe geometries are not equally suited for

measuring the ionospheric electron temperature and density or for determining the distribution

function in the presence of non-maxwellian background electrons.
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Introduction

Langnmirprobeshavebeenusedfor manyyearson rocketsandsatellitesto measure

ionosphericelectrontemperature,T e, and ion and electron number densities, N, and N e, see

references in Boyd Kand Brace-'. The Langmuir probe technique involves exposing a metallic

collector to the plasma surrounding the vehicle, usually by mounting it on a boom that is longer

than a Debye length at the lowest density expected to be encountered. The boom places the

probe in contact with ionospheric plasma at a distance where the measurements are undisturbed

by the presence of the vehicle. The probe current, I, (the sum of the ion and electron currents,

I i and Ie is measured as the collector voltage, V, is repeatedly swept through a suitable range

with respect to the plasma potential. Analysis of the resulting I-V curves usually yields the

ionospheric parameters T, and Ne. Various sources of measurement error which affect this

analysis were discussed by Brace 2, but that work did not cover the effects of non-ionospheric

or non-maxwellian electron populations.

The measurements are very simple and direct when the electron energy distribution is

essentially Maxwellian as is true nearly everywhere in the ionosphere. In this case, the electron

energy can be characterized by a single scalar value, T_. However, if additional electron

populations are present in significant magnitude, the determination of T_ is more complicated

and may not be possible if the density of the additional component is sufficiently high. Sources

of such additional populations may include; (1) photoelectrons produced in the daytime

ionosphere in the process of forming the ionosphere, (2) degraded secondary electrons

produced by precipitating auroral electrons and ions, (3) photoelectrons ejected from sunlit

spacecraft surfaces, (4) secondaries produced by the impact at spacecraft velocities of

thermospheric molecules, (5) secondaries emitted when the spacecraft potential is high enough

to accelerate ionospheric ions or electrons to energies that exceed the ionization potential of

spacecraft metallic surfaces, and (6) electron beams or plumes emitted from devices onboard

the satellite. The geophysical sources (1 & 2), although present much of the time, usually have
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anegligibleinfluenceon the I-V curves, except perhaps in regions of very low io_lospheric

density. The non-geophysical components (3-6) can have high enough densities to significantly

distort the I-V curves and affect the determination of T, by distorting the electron retarding

regions of the I-V curves. They may also affect the measurements of total ionospheric density,

N e and N. In these cases the ionospheric parameters (of the low energy electrons) can only be

obtained by identifying the non-ionospheric contributions to the I-V curves and subtracting

them out, or by fitting the I-V curve with theoretical expressions which include the non-

ionospheric components. Examples of the effects of non-maxwellian situations are: impact

ionization on the Pioneer Venus Orbiter discussed by Whipple et al.3; an example of two-

temperature distributions observed in the Venus ionotail described by Brace et al.4; and multi-

component superthermal electrons by Knudsen and Miller. 5

This work presents the formulas for and examples of Langmuir probe current collection in such

non-maxwellian plasmas, and shows when the electron energy distribution can be derived from

measurements of the first and second derivatives in the retarding region of the I-V curves.

Specific examples are also presented to illustrate the method of deriving ionospheric parameters

from fitting the I-V curves. The results show that different probe geometries are affected

differently by the presence of non-maxwellian components.

I. The Conventional Langmuir Probe Technique for Maxwellian Electrons

A Langmuir probe may have any geometry, but cylindrical, spherical and planar probes

are usually employed because of their symmetry. The basis for T measurements is the

conventional Langmuir probe theory of Mott-Smith and Langmuir 6, assuming a Maxwellian

energy distribution, F(E), given by:

F( E) _ _f--Eexp(-_kTe ). (l)

3
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where k is the Boltzmann constant. Thus, in a Maxwellian plasma, when the probe to plasma

potential, V, is driven negative, l_ decreases exponentially

Ie = lo exp(eV/4kTe ), (2)

where I0 is the random electron current given by A N e (kTe/'2rc m¢) _/e , where e is the

electron charge, tn is electron mass and A is the probe area. This equation for what is known

as the electron retarding region in a Maxwellian plasma is the same for all probe geometries. It

is shown below that this result has a generalization that the expression for the retarded current

is identical for the three probe geometries for isotropic non-maxwellian distributions. The

derivation of Te is usually done by fitting the electron retarding region with an exponential

function, and sometimes T_ is obtained electronically by measuring the ratio of the first and

second derivatives of le rather than through analysis of the I-V curves themselves, v's

Next consider the ion and electron saturation regions of the I-V curves. The form of the

acceleration region current depends on the geometry of the collector and is approximated by,

where p = 0, 1/2, or 1 for planar, cylindrical, or spherical geometries, respectively. For

satellite applications Eq. (3) is modified to include the effects of the large spacecraft drift

velocity relative to the essentially stationary ionospheric plasma. 9 The general ion and electron

acceleration current expressions are used to generate the I-V curves that are shown in the

examples rather than the Eq. (3) approximation.

Examples of the I-V curves for the three geometries in purely Maxwellian plasmas are given in

Figures la-c which show I-V curves for 4 different temperatures. The calculation assumed N_

= 105 cm 3, a collector area of 6.73 cm 2 and a spacecraft velocity of 8 km/s. Note that the curves

are down-ranged by a factor of 10 where necessary to allow the large electron acceleration

4
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currents to be shown on the same plot as the test of curve. These figures illustrate'the effect of

T on the width of the electron retardation regions.

For a Maxwellian plasma, all three probe geometries are suitable for the measurement of T.

However, the electron saturation regions differ greatly with collector geometry. Note that the

electron saturation region of the cylindrical probe is nearly independent of T¢, whereas this

region is highly temperature-dependent for the planar and spherical probes. This illustrates a

practical advantage of the cylindrical probe; i.e., that a fixed probe potential can be applied to

make continuous measurements of N e without pausing to measure Te, assuming a known and

stable value for the potential of the spacecraft. The cylindrical and spherical probes have the

advantage of producing large saturation currents for the same density, an advantage for

measurements in regions of very low density.

II. Multi-component Plasmas and Other Non-maxwellian Distributions

When non-ionospheric (non-maxwellian) electrons are present in detectable quantities the

standard Langmuir equations may lead to significant errors in the measurements of N_ and Te.

To handle these situations we examine the current equations for arbitrary electron energy

distributions for the three probe geometries. These equations are integrals over the velocity

distribution functions (VDF) for multi-component populations of ions and electrons. The

discussion begins with formulas for general anisotropic VDFs, then considers the general

isotropic case, and finally the anisotropic case for a Maxwell-Boltzmann distribution. The

effects of these non-ionospheric populations are illustrated by calculating I-V curves for a two

temperature distribution as an example of the isotropic case, and an energetic electron beam

with a superposed Maxwell-Boltzmann distribution as an example of the anisotropic case. The

information that can be obtained about the electron distribution functions by using the 1st and
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2nd derivatives of the I-V curves is discussed, and later fits are made to the curveg to illustrate

obtaining the ionosphere parameters.

Ill. Current Equations for Arbitrary Velocity Distributions

The general form of the VDF for the sth specie (s is an electron or an ion specie) divided

into distinct populations j is a sum over the j populations:

Fs(u,v,w): EnJFJ(u,v,w ), (4)

J

where nsjis the number density of population j for specie s, Fj is the individual VDF, and

u,v,w are velocities in the x,y,z directions. The sum of the number densities over the j

populations is the total number density of specie s, £ nsj = n s , and the VDFs are normalized

J

to unity,

--oo --e,o --o_

Two classes of distributions: isotropic, and anisotropic are considered. For the isotropic VDF,

the general form is,

FsJ(u,v,W)isotropic =aJ(u 2 + p 2 q-we), (6)

where G is a function of the sum of velocities squared or of the energy. The most applicable

form for a collision dominated plasma is the Maxwell distribution function:

GM,LuveU(I, 2 .I. V2_i. W2)= ( #'#1 _ (m(uZ+v2+w>-)) (7)_-_--_) exp(- kT '

where m and T are the mass and temperature of the jth component of the sth specie (for

simplicity, the subscripts and superscripts are not explicitly written in all cases).

6
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The anisotropic distribution has a preferred direction in space anti could result, for

example, fl'om a beam of electrons induced by an acceleration process, or from rapid motion of

the probe through the plasma, or from an anisotropy in the temperature of the electrons or ions

(electrons parallel and perpendicular to the magnetic field can have distinct temperatures).

Anisotropic T was first measured by Clark et al._° and theoretically predicted by Schunk and

Watkins. _ We will employ a specific form of the anisotropic VDF which applies to many

space plasma situations:

FJ (u, v, W)anisotropi c -- FJ (a(u - uo ),b(v - v0),c(w- Wo ))isotropic , (8)

where a,b, and c are constants that could represent temperature anisotropy, and u0, vo, wo

represent a drift velocity of the plasma relative to the probe. An applicable form of the

anisotropic VDF is the Maxwell-Boltzmann distribution which is given by Eq. (7) with the sum

of squares of the velocities replaced by the sum of squares with respect to the drift velocity,

a2(.- Uo)2+:(v - v0)"+: (w- )2.

Another useful form for the anisotropic VDF is as a spherical harmonic expansion.

III.A. General Current equations

The Langmuir probe current equations are given below for the three standard geometries;

planar, cylindrical, and spherical. To simplify the formulas we assume large symmetrical

sheaths and orbital-motion-limited collection for the cylindrical and spherical probes, which is

valid over essentially all ionosphere conditions as long as the relevant probe dimension is

smaller than a few cm. It will become apparent that each geometry has advantages and

disadvantages which depend upon the type of non-maxwellian distribution.

III.A.1. Planar Probe General Formulas



10/23/98 3:42 PM

For a planar probe of area A, the general formula for the current is,

o,o

s,j r ,J--qV
7,,

where q is the charge, m the mass of the sth specie and jth population. The lower limits on the

integral correspond to accelerated (qV>0), retarded (qV<0) particles respectively, u is the

component of velocity perpendicular to the planar probe. And FID is the one dimensional or

"1D" distribution, defined by the integral over velocities parallel to the probe surface,

F(u)'° -- i idvdwF(u' v, w), (10)

and where the subscripts and superscripts are dropped for simplicity of notation. This result is

general for any VDF, isotropic or anisotropic. In the ionosphere, the electron current at zero

probe potential is about a factor of 170 greater than the ion current because of the large

ion/electron mass ratio, hence the I-V characteristic is dominated much more by the electron

current than the ion current. Therefore, the total current in the retarding region can be used to

attempt to determine the electron velocity distribution. We adopt the convention that the electron

current is positive. Thus the 1st derivative of the planar electron current is given by,

d ip,,,,,_ Ae .---, j j(-2_Z_evev)
---2,,,,n F/,f---==-1 , (11)

where eV<O. The derivative is proportional to the "1D" VDF. This result does not imply that

the individual populations j can be obtained from the I st derivative which gives the sum of the

populations. However, if the populations dominate in distinct energy regions, then the

derivative can be used to detemaine the dominant populations. Also the "1D" VDF is not the

same as the original "3D" VDF of Eq. (4), however, it is a useful concept. Later in the

discussion on isotropic plasmas, the relationship between the "1D" and "3D" distributions is

examined. In general, the 2nd derivative of the planar electron current appears to be not related

directly to the distribution function, since it is the 1st derivative of the "ID" VDF. However, if





10/23/983:42PM

thedistributiontakes the specific {'orm of anisotropic VDF that we assmned in Eq.' (8), then it

can be shown using integration by parts, that,

( -2f ev_. 
d 2 i,,,,,,_. _ 2lrAe ___ _ _ me
deV e m_ 7 niG j a 2 i-2eV )'-I/?le ll_) ,

3l)

(12)

where a,b,c are anisotropy parameters which are distinct for each population, and u° is the

population dependent drift velocity in the direction perpendicular to the planar probe surface.

Thus the 2nd derivative of the planar current is equal to a weighted sum of the "3D" VDFs for

our assumed form of the anisotropic distribution. If the populations have distinct energy

domains, then it may be possible to obtain some information on the VDF of each of the

populations. The result is independent of the drift velocities in the directions along the probe

surface, consistent with the planar probe sensing the "1D" distribution. The planar probe

current was treated by Federov _2for the anisotropic distribution expanded in spherical

harmonics. In the special case of an isotropic VDF, (a=b=c=l, u0=0) then Eq. (12) reduces to

the sum over the individual "3D" VDFs.

III.A.2. Cylindrical Probe General Formulas

For a cylindrical probe with an anisotropic VDF, the general formula for the current is

more complicated than for a planar probe. The geometry is no longer rectilinear and we must

integrate over the circumference of the cylindrical surface which changes the direction of the

normal and tangential velocities relative to the anisotropy direction in space. If we let the z-axis

be along the probe axis, the dependence on a drift velocity, w° in the z direction is eliminated.

We use our general form for the anisotropic VDF, given by Eqs. (6) and (8) and define a "2D"

VDF,
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F(a(u- uo),b(v- v,_))2r) - _dwF(u,v,w) , (13)
-_ dllt_otr¢_lff c

where F,,,,,,,,_,, is given by Eq. (8). At an arbitrary position 0 along the probe circumference,

the radial, u, and tangential, v, velocities are related to the x,y components u,v by the

transformation,

u=u cosO-v sinO, v=u sinO+v cose. (14)

The orbital-motion-limited cylinder probe current is then given by,

2n" oo

• I I""¢  qV ,(alcvlinder _ s_s -ff_ + (ucosO-tto),b(u
m

s,j 0 o,_qm V

where A is the cylinder area and transformation (14) was used in Eq. (13), u' is relabeled u and

we may set v'=0, Mott-Smith and Langmuir. 6 The integral is complicated and involves

integration over a modified Bessel function in the case of a Maxwell-Boltzmann VDF. The 1st

and 2rid derivatives of the cylindrical probe current in general do not directly give the

distribution function. However, Federev t2 has shown that the cylindrical I-V curve can yield

information on the anisotropic distribution function.

III.A.3. Spherical Probe General Formulas

For the spherical Langmuir probe, there is no preferred direction and the current is an

integral over 4_ directions on the sphere. The general transformation of velocities from the

fixed x,y,z velocities, u',v',w' to velocities on the sphere at the position given by the spherical

polar angles, O, 4) with u the radial velocity and v and w the tangential velocities, is given by,

u = u'cosO + sinO(v'cos_) + w'sin4))

v =-u'sinO + cosO(vcos4) + w'sin4)) (16)

10
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w = -v sin 0 + w' cos q

where 0, g_ are the polar and azimuthal angles respectively. The inverse transformation is the

transpose of (18). Then the spherical probe current in the limit of a large sheath (orbital-

motion-limited case) is given by, 5

n" 2n"

isp,,ere = A y nJqJ fsin OdO f dO f udu(u 2 +2qV]o
4 _''' d m j

s,j 0 0 O, -FL-_-aV--

Fj(.(,,cosO- "o),b(,,sin0cosO- Vo),+sinOsin - Wo)), (17)

where A is the sphere area, and Fj is our general anisotropic "3D" VDF given by (8). For

retarded electrons, the 1st derivative is,

dl_phere _

deV

tr 2it

a _f nJe 2--fsinOdO f dgp fuduF j,

J 0 0 0 _-2eV

'_7,,

(18)

and the 2nd derivative is given by,

d 2i;phere A ,_ 2,_

deV2 -_ZnJ- z--L-fsinOdOfd(pFJ =_.j_e.,.o o _ .,.
(19)

Thus the 2rid derivative of the spherical probe current is the average over all orientations of the

anisotropic distribution function, or it yields the isotropic part of the distribution as was shown

by Federov t2.

III.B. Current Equations for Isotropic Distribution of Electrons

The isotropic velocity distribution function has the general form given by Eq. (6). We now

demonstrate that, for isotropic electron populations, the three geometries have I-V curves with

identical functional form for the retarded current. Thus for all three geometries, the I st

derivative yields the "ID" VDF and the 2nd derivative yields the "3D" VDF. This result means

11
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that theoretically all three are suitable tot" measuring isotropic, non-maxwellian ele_:tron velocity

distributions.

III.B.1. Standard Form of the Isotropic, Retarded Current

Given the form of the isotropic VDF, Eq. (6), the "ID" distribution can be rewritten as,

+,2/, (20)
0

where G is the "3D" VDF and the polar transformation of variables was used, v = tcosa ,

w = t sin o_. Thus the planar current can be rewritten,

oo o_1

lp'iS°tr°pic=AZn q j" .d.2,_J',d_c(.2+__) (21)

0,4-2x 0

2qV
where X - ; the lower limit 0 is for accelerated particles when X>0, and the limit _ is

m

for retarded particles when X<0. The accelerated current is independent of voltage, and thus we

consider only the retarded particles which yield information on the VDF. With a change of

variables, the retarded planar current expression is,

oo

isorro ic=AZnq fs3 sC(s2-Xtlp retarded - -

The cylindrical current is obtained by substituting an isotropic VDF in Eq. (15), giving the

form,

12
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o,o ¢,o

tc = ,4 2nq udtc4tt- + X dwG(tt- + w 2 .

O.-,/- X -,_

(23)

Successive transformation of variables, u- + X = t-, and t = sin0s, w=cos0s, and the

integral over 0 yields _r2" and thus the retarded cylindrical current is given by the integral in

•isotropic .isotropic
Eq. (22), tc retarded = tp retarded"

The spherical current, Eq. (17), for an isotropic distribution has the form,

'siS°tr°"ic=Ay__nq fu<u2+XlC(u2 
o,4:-x

(24)

and using the transformation, u 2 + X = s 2 , the spherical probe retarded current is found to

• isotropic .isotropic Thus the three probehave the form of Eq. (22), or, ts retarded = lp retarded"

geometires have the identical retarded current expression for an isotropic VDF.

III.B.2. First Derivative of the Isotropic Retarded Current

The 1st derivative of the retarded current was shown in Eq. (11) to be given by the "1D"

distribution for a planar probe, thus for isotropic plasma, the three probe goemetries all have

the identical form given by,

diis°tr°l'iC_Aynee (2eV]
deV --_lD\-_ne )" (25)

where the "ID" VDF is given by Eq. (20).

Examine the relation of the "ID" distribution to the full "3D" VDF. The "3D" VDF can be

expanded in Laguerre polynomials _3,

13
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o,o

a(x) e-"_,/2°)'_ '= g. . k"),
n =0

then the "ID" VDF is the integral,

O_o(x)= n; J,G(s + x),
0

(26)

(27)

which can be rewritten, using the relations among Laguerre polynomials given by Rainville t3,

as follows,

(28)

oo

G1D(X) = e-Xrc E g,,L(n-l)(x).

n=0

For a Maxwell distribution g,=0 for n>0, which is the only case when the "1D" and "3D"

distributions have the same functional form. The first few terms of the two distributions are

(29)

(30)

given by,

o,x,__e }
The distributions are distinct, but the dominant terms in x are identicall

III.B.3. Second Derivative of Isotropie Retarded Current

The 2nd derivative of the isotropic current is readily obtained from Eq. (12) by

substituting the isotropic distribution, we obtain,

d2i is°tr°pic 2______ffA'_ ne eG(-2eV l',_l l (31)
deV 2 - me 2 k me ,)

A result first found earlier by Mott-Smith and Langmuir. 6 In the next section we give the

current formulas for the special anisotropic case of the Maxwell-Boltzmann distribution with

isotropic temperatures.

14
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The VDF for a Maxwell-Boltzmann (MB) distribution is given by the formula,

exp/-----=/tu- uo)" + (v - vo)2 + (w - wo)2 ,
_J(u'v'w)MB _,2rc/,:TJ [, 2kTsJ _ (32)

where the drift velocity components ug vo, w° may be different for each specie and population

of a specie. For simplicity, we will assume below that all species have the same drift velocity.

III.C.1. Planar Probe Equations for Anisotropic MB Distribution

The "1D" VDF is obtained by substituting (34) in Eq. (12),

( m j _ ( ' ._
= ---s . exp JLm (u-uol (33)

which leads to the current expressions,

ipla,,arMBaccelerated : Z irandom(eXp(--r2)+_/-_retfc(-r)) (34a)

j,s

for accelerated particles, and

iplanarMBremrded=Zirandom(eXp(--(_f_--r)21+_-_rerfc(_f-_--r)l, (34b)

j,s

for retarded particles, where r is the ratio of drift velocity to thermal velocity,

rj_ • , (35)

and r/is the ratio of voltage to thermal energy,

15
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r/._ = _, (36)

and the random current, the current due only to thermal motion of the particles, is,

i J = An j 2_ms J
,'a,,lom s • . ( 37)

III.C.2. Cylindrical Probe Equations for Anisotropic MB Distribution

Using the Maxwell-Boltzmann distribution (32) in the expression for the cylindrical probe

current, (15), and transforming the drift velocities, we find,

oo

lcylinder ---- Z lrand°m W tdt v_ + (38)

s.j 0,4- 

which formula cannot be evaluated in simple analytical form. I0 is the modified Bessel function

and r and 7/ are given above. Useful asymptotic approximations have been obtained for this

integral by Hoegy and Wharton. 9 However, since we are evaluating the cylinder current for a

wide range of values of r and 77, we evaluate it numerically using the fast, efficient routines

from Numerical Recipes._4 The limit of Eq. (38) for zero drift velocity or the isotropic Maxwell

distribution gives for accelerated particles,

ir,,nd,,.,[---_r-_+exp(rl)erfc(_f_)l, (39a)

for large r/ ,this expression is approximated by _-vq + q .

For retarded particles the current is given by,

ir,,,a,,meXp( rl). (39b)

III.C.3. Spherical Probe Equations for Anisotropic MB Distribution

16
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TheMaxwell-Boltzmanndistribution(32)in theexpressionfor thesphericalprobe

current,(17),givestheexpression,

oo

• . 1 fdt(t2+rl)(exp(_(t_r)e)_exp(_(t+r)2))lsphere = Zt trand°m _

s, j 0.._'--_

The spherical geometry, results in spherical Bessel functions which can be integrated to give,

lsphereaccelerate d = lrandom _exp(-r )-_ (r_-t-r2 +½)

for accelerated particles, and

isphereretarded = Z irand°m _-rr\( _ -t--r 2 -I- ½)4{eg(_-_ +r)-erf(,f2_ - r)}+

s,j

("/-_ + r)exp( -('_- r)2)2 ("fL-_ - r) exp(-('x/ZO + r)2)i2 , (40b)

for retarded particles. In the limit of zero drift velocity, or an isotropic Maxwell distribution,

Eq. (40a) reduces to,

ir.,,,,,,.,(l_+ 1), (41a)

and Eq. (40b) reduces to,

ir,,,,a,,,,, exp( 7). (4 lb)

To aid the reader in visualizing the effects of non-maxwellian electron distributions on the I-V

curves, Sections IV and V show theoretical I-V curves for mixtures of electron populations

having different temperatures and density ratios. I-V curves are also shown for mixtures of

thermal electrons and energetic beam electrons•

IV. I-V Characteristics for Two-Temperature Distributions

17



10/23/98 3:42 PM

Figures 2 a, b, and c show planar, cylindrical and spherical probe I-V curves' for various

density ratios of I0,000 K and 1000 K electron populations, with a combined total density of

105 cm -3. Curves are shown for energetic component densities relative to the total density of 0,

20, 33.3, and 50%. 0% corresponds to the complete absence of the higher temperature

component.

The higher temperature component enhances the current at greater retarding voltages as

seen by comparing these figures with Figures 1 a-c. The temperatures and densities of the two

components can be obtained by fitting a two-temperature exponential to the curves or by fitting

the near and far retarding regions with single-temperature exponential. The latter procedure was

used successfully in the fitting of I-V curves from the PVO Langmuir probe which exhibited

two-temperature characteristics in certain regions of the Venus ionotail. 4

V. I-V Characteristics for Thermal Electrons Plus an Energetic Beam

Figures 3 a-c show theoretical I-V curves for combinations of 1000 K thermal electrons

and a 1 eV energetic beam having a 2000 K thermal spread. The assumed total density is 105

cm 3. The beam is directed normal to the planar probe surface and perpendicular to the

cylindrical probe axis. The beam direction is irrelevant for the spherical probe. This case is our

example of an anisotropic distribution. The non-exponential nature of the curves shows

immediately that the energy distribution is non-maxwellian.

These examples are illustrative of the effects of non-maxwellian plasmas on Langmuir

probe measurements. Other combinations of secondaries, energetic beams and ionospheric

electrons would change the shapes and amplitudes of the Langmuir probe characteristics in

different and unique ways. The question remains as to how the ambient ionospheric

temperature and density can be derived when such additional electron populations are present

18
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asanalternativetothederivativetechnique.Thenextsectionillustrates what can b'e learned

about such complex distribL, tions by fitting the I-V curves using either one or two temperature

distributions.

VI. Fitting I-V curves for one or two temperature Maxwellian distributions.

If one knew the form of the energy distributions of the secondary electron populations,

one could in principle fit the I-V curves for the energy and density of each of the contributions.

In practice this is difficult, since one usually only has the I-V curves themselves to work with.

After finding that a single temperature fit fails to achieve a sufficiently small standard deviation,

one could proceed by trial and error to add various other components to the fit to improve the

quality of the fit. The first step is usually to add another maxwellian component at a suitable

temperature and density. If such a two-temperature distribution fails to achieve an acceptable

fit, one can proceed to add or substitute directed energetic beams with appropriate energies and

temperatures of the type illustrated above in Sections V.

In this section we go part way down this path by showing how well single and two-

temperature probe theories fit the I-V curves shown in Figures 1 - 3. We fitted the theoretical

curves shown in Figures 1-3 using techniques similar to those used in the analysis of Langmuir

probe measurements from Pioneer Venus Orbiter 4 and Dynamics Explorer-2._5 The retarding

regions were fit first to a single Maxwellian. In some cases, the curves were then fit using a

two-temperature Maxwellian to explore the feasibility of obtaining information on the nature of

the distributions and to recover the ambient parameters.

The single temperature fits were made using the simple form:
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I 1604.45 V]l=a+bV+cexp TI
(42)

where V is the probe voltage in volts, T_ is the single temperature in K, and a, b and c are

constants to be determined by the fit. The first two terms represent the ion current amplitude

and slope, respectively. The third term represents the retarded electron current. The fitting

procedure steps through a range of temperatures T_ while performing a least square fit of Eq.

(44) to the theoretical curves to determine the coefficients. A Newtonian scheme is used to

refine the fit to obtain a temperature that minimizes the standard deviation, STD.

A similar method was used to fit the curves for two temperatures using the formula:

 604 expI116°4I a+bV+cexp 7"1 T2

The ratio of coefficients d and c determine the ratio of the densities of the high and low

temperature components. The domains of the two temperatures are kept distinct to ensure the

uniqueness of the fit parameters. In a flight application, where perhaps millions of curves may

have to be fitted, a faster scheme would be devised. The present fit procedure, however, is

adequate to demonstrate the nature of the two-temperature fitting procedure.

These fit procedures were applied to the three cases of different probe geometry, planar,

cylindrical, and spherical, and to three distribution functions, purely Maxwellian, two-

temperature Maxwellian and a Maxwellian with a superimposed electron beam. When the two-

temperature fits were applied to the one-temperature curves, the density derived for the second

component was essentially zero, thus confirming that only a single temperature was present.

The fits to the single Maxwellian are not shown in the table because they reproduce the input

values of T_ and N with greater than 1% accuracy corresponding to STDs of less than 5x104.

2O



10/23/983:42PM

Table I liststhederivedtemperaturesandfit STDs tbr a two-temperature distribution and

for different density ratios of the two components. The numbers in parenthesis are power of

10, e.g., 3.2(-5) = 3.2x10 '_. The curve to be fitted were obtained using the appropriate

equations that were presented earlier. We assumed no digitization errors and used 226 voltage

values between -3 V and 0 V. The theoretical temperatures were 1000 K and 10,000 K,

respectively. Although not shown in Table 1, the two-temperature fits retreived the two

temperatures and three density ratios with negligible error. The ratio of fit parameters, d/(c+d)

for the two temperature least square fit were, 0.44, 0.61, and 0.76 which agree with the

theoretical values corresponding to density ratiosn,/n_ of 0.25, 0.5 and 1.0 respectively. These

ratios are related by the formula,

d = f_____f, where f = n._L_TlY2.d+c 1+ n 1

Table 1. T_ and STD for single and two-temperature fits to curves produced by a two-
temperature distribution at 1000 K and 10,000 K.

ratio n2/n _ 0.25

Te (single T fit) 2130
STD (single T fit) 5(-2)
STD (two T fit) 8.(-6)

Te (single T fit) 2133
STD (single T fit) 5.4(-2)
STD (two T fit) 8.(-6)

Te (single T fit)
STD (single T fit)
STD (two T fit)

2117

5.4(-2)
3.6(-5)

0.5 1.0
Planar Probe

3694 5652

7.(-2) 5.(-2)
7.7(-6) 9.3(-5)

Cylindrical Probe
3698 5655

7.2(-2) 5.4(-2)
7,7(-6) 7.2(-6)

Spherical Probe
3678 5633

7.3(-2) 5.5(-2)
3.6(-5) 3.8(-5)

Note that the STDs of the single temperature fits are much higher than those obtained

when the more appropriate two-temperature fits are performed. All three geometries provide

very low STDs for the two temperature fits, indicating that all are appropriate for measuring

two-temperature electron populations. Table 1 also demonstrates the vast improvement in the

STD when a two-temperature fit is used instead of the simple single temperature fit. We find
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thata two-temperaturefit still workswhentheoriginaldistributioncontainsonly one

temperaturecomponent.TheSTDdoesnot improvesigniticantlyrelativeto asingle

temperaturefit. This resultsuggeststhatthepresenceof atwo-temperatureplasmacanbe

confirmedby comparingtheSTDsfor atwo-temperaturefit andasingletemperaturefit. A

singletemperatureplasmais presentif theSTDsarelow for bothtypesof fit. A two-

temperatureplasmaispresentif thesingletemperaturefit yieldsa highSTDandatwo-

temperaturefit yieldstwo temperatures,bothwith smallSTDs.If neitherof theseoutcomes

occur,thenamorecomplicatedenergydistributionmustbepresent.

Next it is shownwhathappenswhenoneof thesemorecomplicatedenergydistributions

ispresent.Table2showstheTeandSTDresultsobtainedwhensingleandtwo-temperature

fits areperformedon thecurvesshownin Figures3a-c.Thesecurveswerederivedfor the

casewherebothadirectedelectronbeamandasingletemperatureplasmaarepresent.The

thermalplasmahasa temperatureof 1000K, while thebeamwasgivenadirectedenergyof 1

eV andasuperposedtemperatureof 2000K. Thefamily of densityratiosareasshownin the

figures.

Sincethecurvesdonotappearassimpleexponentials,it is notsurprisingthattheSTDs

arehighfor bothsingleandtwo-temperaturefits.Thefit datafor theplanarprobearenot

shownbecausetheSTDsaresolargeasto maketheresultsmeaningless.

Table2. TeandSTD fromsingleandtwo-temperaturefits curveproducedby a
Maxwelliancomponentat I000K anda 1eV beamwithasuperposed2000K temperature
n,/n_ 0.25 0.5 1.0

Cylindrical Probe
T/STD (singleT fit) 4935/0.14 11,426/9.8(-2) 22,260/5.(-2)

Two temperaturefit yieldsT_=1000K, T2=36,800K
STD (two T fit) 4.8(-3) 1.3(-2) 3.(-2)
d/(c+d) (two T fit) 0.865 0.94 0.98

Spherical Probe
T/STD (singleT fit) 3100/8.8(-2) 5726/8.(-2) 8483/4.(-2)

Two temperaturefit yieldsTI= 1000K,T,= 12,000K
STD (twoT fit) 1.1(-3) 3.(-3) 6.7(-3)
d/(c+d) (two Y fit) 0.57 0.75 0.87
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Discussion

While this work has presented and illustrated the Langmuir probe theory for non-

maxwellian electron populations, we have also tried to convey some sense of how one might

proceed to use these results in the analysis of experimental [-V curves obtained in space. In our

experience, the vast majority of such I-V curves can be fitted very well using the original

Langmuir probe theory for a single temperature and density plasma. Under certain conditions,

however, the effects of photoelectrons or impact secondaries can be seen in the I-V curves as a

high energy tail in the retarding regions.'* Although we have not experienced it in the

ionosphere, one can be sure that a Langmuir probe would be sensitive to the presence of an

energetic electron beam, and/or any secondaries that it might produce.

The presence of secondaries is not usually a surprise to the experimenter who understands how

spacecraft interact with the atmosphere and knows what other devices onboard may produce

interferring plasma populations. Therefore, one starts off with a good idea of which kinds of

distributions to employ in fitting such curves. In our experience most such curves can be fitted

by introducing into the fit a second Maxwellian component. If the spacecraft is highly positive,

or if an electron beam source is known to be onboard, it may be necessary to add or substitute

an electron beam term into the fitting routine. In principle, some such combination of

Maxwellian and beam sources can reproduce almost any I-V curve that is likely to be

encountered. However, the parameters derived from the I-V curves may not always give either

the original ionosphere component or the secondary components. Interactions among the

various populations could conceivably produce a final distribution at the probe location that is

not a simple superposition of the components that produced it. A detailed evaluation of this

possibility would be required to validate that assumption in each case.
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We showedthatall threeprobegeometriesarenotequallysuitablelot"theme',).surenlentof

T,. An earlier work by Hoegy _' showed how different measurement techniques, tbr example,

radar backscatter, a.c. mode Langmuir plate, etc.using distinct methods of deriving temperature

tend to give different temperature values when the distribution is non-maxwellian. Thus distinct

techniques or instrument type also lead to different plasma probe results. The figures

demonstrated that electron saturation regions differ greatly with collector geometry. The

saturation region of the cylindrical probe is nearly independent of T_, whereas this region is

highly temperature-dependent for the planar and spherical probes. We showed that the

retarding region of the I-V curves is identical for all three probe geometries when the

distribution is isotropic. The 1st derivative of the retarding regions gives the "1D" VDF while

the 2rid derivative yields the full "3D" VDF. When the energy distribution is anisotropic, it is

not always possible to derive the distribution uniquely, but some information can be obtained

from the derivatives. For example, the 1st derivative of the planar probe current and the 2nd

derivative of the spherical probe current give averages of the anisotropic distribution functions.
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Figure Captions

Figure 1.a. Planar probe curves computed for a Maxwellian plasma illustrate the effect of T_ on

the width of the retarding region. Note that the electron saturation region is flat because the

calculation assumes an infinite plane; i.e., a perfectly guarded planar probe. The amplitude of the

electron saturation current varies greatly with T_

Figure 1.b. Same as Fig. !.a. but for a cylindrical probe. Note that the electron saturation

currents are nearly independent of T_.

Figure l.c. Same as Figure l.a. but for a spherical probe.
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Figure2.a. Planarprobecurvesfor mixturesof electronpopulationshavingtemperatures

of I000 K and 10,000K. Thecurvesarelabeledwith thepercentageof thetotaldensity

representedbythehigherternperaturecomponent.Thelow temperaturecomponent

dominatestheshapeof thecurvesat low retardingpotentials,while thehightemperature

componentdominatesthemorenegativeendof theretardingregion.

Figure 2.b. SameasFigure2a,exceptfor acylindricalprobe.

Figure 2.c. SameasFigure2a,exceptfor asphericalprobe.

Figure3.a. Planarprobecurvesfor a 1eV energeticbeamwith a2000K energyspread

anda 1000K thermalcomponent.Thecurvesarelabeledwith thepercentageof thetotal

densityrepresentedby thebeam.Notethatthebeamcomponentdominatestheretarding

regionfor relativelysmallpercentagesof beamdensity,thuspotentiallyinterferingwith the

measurementof thecold ionosphericcomponent.

Figure 3.b. SameasFigure3a,exceptfor acylindricalprobe.Theretardingregionis not

assensitiveto thebeamcomponentaswasthecasefor theplanarprobe(Fig. 3a).Also

notethattheelectronsaturationcurrentstoacylinderarerelativelylesssensitiveto the

presenceof abeamthanareplanarprobesandsphericalprobes(Fig.3c).

Figure3.c. SameasFigure3a,exceptfor asphericalprobe.Theretardingregionis less

sensitiveto thebeamcomponentthaneithertheplanaror cylindricalprobe(Figures3aand3b)

becausethermalelectronsarecollectedfrom4reradians, while thebeamapproachesthe

collector fromonly onedirection.
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Figure 1.a. Planar probe curves computed for a Maxwellian plasma illustrate the effect of Te
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temperature component dominates the more negative end of the retarding region.
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Figure 3.a. Planar probe curves for a 1 eV energetic beam with a 2000 K energy spread
and a 1000 K thermal component. The curves are labeled with the percentage of the total
density represented by the beam. Note that the beam component dominates the retarding
region for relatively small percentages of beam density, thus potentially interfering with the
measurement of the cold ionospheric component.
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Figure 3.b. Same as Figure 3 a, except for a cylindrical probe. The retarding region is
not as sensitive to the beam component as was the case for the planar probe (Fig. 3a). Also
note that the electron saturation currents to a cylinder are relatively less sensitive to the
presence of a beam than are planar probes and spherical probes (Fig. 3c).
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Figure 3.c. Same as Figure 3a, except for a spherical probe. The retarding region is less
sensitive to the beam component than either the planar or cylindrical probe (Figures 3a and
3b) because thermal electrons are collected from 4r_ radians, while the beam approaches the
collector from only one direction.


